399 research outputs found

    IntelliFlow : um enfoque proativo para adicionar inteligência de ameaças cibernéticas a redes definidas por software

    Get PDF
    Orientador: Christian Rodolfo Esteve RothenbergDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Segurança tem sido uma das principais preocupações enfrentadas pela computação em rede principalmente, com o aumento das ameaças à medida que a Internet comercial e economias afins crescem rapidamente. Tecnologias de virtualização que permitem serviços em nuvem em escala colocam novos desafios para a segurança das infraestruturas computacionais, exigindo novos mecanismos que combinem o best-of-breed para reagir contra as metodologias de ataque emergentes. Nosso trabalho busca explorar os avanços na Cyber Threat Intelligence (CTI) no contexto da arquitetura de redes definidas por software, ou em inglês, Software Defined Networking (SDN). Enquanto a CTI representa uma abordagem recente para o combate de ameaças baseada em fontes confiáveis, a partir do compartihamento de informação e conhecimento sobre atividades criminais virtuais, a SDN é uma tendência recente na arquitetura de redes computacionais baseada em princípios de modulação e programabilidade. Nesta dissertação, nós propomos IntelliFlow, um sistema de detecção de inteligência para SDN que segue a abordagem proativa usando OpenFlow para efetivar contramedidas para as ameaças aprendidas a partir de um plano de inteligência distribuida. Nós mostramos a partir de uma implementação de prova de conceito que o sistema proposto é capaz de trazer uma série de benefícios em termos de efetividade e eficiência, contribuindo no plano geral para a segurança de projetos de computação de rede modernosAbstract: Security is a major concern in computer networking which faces increasing threats as the commercial Internet and related economies continue to grow. Virtualization technologies enabling scalable Cloud services pose further challenges to the security of computer infrastructures, demanding novel mechanisms combining the best-of-breed to counter certain types of attacks. Our work aims to explore advances in Cyber Threat Intelligence (CTI) in the context of Software Defined Networking (SDN) architectures. While CTI represents a recent approach to combat threats based on reliable sources, by sharing information and knowledge about computer criminal activities, SDN is a recent trend in architecting computer networks based on modularization and programmability principles. In this dissertation, we propose IntelliFlow, an intelligent detection system for SDN that follows a proactive approach using OpenFlow to deploy countermeasures to the threats learned through a distributed intelligent plane. We show through a proof of concept implementation that the proposed system is capable of delivering a number of benefits in terms of effectiveness and efficiency, altogether contributing to the security of modern computer network designsMestradoEngenharia de ComputaçãoMestre em Engenharia Elétrica159905/2013-3CNP

    Security in DevOps: understanding the most efficient way to integrate security in the agile software development process

    Get PDF
    Modern development methodologies follow a fast and dynamic pace, which gives great attention to customers’ satisfaction in the delivery of new releases. On the other hand, the work pursued to secure a system, if not adapted to the new development trend, can risk to slow down the delivery of new software and the adaptability typical for an Agile environment. Therefore, it is paramount to think about a new way to integrate security into the development framework, in order to secure the software in the best way without slowing down the pace of the developers. Moreover, the implementation of automatic and repeatable security controls inside the development pipeline can help to catch the presence of vulnerabilities as early as possible, thus reducing costs, comparing to solving the issues at later stages. The thesis presents a series of recommendations on how to best deploy a so called DevSecOps approach and applies the theory to the use case of Awake.AI, a Finnish startup company focusing its business on the maritime industry. It is not always easy and feasible to practically apply all the suggestions presented in the literature to a real case scenario, but rather the recommendations need to be adapted and forged in a way that best suits the situation and the current target. It is undeniable that the presence of a strong and efficient secure development framework can give substantial advantage to the success of a company. In fact, not only it makes sure that the delivery of good quality code to the customers is not slowed down, but it also dramatically reduces the risk of incurring in expensive security incidents. Lastly, it is valuable to also mention that, being able to show a clean and efficient approach to security, the framework improves the reputation and trustfulness of the company under the eyes of the customers

    CloudMon: a resource-efficient IaaS cloud monitoring system based on networked intrusion detection system virtual appliances

    Get PDF
    The networked intrusion detection system virtual appliance (NIDS-VA), also known as virtualized NIDS, plays an important role in the protection and safeguard of IaaS cloud environments. However, it is nontrivial to guarantee both of the performance of NIDS-VA and the resource efficiency of cloud applications because both are sharing computing resources in the same cloud environment. To overcome this challenge and trade-off, we propose a novel system, named CloudMon, which enables dynamic resource provision and live placement for NIDS-VAs in IaaS cloud environments. CloudMon provides two techniques to maintain high resource efficiency of IaaS cloud environments without degrading the performance of NIDS-VAs and other virtual machines (VMs). The first technique is a virtual machine monitor based resource provision mechanism, which can minimize the resource usage of a NIDS-VA with given performance guarantee. It uses a fuzzy model to characterize the complex relationship between performance and resource demands of a NIDS-VA and develops an online fuzzy controller to adaptively control the resource allocation for NIDS-VAs under varying network traffic. The second one is a global resource scheduling approach for optimizing the resource efficiency of the entire cloud environments. It leverages VM migration to dynamically place NIDS-VAs and VMs. An online VM mapping algorithm is designed to maximize the resource utilization of the entire cloud environment. Our virtual machine monitor based resource provision mechanism has been evaluated by conducting comprehensive experiments based on Xen hypervisor and Snort NIDS in a real cloud environment. The results show that the proposed mechanism can allocate resources for a NIDS-VA on demand while still satisfying its performance requirements. We also verify the effectiveness of our global resource scheduling approach by comparing it with two classic vector packing algorithms, and the results show that our approach improved the resource utilization of cloud environments and reduced the number of in-use NIDS-VAs and physical hosts.The authors gratefully acknowledge the anonymous reviewers for their helpful suggestions and insightful comments to improve the quality of the paper. The work reported in this paper has been partially supported by National Nature Science Foundation of China (No. 61202424, 61272165, 91118008), China 863 program (No. 2011AA01A202), Natural Science Foundation of Jiangsu Province of China (BK20130528) and China 973 Fundamental R&D Program (2011CB302600)

    Self-adapting security monitoring in Eucalyptus cloud environment

    Get PDF
    This paper discusses the importance of virtual machine (VM) scheduling strategies in cloud computing environments for handling the increasing number of tasks due to virtualization and cloud computing technology adoption. The paper evaluates legacy methods and specific VM scheduling algorithms for the Eucalyptus cloud environment and compare existing algorithms using QoS. The paper also presents a self-adapting security monitoring system for cloud infrastructure that takes into account the specific monitoring requirements of each tenant. The system uses Master Adaptation Drivers to convert tenant requirements into configuration settings and the Adaptation Manager to coordinate the adaptation process. The framework ensures security, cost efficiency, and responsiveness to dynamic events in the cloud environment. The paper also presents the need for improvement in the current security monitoring platform to support more types of monitoring devices and cover the consequences of multi-tenant setups. Future work includes incorporating log collectors and aggregators and addressing the needs of a super-tenant in the security monitoring architecture. The equitable sharing of monitoring resources between tenants and the provider should be established with an adjustable threshold mentioned in the SLA. The results of experiments show that Enhanced Round-Robin uses less energy compared to other methods, and the Fusion Method outperforms other techniques by reducing the number of Physical Machines turned on and increasing power efficienc

    Infrastructural Security for Virtualized Grid Computing

    Get PDF
    The goal of the grid computing paradigm is to make computer power as easy to access as an electrical power grid. Unlike the power grid, the computer grid uses remote resources located at a service provider. Malicious users can abuse the provided resources, which not only affects their own systems but also those of the provider and others. Resources are utilized in an environment where sensitive programs and data from competitors are processed on shared resources, creating again the potential for misuse. This is one of the main security issues, since in a business environment competitors distrust each other, and the fear of industrial espionage is always present. Currently, human trust is the strategy used to deal with these threats. The relationship between grid users and resource providers ranges from highly trusted to highly untrusted. This wide trust relationship occurs because grid computing itself changed from a research topic with few users to a widely deployed product that included early commercial adoption. The traditional open research communities have very low security requirements, while in contrast, business customers often operate on sensitive data that represents intellectual property; thus, their security demands are very high. In traditional grid computing, most users share the same resources concurrently. Consequently, information regarding other users and their jobs can usually be acquired quite easily. This includes, for example, that a user can see which processes are running on another user´s system. For business users, this is unacceptable since even the meta-data of their jobs is classified. As a consequence, most commercial customers are not convinced that their intellectual property in the form of software and data is protected in the grid. This thesis proposes a novel infrastructural security solution that advances the concept of virtualized grid computing. The work started back in 2007 and led to the development of the XGE, a virtual grid management software. The XGE itself uses operating system virtualization to provide a virtualized landscape. Users’ jobs are no longer executed in a shared manner; they are executed within special sandboxed environments. To satisfy the requirements of a traditional grid setup, the solution can be coupled with an installed scheduler and grid middleware on the grid head node. To protect the prominent grid head node, a novel dual-laned demilitarized zone is introduced to make attacks more difficult. In a traditional grid setup, the head node and the computing nodes are installed in the same network, so a successful attack could also endanger the user´s software and data. While the zone complicates attacks, it is, as all security solutions, not a perfect solution. Therefore, a network intrusion detection system is enhanced with grid specific signatures. A novel software called Fence is introduced that supports end-to-end encryption, which means that all data remains encrypted until it reaches its final destination. It transfers data securely between the user´s computer, the head node and the nodes within the shielded, internal network. A lightweight kernel rootkit detection system assures that only trusted kernel modules can be loaded. It is no longer possible to load untrusted modules such as kernel rootkits. Furthermore, a malware scanner for virtualized grids scans for signs of malware in all running virtual machines. Using virtual machine introspection, that scanner remains invisible for most types of malware and has full access to all system calls on the monitored system. To speed up detection, the load is distributed to multiple detection engines simultaneously. To enable multi-site service-oriented grid applications, the novel concept of public virtual nodes is presented. This is a virtualized grid node with a public IP address shielded by a set of dynamic firewalls. It is possible to create a set of connected, public nodes, either present on one or more remote grid sites. A special web service allows users to modify their own rule set in both directions and in a controlled manner. The main contribution of this thesis is the presentation of solutions that convey the security of grid computing infrastructures. This includes the XGE, a software that transforms a traditional grid into a virtualized grid. Design and implementation details including experimental evaluations are given for all approaches. Nearly all parts of the software are available as open source software. A summary of the contributions and an outlook to future work conclude this thesis

    Security Audit Compliance for Cloud Computing

    Get PDF
    Cloud computing has grown largely over the past three years and is widely popular amongst today's IT landscape. In a comparative study between 250 IT decision makers of UK companies they said, that they already use cloud services for 61% of their systems. Cloud vendors promise "infinite scalability and resources" combined with on-demand access from everywhere. This lets cloud users quickly forget, that there is still a real IT infrastructure behind a cloud. Due to virtualization and multi-tenancy the complexity of these infrastructures is even increased compared to traditional data centers, while it is hidden from the user and outside of his control. This makes management of service provisioning, monitoring, backup, disaster recovery and especially security more complicated. Due to this, and a number of severe security incidents at commercial providers in recent years there is a growing lack of trust in cloud infrastructures. This thesis presents research on cloud security challenges and how they can be addressed by cloud security audits. Security requirements of an Infrastructure as a Service (IaaS) cloud are identified and it is shown how they differ from traditional data centres. To address cloud specific security challenges, a new cloud audit criteria catalogue is developed. Subsequently, a novel cloud security audit system gets developed, which provides a flexible audit architecture for frequently changing cloud infrastructures. It is based on lightweight software agents, which monitor key events in a cloud and trigger specific targeted security audits on demand - on a customer and a cloud provider perspective. To enable these concurrent cloud audits, a Cloud Audit Policy Language is developed and integrated into the audit architecture. Furthermore, to address advanced cloud specific security challenges, an anomaly detection system based on machine learning technology is developed. By creating cloud usage profiles, a continuous evaluation of events - customer specific as well as customer overspanning - helps to detect anomalies within an IaaS cloud. The feasibility of the research is presented as a prototype and its functionality is presented in three demonstrations. Results prove, that the developed cloud audit architecture is able to mitigate cloud specific security challenges

    Towards 5G Zero Trusted Air Interface Architecture

    Full text link
    5G is destined to be supporting large deployment of Industrial IoT (IIoT) with the characteristics of ultra-high densification and low latency. 5G utilizes a more intelligent architecture, with Radio Access Networks (RANs) no longer constrained by base station proximity or proprietary infrastructure. The 3rd Generation Partnership Project (3GPP) covers telecommunication technologies including RAN, core transport networks and service capabilities. Open RAN Alliance (O-RAN) aims to define implementation and deployment architectures, focusing on open-source interfaces and functional units to further reduce the cost and complexity. O-RAN based 5G networks could use components from different hardware and software vendors, promoting vendor diversity, interchangeability and 5G supply chain resiliency. Both 3GPP and O-RAN 5G have to manage the security and privacy challenges that arose from the deployment. Many existing research studies have addressed the threats and vulnerabilities within each system. 5G also has the overwhelming challenges in compliance with privacy regulations and requirements which mandate the user identifiable information need to be protected. In this paper, we look into the 3GPP and O-RAN 5G security and privacy designs and the identified threats and vulnerabilities. We also discuss how to extend the Zero Trust Model to provide advanced protection over 5G air interfaces and network components

    Towards Software-Defined Protection, Automation, and Control in Power Systems: Concepts, State of the Art, and Future Challenges

    Get PDF
    Nowadays, power systems’ Protection, Automation, and Control (PAC) functionalities are often deployed in different constrained devices (Intelligent Electronic Devices) following a coupled hardware/software design. However, with the increase in distributed energy resources, more customized controllers will be required. These devices have high operational and deployment costs with long development, testing, and complex upgrade cycles. Addressing these challenges requires that a ’revolution’ in power system PAC design takes place. Decoupling from hardware-dependent implementations by virtualizing the functionalities facilitates the transition from a traditional power grid into a software-defined smart grid. This article presents a survey of recent literature on software-defined PAC for power systems, covering the concepts, main academic works, industrial proof of concepts, and the latest standardization efforts in this rising area. Finally, we summarize the expected future technical, industrial, and standardization challenges and open research problems. It was observed that software-defined PAC systems have a promising potential that can be leveraged for future PAC and smart grid developments. Moreover, standardizations in virtual IED software development and deployments, configuration tools, performance benchmarking, and compliance testing using a dynamic, agile approach assuring interoperability are critical enablers. © 2022 by the authors
    corecore