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Abstract—This paper discusses the importance of virtual 

machine (VM) scheduling strategies in cloud computing 

environments for handling the increasing number of tasks due to 

virtualization and cloud computing technology adoption. The 

paper evaluates legacy methods and specific VM scheduling 

algorithms for the Eucalyptus cloud environment and compare 

existing algorithms using QoS. The paper also presents a self-

adapting security monitoring system for cloud infrastructure 

that takes into account the specific monitoring requirements of 

each tenant. The system uses Master Adaptation Drivers to 

convert tenant requirements into configuration settings and the 

Adaptation Manager to coordinate the adaptation process. The 

framework ensures security, cost efficiency, and responsiveness 

to dynamic events in the cloud environment. The paper also 

presents the need for improvement in the current security 

monitoring platform to support more types of monitoring devices 

and cover the consequences of multi-tenant setups. Future work 

includes incorporating log collectors and aggregators and 

addressing the needs of a super-tenant in the security monitoring 

architecture. The equitable sharing of monitoring resources 

between tenants and the provider should be established with an 

adjustable threshold mentioned in the SLA. The results of 

experiments show that Enhanced Round-Robin uses less energy 

compared to other methods, and the Fusion Method outperforms 

other techniques by reducing the number of Physical Machines 

turned on and increasing power efficiency. 
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I. INTRODUCTION 

Cloud computing is a technology that provides on-demand 
access to a pool of resources (such as networks, servers, 
storage, applications, and services) through networks. It is 
offered by companies like Google, Amazon, and SalesForce 
and eliminates the need for users to handle administration and 
IT maintenance [1]. Resource scheduling and allocation can be 
challenging for cloud providers due to the dynamic behavior of 
services and multiple types of cloud systems available [2]. 
Cloud computing is a form of computing as a service rather 
than a product, providing customers with access to software, 
resources, and information as a utility. It is cost-effective, with 
lower upfront costs and a pay-per-use model [3]. Virtualization 
technology is used by cloud providers to improve cost-
efficiency and energy efficiency. Cloud computing is used in 
various applications such as website hosting, scientific 

methods, customer relationship management, and high-
performance computing [4]. 

Server virtualization allows for the allocation of computer 
resources (such as CPU and RAM) on demand through a pay-
as-you-go model, where clients (tenants) only pay for what 
they use. Infrastructure as a Service (IaaS) is a popular cloud 
model using virtual machines (VMs) and virtual networks to 
provide tenants access to compute, storage, and network 
resources. By outsourcing some information systems through 
the virtual infrastructure on the cloud provider's physical 
infrastructure, businesses can enjoy automated management, 
flexible resource allocation, and the illusion of unlimited 
computing and networking capabilities, as outlined in the 
Service Level Agreement signed by tenants and the cloud 
provider. 

Despite the potential cost and efficiency benefits of cloud 
adoption, security remains a major concern. Multi-tenancy, an 
essential aspect of cloud architecture, enables the coexistence 
of trustworthy and hostile virtual machines, making the cloud 
vulnerable to attacks from both inside and outside the 
environment [5]. A successful attack could lead to alteration of 
data stored in the cloud, including login credentials, and even 
complete control of the cloud infrastructure for illicit purposes. 
Traditional security solutions like traffic filtering and 
inspection are insufficient against sophisticated threats 
targeting virtual infrastructures. To ensure cloud security, an 
automated self-contained security architecture incorporating 
multiple protection and monitoring technologies is necessary 
[6]. 

In Infrastructure as a Service (IaaS) cloud architecture, 
tenants are responsible for managing their virtual information 
systems while the provider manages the physical infrastructure. 
Tenants have concerns about security monitoring of their 
virtualized infrastructure and need a solution that considers 
their specific security requirements and can respond to 
dynamic events in the cloud environment. This research aims 
to create a self-adaptable security monitoring framework to 
address these concerns and ensure adequate security 
monitoring for tenants' virtual infrastructures. The research 
work focuses on creating a self-adaptive security monitoring 
framework for cloud infrastructure. The framework should 
respond to dynamic events in the cloud and adjust its 
components accordingly, while maintaining a balance between 
security, performance, and cost. It should incorporate tenant-
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driven customization and meet tenant-defined thresholds and 
security requirements. The framework should not create new 
vulnerabilities and should not significantly impact performance 
or regular cloud operations. The research work also assesses 
existing cloud computing approaches and scheduling 
methodologies, and explores Eucalyptus cloud scheduling 
methods. Two independent Eucalyptus virtual machine 
scheduling techniques are proposed and evaluated, which aim 
to improve energy efficiency in cloud data centers. 

Cloud computing is becoming increasingly prevalent in 
various industries, and efficient resource allocation and 
security are critical for maintaining acceptable throughput and 
revenue. Therefore, it is important to evaluate and compare 
existing VM scheduling algorithms and develop a 
comprehensive self-adapting security monitoring system that 
meets the specific needs of each tenant in a cloud environment. 
While there are many existing virtual machine scheduling 
algorithms for cloud computing environments, the specific 
context of the Eucalyptus cloud environment has not been 
extensively studied. Therefore, this paper aims to evaluate and 
compare existing VM scheduling algorithms in the Eucalyptus 
cloud environment, with a focus on energy efficiency. The 
paper addresses are the lack of a comprehensive self-adapting 
security monitoring system that takes into account the specific 
requirements of each tenant in a cloud environment. The paper 
proposes a framework for such a system that combines precise 
security monitoring with self-adaptation. 

This paper is organized as follows: Section II presents a 
literature review and an overview of related works in this field. 
Section III presents the design and methodology used in the 
study. Section IV presents the discussion on the study and 
results. Finally, Section V draws a conclusion and proposes 
future research. 

II. LITERATURE REVIEW 

A. New Approach to Cloud Computing 

Cloud computing is a software-based network 
infrastructure that enables users to access and store data on 
demand. It allows for flexible, elastic and cost-effective use of 
IT resources without the need for new hardware or software. 
The five core properties of cloud computing include 
independence, resource pooling, on-demand self-provisioning, 
rapid adaptation, and a consistent network as shown in Fig. 1. 
Cloud computing also includes three delivery options: 
Infrastructure as a Service (IaaS), Platform as a Service (PaaS), 
and Software as a Service (SaaS). There are four deployment 
strategies for cloud computing: public, private, communal, and 
hybrid clouds [7]. 

 
Fig. 1. Basic architecture of cloud. 

B. Cloud Computing Models based on Services 

The Cloud Security Alliance has identified security and 
privacy concerns as major obstacles to trusted cloud 
computing. Different security levels are needed for public and 
private clouds and Service-Level Agreements (SLAs) define 
customer and cloud provider responsibilities. Key safeguards 
include data integrity, vendor trust, consumer confidentiality, 
individual users and user groups. There are three delivery 
methods for cloud computing: Infrastructure as a Service 
(IaaS), Platform as a Service (PaaS) and Software as a Service 
(SaaS). IaaS provides a layer of middleware and OS services, 
while PaaS offers a web-based platform to run apps as shown 
in Fig. 2. SaaS is the pinnacle of cloud computing technology, 
provided as a service and accessed online [8]. PaaS has the 
advantage of cost-effectiveness, but there is a risk of lock-in if 
it uses proprietary interfaces or programming languages. 

C. Cloud Computing Security Issues and Challenges 

Cloud computing is a rapidly growing field in IT that 
provides benefits such as improved infrastructure and cost-
efficient access to services. However, it also presents risks such 
as security threats, privacy concerns, and reliability issues [9]. 
To address these, there is a move towards open standards, 
better compatibility, and compliance resources from cloud 
service providers. When considering cloud computing, it is 
important to also consider its long-term viability. There are 
challenges to cloud computing solutions such as lack of 
interoperability, compatibility with existing programs, 
difficulty in meeting regulations, and insufficient security. 
Lack of standardization and proprietary applications can lead to 
complexity and high costs, as well as security concerns with 
shared infrastructure not providing enough security [10]. 

D.  Resource Allocation 

Network resources or shared resources can include files, the 
challenge in sharing resources such as data, audio and video, 
and hardware in a cloud environment can be addressed through 
resource management. This involves coordinating IT resources 
by controlling templates, managing virtual IT resources, 
performing load balancing, resource replication and failover, 
and monitoring the operational conditions of IT resources [11]. 
The cloud provider or user accesses these functionalities 
through a cloud resource administrator, and the virtual machine 
image repository is located in the Virtual Infrastructure 
Manager (VIM) as shown in Fig. 3. 

 
Fig. 2. Service model  of cloud computing. 
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Fig. 3. Resource management architecture. 

E. Primary IaaS Systems 

The OpenStack platform is a popular open-source cloud 
management system that is used by tenants to access, build, 
and manage their resources through a web interface or 
command line clients [12]. The system is designed to be 
modular, with a central controller node and compute nodes that 
report on the status of deployed virtual machines as shown in 
Fig. 4. The cloud infrastructure is dynamic, and changes may 
occur at various levels including services, topologies, and 
traffic. There are four types of cloud deployment models - 
private, public, community, and hybrid clouds. In a cloud 
environment, tenants can easily deploy virtual machines and 
create services that are accessible to others [13]. The cloud 
infrastructure is dynamic and changes happen frequently, 
including topology-related events caused by virtual machine 
life cycle commands, and traffic-related events due to changes 
in network demand. 

F. Virtualization 

The three main architectural layers in an IaaS system are 
the physical layer, the hypervisor, and the virtual machine 
layer. The security monitoring architecture focuses on the 
virtual machine layer. There are four main server virtualization 
strategies: emulation, full virtualization, par virtualization, and 
OS-level virtualization. OS-level virtualization uses containers 
and is a popular option for minimal overhead. Network 
virtualization is crucial for IaaS cloud architecture and 
manages IP addresses and communication. Network 
virtualization is achieved through MPLS, VLANs, Flat 
Networking, and GRE encapsulation, and is simplified by 
Software Defined Networking (SDN), with OpenFlow being 
the most popular example. The SDN architecture separates the 
control and data planes and allows for centralized control of the 
network [14][15] as shown in Fig. 5. 

 
Fig. 4. The modular architecture of openstack. 

 
Fig. 5. The architecture of SDN. 

SDN (Software Defined Networking) is a network 
management concept that allows for programmatic control and 
administration of the network through a programmatic 
interface. Examples of SDN controllers include OpenDaylight 
and Floodlight. Network virtualization in IaaS (Infrastructure 
as a Service) clouds allows for programmatic creation, 
modification, and deletion of network objects (such as 
networks, subnets, ports, etc.) without affecting the underlying 
hardware infrastructure [16]. The Neutron component of 
OpenStack is responsible for managing tenant networks and 
providing VMs with networking capabilities, with the ML2 
plugin creating virtual bridges to connect VMs to networks 
with either GRE encapsulation or VLAN tagging to 
differentiate network traffic among tenants. In a typical cloud 
implementation, three types of networks are created: 
management network, tenant networks, and external network. 

G. Security Threats 

Different types of security threats to information systems, 
including the application level, network level, operating system 
level, and cloud environment. Threats can include SQL 
injection attacks, cross-site scripting, buffer overflows, 
impersonation, denial of service attacks, man-in-the-middle 
attacks, and exploitation tactics. In cloud environments, both 
tenants and providers face security risks such as risks from 
other tenants, the provider's infrastructure, and the API. Multi-
tenancy can also create new security threats, such as side 
channel attacks and exploitation of shared resources. The 
security of virtual machines in a cloud environment is 
dependent on the stability of the hypervisor, which can be a 
target for security vulnerabilities and malware attacks. A 
successful attack on the control interface can result in full 
compromise of the account and stored information [17]. 

H. Security Monitoring  

Information systems are continuously threatened at several 
layers of their infrastructure. To prevent significant damage, it's 
crucial to have a security monitoring system in place, such as 
an Intrusion Detection System (IDS). IDSs are the main 
component of a security monitoring framework and they detect 
security holes by collecting, processing and reporting data. 
There are two types of IDSs: signature-based and anomaly-
based. Signature-based IDSs use string comparison to match 
observed events to known attack patterns, while anomaly-
based IDSs compare observed events to a normal profile of 
activity to detect potential security breaches. Additionally, 
there are two types of IDSs based on location: network-based 
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and host-based. Network-based IDSs monitor network traffic, 
while host-based IDSs monitor a single host for suspicious 
activity [18]. In cloud environments, security monitoring must 
be automatic to adjust to changing events. Different cloud 
security monitoring strategies focus on either the tenant's data 
system or the provider's infrastructure. Provider infrastructure 
monitoring includes hypervisor or kernel-based IDSs as shown 
in Fig. 6. The trend in hypervisor security is to lower the 
Trusted Code Base, but this does not guarantee the complete 
integrity of the system. 

 
Fig. 6. The kernels of the host and hypervisor. 

In the context of security monitoring in cloud 
environments, there are two main areas of focus: the provider's 
infrastructure and the tenant's information system. The 
provider's infrastructure is monitored by hypervisor or kernel-
based intrusion detection systems (IDSs), which focus on 
securing the integrity of the hypervisor and kernel [19]. 
However, these systems may not adapt to changes in the 
programs running in the monitored system. On the other hand, 
the tenant's information system can be monitored through 
virtual machine introspection, which allows for real-time 
monitoring of the health of the underlying operating system 
and active processes in deployed virtual machines. However, 
designing cloud-tailored intrusion detection systems for the 
tenant's information system can be challenging due to the 
complexity and variety of the cloud environment and the 
conflicting security requirements of tenants. 

It is evident from the literature review that there are still 
several areas that require further research, including the 
development of standardized SLAs, the development of cloud 
computing architectures for a wider range of applications, the 
effectiveness of cloud computing security measures, and the 
environmental impact of cloud computing. 

III. DESIGN AND METHODOLOGIES 

Eucalyptus is an open-source software platform used to 
create an IaaS (Infrastructure as a Service) for private or hybrid 
cloud settings. It is scalable and distributed, with each 
component serving a small number of users, making it suitable 
for enterprises of all sizes. The platform offers virtualized 
cloud resources like infrastructure, network, and storage as a 
service. The name "Eucalyptus" stands for Elastic Utility 
Computing Architecture for Linking Your Programs to Useful 
Systems. 

A. Setting up Eucalyptus Cloud 

Eucalyptus cloud setup consists of the Cloud Controller 
(CLC) and Walrus, which manage various clusters of real 
computers that host virtual instances. Each cluster has a Cluster 

Controller (CC), a Storage Controller (SC), and multiple 
physical machines known as Nodes [20]. The Node Controller 
regulates the hypervisor on each node to manage virtual 
instances. In the study mentioned, all components were co-
located on the same system except the NC, with one machine 
hosting CLC, Walrus, CC, and SC, and five machines hosting 
NC as shown in Fig. 7. 

 
Fig. 7. The NC service is hosted by the domain-0 kernel in the xen setup. 

B. IaaS Clouds based Self-Adaptable Framework for 

Monitoring Security 

We consider an IaaS cloud environment with a global cloud 
Tenants have control over a networked group of virtual 
machines (VMs) and can specify unique monitoring 
requirements through a Service Level Agreement (SLA) or 
API. The cloud controller provides networking capabilities and 
the tenant receives both an external and internal IP address. 
The study focuses on software attacks from inside or outside 
the cloud infrastructure and the potential for an attacker to 
exploit a deployed VM and compromise the victim's 
infrastructure [21]. Trust is placed in the cloud provider's 
infrastructure being physically safe and not affected by 
malicious viruses. Attacks that weaken the cloud management 
system are not taken into account. 

C. Goals Designed 

The objective of the research is to develop a self-adaptive 
security monitoring platform for virtualized information 
systems of tenants that meets several requirements including 
self-adaptation, tenant-driven customization, security and 
accuracy, and cost savings. The framework should be able to 
update its components automatically in response to changes in 
the cloud environment and to allow for customization based on 
tenant needs [22]. It should minimize security risks and costs 
for both the provider and the tenants. The framework should 
consider the different sources of adaptation, including changes 
in services, topology, monitoring load, and tenant 
requirements. The framework should ensure that 
reconfigurations do not compromise security or monitoring 
accuracy, while minimizing resource use and performance 
impact on tenant applications. 

D. Methods 

The research presents a self-adaptive security monitoring 
framework for IaaS cloud with a three-tier architecture 
including a controller, two computing nodes, network IDS, 
edge firewall, local firewalls, and a log aggregator. The three 
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tiers are the tenant, adaptability, and monitoring devices with 
the monitoring devices consisting of log collectors, 
aggregators, and probes as shown in Fig. 8. 

 
Fig. 8. The framework's architecture [23]. 

The research presents a self-adaptive security monitoring 
framework for IaaS cloud with three main tiers: tenant, 
adaptability, and monitoring devices. The adaptation level is 
responsible for planning and enforcing the adaptation process 
and is made up of the Adaptation Manager in the cloud 
controller, Master Adaptation Drivers in the nodes, and a 
dependency database. The Adaptation Worker in each 
monitoring device enforces the reconfiguration settings and the 
Infrastructure Monitoring Probes discover topology changes. 
The tenant API provides access to all monitoring features as 
shown in Fig. 9. 

The research presents a self-adaptive security monitoring 
framework for IaaS cloud with a controller, two computing 
nodes, network IDS, edge firewall, local firewalls, and log 
aggregator. The framework has three main tiers: tenant, 
adaptability, and monitoring devices. The tenant tier has access 
to a tenant API, which allows tenants to express their 
monitoring requirements in a high-level language. The API is 
broken down into two parts: the tenant-exposed part and the 
translation part. The tenant-exposed part allows tenants to 
access the list of monitoring services, add or remove a 
monitoring service, and alter monitoring metrics. The 
translation part translates the high-level tenant requirements 
into framework-specific information, which is used by the 
framework to make adaption decisions. 

 
Fig. 9. The framework’s various levels [23]. 

Example scenario: Consider the following instance as an 
illustration: On various compute nodes, there are two unique 
VMs installed, each of which belongs to a different tenant. An 
ssh server and an Apache server with SQL support are hosted 
by the first VM with ID 24 that is installed on node A. 
Although its private IP address is 192.168.1.3, the virtual 
machine's public IP address is 182.12.34.201. A port with the 
name "qvo1432" is used to link the VM to the compute node's 
virtual switch. On node P-20, the second VM, ID 63, is 
configured and is only used to host an ssh server as a service. 
The VM's secret IP address is 192.168.1.3, whereas its public 
IP address is 182.12.34.199. In this condensed example, we 
solely use firewalls and network-based IDSs as monitoring 
tools. 

The security of a cloud computing infrastructure is 
monitored by security devices such as firewalls, vulnerability 
scanners, antivirus programs, and others. These devices are 
able to create log files that are managed by log collectors and 
aggregated by the framework administrator for searching for 
specific patterns. The Adaptation Manager is a key component 
of the monitoring framework that is responsible for selecting 
the adaptations to the monitoring tools, maintaining an 
acceptable degree of monitoring, and managing dynamic 
events within the cloud architecture. The Adaptation Manager 
performs algorithms in Algorithm 1 in response to dynamic 
events and makes decisions on whether to adapt based on the 
topological and functional overviews of the monitoring 
framework. 

Algorithm 1 The choice algorithm for adaptation 

1: procedure ADAPTATIONS (dynamic activity) 

2:     services list← MAP (dynamic activity.VMid, vm info file) 

3:     affected equipments, agents ← MAP (dynamic activity.VMid) 

4:     for j in affected equipments do 

5:          reconfiguration needed ← DECIDE (j, services list) 

6:     PROPAGATE DECISION (agents, reconfiguration needed) 

 Connect the ID of the VM that is affected by the 
modification to the list of services that are currently 
executing within the VM (line 2 in Algorithm 1). To do 
this, the data in the file that the API generated is parsed. 

 Determine the monitoring systems in charge of the 
impacted VM. These will be the monitoring tools that 
are modified. Utilizing data from the Component 
Dependency Database, this is accomplished. The vm 
information file is a single file that contains both the list 
of monitoring devices that will be updated and the list 
of active services. 

 Select the necessary reconfiguration type (line 5 in 
Algorithm 1). Different reconfiguration kinds may be 
required depending on the monitoring device type and 
incident category. 

 Distribute the reconfiguration parameters to the 
personnel in charge of upholding the adaption choice 
(line 6 in Algorithm 1). 
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E. Infrastructure Monitoring Probes 

IMPs (Instance Monitoring Processes) are components of 
the cloud engine that monitor topology changes, such as 
placement and VM lifecycle alterations. They collect VM-
related data from the cloud engine and provide information to 
the adaptation manager, which then decides which adaptation 
to deploy. IMPs do not affect normal cloud operations when 
adjusted. 

F. Component Dependency Database 

The article discusses the challenges of security issues in 
complex security monitoring frameworks composed of various 
components. The methodology states that a decision taken in 
response to a dynamic event can impact both an active and 
passive monitoring device, requiring both to be changed. The 
Dependency Database, a component of the cloud controller, 
lists all security devices for each monitored VM and gives the 
Application Manager both functional and topological 
viewpoints. The VM information table can be used by the 
Adaptation Manager as a key to access the list of monitoring 
tools in charge of a VM, making it easier to identify impacted 
devices during an adaptation. The VM information table for the 
VMs in the previously discussed scenario is found in Table I. 

For example, the VM with ID 24 can see a host IDS, a 
network IDS, and two firewalls: one inside the local switch 
called f-p-20 and one on the edge called f-ext1. Multiple IDS 
types can monitor a single VM (host- and network-based). 

TABLE I.  THE VM INFO TABLE 

VM ID Network IDS Host IDS 
External-

firewall 

Switch-

firewall 

24 S-79 24 Mar24 f-p-20 

14 S-99 14 Aprs14 f-p-63 

TABLE II.  THE EQUIPMENT INFO TABLE 

Equipment Name Location Equipment Type 

S-65 182.12.34.201 signature based 

Device-specific information is kept in the equipment info 
table. The Adaptation Manager gathers the following data 
using each device name: both the device's location and its type 
Table II contains the S-65 IDS equipment information table. 
This instance demonstrates that the signature-based NIDS 
suricata65 is situated on a node with the IP address 
182.12.34.201. The Dependency Database's information is 
used by the AM to compile a complete list of all devices that 
are impacted by a dynamic event. The AM updates the two 
tables with a corresponding entry for every new monitoring 
device that is created, including all the relevant data. 

G. Self-Adaptable System for Intrusion Detection in IaaS 

Cloud 

A self-adaptable intrusion detection system has been 
proposed for IaaS cloud environments. This system offers 
features such as self-adaptation, customization, scalability and 
security, and correctness. The system allows for adaptation to 

changing conditions in the cloud, enables tenants to modify 
monitored events, and adjusts the number of IDS systems 
based on network traffic and infrastructure size. The system 
ensures proper level of detection during adaptation to maintain 
security and correctness. 

1) Proposed framework: Detailed design of a proposed 

framework, including its components and the system and 

threat model used. It starts with a general overview of the 

framework, followed by a detailed explanation of how each 

component works. 

 
Fig. 10. The proposed framework for self-adaptable system. 

The framework described in Fig. 10 is composed of four 
main parts: Adaptation Worker (AW), Local Intrusion 
Detection Sensors (LID), Mirror Worker (MW) and Master 
Adaptation Driver (MAD). LIDs are deployed on separate 
nodes and are used to collect and analyze network packets, 
either using anomaly-based or signature-based techniques. The 
AW updates the applicable ruleset, monitors the performance 
of the LID, and updates the MAD after a successful 
reconfiguration [24]. The MAD handles the reconfiguration of 
multiple LIDs, manages their lifecycle, and collects 
performance metrics. The MW ensures accurate mirroring of 
traffic to the matching LID node and constructs a mirroring 
endpoint if needed. A safety mechanism on each compute node 
ensures that VMs don't become active before the 
accompanying LID has been reconfigured. 

The proposed framework for security in cloud computing 
has both potential weaknesses in its architecture and 
contributions to the service provider's infrastructure. A 
vulnerability in the framework is the configuration files that 
translate adaptation arguments into rule names, which are 
simple text or XML files and could be manipulated by 
attackers to produce fake adaptation arguments. The 
framework includes parsers for these files. The power 
utilization model evaluates the power usage of physical 
machines and is based on power meters built into the physical 
machines [25]. Research has shown that power consumption is 
inversely correlated with the number of fully utilized cores. 
The migration model describes the methods and costs of 
relocating virtual machines as shown in Fig. 11. 
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Fig. 11. Power utilization demonstration with various processor loads. 

The Top power (Tp) is the maximum power used by a PM 
(Processing Module) when all 16 cores are fully loaded. The 
Inactive power (Ip) is the power consumption when none of the 
cores are loaded. The Top power is about half of the Inactive 
power. The linear power model is used to fairly assess the 
power utilization (PU) of PM. 

   [
  

  
(   )   ]    (1) 

Where β displays the ratio of dormant to active power. 
Consider Fig. 11 above, β is set to half, Cv is the total number 
of cores required by resident VMs, and Cp is the total number 
of cores required by PM. 

The Migratory technique uses live migration to allow a 
server administrator to move an active virtual machine (VM) to 
a different PM without affecting its performance. Although live 
migration does not affect the execution time of the VM, it does 
increase energy consumption during the transfer due to 
increased load on the receiving PM [26]. The energy 
consumption during relocation has been quantified based on 
experimental data. 
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The UE is the percentage load of the sending and receiving 
machines. Cv is the number of cores required to migrate a VM, 
and Cv/Cp and Cv'/Cp are the percentage load of the sending 
and receiving machines. The migration time (Mt) and 
additional burden (L) imposed by the migration procedure 
must be considered when deploying VMs with various 
hardware requirements on PMs with specific hardware 
limitations. The First-Fit approach may be used to address the 
fusing problem, though it is more challenging. It seeks to 
deploy a VM to the first PM that has space for it and can be 
simple to apply, but may not be the best solution. 

This study investigates a more challenging VM fusing 
problem where each VM has resource requirements, Time of 
Execution and Time of Arrival restrictions, and a limited 
availability window during its execution. The idle cores used 
by a VM after it has ceased to function can lead to the need for 
additional PMs. The Eucalyptus architecture provides two 
scheduling options, Enhanced Round-Robin (ERR) and a 
Fusion mechanism, to lower the number of PMs needed and 
save power consumption. The ERR approach uses two criteria 
to aid in VM fusion: retiring PMs cannot have additional VMs 
added to them, and retiring PMs that cannot complete all VMs 
before the deadline must transfer and shut down. The Fusion 
method combines the ERR and First-Fit approaches, depending 
on the rate of incoming VMs, to save more energy. The biggest 
challenge in implementation is choosing a reasonable Limit of 
Resigning (LR), calculated by adding migration time and time 
left for the VM to execute. The Fusion method with LR 
calculation can result in energy savings by transferring VMs 
during non-peak hours. 
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Where UE and UD are, respectively, the energy expenses 
associated with sending and receiving PMs when the VM is not 
being migrated. Instead of deciding to relocate every VM by its 
remaining time for execution after the PM resigned, Rt, that's a 
mystery, the limit α below is the resignation limit. 

   (   )   
 

 
  (7) 

Assuming a VM with Rt smaller than indicates that not 
migrating saves more energy, and the VM will eventually 
finish before PM starts moving VMs. On the other hand, in the 
unlikely event that Rt greater than α, VMs will be transferred 
after the resigning limit is exceeded, indicating that moving is 
the better option. Execution time that is left over Rt While 
using the ERR approach, it is not essential. The limit α has 
been established and fixed. After a brief pause, α., a resigning 
VM will be shut down. Regardless of how much time is left for 
execution, each incomplete VM would be transferred. 

2) Self-Adaptable framework for monitoring security: The 

proposed framework consists of four main components: 

Adaptation Worker, Local Intrusion Detection Sensors, Mirror 

Worker, and Master Adaptation Driver. The Adaptation 

Manager, a part of the proposed framework, is implemented 

using a multi-threaded model in Python, using Open-Stack as 

the cloud management system [27] and Open vSwitch for 

network traffic mirroring. The AM receives notifications of 

topology changes from the Infrastructure Monitoring Probes 

and creates a worker thread to manage the potential adaptation 

event as shown in Listing 1. The worker thread reads 

information about the impacted guest VM from a vm 

information file and retrieves the list of active services and 

tenant-specific security requirements using the VM ID as an 

identifier. 
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Listing 1 Adaptation during VM migration 

1: procedure ADAPTATION (VM network information) 

2: SPAWN ADAPTATION THREAD 

3: services list ← INFORMATION PARSER (VM network 

info.VM id, vm information file) 

4: affected equipments, locations ← INFORMATION 

PARSER (VM network info.VMid, VM network info.source 

node,VM network info.destination node, topology.txt) 

5: for p,qj in affected devices, locations do 

6: args.txt ← DECIDE (services list, p) 

7: IDS CONN (q, args.txt, +/-) 

The parameters (such as what types of rules will be 
activated/deactivated, what is the acceptable tenant drop rate, 
etc.) are put to a specific file called args.txt when the AM 
decides to adapt. A separate file (topology.txt) that contains the 
topological and functional views required by the AM is 
extracted by the worker to obtain the names, kinds, and 
locations of the impacted security probes. 

One NIDS is used on each computing node in the 
monitoring technique shown in this section. The single node 
hosts all of the deployed NIDSs. Following a VM migration, 
the master thread receives network-related information from 
the IMP, for example for the VM with ID 24. 

The worker thread parses the topology.txt and vm 
information file.xml files as soon as it receives this information 
to extract the services that are currently running in the migrated 
VM (sshd, apache2, sqld), any additional tenant-defined 
monitoring requirements (worm), tenant-specific monitoring 
metrics, and finally the names of the NIDS responsible for 
monitoring the traffic in the source and destination nodes (S-9 
and S-65, respectively), as well as their host IP.  Adaptation is 
necessary for these two NIDS. The adaptation parameters are 
then written by the worker thread to adaptation args.txt. Listing 
2 displays the findings of the NIDS monitoring traffic to and 
from the destination. Listing 2 shows the file holding an 
NIDS's adaption arguments. 

Listing 2  

1 s ig n a tu re  b a s e d 

2 S- 6 5 

3 apache 2 

4 s q l 

5 ssh 1 9 2 . 1 6 8 . 1 . 1 ,  1 9 2 . 1 6 8 . 1 . 3 

6 worm 

7 5 

 Using a secure connection, the worker thread sends the 
dedicated file to a MAD in the node(s) holding the 
affected security devices. The name and IP address of 
the node housing the security device are used to create a 
connection by the ids conn function. 

 The file containing the adaptation arguments must 
additionally contain a specialised operator if the 
adaptation calls for the activation or deactivation of 
monitoring parameters (such as + or -), as stated by the 
AM. In our illustration, a + denotes that the monitoring 
parameters need to be activated by the operator that was 
sent with the file in Listing 2. To allow for the 
concurrent transmission of the adaptation file, a 
separate thread is created for each security component 
that will be touched by the adaptation choice. 

H. Self-Adaptable System for Intrusion Detection 

A private cloud framework prototype was created using 
OpenStack and Open vSwitch as a virtual switch. The 
framework uses GRE tunnels to separate VMs into tenant 
networks and mirrors traffic using signature-based LID nodes 
in Docker containers [28]. An Adaptation Worker was 
developed to manage the LID nodes and communicates with 
the Master Adaptation Driver (MAD) using a shared folder. 
MAD uses a multithreaded method to manage and reconfigure 
the LID nodes and includes configuration files to convert 
adaptation parameters into rules for the IDS. The plug vifs 
function was used to delay the creation of virtual interfaces 
until the LID reconfiguration is finished to ensure network 
access for the VMs. [15]. 

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS 

The experiment was performed on an eight-node cluster, 
each with a quad-core CPU and a power model that uses half 
of peak power in idle mode. The cost of migration was 
calculated as 0.025 * 1/8 * 0.2. Data for VM arrival and 
execution times, and whether they were small or large-scale, 
was used in the test. The arrival and execution times were 
estimated using a normal distribution of two to ten hours. 
Small-scale tests were conducted to study power and migration 
models using the Xen hypervisor on each node. The power 
usage was measured using the proposed power model and 
actual power consumption and an average power usage was 
calculated. The results of the proposed ERR strategy were 
compared to the First-Fit power-saving strategy and showed 
little variance between the estimated and measured power. 
Thus, different scheduling techniques can be evaluated using 
the results of the recommended model as shown in Table III. 

A simulation was conducted to evaluate the performance 
and energy consumption of a system with 500 octa-core servers 
and 3000 virtual machines. The impact of different resigning 
limitations (10, 20, 30) was tested, and the results of energy 
usage were compared between the ERR method and the RR 
and First-Fit methods. The results showed that power usage 
decreases as the resignation limit decreases and are represented 
in a graphical form in Fig. 12, with First-Fit as the baseline. 

TABLE III.  POWER UTILIZATION ERR AND FIRST-FIT POWER SAVE 

RESULTS 

 
Estimated Power 

(W) 

Power Meters Provide 

Actual Power 

ERR 744.53 695.20 

Save with First-Fit Power 698.30 659.28 

Improvements were made. 46.23 35.92 
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Fig. 12. Using ERR to calculate mean power utilization under different limits 

of resigning. 

This simulation compares five different energy-saving 
solutions (Best-Fit, RR, First-Fit, ERR, and Fusion Method) by 
considering metrics like mean power use, mean PM count, and 
migration count. During busy hours, the Fusion Methodology 
is used. A graphical analysis is shown in Fig. 13 which 
demonstrates that the Fusion Methodology performs better in 
terms of energy conservation compared to the other 
approaches, as it uses PM loads as the resignation limit. 

The paper compares the performance of five different 
algorithms for VM Scheduling in Eucalyptus cloud: RR, 
Greedy, PowerSave (similar to First-Fit), ERR and Fusion 
Method. The analysis compares the number of powered-on 
PMs and power consumption for each of these algorithms, with 
the results presented in Fig. 14 and 15. The paper shows that 
the use of the recommended strategies (ERR and Fusion 
Method) leads to a significant reduction in the number of 
powered-on PMs and power usage compared to the three basic 
Eucalyptus scheduling algorithms (RR, Greedy, and 
PowerSave). 

 
Fig. 13. Comparing the proposed technique's mean power utilization to that 

of other techniques. 

 
Fig. 14. Usage of RR base to analyze mean powered-on PMS. 

 
Fig. 15. The usage of RR base to analyse the normalised mean power 

utilisation. 

A. Eucalyptus with Walrus 

This section discusses the private cloud patterns controlled 
by Eucalyptus and the use of WALRUS, a data storage service 
for customer data. The Eucalyptus web interface supports 
"admin" and "user" accounts, and after registration, customers 
receive X509 certificates, secret key, and Query Id. The client 
credentials, including RSA private and public keys and X509 
certificates, are stored in a file called "eucarc". WALRUS can 
be accessed through SOAP or REST via HTTP with the help of 
various utilities and is managed by ACLs and client credentials 
[10] [29] as shown in Fig. 16. 

WALRUS is a data storage service used in Eucalyptus and 
can be accessed using tools like s3cmd, s3curl, s3fs, cloud 
berry s3 via SOAP or REST via HTTP. Access to data stored 
in WALRUS is managed by Access Control Lists and client 
credentials and secured using the MD5 hashing method. This 
section also mentions potential security attacks on private 
cloud systems powered by Eucalyptus that target cloud 
databases. 

 
Fig. 16. Architectural demonstration of Eucalyptus-WALRUS. 
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1) Attacks related to buckets: The Eucalyptus private 

cloud system can be vulnerable to security attacks targeting 

cloud databases. Fig. 17 shows the credentials used for 

querying user interface names, such as EC2_SECRET_KEY 

and EC2_ACCESS_KEY, which are stored in the AUTH 

USERS table with attributes AUTH_USER_SECRETKEY, 

AUTH_USER_QUERY_ID, and AUTH_USER_NAME, 

respectively. One specific attack is the use of the file "eucarc," 

which is obtained from the eucalyptus auth.script catalogue. 

As shown in Fig. 18, an attacker must upload a new file called 

"eucarc" along with an S3 URL set that includes the IP 

address of the cloud controller and the values of 

EC2_SECRET_KEY and EC2_ACCESS_KEY, which are 

represented by AUTH_USER_SECRETKEY and 

AUTH_USER_QUERY_ID, respectively. 

 
Fig. 17. Illustrations from the table script for Eucalyptus_auth. 

 
Fig. 18. The “eucarc”: credentials compressed file constituent. 

The remaining parts of the "eucarc" paper might be omitted 
because they are not necessary for attacks involving buckets. 
The attacker essentially needs to obtain the most recent version 
of the eucarc document after it has been prepared and use the 
command s3curl to create a bucket that impersonates the client 
whose login details are used, or to gain access to a significant 
number of buckets that the client has reserved. 

2) Attacks related to objects: Before launching attacks on 

an object, an intruder must be aware of the precise name of the 

bucket containing the target object. The eucalyptus-walrus can 

be used in two distinct ways to determine the precise name of 

a bucket. One possibility is the script catalogue. Fig. 19 shows 

how the names of the parent bucket, the individual objects, 

and the bucket owner are all shown in the OBJECTS table of 

this catalogue under the attributes OBJECT KEY, BUCKET 

NAME, and OWNER ID. 

 
Fig. 19. Eucalyptus-walrus.script table illustrations. 

The attacker must use the victim's interface certificates to 
create a new eucarc document and use s3curl to insert an object 
into the victim's bucket. The attacker must determine the 
object's size, MD5 checksum, and last update time and decide 
whether to read or delete the object. However, these actions 
require the owner to be an "administrator." 

3) Attacks related to ACLs: In Eucalyptus, every 

WALRUS object and bucket has an associated Access Control 

List (ACL) in the form of a sub-resource. To launch ACL 

attacks, the attacker must first have access to ACL-related 

subresources. The ACL can be obtained using the s3curl 

command, and can be modified or a new one can be created 

with desired access control privileges. Attackers can also 

exploit the distribution of access control privileges to all 

cloud-registered users. The attacker can change the ACL file 

to grant access to all users by setting attributes in the 

eucalyptus walrus.script catalogue. 

4) Attacks related to log file: Customers in Eucalyptus can 

create access logs for their buckets and decide where to send 

the logs. The logs can be treated like other objects, with the 

ability to list, remove, and read them. The logging data is 

stored in the eucalyptus walrus.script catalogue's properties 

TARGET PREFIX, TARGET BUCKET, and LOGGING 

ENABLED. If LOGGING ENABLED is set to TRUE, the 

TARGET PREFIX will add the client-specified prefix to the 

end of the log file names, and the TARGET BUCKET will be 

the client-selected bucket where the access log files will be 

saved. An attacker who gains access to the bucket containing 

the log entries can use the log entries as they see fit. 

B. Analysis of Self-Adaptable System for Intrusion Detection 

A data center with five physical nodes (1 controller, 1 
network node, 2 compute nodes, and 1 LID host node) running 
Ubuntu Server 14.04 connected by a 1Gb/s network was set up 
on the Grid5000 platform for testing. Experiments were 
conducted using a memory-intensive workload with a 1024MB 
working set and 10 executions of the LMBench benchmark 
suite. The proposed framework's overhead during VM 
migration was tested with two new rule types related to ssh 
traffic. 
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Fig. 20. Time spent migrating with and without the suggested framework. 

The outcomes are displayed in Fig. 20. Our initial 
expectation that the proposed framework imposes minimal 
overhead on ordinary cloud operations is confirmed by the fact 
that the imposed overhead in both scenarios of an idle virtual 
machine and 0.0s represents a virtual machine with a memory-
intensive workload. Fig. 21 and Fig. 22 display a breakdown of 
the two separate adaptation instances (new LIDS with traffic 
distribution and ruleset reconfiguration only) per phase. 

 
Fig. 21. Breakdown of the adaptation time when the proposed framework 

only modifies the imposed inside the LIDS ruleset. 

Both instances involve the safety mechanism being in 
operation, however, when the plug vifs is called, the LIDS 
reconfiguration is finished significantly more quickly (4.14s 
and 0.97s respectively while the plug vifs function is called 
always after the 10th second). 

 
Fig. 22. A breakdown of how long it takes framework to build a mirroring 

tunnel, distribute traffic, and start a new LIDS. 

The proposed framework reduces waiting time when 
restarting a virtual machine (VM) and completes a full 
adaptation cycle faster than migration. It takes 4.14 seconds to 
reconfigure the imposed ruleset in the first scenario and 0.97 
seconds to access traffic in the second scenario when a new 

LID needs to be created. The total time needed by the 
framework is less than migration and creating a new IDS is 
easier than changing an old one. 

Multiple LIDSs and MADs: A specialized script is created 
to replicate migration events by creating precise inputs from 
the Infrastructure Monitoring Probe for the Adaptation 
Manager. This allows for concurrent production of multiple 
adaptation events. During experimentation, a single instance of 
the Master Adaptation Driver (MAD) is configured to handle 
multiple LID instances, with the maximum number 
theoretically handled by a single MAD instance shown in Fig. 
23. 

 

Fig. 23. Setup for MAD scalability. 

Our findings demonstrate that up to 50 LIDS can be 
supported by a single MAD instance running on a dedicated 
node with 24GB RAM. Fig. 24 displays the MAD agent's 
typical response time under various LIDS loads. 

 
Fig. 24. MAD reaction periods. 

The results show that the longest creation time for a new 
LID container requires interaction with the Docker daemon. 
The proposed framework can handle 50 simultaneous LID 
launching requests and still has a faster reaction time than the 
average migration time for an idle VM. The framework does 
not include the time for building the new LID configuration 
file or testing its functionality due to their low impact on the 
overall duration. Each LID is typically assigned one core in a 
production setting to maintain performance. The framework 
was tested with 10 concurrent adaptation requests to simulate a 
commercial setting. The maximum number of LID's that a 
single Master Adaptation Driver instance can manage 
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simultaneously was determined, and there is room for nearly 
100 worker threads for the Adaptation Manager. One AM 
instance is configured to control multiple MADs in Fig. 25. 

 
Fig. 25. AM scaling configuration. 

The chosen monitoring mechanism for a single VM is a 
single LID. The framework was tested by simulating 50 
dynamic events for 50 different VMs, providing adaptation 
requirements for 50 LID of each thread. A worker thread 
relocates all of its virtual machines to the same destination 
node to target the LID under the same MAD instance it is 
handling. The worker thread parses the vm info.xml file 
containing all the VM-related data to obtain settings for each of 
the 50 VMs it is responsible for. The minimum number of VM 
entries in the vm info.xml file required is calculated as 
maximum AM worker threads multiplied by the number of 
VMs per thread (in this case 100 AM worker threads and 50 
VMs per thread, requiring 5000 entries). Justifications for each 
LID adaptation are recorded in a separate file. The worker 
thread delivers 50 files, one for each LID, to the MAD in 
charge of those 50 LID after establishing a secure connection. 
Only one file is required in the experiment as all virtual 
machines for a single worker thread are moved to the same 
compute node. The experiment aims to understand how the 
AM scales with the quantity of MADs, not the number of 
compute nodes. 

 

Fig. 26. AM response time. 

Fig. 26 presents the outcomes. As the data show, the 
formation of the secure connection is the phase that is most 
impacted by raising the MADs' load for the AM. This is due to 
the fact that each MAD has its own IP address and is kept in a 
distinct container, necessitating the use of a separate secure 
connection. On the AM side, we track the time it takes to send 
the adaption arguments. No network contention-related delay is 
seen in the outcome since we don't wait for each instance to 
validate that it has received the files. However, because each 
MAD instance is essentially run on a separate container on the 
same node, there may be many processes running on the node 
that are causing severe ssh connection formation delays. Since 
each MAD instance would operate in a distinct, less-loaded 
node in a real-world scenario, the findings of our experiment 
are unsatisfactory. The adaption decision time is not greatly 
shortened by the multi-threading method because all VM-
related data is retained in a single file. 

Up to 5000 LIDS instances can be managed by a single 
AM instance and still respond to thread requests in under one 
second, according to the results. The testbed's memory capacity 
is the single factor limiting the number of LIDS instances that 
can be employed for our research. If framework is 
implemented in a different configuration with production nodes 
having memory capacities that are substantially a minimum of 
24 GB of RAM per node, the number of instances could rise. 

The pidstat programme from the sysstat suite, a utility used 
to measure the resource utilisation of a given job running in an 
OS, is utilized to compute the resource consumption of an AM 
in terms of CPU and memory handling multiple MADs. Each 
experiment asks the first worker thread to run pidstat as soon as 
the adaption parameters are received, and the monitoring is 
stopped after the last worker thread has finished its task. This 
method ensures that during the adaptation process, we will 
only calculate the resource usage of each worker thread. No 
other framework-related processes use resources since the 
worker thread in charge of that adaptation request handles all 
the adaptation-related duties in that request. One second was 
chosen as the monitoring interval. The results are shown in 
Table IV . The Graphical illustration of resources consumption 
by AM is analysed in the Fig. 27. 

The CPU use grows as the number of AM worker threads 
rise since there is a one-time CPU cost for starting a new ssh 
session. For each worker thread, the measurements compute 
the worst-case situation, which is to create a new connection. 
When the framework has to modify an existing LIDS, it can 
transfer the file containing the adaption arguments using an 
already established connection as a result of the anticipated 
decrease in CPU usage. 

TABLE IV.  CONSUMPTION OF RESOURCES BY THE AM COMPONENT 

Number of 

MADs 
Usr% Sys% CPU% 

Memory 

(MB) 

15 18.15 2.35 20.35 189.66 

30 24.30 3.39 27.08 189.83 

50 25.19 3.71 30.12 189.74 

70 27.63 3.82 31.98 189.61 

100 29.4 3.98 33.45 189.89 
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Fig. 27. Graphical illustration of resources consumption by AM. 

The proposed framework for self-adapting security 
monitoring in cloud infrastructure is better than previous 
approaches for several reasons as below 

1) Customization for each tenant: The framework takes 

into account the specific security monitoring requirements of 

each tenant, allowing for customized security monitoring 

configurations. This is an improvement over previous 

approaches that had a one-size-fits-all security monitoring 

approach that may not have been optimal for all tenants. 

2) Self-adaptation: The framework includes an Adaptation 

Manager that can adapt to changing conditions in the cloud 

infrastructure and serve as a coordinator of the adaptation 

process. This allows the framework to respond dynamically to 

events in the cloud environment and adjust security 

monitoring configurations as needed. This is an improvement 

over previous approaches that did not have a self-adapting 

mechanism and required manual adjustments. 

3) Cost efficiency: The framework aims to achieve cost 

efficiency by sharing monitoring resources between the 

tenants and the provider. The equitable sharing of monitoring 

resources is established with an adjustable threshold 

mentioned in the SLA. This is an improvement over previous 

approaches that may have been resource-intensive and costly. 

4) Comprehensive solution: The framework provides a 

comprehensive solution that combines precise security 

monitoring with self-adaptation. The design of the framework 

ensures that it does not introduce new security weaknesses or 

affect the performance of the infrastructure. This is an 

improvement over previous approaches that may have been 

limited in scope or may have introduced new security 

weaknesses. 

Overall, the proposed framework is an improvement over 
previous approaches because it is customized for each tenant, 
includes a self-adapting mechanism, achieves cost efficiency, 
and provides a comprehensive solution for security monitoring 
in cloud infrastructure. 

V. CONCLUSION AND FUTURE WORKS 

In this paper, the increasing number of tasks in clouds due 
to virtualization and cloud computing technology adoption is 
discussed. VM scheduling strategies are important for 
determining the allocation of cloud resources to handle these 
tasks for maintaining acceptable throughput and revenue. The 

paper evaluates the current knowledge on legacy methods and 
specific virtual machine scheduling algorithms for the 
Eucalyptus cloud environment and compares some existing 
algorithms using specific measures for a better understanding. 

The Eucalyptus cloud uses two methods for scheduling 
VMs: Fusion Method and Enhanced Round-Robin. The 
experiment showed that Enhanced Round-Robin uses less 
energy compared to other methods and that using Physical 
Machine load as a limit of resigning saves the most energy. 
The Fusion Method outperforms other techniques by reducing 
the number of Physical Machines turned on and increasing 
power efficiency. The authors also developed a self-adapting 
security monitoring system with goals of security, cost savings, 
tenant-driven customization, and self-adaptation. The 
Adaptation Manager is the main element that can adapt to 
changing conditions in the cloud infrastructure and serves as a 
coordinator of the adaptation process. 

This paper presents a self-adapting security monitoring 
system for cloud infrastructure that takes into account the 
specific monitoring requirements of each tenant. The system 
uses Master Adaptation Drivers to convert the tenant 
requirements into configuration settings and the Adaptation 
Manager to coordinate the adaptation process. The framework 
ensures security, cost efficiency, and responsiveness to 
dynamic events in the cloud environment. The design of the 
framework is such that it does not introduce new security 
weaknesses or affect the performance of the infrastructure. The 
system provides a comprehensive solution that combines 
precise security monitoring with self-adaptation. 

The current security monitoring platform needs 
improvement to support more types of monitoring devices such 
as network traffic analysis and inside-the-host activity 
monitoring. The platform is also limited to supporting firewall 
functionality and doesn't cover the consequences of multi-
tenant setups. The future work includes incorporating log 
collectors and aggregators and addressing the needs of a super-
tenant (the provider) in the security monitoring architecture. 
The equitable sharing of monitoring resources between the 
tenants and the provider should be established with an 
adjustable threshold mentioned in the SLA. 
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