
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

80 | P a g e

www.ijacsa.thesai.org

Self-adapting Security Monitoring in Eucalyptus

Cloud Environment

Salman Mahmood
1
, Nor Adnan Yahaya

2
, Raza Hasan

3
, Saqib Hussain

4
, Mazhar Hussain Malik

5
, Kamal Uddin Sarker

6

School of Information Technology, Malaysia University of Science and Technology, Selangor, Malaysia
1, 2

Computing and Information Technology, Global College of Engineering and Technology, Muscat, Oman
3, 4

Department of Computer Science and Creative Technologies, University of West of the England Bristol, Bristol, England
5

Department of Computer Science, American International University Bangladesh, Dhaka, Bangladesh
6

Abstract—This paper discusses the importance of virtual

machine (VM) scheduling strategies in cloud computing

environments for handling the increasing number of tasks due to

virtualization and cloud computing technology adoption. The

paper evaluates legacy methods and specific VM scheduling

algorithms for the Eucalyptus cloud environment and compare

existing algorithms using QoS. The paper also presents a self-

adapting security monitoring system for cloud infrastructure

that takes into account the specific monitoring requirements of

each tenant. The system uses Master Adaptation Drivers to

convert tenant requirements into configuration settings and the

Adaptation Manager to coordinate the adaptation process. The

framework ensures security, cost efficiency, and responsiveness

to dynamic events in the cloud environment. The paper also

presents the need for improvement in the current security

monitoring platform to support more types of monitoring devices

and cover the consequences of multi-tenant setups. Future work

includes incorporating log collectors and aggregators and

addressing the needs of a super-tenant in the security monitoring

architecture. The equitable sharing of monitoring resources

between tenants and the provider should be established with an

adjustable threshold mentioned in the SLA. The results of

experiments show that Enhanced Round-Robin uses less energy

compared to other methods, and the Fusion Method outperforms

other techniques by reducing the number of Physical Machines

turned on and increasing power efficiency.

Keywords—Component; VM scheduling; cloud computing;

Eucalyptus; virtualization; power efficiency; self-adapting security

monitoring system; tenant-driven customization; dynamic events;

adaptation manager; master adaptation drivers

I. INTRODUCTION

Cloud computing is a technology that provides on-demand
access to a pool of resources (such as networks, servers,
storage, applications, and services) through networks. It is
offered by companies like Google, Amazon, and SalesForce
and eliminates the need for users to handle administration and
IT maintenance [1]. Resource scheduling and allocation can be
challenging for cloud providers due to the dynamic behavior of
services and multiple types of cloud systems available [2].
Cloud computing is a form of computing as a service rather
than a product, providing customers with access to software,
resources, and information as a utility. It is cost-effective, with
lower upfront costs and a pay-per-use model [3]. Virtualization
technology is used by cloud providers to improve cost-
efficiency and energy efficiency. Cloud computing is used in
various applications such as website hosting, scientific

methods, customer relationship management, and high-
performance computing [4].

Server virtualization allows for the allocation of computer
resources (such as CPU and RAM) on demand through a pay-
as-you-go model, where clients (tenants) only pay for what
they use. Infrastructure as a Service (IaaS) is a popular cloud
model using virtual machines (VMs) and virtual networks to
provide tenants access to compute, storage, and network
resources. By outsourcing some information systems through
the virtual infrastructure on the cloud provider's physical
infrastructure, businesses can enjoy automated management,
flexible resource allocation, and the illusion of unlimited
computing and networking capabilities, as outlined in the
Service Level Agreement signed by tenants and the cloud
provider.

Despite the potential cost and efficiency benefits of cloud
adoption, security remains a major concern. Multi-tenancy, an
essential aspect of cloud architecture, enables the coexistence
of trustworthy and hostile virtual machines, making the cloud
vulnerable to attacks from both inside and outside the
environment [5]. A successful attack could lead to alteration of
data stored in the cloud, including login credentials, and even
complete control of the cloud infrastructure for illicit purposes.
Traditional security solutions like traffic filtering and
inspection are insufficient against sophisticated threats
targeting virtual infrastructures. To ensure cloud security, an
automated self-contained security architecture incorporating
multiple protection and monitoring technologies is necessary
[6].

In Infrastructure as a Service (IaaS) cloud architecture,
tenants are responsible for managing their virtual information
systems while the provider manages the physical infrastructure.
Tenants have concerns about security monitoring of their
virtualized infrastructure and need a solution that considers
their specific security requirements and can respond to
dynamic events in the cloud environment. This research aims
to create a self-adaptable security monitoring framework to
address these concerns and ensure adequate security
monitoring for tenants' virtual infrastructures. The research
work focuses on creating a self-adaptive security monitoring
framework for cloud infrastructure. The framework should
respond to dynamic events in the cloud and adjust its
components accordingly, while maintaining a balance between
security, performance, and cost. It should incorporate tenant-

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

81 | P a g e

www.ijacsa.thesai.org

driven customization and meet tenant-defined thresholds and
security requirements. The framework should not create new
vulnerabilities and should not significantly impact performance
or regular cloud operations. The research work also assesses
existing cloud computing approaches and scheduling
methodologies, and explores Eucalyptus cloud scheduling
methods. Two independent Eucalyptus virtual machine
scheduling techniques are proposed and evaluated, which aim
to improve energy efficiency in cloud data centers.

Cloud computing is becoming increasingly prevalent in
various industries, and efficient resource allocation and
security are critical for maintaining acceptable throughput and
revenue. Therefore, it is important to evaluate and compare
existing VM scheduling algorithms and develop a
comprehensive self-adapting security monitoring system that
meets the specific needs of each tenant in a cloud environment.
While there are many existing virtual machine scheduling
algorithms for cloud computing environments, the specific
context of the Eucalyptus cloud environment has not been
extensively studied. Therefore, this paper aims to evaluate and
compare existing VM scheduling algorithms in the Eucalyptus
cloud environment, with a focus on energy efficiency. The
paper addresses are the lack of a comprehensive self-adapting
security monitoring system that takes into account the specific
requirements of each tenant in a cloud environment. The paper
proposes a framework for such a system that combines precise
security monitoring with self-adaptation.

This paper is organized as follows: Section II presents a
literature review and an overview of related works in this field.
Section III presents the design and methodology used in the
study. Section IV presents the discussion on the study and
results. Finally, Section V draws a conclusion and proposes
future research.

II. LITERATURE REVIEW

A. New Approach to Cloud Computing

Cloud computing is a software-based network
infrastructure that enables users to access and store data on
demand. It allows for flexible, elastic and cost-effective use of
IT resources without the need for new hardware or software.
The five core properties of cloud computing include
independence, resource pooling, on-demand self-provisioning,
rapid adaptation, and a consistent network as shown in Fig. 1.
Cloud computing also includes three delivery options:
Infrastructure as a Service (IaaS), Platform as a Service (PaaS),
and Software as a Service (SaaS). There are four deployment
strategies for cloud computing: public, private, communal, and
hybrid clouds [7].

Fig. 1. Basic architecture of cloud.

B. Cloud Computing Models based on Services

The Cloud Security Alliance has identified security and
privacy concerns as major obstacles to trusted cloud
computing. Different security levels are needed for public and
private clouds and Service-Level Agreements (SLAs) define
customer and cloud provider responsibilities. Key safeguards
include data integrity, vendor trust, consumer confidentiality,
individual users and user groups. There are three delivery
methods for cloud computing: Infrastructure as a Service
(IaaS), Platform as a Service (PaaS) and Software as a Service
(SaaS). IaaS provides a layer of middleware and OS services,
while PaaS offers a web-based platform to run apps as shown
in Fig. 2. SaaS is the pinnacle of cloud computing technology,
provided as a service and accessed online [8]. PaaS has the
advantage of cost-effectiveness, but there is a risk of lock-in if
it uses proprietary interfaces or programming languages.

C. Cloud Computing Security Issues and Challenges

Cloud computing is a rapidly growing field in IT that
provides benefits such as improved infrastructure and cost-
efficient access to services. However, it also presents risks such
as security threats, privacy concerns, and reliability issues [9].
To address these, there is a move towards open standards,
better compatibility, and compliance resources from cloud
service providers. When considering cloud computing, it is
important to also consider its long-term viability. There are
challenges to cloud computing solutions such as lack of
interoperability, compatibility with existing programs,
difficulty in meeting regulations, and insufficient security.
Lack of standardization and proprietary applications can lead to
complexity and high costs, as well as security concerns with
shared infrastructure not providing enough security [10].

D. Resource Allocation

Network resources or shared resources can include files, the
challenge in sharing resources such as data, audio and video,
and hardware in a cloud environment can be addressed through
resource management. This involves coordinating IT resources
by controlling templates, managing virtual IT resources,
performing load balancing, resource replication and failover,
and monitoring the operational conditions of IT resources [11].
The cloud provider or user accesses these functionalities
through a cloud resource administrator, and the virtual machine
image repository is located in the Virtual Infrastructure
Manager (VIM) as shown in Fig. 3.

Fig. 2. Service model of cloud computing.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

82 | P a g e

www.ijacsa.thesai.org

Fig. 3. Resource management architecture.

E. Primary IaaS Systems

The OpenStack platform is a popular open-source cloud
management system that is used by tenants to access, build,
and manage their resources through a web interface or
command line clients [12]. The system is designed to be
modular, with a central controller node and compute nodes that
report on the status of deployed virtual machines as shown in
Fig. 4. The cloud infrastructure is dynamic, and changes may
occur at various levels including services, topologies, and
traffic. There are four types of cloud deployment models -
private, public, community, and hybrid clouds. In a cloud
environment, tenants can easily deploy virtual machines and
create services that are accessible to others [13]. The cloud
infrastructure is dynamic and changes happen frequently,
including topology-related events caused by virtual machine
life cycle commands, and traffic-related events due to changes
in network demand.

F. Virtualization

The three main architectural layers in an IaaS system are
the physical layer, the hypervisor, and the virtual machine
layer. The security monitoring architecture focuses on the
virtual machine layer. There are four main server virtualization
strategies: emulation, full virtualization, par virtualization, and
OS-level virtualization. OS-level virtualization uses containers
and is a popular option for minimal overhead. Network
virtualization is crucial for IaaS cloud architecture and
manages IP addresses and communication. Network
virtualization is achieved through MPLS, VLANs, Flat
Networking, and GRE encapsulation, and is simplified by
Software Defined Networking (SDN), with OpenFlow being
the most popular example. The SDN architecture separates the
control and data planes and allows for centralized control of the
network [14][15] as shown in Fig. 5.

Fig. 4. The modular architecture of openstack.

Fig. 5. The architecture of SDN.

SDN (Software Defined Networking) is a network
management concept that allows for programmatic control and
administration of the network through a programmatic
interface. Examples of SDN controllers include OpenDaylight
and Floodlight. Network virtualization in IaaS (Infrastructure
as a Service) clouds allows for programmatic creation,
modification, and deletion of network objects (such as
networks, subnets, ports, etc.) without affecting the underlying
hardware infrastructure [16]. The Neutron component of
OpenStack is responsible for managing tenant networks and
providing VMs with networking capabilities, with the ML2
plugin creating virtual bridges to connect VMs to networks
with either GRE encapsulation or VLAN tagging to
differentiate network traffic among tenants. In a typical cloud
implementation, three types of networks are created:
management network, tenant networks, and external network.

G. Security Threats

Different types of security threats to information systems,
including the application level, network level, operating system
level, and cloud environment. Threats can include SQL
injection attacks, cross-site scripting, buffer overflows,
impersonation, denial of service attacks, man-in-the-middle
attacks, and exploitation tactics. In cloud environments, both
tenants and providers face security risks such as risks from
other tenants, the provider's infrastructure, and the API. Multi-
tenancy can also create new security threats, such as side
channel attacks and exploitation of shared resources. The
security of virtual machines in a cloud environment is
dependent on the stability of the hypervisor, which can be a
target for security vulnerabilities and malware attacks. A
successful attack on the control interface can result in full
compromise of the account and stored information [17].

H. Security Monitoring

Information systems are continuously threatened at several
layers of their infrastructure. To prevent significant damage, it's
crucial to have a security monitoring system in place, such as
an Intrusion Detection System (IDS). IDSs are the main
component of a security monitoring framework and they detect
security holes by collecting, processing and reporting data.
There are two types of IDSs: signature-based and anomaly-
based. Signature-based IDSs use string comparison to match
observed events to known attack patterns, while anomaly-
based IDSs compare observed events to a normal profile of
activity to detect potential security breaches. Additionally,
there are two types of IDSs based on location: network-based

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

83 | P a g e

www.ijacsa.thesai.org

and host-based. Network-based IDSs monitor network traffic,
while host-based IDSs monitor a single host for suspicious
activity [18]. In cloud environments, security monitoring must
be automatic to adjust to changing events. Different cloud
security monitoring strategies focus on either the tenant's data
system or the provider's infrastructure. Provider infrastructure
monitoring includes hypervisor or kernel-based IDSs as shown
in Fig. 6. The trend in hypervisor security is to lower the
Trusted Code Base, but this does not guarantee the complete
integrity of the system.

Fig. 6. The kernels of the host and hypervisor.

In the context of security monitoring in cloud
environments, there are two main areas of focus: the provider's
infrastructure and the tenant's information system. The
provider's infrastructure is monitored by hypervisor or kernel-
based intrusion detection systems (IDSs), which focus on
securing the integrity of the hypervisor and kernel [19].
However, these systems may not adapt to changes in the
programs running in the monitored system. On the other hand,
the tenant's information system can be monitored through
virtual machine introspection, which allows for real-time
monitoring of the health of the underlying operating system
and active processes in deployed virtual machines. However,
designing cloud-tailored intrusion detection systems for the
tenant's information system can be challenging due to the
complexity and variety of the cloud environment and the
conflicting security requirements of tenants.

It is evident from the literature review that there are still
several areas that require further research, including the
development of standardized SLAs, the development of cloud
computing architectures for a wider range of applications, the
effectiveness of cloud computing security measures, and the
environmental impact of cloud computing.

III. DESIGN AND METHODOLOGIES

Eucalyptus is an open-source software platform used to
create an IaaS (Infrastructure as a Service) for private or hybrid
cloud settings. It is scalable and distributed, with each
component serving a small number of users, making it suitable
for enterprises of all sizes. The platform offers virtualized
cloud resources like infrastructure, network, and storage as a
service. The name "Eucalyptus" stands for Elastic Utility
Computing Architecture for Linking Your Programs to Useful
Systems.

A. Setting up Eucalyptus Cloud

Eucalyptus cloud setup consists of the Cloud Controller
(CLC) and Walrus, which manage various clusters of real
computers that host virtual instances. Each cluster has a Cluster

Controller (CC), a Storage Controller (SC), and multiple
physical machines known as Nodes [20]. The Node Controller
regulates the hypervisor on each node to manage virtual
instances. In the study mentioned, all components were co-
located on the same system except the NC, with one machine
hosting CLC, Walrus, CC, and SC, and five machines hosting
NC as shown in Fig. 7.

Fig. 7. The NC service is hosted by the domain-0 kernel in the xen setup.

B. IaaS Clouds based Self-Adaptable Framework for

Monitoring Security

We consider an IaaS cloud environment with a global cloud
Tenants have control over a networked group of virtual
machines (VMs) and can specify unique monitoring
requirements through a Service Level Agreement (SLA) or
API. The cloud controller provides networking capabilities and
the tenant receives both an external and internal IP address.
The study focuses on software attacks from inside or outside
the cloud infrastructure and the potential for an attacker to
exploit a deployed VM and compromise the victim's
infrastructure [21]. Trust is placed in the cloud provider's
infrastructure being physically safe and not affected by
malicious viruses. Attacks that weaken the cloud management
system are not taken into account.

C. Goals Designed

The objective of the research is to develop a self-adaptive
security monitoring platform for virtualized information
systems of tenants that meets several requirements including
self-adaptation, tenant-driven customization, security and
accuracy, and cost savings. The framework should be able to
update its components automatically in response to changes in
the cloud environment and to allow for customization based on
tenant needs [22]. It should minimize security risks and costs
for both the provider and the tenants. The framework should
consider the different sources of adaptation, including changes
in services, topology, monitoring load, and tenant
requirements. The framework should ensure that
reconfigurations do not compromise security or monitoring
accuracy, while minimizing resource use and performance
impact on tenant applications.

D. Methods

The research presents a self-adaptive security monitoring
framework for IaaS cloud with a three-tier architecture
including a controller, two computing nodes, network IDS,
edge firewall, local firewalls, and a log aggregator. The three

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

84 | P a g e

www.ijacsa.thesai.org

tiers are the tenant, adaptability, and monitoring devices with
the monitoring devices consisting of log collectors,
aggregators, and probes as shown in Fig. 8.

Fig. 8. The framework's architecture [23].

The research presents a self-adaptive security monitoring
framework for IaaS cloud with three main tiers: tenant,
adaptability, and monitoring devices. The adaptation level is
responsible for planning and enforcing the adaptation process
and is made up of the Adaptation Manager in the cloud
controller, Master Adaptation Drivers in the nodes, and a
dependency database. The Adaptation Worker in each
monitoring device enforces the reconfiguration settings and the
Infrastructure Monitoring Probes discover topology changes.
The tenant API provides access to all monitoring features as
shown in Fig. 9.

The research presents a self-adaptive security monitoring
framework for IaaS cloud with a controller, two computing
nodes, network IDS, edge firewall, local firewalls, and log
aggregator. The framework has three main tiers: tenant,
adaptability, and monitoring devices. The tenant tier has access
to a tenant API, which allows tenants to express their
monitoring requirements in a high-level language. The API is
broken down into two parts: the tenant-exposed part and the
translation part. The tenant-exposed part allows tenants to
access the list of monitoring services, add or remove a
monitoring service, and alter monitoring metrics. The
translation part translates the high-level tenant requirements
into framework-specific information, which is used by the
framework to make adaption decisions.

Fig. 9. The framework’s various levels [23].

Example scenario: Consider the following instance as an
illustration: On various compute nodes, there are two unique
VMs installed, each of which belongs to a different tenant. An
ssh server and an Apache server with SQL support are hosted
by the first VM with ID 24 that is installed on node A.
Although its private IP address is 192.168.1.3, the virtual
machine's public IP address is 182.12.34.201. A port with the
name "qvo1432" is used to link the VM to the compute node's
virtual switch. On node P-20, the second VM, ID 63, is
configured and is only used to host an ssh server as a service.
The VM's secret IP address is 192.168.1.3, whereas its public
IP address is 182.12.34.199. In this condensed example, we
solely use firewalls and network-based IDSs as monitoring
tools.

The security of a cloud computing infrastructure is
monitored by security devices such as firewalls, vulnerability
scanners, antivirus programs, and others. These devices are
able to create log files that are managed by log collectors and
aggregated by the framework administrator for searching for
specific patterns. The Adaptation Manager is a key component
of the monitoring framework that is responsible for selecting
the adaptations to the monitoring tools, maintaining an
acceptable degree of monitoring, and managing dynamic
events within the cloud architecture. The Adaptation Manager
performs algorithms in Algorithm 1 in response to dynamic
events and makes decisions on whether to adapt based on the
topological and functional overviews of the monitoring
framework.

Algorithm 1 The choice algorithm for adaptation

1: procedure ADAPTATIONS (dynamic activity)

2: services list← MAP (dynamic activity.VMid, vm info file)

3: affected equipments, agents ← MAP (dynamic activity.VMid)

4: for j in affected equipments do

5: reconfiguration needed ← DECIDE (j, services list)

6: PROPAGATE DECISION (agents, reconfiguration needed)

 Connect the ID of the VM that is affected by the
modification to the list of services that are currently
executing within the VM (line 2 in Algorithm 1). To do
this, the data in the file that the API generated is parsed.

 Determine the monitoring systems in charge of the
impacted VM. These will be the monitoring tools that
are modified. Utilizing data from the Component
Dependency Database, this is accomplished. The vm
information file is a single file that contains both the list
of monitoring devices that will be updated and the list
of active services.

 Select the necessary reconfiguration type (line 5 in
Algorithm 1). Different reconfiguration kinds may be
required depending on the monitoring device type and
incident category.

 Distribute the reconfiguration parameters to the
personnel in charge of upholding the adaption choice
(line 6 in Algorithm 1).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

85 | P a g e

www.ijacsa.thesai.org

E. Infrastructure Monitoring Probes

IMPs (Instance Monitoring Processes) are components of
the cloud engine that monitor topology changes, such as
placement and VM lifecycle alterations. They collect VM-
related data from the cloud engine and provide information to
the adaptation manager, which then decides which adaptation
to deploy. IMPs do not affect normal cloud operations when
adjusted.

F. Component Dependency Database

The article discusses the challenges of security issues in
complex security monitoring frameworks composed of various
components. The methodology states that a decision taken in
response to a dynamic event can impact both an active and
passive monitoring device, requiring both to be changed. The
Dependency Database, a component of the cloud controller,
lists all security devices for each monitored VM and gives the
Application Manager both functional and topological
viewpoints. The VM information table can be used by the
Adaptation Manager as a key to access the list of monitoring
tools in charge of a VM, making it easier to identify impacted
devices during an adaptation. The VM information table for the
VMs in the previously discussed scenario is found in Table I.

For example, the VM with ID 24 can see a host IDS, a
network IDS, and two firewalls: one inside the local switch
called f-p-20 and one on the edge called f-ext1. Multiple IDS
types can monitor a single VM (host- and network-based).

TABLE I. THE VM INFO TABLE

VM ID Network IDS Host IDS
External-

firewall

Switch-

firewall

24 S-79 24 Mar24 f-p-20

14 S-99 14 Aprs14 f-p-63

TABLE II. THE EQUIPMENT INFO TABLE

Equipment Name Location Equipment Type

S-65 182.12.34.201 signature based

Device-specific information is kept in the equipment info
table. The Adaptation Manager gathers the following data
using each device name: both the device's location and its type
Table II contains the S-65 IDS equipment information table.
This instance demonstrates that the signature-based NIDS
suricata65 is situated on a node with the IP address
182.12.34.201. The Dependency Database's information is
used by the AM to compile a complete list of all devices that
are impacted by a dynamic event. The AM updates the two
tables with a corresponding entry for every new monitoring
device that is created, including all the relevant data.

G. Self-Adaptable System for Intrusion Detection in IaaS

Cloud

A self-adaptable intrusion detection system has been
proposed for IaaS cloud environments. This system offers
features such as self-adaptation, customization, scalability and
security, and correctness. The system allows for adaptation to

changing conditions in the cloud, enables tenants to modify
monitored events, and adjusts the number of IDS systems
based on network traffic and infrastructure size. The system
ensures proper level of detection during adaptation to maintain
security and correctness.

1) Proposed framework: Detailed design of a proposed

framework, including its components and the system and

threat model used. It starts with a general overview of the

framework, followed by a detailed explanation of how each

component works.

Fig. 10. The proposed framework for self-adaptable system.

The framework described in Fig. 10 is composed of four
main parts: Adaptation Worker (AW), Local Intrusion
Detection Sensors (LID), Mirror Worker (MW) and Master
Adaptation Driver (MAD). LIDs are deployed on separate
nodes and are used to collect and analyze network packets,
either using anomaly-based or signature-based techniques. The
AW updates the applicable ruleset, monitors the performance
of the LID, and updates the MAD after a successful
reconfiguration [24]. The MAD handles the reconfiguration of
multiple LIDs, manages their lifecycle, and collects
performance metrics. The MW ensures accurate mirroring of
traffic to the matching LID node and constructs a mirroring
endpoint if needed. A safety mechanism on each compute node
ensures that VMs don't become active before the
accompanying LID has been reconfigured.

The proposed framework for security in cloud computing
has both potential weaknesses in its architecture and
contributions to the service provider's infrastructure. A
vulnerability in the framework is the configuration files that
translate adaptation arguments into rule names, which are
simple text or XML files and could be manipulated by
attackers to produce fake adaptation arguments. The
framework includes parsers for these files. The power
utilization model evaluates the power usage of physical
machines and is based on power meters built into the physical
machines [25]. Research has shown that power consumption is
inversely correlated with the number of fully utilized cores.
The migration model describes the methods and costs of
relocating virtual machines as shown in Fig. 11.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

86 | P a g e

www.ijacsa.thesai.org

Fig. 11. Power utilization demonstration with various processor loads.

The Top power (Tp) is the maximum power used by a PM
(Processing Module) when all 16 cores are fully loaded. The
Inactive power (Ip) is the power consumption when none of the
cores are loaded. The Top power is about half of the Inactive
power. The linear power model is used to fairly assess the
power utilization (PU) of PM.

 [

()] (1)

Where β displays the ratio of dormant to active power.
Consider Fig. 11 above, β is set to half, Cv is the total number
of cores required by resident VMs, and Cp is the total number
of cores required by PM.

The Migratory technique uses live migration to allow a
server administrator to move an active virtual machine (VM) to
a different PM without affecting its performance. Although live
migration does not affect the execution time of the VM, it does
increase energy consumption during the transfer due to
increased load on the receiving PM [26]. The energy
consumption during relocation has been quantified based on
experimental data.

 (2)

 [

()] (3)

 {[

] () } (4)

The UE is the percentage load of the sending and receiving
machines. Cv is the number of cores required to migrate a VM,
and Cv/Cp and Cv'/Cp are the percentage load of the sending
and receiving machines. The migration time (Mt) and
additional burden (L) imposed by the migration procedure
must be considered when deploying VMs with various
hardware requirements on PMs with specific hardware
limitations. The First-Fit approach may be used to address the
fusing problem, though it is more challenging. It seeks to
deploy a VM to the first PM that has space for it and can be
simple to apply, but may not be the best solution.

This study investigates a more challenging VM fusing
problem where each VM has resource requirements, Time of
Execution and Time of Arrival restrictions, and a limited
availability window during its execution. The idle cores used
by a VM after it has ceased to function can lead to the need for
additional PMs. The Eucalyptus architecture provides two
scheduling options, Enhanced Round-Robin (ERR) and a
Fusion mechanism, to lower the number of PMs needed and
save power consumption. The ERR approach uses two criteria
to aid in VM fusion: retiring PMs cannot have additional VMs
added to them, and retiring PMs that cannot complete all VMs
before the deadline must transfer and shut down. The Fusion
method combines the ERR and First-Fit approaches, depending
on the rate of incoming VMs, to save more energy. The biggest
challenge in implementation is choosing a reasonable Limit of
Resigning (LR), calculated by adding migration time and time
left for the VM to execute. The Fusion method with LR
calculation can result in energy savings by transferring VMs
during non-peak hours.

 [

()] (5)

 [

()] (6)

Where UE and UD are, respectively, the energy expenses
associated with sending and receiving PMs when the VM is not
being migrated. Instead of deciding to relocate every VM by its
remaining time for execution after the PM resigned, Rt, that's a
mystery, the limit α below is the resignation limit.

 ()

 (7)

Assuming a VM with Rt smaller than indicates that not
migrating saves more energy, and the VM will eventually
finish before PM starts moving VMs. On the other hand, in the
unlikely event that Rt greater than α, VMs will be transferred
after the resigning limit is exceeded, indicating that moving is
the better option. Execution time that is left over Rt While
using the ERR approach, it is not essential. The limit α has
been established and fixed. After a brief pause, α., a resigning
VM will be shut down. Regardless of how much time is left for
execution, each incomplete VM would be transferred.

2) Self-Adaptable framework for monitoring security: The

proposed framework consists of four main components:

Adaptation Worker, Local Intrusion Detection Sensors, Mirror

Worker, and Master Adaptation Driver. The Adaptation

Manager, a part of the proposed framework, is implemented

using a multi-threaded model in Python, using Open-Stack as

the cloud management system [27] and Open vSwitch for

network traffic mirroring. The AM receives notifications of

topology changes from the Infrastructure Monitoring Probes

and creates a worker thread to manage the potential adaptation

event as shown in Listing 1. The worker thread reads

information about the impacted guest VM from a vm

information file and retrieves the list of active services and

tenant-specific security requirements using the VM ID as an

identifier.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

87 | P a g e

www.ijacsa.thesai.org

Listing 1 Adaptation during VM migration

1: procedure ADAPTATION (VM network information)

2: SPAWN ADAPTATION THREAD

3: services list ← INFORMATION PARSER (VM network

info.VM id, vm information file)

4: affected equipments, locations ← INFORMATION

PARSER (VM network info.VMid, VM network info.source

node,VM network info.destination node, topology.txt)

5: for p,qj in affected devices, locations do

6: args.txt ← DECIDE (services list, p)

7: IDS CONN (q, args.txt, +/-)

The parameters (such as what types of rules will be
activated/deactivated, what is the acceptable tenant drop rate,
etc.) are put to a specific file called args.txt when the AM
decides to adapt. A separate file (topology.txt) that contains the
topological and functional views required by the AM is
extracted by the worker to obtain the names, kinds, and
locations of the impacted security probes.

One NIDS is used on each computing node in the
monitoring technique shown in this section. The single node
hosts all of the deployed NIDSs. Following a VM migration,
the master thread receives network-related information from
the IMP, for example for the VM with ID 24.

The worker thread parses the topology.txt and vm
information file.xml files as soon as it receives this information
to extract the services that are currently running in the migrated
VM (sshd, apache2, sqld), any additional tenant-defined
monitoring requirements (worm), tenant-specific monitoring
metrics, and finally the names of the NIDS responsible for
monitoring the traffic in the source and destination nodes (S-9
and S-65, respectively), as well as their host IP. Adaptation is
necessary for these two NIDS. The adaptation parameters are
then written by the worker thread to adaptation args.txt. Listing
2 displays the findings of the NIDS monitoring traffic to and
from the destination. Listing 2 shows the file holding an
NIDS's adaption arguments.

Listing 2

1 s ig n a tu re b a s e d

2 S- 6 5

3 apache 2

4 s q l

5 ssh 1 9 2 . 1 6 8 . 1 . 1 , 1 9 2 . 1 6 8 . 1 . 3

6 worm

7 5

 Using a secure connection, the worker thread sends the
dedicated file to a MAD in the node(s) holding the
affected security devices. The name and IP address of
the node housing the security device are used to create a
connection by the ids conn function.

 The file containing the adaptation arguments must
additionally contain a specialised operator if the
adaptation calls for the activation or deactivation of
monitoring parameters (such as + or -), as stated by the
AM. In our illustration, a + denotes that the monitoring
parameters need to be activated by the operator that was
sent with the file in Listing 2. To allow for the
concurrent transmission of the adaptation file, a
separate thread is created for each security component
that will be touched by the adaptation choice.

H. Self-Adaptable System for Intrusion Detection

A private cloud framework prototype was created using
OpenStack and Open vSwitch as a virtual switch. The
framework uses GRE tunnels to separate VMs into tenant
networks and mirrors traffic using signature-based LID nodes
in Docker containers [28]. An Adaptation Worker was
developed to manage the LID nodes and communicates with
the Master Adaptation Driver (MAD) using a shared folder.
MAD uses a multithreaded method to manage and reconfigure
the LID nodes and includes configuration files to convert
adaptation parameters into rules for the IDS. The plug vifs
function was used to delay the creation of virtual interfaces
until the LID reconfiguration is finished to ensure network
access for the VMs. [15].

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

The experiment was performed on an eight-node cluster,
each with a quad-core CPU and a power model that uses half
of peak power in idle mode. The cost of migration was
calculated as 0.025 * 1/8 * 0.2. Data for VM arrival and
execution times, and whether they were small or large-scale,
was used in the test. The arrival and execution times were
estimated using a normal distribution of two to ten hours.
Small-scale tests were conducted to study power and migration
models using the Xen hypervisor on each node. The power
usage was measured using the proposed power model and
actual power consumption and an average power usage was
calculated. The results of the proposed ERR strategy were
compared to the First-Fit power-saving strategy and showed
little variance between the estimated and measured power.
Thus, different scheduling techniques can be evaluated using
the results of the recommended model as shown in Table III.

A simulation was conducted to evaluate the performance
and energy consumption of a system with 500 octa-core servers
and 3000 virtual machines. The impact of different resigning
limitations (10, 20, 30) was tested, and the results of energy
usage were compared between the ERR method and the RR
and First-Fit methods. The results showed that power usage
decreases as the resignation limit decreases and are represented
in a graphical form in Fig. 12, with First-Fit as the baseline.

TABLE III. POWER UTILIZATION ERR AND FIRST-FIT POWER SAVE

RESULTS

Estimated Power

(W)

Power Meters Provide

Actual Power

ERR 744.53 695.20

Save with First-Fit Power 698.30 659.28

Improvements were made. 46.23 35.92

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

88 | P a g e

www.ijacsa.thesai.org

Fig. 12. Using ERR to calculate mean power utilization under different limits

of resigning.

This simulation compares five different energy-saving
solutions (Best-Fit, RR, First-Fit, ERR, and Fusion Method) by
considering metrics like mean power use, mean PM count, and
migration count. During busy hours, the Fusion Methodology
is used. A graphical analysis is shown in Fig. 13 which
demonstrates that the Fusion Methodology performs better in
terms of energy conservation compared to the other
approaches, as it uses PM loads as the resignation limit.

The paper compares the performance of five different
algorithms for VM Scheduling in Eucalyptus cloud: RR,
Greedy, PowerSave (similar to First-Fit), ERR and Fusion
Method. The analysis compares the number of powered-on
PMs and power consumption for each of these algorithms, with
the results presented in Fig. 14 and 15. The paper shows that
the use of the recommended strategies (ERR and Fusion
Method) leads to a significant reduction in the number of
powered-on PMs and power usage compared to the three basic
Eucalyptus scheduling algorithms (RR, Greedy, and
PowerSave).

Fig. 13. Comparing the proposed technique's mean power utilization to that

of other techniques.

Fig. 14. Usage of RR base to analyze mean powered-on PMS.

Fig. 15. The usage of RR base to analyse the normalised mean power

utilisation.

A. Eucalyptus with Walrus

This section discusses the private cloud patterns controlled
by Eucalyptus and the use of WALRUS, a data storage service
for customer data. The Eucalyptus web interface supports
"admin" and "user" accounts, and after registration, customers
receive X509 certificates, secret key, and Query Id. The client
credentials, including RSA private and public keys and X509
certificates, are stored in a file called "eucarc". WALRUS can
be accessed through SOAP or REST via HTTP with the help of
various utilities and is managed by ACLs and client credentials
[10] [29] as shown in Fig. 16.

WALRUS is a data storage service used in Eucalyptus and
can be accessed using tools like s3cmd, s3curl, s3fs, cloud
berry s3 via SOAP or REST via HTTP. Access to data stored
in WALRUS is managed by Access Control Lists and client
credentials and secured using the MD5 hashing method. This
section also mentions potential security attacks on private
cloud systems powered by Eucalyptus that target cloud
databases.

Fig. 16. Architectural demonstration of Eucalyptus-WALRUS.

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

TD1 TD2 TD3 TD4 TD5 Mean

M
e

an
 P

o
w

e
r

U
ti

liz
at

io
n

TEST DATA SEQUENCE

Mean Power utilization
per Minute

RL10 RL20 RL30 PL Round-Robin First-Fit

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

89 | P a g e

www.ijacsa.thesai.org

1) Attacks related to buckets: The Eucalyptus private

cloud system can be vulnerable to security attacks targeting

cloud databases. Fig. 17 shows the credentials used for

querying user interface names, such as EC2_SECRET_KEY

and EC2_ACCESS_KEY, which are stored in the AUTH

USERS table with attributes AUTH_USER_SECRETKEY,

AUTH_USER_QUERY_ID, and AUTH_USER_NAME,

respectively. One specific attack is the use of the file "eucarc,"

which is obtained from the eucalyptus auth.script catalogue.

As shown in Fig. 18, an attacker must upload a new file called

"eucarc" along with an S3 URL set that includes the IP

address of the cloud controller and the values of

EC2_SECRET_KEY and EC2_ACCESS_KEY, which are

represented by AUTH_USER_SECRETKEY and

AUTH_USER_QUERY_ID, respectively.

Fig. 17. Illustrations from the table script for Eucalyptus_auth.

Fig. 18. The “eucarc”: credentials compressed file constituent.

The remaining parts of the "eucarc" paper might be omitted
because they are not necessary for attacks involving buckets.
The attacker essentially needs to obtain the most recent version
of the eucarc document after it has been prepared and use the
command s3curl to create a bucket that impersonates the client
whose login details are used, or to gain access to a significant
number of buckets that the client has reserved.

2) Attacks related to objects: Before launching attacks on

an object, an intruder must be aware of the precise name of the

bucket containing the target object. The eucalyptus-walrus can

be used in two distinct ways to determine the precise name of

a bucket. One possibility is the script catalogue. Fig. 19 shows

how the names of the parent bucket, the individual objects,

and the bucket owner are all shown in the OBJECTS table of

this catalogue under the attributes OBJECT KEY, BUCKET

NAME, and OWNER ID.

Fig. 19. Eucalyptus-walrus.script table illustrations.

The attacker must use the victim's interface certificates to
create a new eucarc document and use s3curl to insert an object
into the victim's bucket. The attacker must determine the
object's size, MD5 checksum, and last update time and decide
whether to read or delete the object. However, these actions
require the owner to be an "administrator."

3) Attacks related to ACLs: In Eucalyptus, every

WALRUS object and bucket has an associated Access Control

List (ACL) in the form of a sub-resource. To launch ACL

attacks, the attacker must first have access to ACL-related

subresources. The ACL can be obtained using the s3curl

command, and can be modified or a new one can be created

with desired access control privileges. Attackers can also

exploit the distribution of access control privileges to all

cloud-registered users. The attacker can change the ACL file

to grant access to all users by setting attributes in the

eucalyptus walrus.script catalogue.

4) Attacks related to log file: Customers in Eucalyptus can

create access logs for their buckets and decide where to send

the logs. The logs can be treated like other objects, with the

ability to list, remove, and read them. The logging data is

stored in the eucalyptus walrus.script catalogue's properties

TARGET PREFIX, TARGET BUCKET, and LOGGING

ENABLED. If LOGGING ENABLED is set to TRUE, the

TARGET PREFIX will add the client-specified prefix to the

end of the log file names, and the TARGET BUCKET will be

the client-selected bucket where the access log files will be

saved. An attacker who gains access to the bucket containing

the log entries can use the log entries as they see fit.

B. Analysis of Self-Adaptable System for Intrusion Detection

A data center with five physical nodes (1 controller, 1
network node, 2 compute nodes, and 1 LID host node) running
Ubuntu Server 14.04 connected by a 1Gb/s network was set up
on the Grid5000 platform for testing. Experiments were
conducted using a memory-intensive workload with a 1024MB
working set and 10 executions of the LMBench benchmark
suite. The proposed framework's overhead during VM
migration was tested with two new rule types related to ssh
traffic.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

90 | P a g e

www.ijacsa.thesai.org

Fig. 20. Time spent migrating with and without the suggested framework.

The outcomes are displayed in Fig. 20. Our initial
expectation that the proposed framework imposes minimal
overhead on ordinary cloud operations is confirmed by the fact
that the imposed overhead in both scenarios of an idle virtual
machine and 0.0s represents a virtual machine with a memory-
intensive workload. Fig. 21 and Fig. 22 display a breakdown of
the two separate adaptation instances (new LIDS with traffic
distribution and ruleset reconfiguration only) per phase.

Fig. 21. Breakdown of the adaptation time when the proposed framework

only modifies the imposed inside the LIDS ruleset.

Both instances involve the safety mechanism being in
operation, however, when the plug vifs is called, the LIDS
reconfiguration is finished significantly more quickly (4.14s
and 0.97s respectively while the plug vifs function is called
always after the 10th second).

Fig. 22. A breakdown of how long it takes framework to build a mirroring

tunnel, distribute traffic, and start a new LIDS.

The proposed framework reduces waiting time when
restarting a virtual machine (VM) and completes a full
adaptation cycle faster than migration. It takes 4.14 seconds to
reconfigure the imposed ruleset in the first scenario and 0.97
seconds to access traffic in the second scenario when a new

LID needs to be created. The total time needed by the
framework is less than migration and creating a new IDS is
easier than changing an old one.

Multiple LIDSs and MADs: A specialized script is created
to replicate migration events by creating precise inputs from
the Infrastructure Monitoring Probe for the Adaptation
Manager. This allows for concurrent production of multiple
adaptation events. During experimentation, a single instance of
the Master Adaptation Driver (MAD) is configured to handle
multiple LID instances, with the maximum number
theoretically handled by a single MAD instance shown in Fig.
23.

Fig. 23. Setup for MAD scalability.

Our findings demonstrate that up to 50 LIDS can be
supported by a single MAD instance running on a dedicated
node with 24GB RAM. Fig. 24 displays the MAD agent's
typical response time under various LIDS loads.

Fig. 24. MAD reaction periods.

The results show that the longest creation time for a new
LID container requires interaction with the Docker daemon.
The proposed framework can handle 50 simultaneous LID
launching requests and still has a faster reaction time than the
average migration time for an idle VM. The framework does
not include the time for building the new LID configuration
file or testing its functionality due to their low impact on the
overall duration. Each LID is typically assigned one core in a
production setting to maintain performance. The framework
was tested with 10 concurrent adaptation requests to simulate a
commercial setting. The maximum number of LID's that a
single Master Adaptation Driver instance can manage

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

91 | P a g e

www.ijacsa.thesai.org

simultaneously was determined, and there is room for nearly
100 worker threads for the Adaptation Manager. One AM
instance is configured to control multiple MADs in Fig. 25.

Fig. 25. AM scaling configuration.

The chosen monitoring mechanism for a single VM is a
single LID. The framework was tested by simulating 50
dynamic events for 50 different VMs, providing adaptation
requirements for 50 LID of each thread. A worker thread
relocates all of its virtual machines to the same destination
node to target the LID under the same MAD instance it is
handling. The worker thread parses the vm info.xml file
containing all the VM-related data to obtain settings for each of
the 50 VMs it is responsible for. The minimum number of VM
entries in the vm info.xml file required is calculated as
maximum AM worker threads multiplied by the number of
VMs per thread (in this case 100 AM worker threads and 50
VMs per thread, requiring 5000 entries). Justifications for each
LID adaptation are recorded in a separate file. The worker
thread delivers 50 files, one for each LID, to the MAD in
charge of those 50 LID after establishing a secure connection.
Only one file is required in the experiment as all virtual
machines for a single worker thread are moved to the same
compute node. The experiment aims to understand how the
AM scales with the quantity of MADs, not the number of
compute nodes.

Fig. 26. AM response time.

Fig. 26 presents the outcomes. As the data show, the
formation of the secure connection is the phase that is most
impacted by raising the MADs' load for the AM. This is due to
the fact that each MAD has its own IP address and is kept in a
distinct container, necessitating the use of a separate secure
connection. On the AM side, we track the time it takes to send
the adaption arguments. No network contention-related delay is
seen in the outcome since we don't wait for each instance to
validate that it has received the files. However, because each
MAD instance is essentially run on a separate container on the
same node, there may be many processes running on the node
that are causing severe ssh connection formation delays. Since
each MAD instance would operate in a distinct, less-loaded
node in a real-world scenario, the findings of our experiment
are unsatisfactory. The adaption decision time is not greatly
shortened by the multi-threading method because all VM-
related data is retained in a single file.

Up to 5000 LIDS instances can be managed by a single
AM instance and still respond to thread requests in under one
second, according to the results. The testbed's memory capacity
is the single factor limiting the number of LIDS instances that
can be employed for our research. If framework is
implemented in a different configuration with production nodes
having memory capacities that are substantially a minimum of
24 GB of RAM per node, the number of instances could rise.

The pidstat programme from the sysstat suite, a utility used
to measure the resource utilisation of a given job running in an
OS, is utilized to compute the resource consumption of an AM
in terms of CPU and memory handling multiple MADs. Each
experiment asks the first worker thread to run pidstat as soon as
the adaption parameters are received, and the monitoring is
stopped after the last worker thread has finished its task. This
method ensures that during the adaptation process, we will
only calculate the resource usage of each worker thread. No
other framework-related processes use resources since the
worker thread in charge of that adaptation request handles all
the adaptation-related duties in that request. One second was
chosen as the monitoring interval. The results are shown in
Table IV . The Graphical illustration of resources consumption
by AM is analysed in the Fig. 27.

The CPU use grows as the number of AM worker threads
rise since there is a one-time CPU cost for starting a new ssh
session. For each worker thread, the measurements compute
the worst-case situation, which is to create a new connection.
When the framework has to modify an existing LIDS, it can
transfer the file containing the adaption arguments using an
already established connection as a result of the anticipated
decrease in CPU usage.

TABLE IV. CONSUMPTION OF RESOURCES BY THE AM COMPONENT

Number of

MADs
Usr% Sys% CPU%

Memory

(MB)

15 18.15 2.35 20.35 189.66

30 24.30 3.39 27.08 189.83

50 25.19 3.71 30.12 189.74

70 27.63 3.82 31.98 189.61

100 29.4 3.98 33.45 189.89

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

92 | P a g e

www.ijacsa.thesai.org

Fig. 27. Graphical illustration of resources consumption by AM.

The proposed framework for self-adapting security
monitoring in cloud infrastructure is better than previous
approaches for several reasons as below

1) Customization for each tenant: The framework takes

into account the specific security monitoring requirements of

each tenant, allowing for customized security monitoring

configurations. This is an improvement over previous

approaches that had a one-size-fits-all security monitoring

approach that may not have been optimal for all tenants.

2) Self-adaptation: The framework includes an Adaptation

Manager that can adapt to changing conditions in the cloud

infrastructure and serve as a coordinator of the adaptation

process. This allows the framework to respond dynamically to

events in the cloud environment and adjust security

monitoring configurations as needed. This is an improvement

over previous approaches that did not have a self-adapting

mechanism and required manual adjustments.

3) Cost efficiency: The framework aims to achieve cost

efficiency by sharing monitoring resources between the

tenants and the provider. The equitable sharing of monitoring

resources is established with an adjustable threshold

mentioned in the SLA. This is an improvement over previous

approaches that may have been resource-intensive and costly.

4) Comprehensive solution: The framework provides a

comprehensive solution that combines precise security

monitoring with self-adaptation. The design of the framework

ensures that it does not introduce new security weaknesses or

affect the performance of the infrastructure. This is an

improvement over previous approaches that may have been

limited in scope or may have introduced new security

weaknesses.

Overall, the proposed framework is an improvement over
previous approaches because it is customized for each tenant,
includes a self-adapting mechanism, achieves cost efficiency,
and provides a comprehensive solution for security monitoring
in cloud infrastructure.

V. CONCLUSION AND FUTURE WORKS

In this paper, the increasing number of tasks in clouds due
to virtualization and cloud computing technology adoption is
discussed. VM scheduling strategies are important for
determining the allocation of cloud resources to handle these
tasks for maintaining acceptable throughput and revenue. The

paper evaluates the current knowledge on legacy methods and
specific virtual machine scheduling algorithms for the
Eucalyptus cloud environment and compares some existing
algorithms using specific measures for a better understanding.

The Eucalyptus cloud uses two methods for scheduling
VMs: Fusion Method and Enhanced Round-Robin. The
experiment showed that Enhanced Round-Robin uses less
energy compared to other methods and that using Physical
Machine load as a limit of resigning saves the most energy.
The Fusion Method outperforms other techniques by reducing
the number of Physical Machines turned on and increasing
power efficiency. The authors also developed a self-adapting
security monitoring system with goals of security, cost savings,
tenant-driven customization, and self-adaptation. The
Adaptation Manager is the main element that can adapt to
changing conditions in the cloud infrastructure and serves as a
coordinator of the adaptation process.

This paper presents a self-adapting security monitoring
system for cloud infrastructure that takes into account the
specific monitoring requirements of each tenant. The system
uses Master Adaptation Drivers to convert the tenant
requirements into configuration settings and the Adaptation
Manager to coordinate the adaptation process. The framework
ensures security, cost efficiency, and responsiveness to
dynamic events in the cloud environment. The design of the
framework is such that it does not introduce new security
weaknesses or affect the performance of the infrastructure. The
system provides a comprehensive solution that combines
precise security monitoring with self-adaptation.

The current security monitoring platform needs
improvement to support more types of monitoring devices such
as network traffic analysis and inside-the-host activity
monitoring. The platform is also limited to supporting firewall
functionality and doesn't cover the consequences of multi-
tenant setups. The future work includes incorporating log
collectors and aggregators and addressing the needs of a super-
tenant (the provider) in the security monitoring architecture.
The equitable sharing of monitoring resources between the
tenants and the provider should be established with an
adjustable threshold mentioned in the SLA.

ACKNOWLEDGMENT

The authors would like to thank Malaysia University of
Science and Technology, for the support and encouragement to
carry out this study.

REFERENCES

[1] P. C. Yang, J. H. Chiang, J. C. Liu, Y. L. Wen, and K. Y. Chuang, “An
efficient cloud for wellness self-management devices and services,”
Proc. - 4th Int. Conf. Genet. Evol. Comput. ICGEC 2010, pp. 767–770,
2010, doi: 10.1109/ICGEC.2010.194.

[2] S. Zhang, S. Zhang, X. Chen, and X. Huo, “The comparison between
cloud computing and grid computing,” ICCASM 2010 - 2010 Int. Conf.
Comput. Appl. Syst. Model. Proc., vol. 11, 2010, doi:
10.1109/ICCASM.2010.5623257.

[3] N. Sadashiv and S. M. D. Kumar, “Cluster, grid and cloud computing: A
detailed comparison,” ICCSE 2011 - 6th Int. Conf. Comput. Sci. Educ.
Final Progr. Proc., pp. 477–482, 2011, doi:
10.1109/ICCSE.2011.6028683.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

93 | P a g e

www.ijacsa.thesai.org

[4] E. Raggi, K. Thomas, T. Parsons, A. Channelle, and S. van Vugt,
“Social Networks and Cloud Computing,” Begin. Ubuntu Linux, pp.
337–348, 2010, doi: 10.1007/978-1-4302-3040-3_15.

[5] “The Treacherous 12 Top Threats Working Group,” 2016. [Online].
Available: https://cloudsecurityalliance.org/download/the-treacherous-
twelve.

[6] Dave Shackleford, “9 cloud migration security considerations and
challenges | TechTarget,” Voodoo Security, Nov. 23, 2021.
https://www.techtarget.com/searchcloudcomputing/tip/9-cloud-
migration-security-considerations-and-challenges (accessed Feb. 01,
2023).

[7] S. A. Bello et al., “Cloud computing in construction industry: Use cases,
benefits and challenges,” Autom. Constr., vol. 122, p. 103441, Feb.
2021, doi: 10.1016/J.AUTCON.2020.103441.

[8] I. M. Khalil, A. Khreishah, and M. Azeem, “Cloud Computing Security:
A Survey,” Comput. 2014, Vol. 3, Pages 1-35, vol. 3, no. 1, pp. 1–35,
Feb. 2014, doi: 10.3390/COMPUTERS3010001.

[9] M. Carroll, A. Van Der Merwe, and P. Kotzé, “Secure cloud computing:
Benefits, risks and controls,” 2011 Inf. Secur. South Africa - Proc. ISSA
2011 Conf., 2011, doi: 10.1109/ISSA.2011.6027519.

[10] A. Waqar, A. Raza, and H. Abbas, “User Privacy Issues in Eucalyptus:
A Private Cloud Computing Environment,” in 2011IEEE 10th
International Conference on Trust, Security and Privacy in Computing
and Communications, Nov. 2011, pp. 927–932. doi:
10.1109/TrustCom.2011.128.

[11] M. F. Manzoor, A. Abid, M. S. Farooq, N. A. Nawaz, and U. Farooq,
“Resource Allocation Techniques in Cloud Computing: A Review and
Future Directions,” Elektron. ir Elektrotechnika, vol. 26, no. 6, pp. 40–
51, Dec. 2020, doi: 10.5755/J01.EIE.26.6.25865.

[12] L. Wang and D. Zhang, “Research on OpenStack of open source cloud
computing in colleges and universities’ computer room,” IOP Conf. Ser.
Earth Environ. Sci., vol. 69, no. 1, p. 012140, Jun. 2017, doi:
10.1088/1755-1315/69/1/012140.

[13] M. E. Suliman, “A Brief Analysis of Cloud Computing Infrastructure as
a Service (IaaS),” 2021. [Online]. Available: www.ijisrt.com.

[14] D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg, S.
Azodolmolky, and S. Uhlig, “Software-defined networking: A
comprehensive survey,” Proc. IEEE, vol. 103, no. 1, pp. 14–76, Jan.
2015, doi: 10.1109/JPROC.2014.2371999.

[15] McKeownNick et al., “OpenFlow,” ACM SIGCOMM Comput.
Commun. Rev., vol. 38, no. 2, pp. 69–74, Mar. 2008, doi:
10.1145/1355734.1355746.

[16] H. Wang, A. Srivastava, L. Xu, S. Hong, and G. Gu, “Bring your own
controller: Enabling tenant-defined SDN apps in IaaS clouds,” Proc. -
IEEE INFOCOM, Oct. 2017, doi: 10.1109/INFOCOM.2017.8057137.

[17] M. Johns, “Code-injection vulnerabilities in web applications -
Exemplified at cross-site scripting,” IT - Inf. Technol., vol. 53, no. 5, pp.
256–260, Sep. 2011, doi: 10.1524/ITIT.2011.0651/MACHINEREAD
ABLECITATION/RIS.

[18] T. Grandison and E. Terzi, “Intrusion Detection Technology,” Encycl.
Database Syst., pp. 1568–1570, 2009, doi: 10.1007/978-0-387-39940-
9_209.

[19] S. Lata and D. Singh, “Intrusion detection system in cloud environment:
Literature survey & future research directions,” Int. J. Inf. Manag.
Data Insights, vol. 2, no. 2, p. 100134, Nov. 2022, doi:
10.1016/j.jjimei.2022.100134.

[20] D. Nurmi et al., “The Eucalyptus Open-source Cloud-computing
System.”

[21] H. Alshaer, “An overview of network virtualization and cloud network
as a service,” Int. J. Netw. Manag., vol. 25, no. 1, pp. 1–30, Jan. 2015,
doi: 10.1002/NEM.1882.

[22] M. Yassin, H. Ould-Slimane, C. Talhi, and H. Boucheneb, “Multi-
Tenant Intrusion Detection Framework as a Service for SaaS,” IEEE
Trans. Serv. Comput., vol. 15, no. 05, pp. 2925–2938, Sep. 2022, doi:
10.1109/TSC.2021.3077852.

[23] A. Giannakou et al., “Self-adaptable Security Monitoring for IaaS Cloud
Environments,” Jul. 2017, Accessed: Feb. 05, 2023. [Online]. Available:
https://hal.inria.fr/tel-01653831.

[24] I. C. Lin, C. C. Chang, and C. H. Peng, “An Anomaly-Based IDS
Framework Using Centroid-Based Classification,” Symmetry 2022, Vol.
14, Page 105, vol. 14, no. 1, p. 105, Jan. 2022, doi:
10.3390/SYM14010105.

[25] G. Chen et al., “Energy-Aware Server Provisioning and Load
Dispatching for Connection-Intensive Internet Services.”

[26] C. C. Lin, P. Liu, and J. J. Wu, “Energy-efficient virtual machine
provision algorithms for cloud systems,” Proc. - 2011 4th IEEE Int.
Conf. Util. Cloud Comput. UCC 2011, pp. 81–88, 2011, doi:
10.1109/UCC.2011.21.

[27] S. Knox, P. Meier, J. Yoon, and J. J. Harou, “A python framework for
multi-agent simulation of networked resource systems,” Environ. Model.
Softw., vol. 103, pp. 16–28, May 2018, doi:
10.1016/J.ENVSOFT.2018.01.019.

[28] T. Madi et al., “ISOTOP,” ACM Trans. Priv. Secur., vol. 22, no. 1, Oct.
2018, doi: 10.1145/3267339.

[29] A. Rath, B. Spasic, N. Boucart, and P. Thiran, “Security Pattern for
Cloud SaaS: From System and Data Security to Privacy Case Study in
AWS and Azure,” Comput. 2019, Vol. 8, Page 34, vol. 8, no. 2, p. 34,
May 2019, doi: 10.3390/COMPUTERS8020034.

