
Security in DevOps: understanding the
most efficient way to integrate security in

the agile software development process

Master of Science in Technology Thesis
University of Turku

Department of Future Technologies
Security of Networked Systems

October 2020
Mirko Schicchi

Supervisors:
Karo Vallittu (Awake.AI)

Bruno Crispo (University of Trento)

Examiners:
Petri Sainio (University of Turku)

Seppo Virtanen (University of Turku)

The originality of this thesis has been checked in accordance with the University of Turku quality assurance system using the Turnitin
OriginalityCheck service.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UTUPub

https://core.ac.uk/display/347181069?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSITY OF TURKU
Department of Future Technologies

MIRKO SCHICCHI: Security in DevOps: understanding the most efficient way to inte-
grate security in the agile software development process

Master of Science in Technology Thesis, 85 p.
Security of Networked Systems
October 2020

Modern development methodologies follow a fast and dynamic pace, which gives great
attention to customers’ satisfaction in the delivery of new releases. On the other hand,
the work pursued to secure a system, if not adapted to the new development trend, can
risk to slow down the delivery of new software and the adaptability typical for an Agile
environment.

Therefore, it is paramount to think about a new way to integrate security into the devel-
opment framework, in order to secure the software in the best way without slowing down
the pace of the developers. Moreover, the implementation of automatic and repeatable
security controls inside the development pipeline can help to catch the presence of
vulnerabilities as early as possible, thus reducing costs, comparing to solving the issues
at later stages.

The thesis presents a series of recommendations on how to best deploy a so called
DevSecOps approach and applies the theory to the use case of Awake.AI, a Finnish
startup company focusing its business on the maritime industry. It is not always easy and
feasible to practically apply all the suggestions presented in the literature to a real case
scenario, but rather the recommendations need to be adapted and forged in a way that
best suits the situation and the current target.

It is undeniable that the presence of a strong and efficient secure development framework
can give substantial advantage to the success of a company. In fact, not only it makes
sure that the delivery of good quality code to the customers is not slowed down, but it
also dramatically reduces the risk of incurring in expensive security incidents. Lastly,
it is valuable to also mention that, being able to show a clean and efficient approach to
security, the framework improves the reputation and trustfulness of the company under
the eyes of the customers.

Keywords: AWS, development, DevOps, DevSecOps, security, cloud computing, agile,
vulnerabilities

Contents

1 Introduction 1

2 Cloud Environments 3

2.1 What is the Cloud . 3

2.2 Cloud Providers . 4

2.3 Amazon Web Services (AWS) . 5

2.4 Infrastructure as a Code . 9

3 Virtualization, Containers and Microservices 11

3.1 Virtualization . 11

3.1.1 Introduction . 11

3.1.2 Brief history . 12

3.1.3 How virtualization works . 12

3.2 Shifting to container technology . 13

3.3 Docker . 15

3.3.1 Introduction . 15

3.3.2 Docker vs. Virtual Machines . 16

3.3.3 Security considerations . 17

3.4 Kubernetes . 19

3.4.1 Introduction . 19

3.4.2 Glossary . 20

i

3.4.3 Security considerations . 21

3.5 Serverless approach . 22

3.5.1 Introduction . 22

3.5.2 Function as a Service (FaaS) . 23

3.5.3 Drawbacks . 24

3.5.4 Security considerations . 25

4 Traditional vs Modern Development 27

4.1 Traditional models . 27

4.1.1 Waterfall model . 28

4.1.2 Incremental model . 29

4.1.3 Security in traditional models 30

4.2 Agile model . 31

4.2.1 Scrum . 31

4.2.2 Kanban . 34

4.3 DevOps approach . 35

4.3.1 Introduction . 35

4.3.2 Why DevOps? . 36

4.3.3 The pillars of DevOps . 36

4.3.4 Difference with traditional ops 38

5 DevSecOps Model 39

5.1 Introduction . 39

5.2 Challenges . 40

5.3 Shifting security to the left . 41

5.4 The DevSecOps pipeline . 41

5.5 Threat modeling techniques . 45

5.5.1 STRIDE . 48

5.5.2 Rapid risk-assessment . 50

5.5.3 What to do with the results of threat modeling 52

5.6 Automatic security scans . 52

5.7 Principle of least privilege . 53

5.8 How to communicate with other teams 54

5.8.1 Security training and tools . 56

6 Incidents identification and response 58

6.1 Logging layers . 58

6.1.1 Collection layer . 59

6.1.2 Streaming layer . 61

6.1.3 Analysis layer . 62

6.2 Forensic analysis . 63

6.3 Recovery . 63

7 Case study: Awake.AI 65

7.1 Development process . 66

7.2 Overview of the technology used . 68

7.3 DevSecOps . 71

7.3.1 Incident response and recovery 74

8 Conclusions 76

References 79

List of Figures

2.1 AWS annual revenue from 2013 to 2019 [5] 6

2.2 AWS Regions and Availability Zones [7] 7

2.3 AWS shared security responsibility principle [8] 8

3.1 Architecture of a virtual machine environment 14

3.2 Docker vs. VM architecture . 17

4.1 Waterfall model diagram . 29

4.2 Kanban progress diagram example . 35

4.3 DevOps vs. Traditional Ops [28] . 38

5.1 Stride threat modelling framework . 50

iv

1 Introduction

The developing processes have been rapidly changing in the last few years, with a shift

towards speed of delivery and automation. DevOps1 and cloud infrastructures have rev-

olutionized the way new software is released to the customers. At the same time, the

number of cybersecurity threats has increased as well, pushing organizations to put more

resources to secure their assets. However, integrating security in a fast pacing model as

the DevOps one can be very challenging and efficient strategies need to be put in place in

order to get the best results.

Knowing that, the goal of this thesis is to understand the best approaches to embrace

security in a DevOps and agile environment, describing all the necessary steps to build an

efficient Secure Software Development Model. This framework would aim at discovering

security flaws as early as possible in the development pipeline, so to reduce the costs that

need to be faced when mitigations have to be implemented at later stages.

The results and suggestions present in the thesis have been taken from the relevant

literature, and compared and criticized by describing the approach used in Awake.AI, a

software company based in Finland, whose business is related to the maritime industry.

The thesis is organized as follows.

Chapter 2 talks about cloud computing and the solutions used to automate the creation of

environments and services on top of it.

Chapter 3 describes the concepts of virtualization, Docker containers, Kubernetes and

1https://resources.collab.net/devops-101/what-is-devops

https://resources.collab.net/devops-101/what-is-devops

CHAPTER 1. INTRODUCTION 2

serverless paradigm, giving recommendations regarding the security best practices to ap-

ply on them.

Chapter 4 analyses the differences between traditional and modern development method-

ologies, taking into consideration the way security work is handled within them.

In Chapter 5 we introduce the concept of DevSecOps2 as a new solution to embrace the

security work inside the DevOps development process.

Chapter 6 describes how to collect useful information which can be crucial to recover

from incidents and perform post-mortem forensic analysis.

Chapter 7 presents the case study of Awake.AI.

Finally Chapter 8 presents the conclusions, the results of our research and a proposal for

future studies.

2https://www.redhat.com/en/topics/devops/what-is-devsecops

https://www.redhat.com/en/topics/devops/what-is-devsecops

2 Cloud Environments

This chapter will give an introduction on cloud computing technology and the framework

used to automate the deployment of a new infrastructure.

2.1 What is the Cloud

Following the National Institute of Standards and Technology (NIST1) definition in [1],

"Cloud computing is a model for enabling ubiquitous, convenient, on-demand network

access to a shared pool of configurable computing resources (e.g., networks, servers,

storage, applications, and services) that can be rapidly provisioned and released with

minimal management effort or service provider interaction". In this way users can get ac-

cess to the resources and services hosted by these servers from any kind of device, without

having to worry about data loss since, most of the time, the information is replicated all

around the globe.

This is very beneficial both for single users and for companies. In fact, this technology

allows the former to get access to their own data from any device, and the latter to remove

the burdens of running their own physical infrastructure, thus reducing the costs and the

complexity of the system being built.

Cloud computing is very widespread nowadays and, according to a study published

by Canalys [2], the total cloud computing market was worth more than 107 billion dollars

during 2019, with a 37% increase with respect to the previous year. This huge spike in

1https://www.nist.gov/

https://www.nist.gov/

CHAPTER 2. CLOUD ENVIRONMENTS 4

investments on cloud computing has been carried on by the large number of tech com-

panies which constantly compete with each other for customer market share. Within the

industry these companies are called Cloud Providers and in the following section we will

analyze the most relevant ones.

2.2 Cloud Providers

Cloud Providers differ from each others in terms of pricing, technologies implemented

and business model followed. As stated in [3], there are three different business models

which a cloud provider can approach, each of them having its own advantages and disad-

vantages. They are Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS) and

Software-as-a-Service (SaaS). In the following lines there are the three service models’

definitions provided by NIST [1].

• IaaS enables customers to have complete control over the infrastructure that is

physically deployed by the provider, leaving to them the freedom to choose the

operating system to use, the network architecture and other infrastructural options.

• PaaS allows customers to deploy applications and services on top of the infrastruc-

ture managed by the provider. Therefore it’s not responsibility of the customer to

manage the operating system, the network topology and the storage.

• SaaS gives to customers the capability to use a specific application managed by the

provider.

Cloud providers are also different from each others for what it concerns the number

of parties that share the computing resources. In fact, we can go from a private cloud,

which is used by a single company, to a public cloud, in which resources are shared and

contended with many other actors. However, in both cases, the cloud providers guarantee

a complete and efficient logical separation of resources owned by different parties.

CHAPTER 2. CLOUD ENVIRONMENTS 5

There are three big cloud providers which are worth mentioning: Amazon Web Ser-

vices2 (AWS), Microsoft Azure3 and Google Cloud Platform4. As reported in [2], AWS

owns the largest share of the market, followed by Azure and Google, which have also seen

a huge increment in the last years. The number of organizations that are signing multi-

annual contracts with cloud providers is rapidly increasing, with a substantial amount of

them which prefers to adopt two different cloud solutions in order to take the best features

from each one. Given the fact that AWS is the biggest cloud provider and that it is the one

used in Awake.AI, it is beneficial to describe its main features more in details in the next

section.

2.3 Amazon Web Services (AWS)

Amazon Web Services (AWS) is a platform that offers reliable, efficient, flexible, scalable

and cost-effective cloud computing solutions [4]. It was launched in 2006 by Amazon and

since then it has seen huge increments in sales year by year, reaching an annual revenue

of more than 35 billion dollars in 2019, as shown in Fig. 2.1.

The AWS infrastructure is spread all over the world and built around physically lo-

cated AWS Regions, which may contain multiple AWS Availability Zones [6]. The latter

can consist of one or more data-centers, all deployed in different geographical locations,

but extremely connected to each others to ensure high availability, redundancy and fault

tolerance. The communication between them is heavily encrypted and the ultra-low la-

tency makes possible to achieve almost real-time replication. Each AWS Region is com-

pletely separated and presents different prices with respect to the others. A map of the

current (year 2020) and new-coming AWS Regions and Availability Zones is shown in

Fig. 2.2.

2https://aws.amazon.com/

3https://azure.microsoft.com/en-us/

4https://cloud.google.com/

https://aws.amazon.com/
https://azure.microsoft.com/en-us/
https://cloud.google.com/

CHAPTER 2. CLOUD ENVIRONMENTS 6

Figure 2.1: AWS annual revenue from 2013 to 2019 [5]

AWS offers an approach of shared responsibility for what concerns the security in the

cloud (see Fig. 2.3). In fact, the cloud provider is responsible for the "security of the

cloud", that is security of the infrastructure and of the machines, while the customer is

responsible for the "security in the cloud", which means the security of the applications

and services deployed. This shared security responsibility model offers freedom in the

choices that customers can take, and at the same time, works as a warranty for the qual-

ity of the safety measures provided by the provider. In this regard, in addition to data

protection, AWS provides means to easily meet compliance requirements, useful for the

customer to be able to receive valuable certifications, which can increase the value of the

product being built. Moreover, since the security of the bottom layers is AWS’s task, it is

easier for the cloud customer to scale quickly and, at the same time, save money.

In order to configure its cloud infrastructure a user can interact either with a manage-

ment console or by typing command in a command line interface (i.e. CLI). The console

is more user-friendly because it presents an user interface, nevertheless the command line

CHAPTER 2. CLOUD ENVIRONMENTS 7

Figure 2.2: AWS Regions and Availability Zones [7]

can provide more speed and efficiency. The CLI and the Console allow to access the huge

number of services which are present in the AWS portfolio. For the purpose of the thesis

it is not valuable to describe in details all the services provided by AWS (also because

there exist hundreds of them), but some of them are worth noticing since they are heavily

used by Awake.AI, our case study. These are EC2 machines, ECS, EKS clusters, AWS

Lambda functions and RDS databases, and will be described in the following paragraphs.

Amazon Elastic Compute Cloud (EC2) It is a service5 that provides secure, reliable

and scalable computing capabilities in the cloud. EC2 instances are sort of virtual ma-

chines (see Sec. 3.1) which can be completely customized in terms of resources and

memory, with great importance given to scalability and booting speed. They support dif-

ferent operating systems and give the user the possibility to configure all the layers above

the physical one. The instances can be requested on-demand by paying only for the time

of actual utilization, or they can be reserved in order to have them available independently

of the utilization level. EC2 machines are supported by the Amazon EC2 Auto Scaling ser-

5https://aws.amazon.com/ec2/

https://aws.amazon.com/ec2/

CHAPTER 2. CLOUD ENVIRONMENTS 8

Figure 2.3: AWS shared security responsibility principle [8]

vice6, which permits to automatically scale the deployment of EC2 instances depending

on the traffic encountered.

Amazon Elastic Container service Mostly known for its acronym, ECS7 is a con-

tainer orchestration service which offers support for Docker containers (see Sec. 3.3) and

provides all the capabilities for scaling and deploying new applications. It is similar to

Kubernetes (see Sec. 3.4), with the only difference of being completely developed by

AWS.

Amazon Elastic Container Service for Kubernetes Also called EKS8, it offers a plat-

form for easily deploying Kubernetes clusters, distributing them in multiple availability

zones in order not to have a single point-of-failure.

6https://aws.amazon.com/ec2/autoscaling/

7https://aws.amazon.com/ecs/

8https://aws.amazon.com/eks/

https://aws.amazon.com/ec2/autoscaling/
https://aws.amazon.com/ecs/
https://aws.amazon.com/eks/

CHAPTER 2. CLOUD ENVIRONMENTS 9

AWS Lambda AWS Lambda9 is the Function-as-a-Service (see Sec. 3.5.2) solution

built by Amazon. It allows to write code that is executed and deployed without having

to worry about managing a machine. Lambda works in a stateless manner, thus each

execution is independent from the other executions.

Amazon Relational Database Service Also known with the acronym RDS10, it con-

tains interfaces for creating and managing MySQL and PostgreSQL databases, ensuring

high speed and reliability in the operations.

2.4 Infrastructure as a Code

In the past, during their daily job, system administrators had to manually configure hun-

dreds of machines and hardware components, taking care of the network infrastructure

and the multiple updates needed. This job was often very tedious and repetitive, and the

risk of misconfiguring something and thus leaving space to criminals to compromise the

entire system was very high. Moreover, this operation was very costly since it was time

consuming and required the effort of many engineers. In case of an incident, recovering

the normal state of the infrastructure would have been very complex, with a very high

probability of missing something.

With the introduction of cloud computing, the need to automate and make the in-

frastructure creation repeatable has lead to the development of a new paradigm called

Infrastructure as a Code (IaaC). IaaC, as stated in [9], is a method that allows to deploy

and manage service components and machines by executing some code written in specific

configuration files. In other words, it provides a sort of "programmable infrastructure",

in which everything can be scaled, destroyed and deployed by executing scripts.

9https://aws.amazon.com/lambda/

10https://aws.amazon.com/rds/

https://aws.amazon.com/lambda/
https://aws.amazon.com/rds/

CHAPTER 2. CLOUD ENVIRONMENTS 10

HashiCorp Terraform11 is one of the most famous scripting languages capable of man-

aging a cloud infrastructure. Although it is not completely cloud agnostic, it is supported

by all the major cloud providers and presents a good safety procedure that requires the

user, before applying a modification, to carefully review the changes that are going to be

performed. Thanks to the possibility to create modules (small scripts that perform atomic

operations), it is possible to reuse already written code and share pieces of the infras-

tructure with other components, thus reducing the cost of development and complexity

of the code base. Terraform maintains a state of the current infrastructure and applies

only required changes, therefore it can be defined as "idempotent". In fact, unlikely other

scripting languages used to build cloud infrastructures (e.g. Ansible12), before applying

a modification it fetches the current state of the system and calculates the differences be-

tween the current and the planned solutions. In this way, for example, executing a script

to deploy two Linux virtual machines does not mean that new machines are deployed at

every execution of the code, but rather Terraform will make sure that exactly two ma-

chines of that kind are running on the infrastructure. This feature is very useful because

there is no need for the operator to have a look to the current state of the cloud before

applying some changes, thus reducing the time needed and the risk of making mistakes.

In the next chapter we will introduce the concepts of virtualization, containers and server-

less approaches, which are heavily used in the cloud.

11https://www.terraform.io/

12https://www.ansible.com/

https://www.terraform.io/
https://www.ansible.com/

3 Virtualization, Containers and

Microservices

In this chapter we will describe the concepts of virtualization (Sec. 3.1) and containers

technology (Sec. 3.2 and 3.3), describing the differences between them. Later we will

introduce Kubernetes (Sec. 3.4) as a container orchestration service useful to manage

clusters of containers. In the end of the chapter we will talk about serverless technol-

ogy (Sec. 3.5) highlighting its benefits and drawbacks. All the topics presented will be

accompanied by some related security considerations.

3.1 Virtualization

3.1.1 Introduction

Cloud computing is heavily dependent on virtualization technology. As stated in [10],

virtualization consists of creating a virtual image of a server, operating system or network

component and abstracting it from the hardware layer, so that multiple instances can be

run simultaneously on the same machine. In this way it is possible to reduce the waste of

computing resources and hardware energy consumption, thus cutting down the costs for

maintaining and deploying services. By abstracting the hardware level, it is possible to

run multiple instances of different services, each one on an isolated environment. In an

ideal implementation, each virtual machine is sandboxed from the others and therefore it

CHAPTER 3. VIRTUALIZATION, CONTAINERS AND MICROSERVICES 12

should not be able to access the data storage of another instance, despite being hosted on

the same physical hardware.

3.1.2 Brief history

Virtualization technology has been studied starting already from the 1960s, when com-

panies like IBM1 started to research new methodologies for debugging their mainframe

computers without having to deploy additional hardware. However, this technology had

to wait until the early 2000s, when Linux and other Unix-like operating systems began to

use it on a larger scale. The first step in the way towards virtualization widespread was

the development of tools (e.g. hypervisors) which give multiple users the possibility to

access a single computer at the same time.

3.1.3 How virtualization works

The hypervisor partitions the physical resources available on one computer in many vir-

tual environments whose size can be adjusted accordingly, depending on the requirements

of the virtualized service. Virtual machines are independent from the host system and so

they can be moved and deployed into different computers very easily.

These guest machines, instead of interacting directly with the real hardware, they interact

with an emulation provided by the hypervisor.

Virtualization can be done at different layers and for different purposes and, nowadays,

there exist at least six different kind of this technology:

• Network virtualization consists in splitting the available network bandwidth into

channels, in order to be able to independently assign a channel to a specific service.

• Storage virtualization allows to abstract the complexity of a distributed storage

system to make it appear as a single unit, centrally managed [11].

1https://www.ibm.com/fi-en

https://www.ibm.com/fi-en

CHAPTER 3. VIRTUALIZATION, CONTAINERS AND MICROSERVICES 13

• Server virtualization aims at hiding the real resources of a server to its users in

order to reduce complexity to the end customer.

• Data virtualization abstracts data details to mask location, format and manage-

ment.

• Desktop virtualization allows to securely access a remote desktop.

• Application virtualization is used to abstract the application layer from the OS,

adding a layer of isolation. The architecture is shown in Fig. 3.1: the hypervisor

works as a mediator between the virtual machines and the underlying host oper-

ating system, exchanging messages through the use of Application Programming

Interfaces (APIs2).

3.2 Shifting to container technology

A container can be seen as a process running on a machine, packaging the image of

an application and having all the required libraries, binaries and instructions needed to

deliver an atomic service [12]. Containers abstract the application layer and run on top of

the operating system of the host machine. They are completely isolated from each others

and from the host machine, thus ensuring a high level of security and reliability.

Another key factor is their startup speed which can be in the order of hundreds of

milliseconds: this characteristic makes them very desirable in a fast pacing development

environment. This is due to the fact that a container contains only the essentials packages

and software needed to perform a specific action, eliminating all the services that usually

run on an operating system only consuming computational power. In this way, the attack

surface is also reduced to the minimum.

2https://red.ht/3cJdhq1

https://red.ht/3cJdhq1

CHAPTER 3. VIRTUALIZATION, CONTAINERS AND MICROSERVICES 14

Figure 3.1: Architecture of a virtual machine environment

Shifting from using virtual machines to container technology can be very beneficial for

the development process and the overall infrastructure of a company, but comes with some

challenges that need to be addressed. As described in [13], there are three approaches that

can be followed to perform the transition towards the adoption of containers technology.

The first of them is called lift and shift and is the fastest one since it consists in moving

the entire application that is running inside a VM into a container. There is only the need

to fine-tune some configurations, but the overall work effort is minimal. However, this

solution does not allow to fully benefit from the container technology, and so it is not

recommended for serious projects.

The second approach consists in refactoring the application code before moving it into a

container, in order to make it more lightweight and clean. Although this solution is quite

easy to implement and gives some benefits, it still does not have all the good characteris-

CHAPTER 3. VIRTUALIZATION, CONTAINERS AND MICROSERVICES 15

tics of a real native container application.

The third, and more suggested solution is to re-architect the entire application, in order to

adapt it to be containerized. This means splitting the big project into small micro-services

which have to interact with each others and will be hosted on separate containers. In this

way, everything is more easily understandable, with the addition of being more maintain-

able and scalable.

Although there are many containers technology solutions in the market, almost all

of them are derived from a common Linux LXC3 userspace interface, which offers some

important kernel functionalities such us namespaces, essentials to implement containers

isolation. Nowadays, the most famous containers solution is Docker. We will talk more

in details about it in the next section.

3.3 Docker

3.3.1 Introduction

Docker is an open source Platform-as-a-Service product created by the so called (at that

time) dotCloud company and launched in 2011 [14]. The project was then open sourced

in March 2013, fact that led to the rewriting of its core in Go language4.

Docker provides a fast and efficient environment in which code can run in a reliable

and portable way, so that it is easy to move containers between machines running different

operating systems without having to worry about fine tuning the dockerized application

to meet specific criteria.

A Docker container is built starting from an image, which can be composed by multiple

layers of applications built on top of each others. In this way it is possible to personalize

an image, starting from an already existing base and adding the required functionalities.

3https://linuxcontainers.org/lxc/introduction/

4https://golang.org/

https://linuxcontainers.org/lxc/introduction/
https://golang.org/

CHAPTER 3. VIRTUALIZATION, CONTAINERS AND MICROSERVICES 16

The instructions followed by the Docker engine to create an image are described in a

special file called Dockerfile. A Dockerfile5 is a text document containing a succession of

commands that need to be executed by the Docker engine in order to create the application

image and modify its file-system. Once the image is built, it’s very straightforward to run

it in any machine having Docker installed.

Docker images can be placed in registries, which act as repositories through which it

is possible to share containerized software. These registries can be private (e.g. a Docker

registry owned by a company), or public, like Dockerhub6.

3.3.2 Docker vs. Virtual Machines

Docker containers and Virtual Machines differ greatly in the way the operating system

supports them, the security measures applied, portability and guaranteed performance

[15].

Firstly VMs have their guest operating system on top of the host OS, thus making them

heavier than containers which, instead, use the functionalities of the host machine’s ker-

nel and share the resources with other Docker containers. On the other hand, this fact

guarantees more security to VMs with respect to containers because if an attacker is able

to tamper one container, he may manage to compromise both other containers running in

the same host and the host machine itself.

Containers don’t need the presence of a hypervisor, since they interact with the Host OS

through the Docker engine, which accepts commands in the form of API requests (Fig.

3.2).

Talking about portability, containers have an advantage since they are very light-weight

and are not dependent on the underlying operating system. The same applies for what it

regards performance metrics, since containers can startup very quickly and consume only

5https://docs.docker.com/engine/reference/builder/

6https://hub.docker.com/

https://docs.docker.com/engine/reference/builder/
https://hub.docker.com/

CHAPTER 3. VIRTUALIZATION, CONTAINERS AND MICROSERVICES 17

the minimum required amount of resources.

Figure 3.2: Docker vs. VM architecture

3.3.3 Security considerations

For all the benefits that bring in fastening the software development process, Docker con-

tainers, in the last years have met great interest among the community of developers.

However, a lot of attention is needed to verify the security of this overwhelming technol-

ogy.

Firstly, there have been some debates about who should be responsible for ensuring secu-

rity in containers. The majority of the people think that developers should be responsible

for securing their containers, while a minor part agrees in shifting the burden to oper-

ations and security teams. This is what Snyk, an information security company, report

[16], adding that only 19% of the developers actually care to test the security of their

Docker images at developing time. This means that a huge number of projects reaches

the completion and release phase without having faced a single security scan, to then be-

ing discovered full of flaws in a later stage, when the fixes to be made may be extremely

expensive. Moreover, even if it can sound controversial, the most downloaded and used

Docker images from the DockerHub, are also the ones which contain the biggest num-

CHAPTER 3. VIRTUALIZATION, CONTAINERS AND MICROSERVICES 18

ber of vulnerabilities. In particular, the scan performed by Snyk in March 2019 found

more than 500 vulnerable libraries in the NodeJS container image [16]. This information

should alert most of the developers since official images are usually used as bases to build

applications, and so by using vulnerable bases, the overall project inevitably inherits all

the flaws.

Therefore, it is clear that security should be carefully taken into consideration when

building Docker images, and in the following lines we will explain the best practices to

follow. One of the most important steps is to start from a very essential and small base

image which contains only the libraries that are required to run the application being

deployed. In this way it is possible to reduce the attack surface to the lowest possible

range and, at the same time, drastically lower the amount of resources consumed to run

a container. As an example, if a Linux Ubuntu7 image is needed, it is advisable to check

if the Alpine8 version contains the requested libraries, because it is preferred with respect

to the others for the fact that is composed by only the essentials building blocks. Also

removing any kind of bash or user prompt inside the container can help to deter many

possible source of attacks. This last thing is the objective of distroless9 containers, namely

images reduced to have only the essentials packages to run the application. This approach

is very smart since, most of the time, there is no need to run an entire operating system

to host just a simple application. In this way, as said before, it is possible to reduce the

number of vulnerabilities and improve the overall performance of the software.

Another option to take into consideration is building the image in a multi-stage10 fash-

ion. Docker, in fact, allows to build an image in more stages by copying some portions of

an image into another one, so to retrieve only the very required blocks and avoid to stack

unnecessary functionalities on top of each others.

7https://ubuntu.com/

8https://alpinelinux.org/

9https://github.com/GoogleContainerTools/distroless

10https://docs.docker.com/develop/develop-images/multistage-build/

https://ubuntu.com/
https://alpinelinux.org/
https://github.com/GoogleContainerTools/distroless
https://docs.docker.com/develop/develop-images/multistage-build/

CHAPTER 3. VIRTUALIZATION, CONTAINERS AND MICROSERVICES 19

Sometimes it’s possible to remove some vulnerabilities present in official images, by just

manually rebuilding a personal image in order to avoid to install unnecessary and security

risky libraries.

The purpose of containers is to run in a very lightweight and efficient way a single

application. Therefore, it is paramount not to containerize multiple applications together

because a hypothetical flaw affecting one of them can have disastrous repercussions on

all the others.

As a last advice, it is highly suggested to scan the images at each stage of the de-

velopment pipeline, so to try to catch vulnerabilities as early as possible, and avoid the

incoming of huge expenses in later stages.

3.4 Kubernetes

3.4.1 Introduction

Kubernetes11 is a container orchestration system developed by Google and open sourced

in 2014. Its main job is to manage a cluster of containers and eliminate any manual job

needed to deploy and scale containerized applications.

Kubernetes provides a Domain Name System (DNS)12 service to reach containers in

the clusters, ensuring a load balancing strategy by scaling the resources and number of

containers deployed automatically, depending on the specific traffic requirements.

It is also able to detect malfunctioning containers by performing periodic health checks,

and restart them without any user intervention.

Moreover, it provides a way to store secrets (e.g. API keys, private keys, etc.) needed by

containers for their normal business logic.

11https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

12https://www.cloudflare.com/learning/dns/what-is-dns/

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://www.cloudflare.com/learning/dns/what-is-dns/

CHAPTER 3. VIRTUALIZATION, CONTAINERS AND MICROSERVICES 20

3.4.2 Glossary

The following definitions and details about Kubernetes elements are taken from an article

published by New Relic [17].

In order to explain the elements involved in Kubernetes, we start from the definition of

cluster which is a group of either physical or virtual machines, each of them having the

role of master or node.

Clusters can be virtually subdivided into namespaces13, useful to ensure security in a

multi-team project. Going more into the details, a namespace is a virtual cluster inside

the physical cluster, whose job is to provide complete separation between the cluster

resources, so that it is possible to limit the list of users which can access a resource.

In the following paragraphs we give the definition of Master and Node.

Master Each cluster needs to have at least one master, which is the entry point for the

developer to interact with the internal nodes and to manage and schedule the deployment

of containers. The master stores the configuration about the nodes in a key/value format

and this information is used by the slaves to set their configuration.

In order to issue commands to the other nodes the master uses API calls, supported by

many daemons (i.e. programs that run on background) that, by running, make sure that

each container follows the prescribed instructions. Extremely important, in order to pro-

vide high availability and distribute the workload, is the kube-scheduler.

Node In Kubernetes glossary, a node is a physical or virtual machine which contains

groups of containers called pods. Containers inside a pod have the same network address

(they just use different ports) and can share data inside storage disks called volumes. Each

node has a special service named kubelet whose job is to manage the status of the node,

collecting health information useful for the master to take scheduling decisions.

13https://kubernetes.io/docs/concepts/overview/working-with-objects/

namespaces/

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/

CHAPTER 3. VIRTUALIZATION, CONTAINERS AND MICROSERVICES 21

Everything in Kubernetes is scripted by writing files using the yaml14 language, which

is similar to the JSON15 format, but more human-readable. In this way, it is possible

define all the details concerning a Pod, the Docker images to use to create the containers,

the information about the volumes to mount and many other things, and deploy them by

launching a simple command. This scripting approach allows to restart a cluster in a very

short time, and make modifications to the infrastructure in a very easy and understandable

way.

3.4.3 Security considerations

Kubernetes does not offer any security measures on the applications that are running in

its pods, because it doesn’t inspect containers in search of security flaws. Moreover, it

does not have any built-in security measures to harden the network traffic between the

containers running in the pods nor any way to filter the traffic that reach the nodes.

The only security feature offered by Kubernetes is the possibility to enforce a role-based

access control to set the permissions that a specific container or user has over the other

resources running in the same environment.

However, this access control framework is not typically enforced by default and needs

accurate evaluation and compliance checks to meet the Principle of Least Privilege (see

Sec. 5.7). Moreover, in order to achieve isolation in systems handled by a fair amount

of users, it is useful to split the cluster into multiple namespaces so that components and

nodes which are not suppose to interact with each others are kept safely separated.

In order to reduce the attack surface, it can be beneficial to make the file-system of

the Pods read-only whenever possible. In this way, a potential attacker does not have the

chance to inject malicious scripts or tamper some files, resulting in the disruption of the

entire cluster.

14https://yaml.org/

15https://www.json.org/json-en.html

https://yaml.org/
https://www.json.org/json-en.html

CHAPTER 3. VIRTUALIZATION, CONTAINERS AND MICROSERVICES 22

3.5 Serverless approach

3.5.1 Introduction

Serverless Computing is growing as an emerging trend in development of cloud applica-

tions. As stated in [18], serverless is a cloud computing approach which provides a model

based on stateless functions. It takes the concept of Platform-as-a-Service (PaaS) to a

point where developers just have to write arbitrary code, which can be as small as simple

functions: for this reason the term Function-as-a-Service (see Sec. 3.5.2) is often used.

In order to properly give a place to the serverless model, it’s useful to refresh the con-

cepts of Infrastructure-as-a-Service (IaaS), Platoform-as-a-Service (PaaS) and Software-

as-a-Service (SaaS), which have already been explained in Sec. 2.2.

In the IaaS model the developer can manage both the cloud infrastructure, organizing the

machines needed and the network configurations, and the application code. Completely

different are PaaS and SaaS on which the developer has no control on the infrastructure,

but has only the duty to deploy the application code. Any aspect related to the infrastruc-

ture security or hardware management is left to the cloud provider.

The serverless approach can be put in the middle between the PaaS and the SaaS. This is

because it uses a shared infrastructure as it is done in the SaaS paradigm, but the appli-

cation code can be completely customized as it happens on the PaaS model. Serverless

services can be shut down completely when no traffic is encountered, thus enormously

reducing the costs. This claim is supported by some calculations that researchers in [19]

have done, demonstrating that the serverless approach can reduce the operational costs

to over 99.8% with respect to the use of standard virtual machines using the major cloud

providers. Therefore, it is easy to understand that serverless paradigm is very useful to

handle services that need to be up only for a short burst of time, eliminating the need to

keep a server continuously up and running in a idle state.

Moreover, the fact that serverless solutions scale accordingly to the traffic, gives a

CHAPTER 3. VIRTUALIZATION, CONTAINERS AND MICROSERVICES 23

lot of benefits in terms of cost savings when dealing with a service that has periodic

congestion spikes. In fact, in a traditional manner, it would be needed to deploy a machine

capable of managing the highest traffic load encountered, even if those spikes are only

rarely encountered. Instead, with the serverless approach the resources are automatically

scaled and reduced in real time, following the traffic trends.

3.5.2 Function as a Service (FaaS)

In 2014 Amazon introduced an innovative solution, called AWS Lambda16, in which the

serverless approach was taken to the extreme. There are no servers perpetually running

in the background, but an event mechanism which triggers the allocations of a specific

amount of resources needed to run a piece of code. The service can have a time span as

short as milliseconds and then die until it’s recreated when triggered another time. This

allows developers to focus only on building quality code, without having to worry about

deploying and maintaining a web server which, by using the traditional approach, may

struggle when the number of users using the application grows. Moreover, the customer

is charged by the cloud provider only when the code is actually executed and this can

present huge cost reductions.

Serverless functions are often triggered as a response to certain events being fired,

and can be used as a tool to compose and aggregate API calls in order to reduce the

number of requests sent to the back-end services. In order to achieve API aggregation, an

API Gateway17 is needed. This component provides a public interface to the client and

automatically triggers the API calls needed to fulfill the request.

FaaS is not dependent on any specific library or framework. Any kind of supported

programming language can be used and it is cloud provider’s responsibility to deploy the

underlying environment in which the application can be executed.

16https://aws.amazon.com/lambda/

17https://aws.amazon.com/api-gateway/

https://aws.amazon.com/lambda/
https://aws.amazon.com/api-gateway/

CHAPTER 3. VIRTUALIZATION, CONTAINERS AND MICROSERVICES 24

However, FaaS is not always the best option. In fact, although it is useful to manage

micro services, bigger services still benefit more from a Platform-as-a-Service approach.

This is because with PaaS the development team can control in a more efficient way a

project of a decent size, and have the possibility to use the read-only cache functionality,

which can be very beneficial for applications that need to run very often. In fact, FaaS

does not provide cache functionalities since, by definition, each execution of the code

must be independent from the others.

A way to enforce the benefits of FaaS in a big project is to subdivide it in small chunks

which can run autonomously: doing so, each small service can be served by a serverless

function.

3.5.3 Drawbacks

Till this point, we have discussed all the benefits of running serverless applications. How-

ever, this technology presents some drawbacks that may be relevant in certain situations.

This section will try to give an overview of them.

First of all, a serverless approach forces to rely completely on the vendor for what

concerns downtime, upgrades and general management. From one side, this is a good

thing since developers can concentrate on writing their code but, on the other side, the

lack of control can cause troubles when the details of the implementation need to be fine-

tuned.

Secondly, serverless forces the sharing of physical resources with other parties, since

cloud providers sell the computational power of a single hardware to multiple companies

in order to generate as much revenues as possible. Although this is a very remote possi-

bility, it can happen that the shared machine is affected by some flaws which would create

some holes in the applications running on top of it, allowing a customer to interact with

the services owned by another customer.

Serverless is also not suited, by default, for storing local state, since each code execu-

CHAPTER 3. VIRTUALIZATION, CONTAINERS AND MICROSERVICES 25

tion should not be correlated at all with the previous ones. This concept follows strictly

the 6th rule of the Twelve-factor app [20], that demands processes to be stateless and to

use external storage systems for persisted data. Nevertheless, sometimes the urge to store

locally the data at execution time can be mandatory, thus making serverless approach not

a suitable solution.

As a last point, serverless is not the recommended option if the task implemented

needs a lot of time to be executed. In this case it is way more convenient and cheap to

use a traditional server approach which can take all the time needed to perform a specific

action.

3.5.4 Security considerations

One big security concern about adopting serverless architecture is the fact that functions

owned by different parties may share the computing resources with other companies.

Although the cloud provider may claim that its service is completely secure and offers

extreme isolation between the services hosted on the same bare-metal machine, it is still

possible that a hidden vulnerability may be exploited to jump on the memory sectors

allocated for a third party.

Traditionally, the main entry-points for an injection attack were the input fields, file

upload components and all the others parts where the user was able to insert arbitrary

data. Shifting to a serverless approach the number of options available for data insertion

grows since information can come from emails, code modifications, cloud storage events,

as described in the OWASP Top 10 for Serverless applications [21]. The same applies for

XSS18 attacks which can be originated from a big variety of sources.

Moreover, it can be very complex, if not even impossible, to scan a serverless function

using automatic security scanners, because many applications don’t use HTTP protocol

to consume the input, but rather rely on different communication protocols, and there are

18https://owasp.org/www-community/attacks/xss/

https://owasp.org/www-community/attacks/xss/

CHAPTER 3. VIRTUALIZATION, CONTAINERS AND MICROSERVICES 26

not so many scanners capable of performing this job.

Given the fact that the application owner does not have to deploy and manage the

infrastructure, the traditional methods for inspecting and blocking malicious traffic us-

ing Intrusion Detection Systems19 or Firewalls20 cannot be applied. As said before, it’s

Cloud Provider’s responsibility to take care of the security of the layers upon which the

application is running.

For what concerns Denial of Service21 attacks, we can say that although it is possible

for an attacker to trigger the execution of a serverless function by sending a huge number

of requests, the system should be able to scale accordingly to handle the traffic. The only

problem is that, even if the service would keep working, the customer’s bill would be

overwhelmed by the expenses.

Authorization and privileges must be granted granularly to each serverless application,

by enforcing the Principle of Least Privilege (see Sec. 5.7). Taking as an example the

AWS infrastructure and its serverless solution called AWS Lambda, authorizations to

access certain resources and perform specific actions are granted through the help of the

AWS Identity and Access Management (IAM)22. It allows to set policies and permissions

to set access to the AWS resources. Despite being a very powerful tool, the configuration

of policies and permissions depend on the customer, and so they need to be properly

performed and checked.

19https://www.geeksforgeeks.org/intrusion-detection-system-ids/

20https://www.forcepoint.com/cyber-edu/firewall

21https://www.us-cert.gov/ncas/tips/ST04-015

22https://aws.amazon.com/iam/

https://www.geeksforgeeks.org/intrusion-detection-system-ids/
https://www.forcepoint.com/cyber-edu/firewall
https://www.us-cert.gov/ncas/tips/ST04-015
https://aws.amazon.com/iam/

4 Traditional vs Modern Development

When developing a software it is very important to define a strategy and a process to fol-

low to build the artifact in the best and efficient way. An efficient Software Development

Life Cycle is paramount to gather all the requirements from the customers and build an

actual product out of them. It helps development teams to be focused and motivated on

the tasks to perform and gives strict process guidelines useful to develop quality software.

Nowadays there are two main Software Development Life Cycles, the traditional and

most rigorous one and the Agile methodology. Sec. 4.1 will describe the traditional

methods used for software development, while Sec. 4.2 will concentrate on describing

Agile methodologies.

4.1 Traditional models

There are many different traditional development models, but all of them follow the fol-

lowing six common stages [22]:

1. Requirement gathering and analysis. During this phase product owners and soft-

ware engineers talk with customers and try to gather as much information as possi-

ble about the real needs that must be fulfilled with the product that they are going

to build. It is important to take input from experts in the field of study and from

financial professionals who can evaluate the economical feasibility of the product.

2. Definition of requirements. Once all the requirements have been gathered and

CHAPTER 4. TRADITIONAL VS MODERN DEVELOPMENT 28

analyzed, they should be precisely documented and approved by the client.

3. Product architecture design. The next step is to design the architecture of the

system and draw as many diagrams as possible about any aspect of it (e.g. data

flow, important components). Unified Modeling Language (UML)1 diagrams with

user cases are also very important as they model in a very understandable way the

various actions that need to be performed. In this way it is possible to practice a

risk evaluation and estimate time and budget needed.

4. Product implementation or development. This is the most technical and practical

stage, in which the actual code is generated by following the guidelines produced

during the previous stages. Developers need to organize and prioritize their work in

order to release the software in time.

5. Product testing. During this phase the code is reviewed and refactored, and inten-

sive tests are performed in order to find bugs and vulnerabilities.

6. Market operation and maintenance. The product can be sold to customers and a

maintenance team must be activated in order to solve possible problems.

In the following sections we will describe in more details two models, highlighting

advantages and drawbacks for each of them. In particular, we will analyze the Waterfall

model (Subsec. 4.1.1) and the Incremental model (Subsec. 4.1.2).

4.1.1 Waterfall model

The most famous traditional development process is the Waterfall model [23]. It was

designed in 1970 by W. Royce and it strictly follows a sequential process in which each

stage must be entirely completed before jumping to the next one. The five stages that

compose this model are shown in Fig. 4.1 and there is no need to explain them further

1https://www.uml.org/what-is-uml.htm

https://www.uml.org/what-is-uml.htm

CHAPTER 4. TRADITIONAL VS MODERN DEVELOPMENT 29

since they are basically the same described in Sec. 4.1. This model allows new developers

to easily join the team even in the middle of the development phase, thanks to the rich

documentation created in the previous phases. The problems with this approach are that,

being so rigorous, it’s very difficult to deal with changing plans and unexpected situations

that may arise. Therefore, this model is appropriate when dealing with small and well

documented projects, with low risk of having ambiguous requirements.

Figure 4.1: Waterfall model diagram

4.1.2 Incremental model

The Incremental model splits the requirements into multiple groups and applies to each

group the same approach presented in the Waterfall model [24]. Therefore, the product

is built incrementally, by adding new features and functionalities at each iteration. The

advantages are that users’ feedback can be gathered more frequently and that, being more

flexible, the costs resulting from a misunderstood requirement are lower with respect to

the Waterfall model. However, the flexibility is paid with higher costs. On the other side,

it is paramount to have a clear initial idea of all the requirements so to be able to spread

them accordingly around the various iterations.

CHAPTER 4. TRADITIONAL VS MODERN DEVELOPMENT 30

4.1.3 Security in traditional models

A big problem that affects traditional software development methodologies is the lack of

a strict and efficient methods to apply security during the development lifecycle. In fact,

traditionally, the security actions were taken only during the testing phase and were of-

ten underestimated and not properly applied. This led either to not discovering possible

security flaws, or, in case some vulnerability had been detected, to the impossibility of

properly fixing them due to the huge costs that would need to be encountered. Moreover,

developers may have had to analyze some code that they had written a long time before,

thus wasting time just trying to understand it.

During the years, it has been tried to incorporate security in the traditional software devel-

opment lifecycle and, while some of them have resulted in good performance improve-

ments, others have just scraped the surface of the real problem. It is paramount that every

phase of the development process is accompanied by a security mechanism which can al-

low, firstly to develop more secure code and secondly to catch security vulnerabilities as

soon as possible. One important factor is developers’ awareness with respect to cyberse-

curity risks. It is very beneficial to organize training sessions to give programmers a base

on how to write secure code and how to reduce the risk of creating vulnerable software.

These lessons should be given to each new coming employee and repeated at least once

in a year in order to refresh the main concepts and update the overall knowledge.

The security work should start already at the requirements gathering stage, during

which security engineers can put on the table a general idea of the main security practices

that need to be fulfilled.

However, the strict structure of traditional models can fail to adapt promptly when

new vulnerabilities are discovered, resulting in two potential bad scenarios. The first

possibility is the development process being heavily slowed down by the security work,

and the second one is the vulnerability found not being properly handled in order not to

block the work-flow. Both the scenarios are very negative and unavoidable, thus a more

CHAPTER 4. TRADITIONAL VS MODERN DEVELOPMENT 31

adaptive approach to development, called Agile and explained in Sec. 4.2, can potentially

improve the integration of security work and software development.

4.2 Agile model

The Agile methodology was popularized in 2001 when a group of seventeen software

developers published the Manifesto for Agile Software Development2, in which they sum-

marized the essence of the approaches that had been already presented in the 90s. They

claimed the importance of frequent interaction between team members, the delivery of

quality software over spending time in writing long documentation, the need for frequent

customers’ feedback and the adaptability to frequent and fast changes. Therefore, the

most important aspect that the agile methodology wants to ease is the interaction between

customers and development team, to quickly adapt and change depending on the requested

features. The adaptability can also be applied in the case a security vulnerability is being

discovered in the software, and so when changes are needed in order to make sure that the

software is secure.

In the following sections, we will take a look to the most important Agile development

frameworks: Scrum (Sec. 4.2.1) and Kanban (Sec. 4.2.2).

4.2.1 Scrum

Scrum was presented for the first time in 1995 by Jeff Sutherland and Ken Schwaber and

polished in 2002 [25]. This framework is generally described with three attributes: light-

weight, easy to understand and difficult to master. It can be effectively applied in many

different situations and manages to handle correctly even big and complex projects. The

main and necessary elements composing the Scrum framework are the Scrum team, the

events, the artifacts and the rules. Scrum is an empirical process based on past experi-

2http://agilemanifesto.org/

http://agilemanifesto.org/

CHAPTER 4. TRADITIONAL VS MODERN DEVELOPMENT 32

ences and facts and is based on three main pillars:

• Transparency. All the participants need to have a clear idea of the tools and lan-

guages used and understand the process completely.

• Inspection. It is important to frequently review the work in progress in order to be

able to find errors and unfulfilled requirements.

• Adaptation. If the inspection highlights a wrong behaviour, it is paramount to

smoothly adapt to a change of plans in order to solve the issue as early as possible.

Inspection and adaptation are supported by four important events, which are the Sprint

planning, the Daily Scrum, the Sprint review and the Sprint retrospective. We will talk

more in details about these events in the next lines.

The Scrum team is composed by three different figures:

• Product owner. He is responsible for creating items for the backlog starting from

the user’s requirements, order and group them accordingly to prioritize the work

for a specific sprint. The items must be transparent and easy to understand by the

developers.

• Developers. They do the actual coding work by following the directives of the

product owners. They can be subdivided into teams, which need to have a decent

size for proper and advantageous interaction, and have to frequently share their

progress and ask for help from other colleagues in order to maintain a clear idea of

what is being built.

• Scrum master. He is the leader of the development team and the person entitled

in heading the daily meeting and the various situations that may arise. He can also

be seen as a mediator between the developers and the product owner, easing the

interaction between them and translating the topics in a language understandable

by both parties.

CHAPTER 4. TRADITIONAL VS MODERN DEVELOPMENT 33

There are four different kind of events which compose the framework. In order to

understand them we have to introduce the concept of Sprint. A Sprint is a period of time

(spanning between 2 to 4 weeks) in which a specific set of tasks need to be completed.

A Sprint should be carefully designed and changes should be avoided when it’s already

running. The design is incorporated in a phase called Sprint planning, which is a maxi-

mum 8 hours sessions in which the entire team decides the work that should be done in

that particular Sprint. The input is the product backlog from which some items are taken,

depending on the priority and on the work load needed. The developers can estimate the

time needed for implementing a task and can start breaking big tasks into smaller ones

which are understandable and feasible.

The second event that we need to take into consideration is the Daily Scrum. It is a

daily meeting of around 15 minutes, during which each member of the team tells about

the work he has done in the last 24 hours and can ask for help or suggestions in case there

is something blocking his progression. The meeting is held by the Scrum Master who

has to take notes and ensure that everything is done smoothly and without wasting too

much time. The team takes into consideration the Sprint backlog and moves items in it

depending on the state of each task.

At the end of the Sprint period there is a session called Sprint review during which

the team analyses the results of the last weeks and evaluate the overall performance with

respect to the results achieved. It is also very important to perform a demo session, to

show to the others the value of the increment of the last Sprint. It is possible that some

tasks have not been completed and so they will be moved to the next Sprint.

Between the end of one Sprint and the start of the other there should be a short meeting

session called Sprint retrospective. During this time the team identifies good and bad

things of the past Sprint and proposes improvements for the next one.

CHAPTER 4. TRADITIONAL VS MODERN DEVELOPMENT 34

4.2.2 Kanban

Kanban [26] is a framework that didn’t originally arise from the software development

field, but rather was experimented for the first time in the 1940s in the Toyota car manu-

facturing process. Toyota’s idea was based on what supermarkets usually do to manage

their stocks: trying to align the items stored in the inventory with their consumption level.

In other words, the idea was to store in the productions site only the right amount of

resources needed to complete a small task. Once the items used in production were fin-

ished, a sheet of paper, called kanban, was sent to the team managing the inventory stock

to request for new supplies.

This concept was easily adapted to the field of software development by matching the

amount of work in progress (i.e. WIP) to the team’s capacity. The developer team only

needs a board to which to attach cards, and this can be either physical or virtual. The cards

contain the tasks that need to be done and are moved on the board (which is divided, at

least, into three sections), depending on the state of the work. In a basic configuration

a task can be in the state "To Do", "In Progress" or "Done". Each team can also add as

many stages as needed to the board: an example can be a "Review" stage, in which the

task’s completeness is evaluated before being moved to the "Done" state.

The cards on the board give to the team full visibility on what is being done and by

whom, allowing to keep track of the work done and, by taking into consideration the

previous work, forecast the time needed to conclude future tasks. Extremely important,

in this regard, is to have some tools that help to graphically visualize the work progress

and find possible problems in the workflow. For example, a diagram as the one shown in

Fig. 4.2, illustrates very clearly the state of the tasks over time.

The product owner generates the cards and prioritizes them in a stack structure, so that

developers can take the ones on the top and start working on them. The process is quite

similar to the one followed by Scrum, with the difference that there are not fixed-time

Sprints and everything evolves continuously. For this reason, we talk about continuous

CHAPTER 4. TRADITIONAL VS MODERN DEVELOPMENT 35

delivery, which consists in frequently releasing new features to the customers as soon as

they are ready.

Figure 4.2: Kanban progress diagram example

4.3 DevOps approach

4.3.1 Introduction

It is not very easy to say what DevOps is, but we particularly agree on the definition given

by Gartner [27], which sees DevOps as a shift of culture in the development process to

aim at the rapid delivery of stable, high-quality software from concept to customer. Every

stage of the development process must be automated, including security and stability tests,

in order to get quality software and cut down the costs. Moreover, DevOps emphasizes

the collaboration between the developer teams (Dev) and the operational teams (Ops).

The word was coined in 2009 by Patrick Debois and, from that time, the DevOps culture

has grown enormously in the IT sector. DevOps takes its inspiration from the work of old

CHAPTER 4. TRADITIONAL VS MODERN DEVELOPMENT 36

system administrators, who in the past were responsible for managing and building the

infrastructure of a system, and the agile development process which, as said in Sec. 4.2,

promotes collaboration and rapidity of development.

4.3.2 Why DevOps?

The creation of the DevOps paradigm was pushed by the fact that, in old organizations,

developer and operation teams were concerned towards two opposite objectives. The

former were requested by customers to release new features as fast as possible, things

that goes in contrast with the request for operational people to maintain stability in the

systems. The DevOps approach could solve this dilemma by associating development to

deployment with the goal to rapidly deliver high quality software, through automated and

repeatable processes.

4.3.3 The pillars of DevOps

In the previous sections we have seen the main definition of DevOps and the motivations

that lead to its creation. Although there are many variations of the approach, everything

is based on the following strong pillars.

• Collaboration. Everyone involved from software development to delivery should

collaborate to improve the overall quality of the final product.

• Automation. There is the need to use and develop tools that can allow to automate

the larger number of steps possible in the process.

• Continuous integration. This refers to the frequent merge of new feature into the

shared mainline. By continuously integrating, it is possible to catch conflicts in a

shorter time, thus reducing the risk of having troubles later on.

• Continuous testing. Quality and security tests need to be performed continuously,

every time new software is deployed. The tests need to be automatic to aim at

CHAPTER 4. TRADITIONAL VS MODERN DEVELOPMENT 37

finding problems early on in the project, without slowing down the developer’s

work. They help to ensure the quality of the product and find known security risks

inside the code. These tests may include UI testing, load testing, integration testing

and API reliability testing.

• Continuous delivery. This relates to the ability of a company to frequently release

new features on the production pipeline. The automated tools and the continuous

integration allow to always have well tested code, which can be easily deployed to

production. The speed and the frequency of the delivery varies from company to

company, and are affected by customers’ requirements and internal business logic.

Very similar, but different, is the concept of continuous deployment: with it the

new changes are automatically deployed into production without the need of a man-

ual approval, that is instead required by a continuous delivery state.

• Continuous monitoring. Together with testing, it is important to monitor the per-

formance of the systems continuously starting from the development environment

till reaching the production release. Services and machines should be monitored to

detect possible stability problems and scale them accordingly to the traffic encoun-

tered.

• Infrastructure-as-a-Service. IaaS, described in Sec. 2.2, is essential in DevOps

environment to remove the burden of managing and operating physical machines.

DevOps engineers relies on Cloud Providers to deploy their infrastructure and scale

easily with reduced costs. IaaS is programmable by nature and allows operators

to write code to automatically deploy new elements to the infrastructure, without

having to do it manually.

CHAPTER 4. TRADITIONAL VS MODERN DEVELOPMENT 38

4.3.4 Difference with traditional ops

DevOps, as shown in Fig. 4.3, can speed up software release up to four times compared to

traditional ops method [28]. This is due to the fact that manually deploying an infrastruc-

ture consumes most of the time in the software development process, and this time can be

cut down by using tools which automate the deployment process and make it repeatable.

Moreover, automated tests and reviews remove the risk to find bugs and vulnerabilities

when the software is already mature and thus more complex to be fixed.

Figure 4.3: DevOps vs. Traditional Ops [28]

5 DevSecOps Model

5.1 Introduction

DevOps and agile methodologies aim at a fast delivery of the software, and most of the

time, in order to meet the deadlines and customers’ requests, developers and operators

don’t take the necessary attention to security. The reason is not that these people are

not aware about security measures, but that they miss a stable and efficient plan to apply

the correct controls. Therefore, it is very important to find out the best way to integrate

security in the software development lifecycle. The general idea can be used as a ground

base for many companies, but everyone should fine-tune it properly to meet its way of

working.

In their daily job, every person involved in the DevOps pipeline focuses completely

on the customer. In fact, product owners try to engage and keep the customer’s attention

high, developers are busy on developing as many functionalities as possible and operators

are concerned about uptime and response times of the infrastructure.

On the other hand, security professionals focus on compliance with security standards,

the number of security incidents and the discovery of vulnerabilities in the system, so

driving towards a direction that hardly meets the goals of the other teams.

For this reason, it’s hard to direct both parties towards a common goal, without following

a new secure software development lifecycle.

The integration of security inside the DevOps development process takes the name of

CHAPTER 5. DEVSECOPS MODEL 40

DevSecOps. The term does not have an official definition but was naturally born when

security started to be involved inside the DevOps process. It can be described as a way

to automate the implementation of security measures at each step of the software devel-

opment lifecycle, thus enabling the continuous integration and delivery of new software

with security at the forefront [29]. This mechanism allows to reduce the need of human

intervention and gives to security professionals the time to focus on less trivial issues, like

finding business logic flaws in the applications and doing governance work.

5.2 Challenges

In a DevOps environment every step of the pipeline is automated, in order to be more

efficient and fast in shipping new software. Security practices, if not adapted to this fast

trend, struggle in following the process and risk to be left incomplete and badly imple-

mented. Speed and adaptability is one of the challenges that a modern secure software

development lifecycle must address. The solution would be the integration of what is

called continuous security. It is composed of three areas, each of them focusing on a

particular step of the development pipeline:

• Test-driven security (TDS) is the first step in the security pipelines and concerns

the implementation of test security controls, which have to be as much automated

as possible in order to follow the pace of the DevOps development [30].

• Monitoring and responding to attacks regards the detection of attacks and the

strategy to apply in order to respond to a security incident [31].

• Assessing risks and maturing security moves the attention to security manage-

ment and governance issues, because security is not only a practical subject but is

also about documentation and policies.

These three areas should be tackled accordingly and adapted to the specific needs of a

CHAPTER 5. DEVSECOPS MODEL 41

company. We will describe them more in detail in the next sections.

5.3 Shifting security to the left

The approach of shifting security to the left has been presented in many occasions as a

good solution to integrate security in the development process [32]. In the past, security

was seen as a factor slowing down the development of the software and therefore was of-

ten pushed to the "right" in the development stages, namely when the product has already

been built. However, since vulnerabilities could have been discovered only in the later

stages, it would have been very expensive to fix them.

Thanks to DevOps, it is now possible to fasten and automate the deployment of new re-

leases, and so also security tests and scanning can be performed earlier on. They can be

integrated inside the development pipeline and fired every time new code is committed to

the repository. They should also be run periodically in order to catch new risks that can

arise while the vulnerability database is being updated.

In this way the integration of security does not slow down the development process be-

cause the tests are performed automatically and can be fixed in less time, with respect to

a security analysis performed just before the release to production. Moreover, given the

fact that the tests are performed periodically, after the first scans, which will obviously

detect the largest number of vulnerabilities, the process will be always faster and faster

because the bigger amount of flaws should have been already fixed.

5.4 The DevSecOps pipeline

Each process in the DevOps development cycle is organized in one or multiple pipelines,

which allow to set the rules and the steps to follow to compile, build and deploy the code

to the production platforms [33]. In order to work properly and provide automation, the

pipeline needs to be supported by a number of tools useful to perform specific tasks. It

CHAPTER 5. DEVSECOPS MODEL 42

is also very important to make sure that these tools are able to inter-operate with each

others, so that the output of one matches exactly the input patterns required by the next

one in the pipeline.

The basic functionalities needed to properly build and secure a pipeline are:

• Planning phase. In this stage it is important to gather requirements from cus-

tomers and start planning the features that need to be implemented by the develop-

ers. Therefore, the user stories which describe in general terms the functionality re-

quested, are split in multiple actionable issues and added to the development board.

From the security side, it is important to perform Threat modeling sessions (see

Sec. 5.5 for further details) in order to have an understanding of the security re-

quirements.

• Development phase. During this phase developers write the actual code on their

own machines. It is good practice to follow directives to write clean and secure code

already from the early stages. This can be achieved by using the pair programming1

technique which consists in two people sitting in front of the same workstation, so

that while one writes the code, the other focuses on checking that everything is

correct. This technique is very effective, but sometimes, for time and resource

reasons it cannot be applied.

Integrating automatic tools like static code analyzers and linters is instead always

suggested, because they can extend the quality of the code without impacting the

productivity of the developers. Linters are tools which analyse the code to find

programming errors, stylistic imperfections and bad constructs [34]. They are used

to standardize the style of the code, so that it appears like to have been written

by a single person, and can improve performance of the software by detecting bad

code patterns. Although they may not directly enhance security, having well written

code is already a good step in avoiding the presence of trivial flaws. They work by

1https://bit.ly/3cL0cxk

https://bit.ly/3cL0cxk

CHAPTER 5. DEVSECOPS MODEL 43

performing static analysis on the code and looking for patterns that can contains

bad quality code or security flaws.

• Code versioning phase. During this phase the code is pushed to the code reposi-

tories. There are many open-source and proprietary platforms that can be used for

code versioning and sharing. This is the place where the source code is placed and

therefore it is extremely important to make sure that the environment is secured

from outsiders’ intrusion. In fact, if some criminals manage to get access to the

source code, the company would risk a complete disruption, because most of the

critical industrial secrets would be disclosed. Among the main source code reposi-

tory platform we can count GitLab2, GitHub3, Bitbucket4, SourceForge5 and so on.

GitLab, for example, offers a mechanism to fine-tune the permissions that users

have over a specific project. Thanks to this it is possible to distribute the privileges

between the developers, depending on their real needs (see Sec. 5.7 for additional

information about the Principle of Least Privilege), in order to reduce the risk of a

malicious employee tampering and dumping some sensitive portions of the source

code.

• Build phase. Objective of this phase is to take the source code stored in reposito-

ries and build a binary or a container from it. Among the Continuous Integration

Platforms there are multiple options (e.g. GitLab, Jenkins6, CircleCI7) which differ

for the different capabilities they can offer to the development environment. They

help to define the actions to be taken when new code is pushed on the repositories,

and so the commands to execute to automatically build and test the software.

2https://gitlab.com/

3https://github.com/

4https://bitbucket.org/product

5https://sourceforge.net/

6https://www.jenkins.io/

7https://circleci.com/

https://gitlab.com/
https://github.com/
https://bitbucket.org/product
https://sourceforge.net/
https://www.jenkins.io/
https://circleci.com/

CHAPTER 5. DEVSECOPS MODEL 44

• Test phase. During this phase the software is tested to discover flaws and security

vulnerabilities. The tests can either demonstrate the overall quality of the software

checking the correct integration of different components, and the security of the sys-

tem through the use of automatic security scans (see Sec. 5.6). The security scans

can be static, if they analyse the source code without actually compiling and run-

ning the software, or dynamic, if they run on a compiled binary. Usually dynamic

code analyzers are more sophisticated and can detect more advanced injections, by

stressing the software with different kind of payloads.

Moreover, since modern software is built on top of a large number of third party li-

braries, it is important to integrate some tools that perform dependency scanning to

discover the presence of known vulnerabilities on them. These tools usually work

by looking at a database containing known vulnerabilities (e.g. CVE8) and check-

ing if the libraries used in the project are vulnerable. The vulnerabilities discovered

are then classified depending on their severity, so that it is possible to filter only the

ones that mostly impact the security of the product.

The same tools described can be also implemented in the monitoring phase and pe-

riodically run to make sure that the software does not present any newly discovered

vulnerability. During the build phase, depending on the configurations applied, the

pipeline can be blocked if the vulnerabilities discovered have a big impact on the

security.

• Deployment phase. Nowadays, most of the applications built with a DevOps ap-

proach are deployed inside containers, as described in Chapter 3. Therefore, the

containers built during the CI phase need to be stored in a repository, in order to

be available for download whenever needed. There exists public repositories (e.g.

8https://cve.mitre.org/

https://cve.mitre.org/

CHAPTER 5. DEVSECOPS MODEL 45

DockerHub9) or private ones (e.g. hosted on JFrog Artifactory10). It is extremely

important to secure the container repositories because, if there are some flaws, an

attacker may be able to tamper an image or push his own version of it, which then

will be released and deployed. In this case, it is essential to secure the secret keys

used to access the repositories and implement proper access control mechanisms on

them.

• Operating phase. During this phase the containers and images present in the repos-

itories are pulled and deployed on the actual machines provided by the cloud infras-

tructure. Most of the time the containers are organized in clusters and controlled

by a container orchestrator (e.g. Kubernetes, see Sec. 3.4), which takes care of

resetting failed containers and scale up depending on the traffic encountered.

• Monitoring phase. Upon reaching this phase, monitoring systems run indefinitely

to provide insights about the health of the system and the resource consumption.

Monitoring would not be possible without having an efficient and stable logging

system (see Sec. 6.1 for further details) able to collect, analyse and show the infor-

mation gathered. During this phase is also possible to detect some ongoing attacks,

for example by examining abnormal behaviours in the software.

5.5 Threat modeling techniques

The following information about threat modeling are mainly taken from the book Threat

modeling: Designing for security written by Adam Shostack [35], with the support of

other external sources. Threat modeling is all about making more secure software. It

allows to discover what can go wrong in a system and aims at proposing mitigation and

controls for the risks identified. Threat modeling should not be considered a skill owned

9https://hub.docker.com/

10https://jfrog.com/artifactory/

https://hub.docker.com/
https://jfrog.com/artifactory/

CHAPTER 5. DEVSECOPS MODEL 46

only by security professionals, but rather every developer should apply it to his daily

work. However, in order to be correctly performed, it needs some experience and knowl-

edge about past attack scenarios and the structure of the system being built. An ideal

threat modeling session should involve security professionals, but also product owners

and engineers that know the requirements and architecture of the system.

Before starting, it’s very important to have a clear idea about what is being built, thus

the first step requires to draw a good picture or diagram of the system involved. This

diagram should show all the main components, the data flow between them, the network

boundaries and the actors involved in it. It is also strongly suggested to show the trust

boundaries [36] to point out "who controls what", because most of the threats usually

happen between two boundaries. The diagram can be either drawn on a whiteboard if all

the people involved in the process have the possibility to personally meet, or using some

drawing software.

After that a diagram of the architecture under study has been created, the next phase

aims at researching the circumstances that can damage the system. In this regard, as

previously mentioned, there are multiple threat modeling techniques, but for sure the two

most worth mentioning are STRIDE by Microsoft (see Sec. 5.5.1) and P.A.S.T.A.. In Sec.

5.5.2 we will also describe a more light-weight approach called Rapid risk-assessment.

However, independently from the threat modeling technique used, in order to success-

fully identify threats, it is important to start by analyzing events and activities that are

external to the system but constitute an access point to it. Moreover, it is advisable not

to skip the attention from any threat found, even if this cannot be classified inside the

category the discussion is about. On the other hand, it is necessary to stop the analysis

at a certain level and not focus on threats which can potentially be exploited, but with a

very low probability. In this way it is possible to focus the attention on items that could

have a higher impact. Understanding when it’s time to consider some potential flaws less

meaningful is not always an easy task. In fact, the decision needs deep thinking and years

CHAPTER 5. DEVSECOPS MODEL 47

of experience in the threat modeling field in order to be taken in the most appropriate way,

because a bad evaluation can have critical impacts in the case of an incident.

Once a decent number of important threats has been identified, the next step, for each

one of them, is to decide whether to mitigate, eliminate, transfer or accept the risk [37].

In the following lines the four options are explained.

• Mitigating the threat means applying some security controls which help to reduce

the impact and/or the likelihood of an incident.

• In order to eliminate a threat the only possibility is to remove the feature that is

affected from it. The whole team needs to decide if that specific feature is needed

for the business logic.

• Transferring threats is about leaving to someone else the burden to handle them.

For example, it is possible to pass the risks to the customers.

• It can happen that, after many researches and evaluations, the mitigation for a spe-

cific threat (whose feature cannot be deleted) are so expensive and hard to be applied

that the company decides to leave everything as it is and accept the risk. This deci-

sion must be taken after accurate calculations of the impact of an incident over the

cost to implement the control.s

Threat modeling is not performed in a single meeting, rather it might be necessary to

organize multiple meetings to fine-tune the decisions taken and evaluate the progress and

the results of what has been done. Moreover, the advent of new technologies and incident

examples from other companies, can determine a change in the strategy over the controls

applied. In addition, it cannot be said that threat modeling is complete, since there can

always be some hidden issues that can damage the system; it is only correct to say that

the threat modeling process has found and mitigated enough threats to be able to lower

the risks to an acceptable level.

CHAPTER 5. DEVSECOPS MODEL 48

5.5.1 STRIDE

STRIDE is a a threat modeling technique created by Microsoft in 1999 [35]. The word is

an acronym for Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Ser-

vice, and Elevation of Privilege, as shown in Fig. 5.1. It allows to find the threats which

can undermine six of the major security features that a software must have, in the fol-

lowing line ordered with respect to the attacks: authentication, integrity, non-repudiation,

confidentiality, availability and authorization.

After having drawn diagrams and schema of the system to be analyzed, the objective

of the security team is to consider, following the order, the six kind of attacks which

compose the acronym, and find out possible attack scenarios related to those. During

the brainstorming phase, it is possible to start working singularly and then join the other

people to share the ideas, or start already working together on a common whiteboard.

In the following paragraphs we will talk more in detail about the six threats areas to

be analyzed.

Spoofing threats Spoofing [38] is about stealing the identity of someone else and use

it to authenticate as a legitimate user to the system. Spoofing attacks can affect different

targets. It is possible to spoof a machine by, for example, spoofing ARP requests, IP ad-

dresses or DNS packets in order to redirect the network traffic to somewhere else.

People can be spoofed by performing phishing attacks, used to trick the victim into dis-

closing his own credentials.

Tampering threats Tampering [39] is about modifying data and tricking the system

into accepting it as legitimate. If, for example, the access control lists on the file-system

are not properly configured, an attacker may be able to modify some files with malicious

code which the operating system may then execute. A malicious actor may also get access

to a database and modify the values on it, or tamper the data transiting over the network.

CHAPTER 5. DEVSECOPS MODEL 49

Repudiation threats Repudiation [40] is about claiming to not have performed a spe-

cific action. In a well implemented system every action performed by either machines

and humans should be properly logged in order to maintain a history of "who did what".

Many times attackers, after having performed a malicious action on the system, try to

breach the log service in order to delete the tracks of their intrusion. In fact, the "if it is

not on the logs, it never happened" philosophy is very common. For this reason, even if

repudiation attacks are not usually a threat themselves, they are always performed as a

results of a more serious attack.

Information disclosure threats Information disclosure [41] is about giving to unautho-

rized parties the possibility to access sensitive data. This can happen through a process

leaking memory addresses and secrets such as passwords or private keys. Databases or

files that do not have a proper permission system can also leak information which can be

beneficial for the attacker and damage the victim of the attack. Data can be stolen also

when it traverses the network, especially in non-encrypted environments.

Denial-of-Service threats Denial-of-Service [42] (i.e. DoS) happens when the re-

sources of a system are consumed and depleted. DoS attacks can be persistent, if their ef-

fects are still present even when the attacker stops executing his actions, or non-persistent

in the opposite case. Moreover, they are divided into amplified and unamplified: in the

first case, even a small effort from the attacker side can lead to huge damages to the

system.

Elevation of Privilege threats Elevation of privilege [43] regards the possibility for an

unauthorized user to perform actions he is not allowed to do, normally handled only by

users having higher permissions. This can be performed by corrupting the memory of

a process to bypass privilege checks or by exploiting buggy authorization configuration

files and systems.

CHAPTER 5. DEVSECOPS MODEL 50

After having pointed out all the threats that fall inside the areas described before, the

participants to the threat modeling session can start proposing mitigation and actions to

be taken to properly handle the findings.

Figure 5.1: Stride threat modelling framework

5.5.2 Rapid risk-assessment

Classic risk-assessment methodologies provide huge improvements to the security of an

organization, giving deep insights about the controls to be applied and the best practices

to mitigate the risk of cyber incidents.

However, when implemented in a fast development environment as DevOps is, they

can be seen as slow and unpractical to be applied. In fact, many times the development

workflow is so fast that the security team cannot properly follow the pace with his work.

Therefore, it is very important to define a risk-assessment and threat modeling strategy

that is light-weight and fast to be performed for specific services. For this purpose, the

CHAPTER 5. DEVSECOPS MODEL 51

Mozilla Foundation11 has developed a risk-assessment framework that takes less than one

hour per project to be performed. It is called Rapid risk-assessment (RRA) framework

[44] and, although it cannot be considered a complete threat modeling technique, it gives

good insights about the impact of a service to the reputation, finances, productivity of the

project or business.

The first phase requires gathering information about the target system, talking with the

people involved in the development and the experts in the field. In this way, the security

team can reach a decent level of understanding to be able to go further in the analysis of

the potential threats.

During the second phase, the focus is on creating a "data dictionary" section in which all

the information that the system handles is listed. In this way, it is possible to have an idea

about the assets that need to be protected, evaluating their business level importance. In

this regard, it is important to classify the data by following a hierarchical structure, similar

to the one used in the military field to classify documents.

In the RRA the measurements of the risks follow the triad: confidentiality, integrity and

availability. Then, each areas is decomposed into three impact areas being repudiation,

productivity and finances of the organization, resulting in the creation of nine fields. The

goal of the framework is to apply the rapid threat modeling approach to each one of the

nine fields. The output of this phase is the creation of a risk table in which each of the

three attributes of the security triad are evaluated against the three impact types listed

before, calculating the impact, the likelihood and the resulting risk level.

During the last phase, the security team should make recommendations on how to fix or

mitigate possible problems, given the output of the risk tables. It can also happen that the

developers involved in the meeting figure out on their own the best way to face the threats

discovered, thus making the threat modeling session successful.

11https://foundation.mozilla.org/en/

https://foundation.mozilla.org/en/

CHAPTER 5. DEVSECOPS MODEL 52

5.5.3 What to do with the results of threat modeling

In order to be effective and practical, the results of a threat modeling sessions need to be

properly handled. One good approach is to create a ticket for each threat identified and

put it inside an issue tracker (e.g. GitLab). The ticket needs to be placed in the correct

board (so that the right people can work on it) and labeled accordingly to show that it is

not a normal issue, but it comes from a threat modeling session. In this way developers

and security professionals can have something concrete to work on, plan the time to spend

on the task and define the requisites to fulfill in order to consider the issue solved.

Having a board with all the security measures that need to be enforced in order to

secure the feature that is going to be implemented is crucial to make security part of the

development lifecycle. Without a threat modeling session, it may happen that security

flaws that could have been discovered in time during the design phase, come to the table

when it’s already too late and most of the features have already been built.

5.6 Automatic security scans

In order to discover flaws and vulnerabilities the software needs to be tested and scanned.

There exist a plethora of automatic vulnerability scanners which are able to detect ma-

licious patterns in the code, the use of vulnerable libraries (by comparing them with a

database of known vulnerabilities) and incorrect configurations in general.

Security scanners can be distinguished into two big categories: Static Application Se-

curity Testing (SAST) and Dynamic Application Security Testing (DAST), whose jobs are

different but complementary [45].

SAST is a white box method of testing because it needs to read the source code in order to

discover vulnerabilities, while DAST is a black box method and analyses the application

at run-time. SAST can be run as soon as the source code is ready, while DAST needs the

compiled application to operate, thus the static method allows to discover the vulnerabil-

CHAPTER 5. DEVSECOPS MODEL 53

ities earlier in the development lifecycle, providing cost reductions to fix them. However,

DAST is able to detect problems that arise only when the application is run, thus giving a

more accurate security analysis for the software. In general, both the two methodologies

need to be implemented in the development lifecycle in order to have a complete security

scan.

Nevertheless, automatic security scanners do not eliminate the need to perform manual

penetration testing from time to time. In fact, although the automatic tools have become

very efficient and precise, they are not able to discover more complex flaws that need the

intervention of a human in order to be exploited. For this reason, whenever the software

has reached a good maturity level, it is advisable to perform the so called Red Team12

exercises, which consist in attacking the application using the same approaches that real

malicious hackers would apply.

5.7 Principle of least privilege

NIST defines the Principle of least privilege as the practice of providing only the mini-

mum access and time required to perform an action over a resource [46]. The application

of this rule can avoid incidents caused by mistakes or malicious actions, while also reduc-

ing the auditing surface during a forensic investigation. In fact, with regard to the latter

point, by knowing that only a small portion of the users or systems can have access to a

specific set of resources, it is possible to shrink the area of investigation about the threat.

In order to enforce the principle it is useful to implement a Role-base Access Control

(RBAC) mechanism. This solution allows to map users to specific roles, each one having

different permissions on a set of resources. The granularity offered by the RBAC system

is very beneficial because it allows to distribute properly the authorization among users

over the resources, in addition to the easy management of the permission system.

12https://www.sisainfosec.com/services/red-team-exercise/

https://www.sisainfosec.com/services/red-team-exercise/

CHAPTER 5. DEVSECOPS MODEL 54

In a DevSecOps environment, that is full of resources which need to be accessed by

multiple users, it is paramount to build a similar system. In an organization context, it

can be useful to organize developers in a hierarchical level and give to each group only

the permissions that are strictly needed to perform their work. For example, normal de-

velopers should have full access and right to deploy new releases only to the development

environment, leaving the permission to access more business critical environments only

to certain people in the company. The roles and permissions don’t regard only humans but

also machines. In fact, in a context where everything is automated, each system should

be configured accordingly to receive only the permissions needed to perform the work for

which it is designed, so that, in case of an attack, the set of actions that the malicious actor

could exploit would be limited.

Moreover it is advisable to split administrative powers among multiple parties, each

one capable of performing a small set of actions on some resources. Doing so, we remove

the need to have a single user with super-admin permissions, which can be dangerous

either in the case of a human error and in the case of a cyber-attack.

5.8 How to communicate with other teams

Communication is an essential pillar of any software development company, since the

work is never done by only one person but involves multiple professionals having differ-

ent skill-set from each others. If communication between developers can be challenging,

it can be even harder for security professionals to find out the best way to interact with

other people inside the company. This is because, as said before, security work has some

objectives that may slow down the development process, thus meeting the dislike of de-

velopers, who instead are focused on releasing good software in the least time possible.

The Global Developer Report [47] talking about DevSecOps published by GitLab in

2019 gives good insights about how companies in the world are securing the DevOps

CHAPTER 5. DEVSECOPS MODEL 55

approach, and how the communication between developers and security professionals is

changing. The report claims that around 23% of the developers that have taken part to the

survey think that security is badly integrated in their organizations, while 25% of them

are happy with the security work performed. The dissatisfaction can be caused by the fact

that a company may still completely miss the presence of security professionals, or that,

even if these figures are present, those are not able to guide properly the developers in

writing more secure code and catching vulnerabilities at the earliest stages.

Troubles are not only caused by security professionals which are not able to properly

instruct the developers and standardize the security measures to apply, because, as the

Gitlab Developer Report [47] emphasizes, nearly 49% of the security professionals sur-

veyed struggle in convincing the coders about fixing vulnerabilities as a priority. As said

before, this can be given from the fact that security work can slow down the velocity

of the software development process, even if, a well implemented DevSecOps process,

should not impact too much the developer’s output. In fact, the report [47] claims that by

embracing correctly a DevSecOps approach, security teams are three times more likely to

discover bugs before the code is merged into the Master branch and 90% more likely to

be able to test almost all the code-base in the first stages. These two factors are extremely

important for reducing both the costs and the time needed to fix vulnerabilities when they

have been already deployed to production. However, in order to be convincing, a security

expert needs to have good presentation and communications skills that can allow him to

convince developers about the importance of implementing a certain mitigation. It is also

a critical fact that, most of the times, security professionals need to interact with people

which are not familiar with the technology field. In this case, it is very important for

a security engineer to be able to explain complex concepts in an easy way, taking care

of explaining the economical repercussions of a security control over the business of the

company.

In some cases, it can happen that an incident or a decision that has lead to something

CHAPTER 5. DEVSECOPS MODEL 56

bad damages the trust that developers pose on the security team, pushing them not to

anymore follow the suggestions provided. This can have a very bad impact on the future

work, since personal relationship and accountability is essential for the correct progress

of an organization.

Nevertheless, an open debate regards the decision about who is responsible for se-

curity. Someone think that developers, being the ones who actually write the code, are

the main responsible for the security of the system, while others believe that the hardest

burden should be placed on the shoulders of security professionals, for the fact that it is

their job. We retain that there is no correct answer and that both parties should work and

communicate with each others in order to deliver secure and good quality software, in the

least time possible.

5.8.1 Security training and tools

In order to make sure that developers work with a security mindset it is beneficial to

provide them with some guidelines that are both complete and easy to follow. Firstly, it is

very beneficial to periodically organize security training sessions [48] in which security

professionals present to the rest of the organization some topics related to the security

fields. These short seminaries should highlight a particular cyber attack, describing the

risks derived and proposing a good coding style useful to mitigate the risk of suffering

from this kind of threat. Despite not being very complex and detailed, these presentations

offer an important boost in the security awareness among developers. And being security

aware means writing more secure code already from the beginning, avoiding the risk of

taking trivial flaws to the later stages of the development.

Since human mind works well in an organized and standardized environment, it is

also crucial for security professionals to create a sort of checklist that developers can

examine to make sure to be following the security best practices. One example is the

CHAPTER 5. DEVSECOPS MODEL 57

SWAT checklist13 which lists all the items to take into considerations when developing

web applications. The content of these documents can be then carefully checked against

the current version of the software and, in case of bad implementation, new issues should

be added to the development board.

13https://software-security.sans.org/resources/swat

https://software-security.sans.org/resources/swat

6 Incidents identification and response

Collecting logs is extremely important for forensic analysis in case of a security incident

and they represent a key factor for the implementation of a strong DevSecOps framework.

In fact, they can give a clue of what happened, list the systems impacted and the amount of

data being compromised. Moreover, although they cannot be considered security controls,

as they don’t provide any additional security to the system, their presence is extremely

important and can help to consistently reduce the impact of a potential attack.

Giving their importance in facilitating and enhancing the security workload, it is valuable,

in the scope of this thesis, to describe more in details how the entire logging system works.

In the following sections we will analyse the layers that compose a standard logging

environment and we will give some guidelines about the steps to take to perform forensic

analysis and recover from an incident. The information are mostly taken from the book

Securing Devops: Security in the Cloud, written by Julien Vehent [28], but other sources

are referenced as well.

6.1 Logging layers

Logs are originated from many different sources and their level of verbosity depends

on the particular implementation or the configurations decided by the developers and

operators.

The logging pipeline is usually divided into multiple layers, in which each layer’s output

is given as input to the next layer. In this way, starting from the raw logs (i.e. not polished

CHAPTER 6. INCIDENTS IDENTIFICATION AND RESPONSE 59

information, verbose and not clear) it is possible to manipulate and process the data in

order to give as a result a human-readable dashboard from which analysing the events. In

the following sections we will describe the main layers that compose the logging pipeline.

6.1.1 Collection layer

The collection layer is responsible, as the name suggests, for collecting the logs originated

by applications, network components and other kind of systems. There are four main

broad categories of logs which will be analyzed in the following paragraphs:

• Systems logs are usually generated by web servers and services running on top of

the operating system and are usually full of information [49]. They are very useful

to inspect the sessions opened on the system, access history on web servers, actions

taken by software that resides very close to the OS, and the traffic that traversed

a firewall. In Linux machines there are two categories of logs: the syslog and the

system calls audit logs. The syslog is the oldest and more used way to collect logs

and, apart from writing to files, it offers the capability of sending logs through the

network. It describes the component that has originated the log and the severity

level of it, so that it is easy to filter all the logs depending on specific search criteria.

However, this approach doesn’t provide a common granularity level among the sys-

tems being logged, leaving discrepancies in the visibility and prioritization of the

information. In order to solve this problem, and also give to the developer the pos-

sibility to decide how verbose the logs should be, syscall auditing was introduced.

Additionally, this solution offers a higher visibility because the events logged are

directly generated by the Kernel, paying the cost of consuming a huge amount of

memory.

• Application logs are generated by software and in the case of in-house developed

product, developers can implemented as many logs level as requested. Usually

CHAPTER 6. INCIDENTS IDENTIFICATION AND RESPONSE 60

the logs are streamed through the application standard output and collected into a

logging pipeline. In order to be understandable, it is important to store the logs

in a structured format (e.g. JSON, XML), standardize the timestamp format to

make it easy to reconstruct the temporal line of events, identify the origin of the

events by defining the unique information about the logs source, and customize

each application to write arbitrary and personalized data.

Since it’s developers’ task to decide how much and what to log, it is important to

provide them with a guide on how to best implement a logging solution. One very

valuable guide that we have encountered is the OWASP Logging Cheat Sheet1 which

is quite easy to follow and gives guidelines on the events that an application should

record. It’s not worth for the objective of the thesis to go into the details of what is

explained in the cheat sheet, but the general takeaway is that it’s important to log

failed and succeeded authentications, input insertions, calls to sensitive APIs, data

changes, suspicious behaviours, extreme memory consumption and modification to

the configurations.

• Infrastructure logging catches events generated from the underlying infrastruc-

ture, being it company managed or outsourced from a Cloud Provider. Regarding

cloud environments, among the AWS services there is one called CloudTrail2 whose

job is to keep track of every operation performed either on the System Console and

through the CLI over the cloud infrastructure. The information is very detailed and

is usually stored inside AWS Simple Storage Service (S3) buckets3, in which they are

maintained for a certain amount of time, before being destroyed to release memory

space. The only problem is that the streaming of information is not real time and

1https://cheatsheetseries.owasp.org/cheatsheets/Logging_Cheat_Sheet.h

tml

2https://aws.amazon.com/cloudtrail/

3https://aws.amazon.com/s3/

https://cheatsheetseries.owasp.org/cheatsheets/Logging_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Logging_Cheat_Sheet.html
https://aws.amazon.com/cloudtrail/
https://aws.amazon.com/s3/

CHAPTER 6. INCIDENTS IDENTIFICATION AND RESPONSE 61

so a potential attacker may have a small window of time to perform his malicious

actions without being tracked.

Network logs fall also in this category, and it is paramount to record them in order

to analyze the internet traffic in case of an incident. A very useful tool in this regard

is NetFlow4, developed by Cisco and easily integrated inside the AWS infrastruc-

ture. It collects data from routers and network devices and routes the finding to a

centralized system.

Some of the logs present in this layer can be redundant with respect to the ones

present at the system layer, and they pay their additional security level with a major

complexity for the analysis.

• Logs from third-party software really vary in details and verbosity depending on

the service. Sometimes it is possible for the customer of a service to decide the

logging level to be used, even if it is not always the case. As an example we can

take GiLab Logs5 which monitor the access to resources, the person who performed

a specific action and many kind of other metrics.

6.1.2 Streaming layer

After the logs have been collected by the collection layer, they are sent to a message broker

which belongs to the streaming layer. A message broker, according to the definition

given by IBM [50], is a software that enables communication between two applications or

services, one of them being the publisher and the other being the consumer. The publisher

pushes data through the message broker, which contains a queue to handle more messages.

Then the message broker decides how to route the messages to the correct consumers.

The consumers belong to the analysis layer, and their job is to analyze the messages

4https://www.cisco.com/c/en/us/products/collateral/ios-nx-os-softwa

re/ios-netflow/prod_white_paper0900aecd80406232.html

5https://docs.gitlab.com/ee/administration/logs.html

https://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-netflow/prod_white_paper0900aecd80406232.html
https://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-netflow/prod_white_paper0900aecd80406232.html
https://docs.gitlab.com/ee/administration/logs.html

CHAPTER 6. INCIDENTS IDENTIFICATION AND RESPONSE 62

and behave accordingly. There are multiple message brokers in the market, but one that

is worth noticing is Apache Kafka6, being one of the most used as it is also capable of

maintaining the logs in its own memory for some amount of time.

Brokers can implement two modes to share the messages to the consumers: the round-

robin mode and the fan-out mode. The first works by sending a message to a single

consumer within a group. Fan-out mode is instead used to distribute the same topic to

multiple consumers. The choice of the distribution strategy to adopt depends on the type

of messages and on the system details.

6.1.3 Analysis layer

The consumers receiving messages from the broker belongs to the analysis layer [51].

Here, as the name suggests, the logs are evaluated and analyzed to extrapolate useful

information or simply store them in the databases.

The simplest type of consumer, receives the raw logs and stores them in a database

where they are maintained for a certain amount of time. Storing the logs is very important

because it allows to perform forensic analysis for incidents that may had happened long

time before the relative discovery. Database and file-systems used to save logs belongs to

the storage layer.

There exist also consumers capable of monitoring the logs and sending alerts to operators

in case of strange events or abnormal behaviours have been detected. The alerts can be

about excessive memory usage or full disk storage, but can also regard security threats. In

this case, it is paramount to implement an efficient and accurate model to categorize logs

and assign to them a risk level, because if the evaluation is not done correctly, there is the

risk of either missing some important events or firing too many false alarms. Moreover, it

is usually the case that the operators are provided with some sort of dashboard to visualize

the collected logs, in a layer called accessing layer. This layer is very important to provide

6https://kafka.apache.org/

https://kafka.apache.org/

CHAPTER 6. INCIDENTS IDENTIFICATION AND RESPONSE 63

visibility and must be properly secured from intrusions because it can be victim of attacks

and tampering from hackers trying to hide their malicious footsteps.

Talking about implementation, we can say that consumers should be small pieces

of software, completely dedicated on a single task. Since their job is requested only

whenever important logs are passed by the message broker, it is smart to give them a

serverless architecture, deploying them, for example, by using AWS Lambda (see Sec.

3.5.2).

6.2 Forensic analysis

In case of an incident the best way to reconstruct what happened is to read the logs [52].

This can be a very long and tedious work but, if the logging system is clear and concise, it

is possible to discover the origin of the flaw and the assets that have been damaged by the

attack. The investigation process needs to be taken carefully, reducing to the minimum

the interaction with the system so to avoid to spoil the information about the past events.

The logs that usually provide more insights about a cyber incident are related to ac-

cess or authorization requests, the IP address of the machine originating the attack, the

modifications of the file system and the injection of attacker payload. Once the forensic

analysis phase is concluded, the security team will have a picture of the assets that have

been compromised, the dimension of the attack and its impact and the economical loss

derived from it. With all this information gathered, the next step consists in preparing a

plan to recover the correct functioning of the impacted assets, taking care of resolving the

vulnerabilities that have been exploited in the attack.

6.3 Recovery

The recovery phase is crucial to try to restore the normal functioning of the system ex-

ploited. Since broken and malfunctioning systems cause money loss to an organization,

CHAPTER 6. INCIDENTS IDENTIFICATION AND RESPONSE 64

it is paramount that this phase is as smooth and fast as possible. However, this cannot be

done so easily if the company does not have a proper recovery plan designed to face such

cases, and this fact, depending on the scale of the incident, can lead to fatal damages for

the business.

If we take as an example the disruption of a service running in the cloud, the use of the

Infrastructure-as-a-Code (described in Sec. 2.4) paradigm can reduce the reconstruction

of the broken platform to a matter of running a script which will re-deploy automatically

the service [53]. Therefore, it is very important to script as many of the functionalities

as possible and reduce the manual work so that, in case of an incident, everything can be

recreated in a very easy way.

7 Case study: Awake.AI

In the previous chapters we have described the theory that literature dictates regarding the

development frameworks, the best practices for implementing specific technologies and

the approaches to follow to integrate security in the process. However, the theory does

not always match the practical counterpart, and for this reason, it is valuable to apply the

knowledge described before on a real use case scenario: the approach used in Awake.AI1.

Awake.AI is a software company whose objective is to became the leader in digital

maritime industry by 2025. Its focus is on the logistic of maritime transportation and the

exchange of information between the multiple parties involved in the shipping industry.

The goal of the company is to apply data analytics and machine learning models to reduce

the environmental impacts and costs that affect the maritime industry up to 40%. It was

founded in January 2019 and, at the time of writing, it has almost 30 employees.

The team comprehends front-end and back-end developers, machine learning and analyt-

ics professionals, devops experts, experts in the maritime field and cybersecurity profes-

sionals.

In the next sections we will describe the strategies used to develop the product, taking

particular attention to the way the security work is integrated into the development life-

cycle and how the approach followed can help reducing the costs derived from applying

security measures.

1https://www.awake.ai/

https://www.awake.ai/

CHAPTER 7. CASE STUDY: AWAKE.AI 66

7.1 Development process

Company’s technical experts are spread between multiple features teams. The job of each

team is to take care of a certain set of functionalities and services and they comprehend

all the required expertise needed to perform their job independently. In fact, inside a team

there are front-end and back-end developers, operations professionals, testers and security

professionals. In the ideal case a team would be able to implement the features assigned

without having to ask for help to people belonging to other teams. However, this fact does

not restrict the possibility for members of different teams to interact with each others to

synchronize and coordinate the work on common features.

The company follows an agile development methodology which takes inspiration both

from Scrum (see Sec. 4.2.1) and from Kanban (see Sec. 4.2.2). Likewise the original

Scrum method, the time-span is divided into Sprints whose length can be either two or

three weeks long, depending on the particular deadlines or festivities present during the

period.

Four Sprints are then grouped together into what is called Mission, which is the time

needed to release major features to the customers. Before the beginning of a Mission,

the teams spend an entire week planning and designing the features to implement in the

next period, spreading the tasks between the four Sprints, depending on their priorities

and requirements. During this session, product owners have to explain to developers the

new features that need to be implemented: this is done through the use of user stories.

User stories are statements that define which capabilities a specific user would like the

software to offer so as to satisfy a certain need. In other words, the stories give a general

and very high level overview of which features need to be implemented, and are taken as

a starting point to describe the actual objectives that need to be accomplished. By using

their expertise and experience, developers are asked to translate the stories into actionable

tasks, and also to try to estimate the time needed to implement each specific functionality.

The development framework makes use of multiple boards, hosted on GitLab, to

CHAPTER 7. CASE STUDY: AWAKE.AI 67

which the issues are attached and labeled depending on their state of progress, like it

is suggested by the Kanban model. In general, when an issue is opened, it is placed in a

general lane together with all the other issues, then takes the To be done state whenever

is planned to be taken into consideration during the current Sprint, is moved to the Doing

state whenever someone is working on it, then reaches the Review state when the task has

been completed and needs to be reviewed by another person and, eventually, reaches the

Closed state whenever it has been completed. It can also happen that the work on an is-

sue cannot continue anymore, either because it has been discovered not being technically

feasible or because the implementation of other functionalities is required before the task

can be completed. In this case the issue is labeled as Blocked and remains pending until

some other factors comes to unlock it.

As claimed by the Scrum literature, every day the teams perform a daily meeting to

talk about the work done in the previous day, describe the planned work for that day and

ask for help in case of necessity. The discussion is lead by the Scrum master, who usually

presents the team board on his screen and gives word to the colleagues following the

order of the issues present on the Doing lane. In the company the team daily meetings

usually run very smoothly and are kept under a time limit of fifteen minutes. Although

there are not always security related tasks to be discussed during the meeting, it is good

approach for the team security expert to participate so to have an understanding of what

the developers are building and provide security support in case of necessity.

At the end of every Sprint the teams need to prepare a major release candidate con-

taining all the new features implemented in the last three weeks. Continuously delivering

new versions of the software keeps alive the interaction with the customers, who can give

timely feedback and comments. In order to make sure that the functionalities released to

the customers meet specific quality criteria, the company makes use of four different envi-

ronments: development, stage, qa and production. All these environments contain almost

the same cloud infrastructure and services and are used to test and develop the software.

CHAPTER 7. CASE STUDY: AWAKE.AI 68

Whenever a developer commits some changes to GitLab, a pipeline starts building the im-

age of the service involved and deploys it into the development environment. Therefore,

this environment contains all the newest changes, but also a big amount of bugs, since at

this point the code has not been yet properly tested. Upon reaching a certain maturity, the

changes are deployed into the stage environment in which the software receives a deeper

level of inspection and testing. Next step is the deployment into the qa environment, that

is basically a copy of the production environment and is used to have a clear idea of what

will be the final product released to the customers. After passing all the quality and ac-

ceptance checks, the new functionality is released to the production environment, thus

becoming available to the customers.

Apart from quality and testing purposes, the different environments are useful to make

sure that, before being released to the customers, the security of the software has been

heavily checked. In fact, by running security scanners and code analyzers already inside

the development environment, it is possible to catch vulnerabilities in the earliest stages

and fix them more easily. This fact does not mean that the production environment is free

from vulnerabilities, but allows to discover in time most of the flaws, before they can even

be exposed in the public environment.

7.2 Overview of the technology used

The company relies completely on a cloud-based infrastructure provided by AWS (see

Sec. 2.3), which gives the opportunity to scale quickly and reduce the operational costs.

Among all the services, the ones more used are EC2 instances, Lambda functions, Re-

lational Databases and data analytics services, which are quickly described in Sec. 2.3.

In particular, the Infrastructure-as-a-Code paradigm (see Sec. 2.4) is heavily used and,

as a result, most of the infrastructure is scripted by using HashiCorp Terraform. IaaC

not only helps to scale in a fast and reliable way, but gives a good opportunity to secu-

CHAPTER 7. CASE STUDY: AWAKE.AI 69

rity professionals to implement policies and controls, and safely patch vulnerabilities in

the cloud. Moreover, as also stated in Sec. 6.3, it plays an important role in the recon-

struction of the infrastructure in case of a major disruption. Therefore, it is an important

factor contributing to the reduction of costs to be faced in a secure software development

process.

Talking about the architecture of the system, we can say that everything is split into

micro-services built inside independent Docker containers (see Sec. 3.3). The network-

ing and communication between the micro-services is orchestrated by Kubernetes (see

Sec. 3.4), which provides multiple replicas of the same service in order to ensure the high

availability of the whole system. Following the best practices regarding container secu-

rity, the containers, whenever it is possible, present a read-only file-system, so to prevent

malicious actors from injecting arbitrary payload into the services. Whenever it is not

possible to set the entire file-system in read-only mode, because the application needs to

write some information in specific folders, the approach taken is to mount the paths that

require write permissions on separated volumes, so that the rest of the file-system can

have only read permissions. This solution makes sure that the Principle of least privileges

(see Sec. 5.7) is applied.

During the building phase (see Sec. 5.4), the containers are scanned to discover the

presence of known vulnerabilities affecting the dependencies used, through the help of

automatic security scanners (e.g. Npm audit2 for JavaScript projects). In the case some

severe vulnerabilities have been discovered, the building phase fails and developers have

to update the vulnerable dependencies before being able to deploy the new version of the

software. This preliminary security approach can already save a lot of time and effort that

would be needed in case the vulnerabilities would have been discovered at later stages.

Moreover, in order to reduce the attack surface to the minimum, the container images are

built starting from very light-weight base images which contains only a reduced amount

2https://docs.npmjs.com/cli/audit

https://docs.npmjs.com/cli/audit

CHAPTER 7. CASE STUDY: AWAKE.AI 70

of libraries. An example, in case of the Linux image, is the use of the Alpine3 base image

which provides only a small set of necessary libraries. Starting from that, it is possible to

install only the libraries that are really needed to run the application.

Another good practice followed, is the one that suggests to build the images in multiple

stages, by taking some libraries from a base image and copying them into a second image.

In this way, instead of stacking an entire image on top of another, it is possible to copy

only the required parts, thus saving resources and limiting the attack surface.

All the images that are used as bases to build the company’s images are stored in

a private repository hosted on JFrog Artifactory4, and are constantly updated in order

to have the latest security vulnerabilities solved. It is crucial to periodically rebuild the

images in order to get all the new updates and avoid the risk to face again vulnerabilities

that have already been fixed. In this regard, it is useful to avoid using caching mechanisms

when re-building a container to make sure that everything is pulled updated from the

internet. Storing always updated images inside the private repositories removes the need

to update them manually when they are used inside a Dockerfile, thus allowing to solve the

security issues at the root level and eliminating the costs to be faced in order to perform

the same fixes for many different services.

As said before, the company relies on Kubernetes as a container orchestrator and runs

a single cluster for each of the four main environments. There are strong Role Based

Access Control5 policies put in place inside the cluster to give the right amount of per-

missions to the users and, as in the case of Docker containers, the file-system is set to

read-only mode whenever is possible. The applications running inside the pods log on

their standard out, which will then redirect it towards a syslog6 to display the information

3https://alpinelinux.org/

4https://jfrog.com/artifactory/

5https://searchsecurity.techtarget.com/definition/role-based-access

-control-RBAC

6https://en.wikipedia.org/wiki/Syslog

https://alpinelinux.org/
https://jfrog.com/artifactory/
https://searchsecurity.techtarget.com/definition/role-based-access-control-RBAC
https://searchsecurity.techtarget.com/definition/role-based-access-control-RBAC
https://en.wikipedia.org/wiki/Syslog

CHAPTER 7. CASE STUDY: AWAKE.AI 71

on AWS CloudWatch7. This solution provides visibility and transparency on the appli-

cations running in the cluster, highlighting abnormal behaviours or excessive resource

consumption.

Many events and API calls are not handled by a containerized application, but rather

deployed in a serverless fashion by using the AWS Lambda service (see Sec. 3.5). Lambda

functions are used for pieces of code which have to run upon the firing of an event and die

after a short time span. By using them, the company does not have to operate a specific

infrastructure and can just concern about the quality of the code. The only disadvantage

is that these so-called serverless applications are very hard to scan for security purposes

by using the standard security scanners. That being said, it is paramount to manually

perform security testing on them by trying, for example, to inject payloads from non-

trivial sources, because, as said in Sec. 3.5.4, serverless solutions present more entry-

point options for user input injection with respect to traditional applications. This can be

a time-consuming task, but it is very important to guarantee that there are no trivial source

of attacks.

7.3 DevSecOps

Security professionals are deeply integrated into the development framework. In fact,

they are members of the feature teams and actively participate in the daily meetings.

With their work they provide insights to developers about the best practices to follow to

securely implement a particular feature, they help hardening the network communications

between the components and they highlight security vulnerabilities that need to be fixed.

The interaction between security experts and developers is very smooth, thanks also to the

fact that all the software engineers are well prone towards security. The communication

happens either via face-to-face meetings or through the use of online chatting and video-

7https://aws.amazon.com/cloudwatch/

https://aws.amazon.com/cloudwatch/

CHAPTER 7. CASE STUDY: AWAKE.AI 72

calling, which ensures that everyone is updated about the progress of the development.

Threat modeling sessions are starting to be rolled out in this period, and unfortunately

most of the services will be threat modeled a posteriori, because they have been built

before a secure development framework was ever instantiated. Therefore, there is the

risk that some major architectural flaws will be discovered when the system is already in

place, thus causing big expenses to perform the required fixes. However, when a strong

threat modeling framework, which can be based on STRIDE (see Sec. 5.5.1), will be

instantiated, all the future services will be analyzed during the design phase, so to point

out already at the beginning the security requirements that need to be fulfilled.

Automatic security tests are put in place and they run each time new code is deployed

to the environments. In this way, if major issues are detected, the entire build in the

pipeline fails and developers can work to try to fix the problem.

Moreover, during the night, multiple dependency security scanners (one for each pro-

gramming language used) are run to detect the presence of known vulnerabilities in the

libraries imported. The scanners work by checking if the libraries used are mentioned in

a database of cyber-threats which highlights the dependencies that have been discovered

being vulnerable.

Some days before the end of each Sprint, the security team reviews the most impacting

findings from the dependency scanners so to discuss which action needs to be taken to

solve them. From the review it can come out that vulnerabilities affecting some libraries

are considered not harmful because, in the particular scenario in which they are used, not

all the requirements needed to exploit them are fulfilled. The action of suppressing some

vulnerability findings speeds up incredibly the development workflow because it reduces

the time spent on fixing useless stuff.

On the other hand, if the vulnerability is considered to potentially have a big impact

on the services, the person responsible for the service affected is called to update the

library as soon as possible. And this, although it may seem to be a trivial task, requires

CHAPTER 7. CASE STUDY: AWAKE.AI 73

some reasoning because performing an update to a package can break completely the

correct functioning of the application. This is one of the points in which security fixes

can present expenses because they may require re-thinking the architecture of the system.

Nevertheless, by following this approach, the flaws are discovered very early and their fix

can be cheaper than what it would be by discovering them in later stages.

For what concerns the code written in-house, it is very important for developers to be

able to write secure code. For this reason, security awareness in the company is taken

into serious consideration. As a matter of fact, the security team periodically organizes

security training sessions for developers in order to provide some insights about differ-

ent topics related to the cybersecurity world. Although being quite simple, the training

lessons give developers a grasp of security topics that can be taken as a starting point for

further detailed learning. This factor is extremely important because it gives the opportu-

nity to write code having a security mindset, thus reducing the risk of creating vulnerable

code which may be expensive to fix in later stages. There exist also tools that guide devel-

opers into writing more secure and quality code: linters (see Sec. 5.4). Linters embedded

inside Integrated development environment8 (IDEs) analyse in real-time the code being

written to detect the presence of bad patterns that can lead to known vulnerabilities. De-

spite not being able to discover the presence of more complex flaws, they allow to skim

the most trivial ones.

It has been planned, for the next future, to start rolling out a Red teaming exercise9,

which consists in hiring a team of professionals penetration testers to try to break the

services using the same approach exploited by malicious hackers. This exercise has not

been done yet because it is effective when the services reach a certain level of maturity

and complexity, which is not the case at the moment. However, this will surely be done

before the first official and monetized release to the customers.

8https://en.wikipedia.org/wiki/Integrated_development_environment

9https://www.sisainfosec.com/services/red-team-exercise/

https://en.wikipedia.org/wiki/Integrated_development_environment
https://www.sisainfosec.com/services/red-team-exercise/

CHAPTER 7. CASE STUDY: AWAKE.AI 74

In addition, the security team continuously works to update and write new documen-

tation containing checklists, guidelines and learning material for the developers.

7.3.1 Incident response and recovery

Every company will, sooner or later, face a cybersecurity incident so it is a good practice

to be ready for when this will happen. As we said in Chapter 6, the first requirement to

fulfill in order to detect an attack is to have an efficient logging system. It is paramount

for the logging system to be complete but, at the same time, not too verbose because

otherwise there is the risk of missing important events.

However logs don’t have any value if they are not properly analyzed and processed

to extrapolate interesting information. Moreover, there is the need to provide visibility

regarding the security of the cloud. In this respect, the company uses AWS GuardDuty10

and SecurityHub11, which monitor the traffic reaching the instances running in the cloud

to detect malicious actions or misconfigurations.

For what concerns the recovery phase, in case of a major disruption of the cloud

infrastructure, the company relies on the fact that every resource deployed in AWS has

been scripted by using the Infrastructure-as-a-Code paradigm. Therefore, it is just a matter

of launching some scripts and everything would be automatically recreated.

More investigations need to be done regarding the approach to follow in case of a data

leakage, describing the solutions that need to be applied to ensure that GDPR12 and other

governance rules are taken into consideration.

The security team in Awake.AI has a template file for writing a report describing the

cybersecurity incidents that may hit the company. The document clarifies the timeline of

the events that led to the compromise, describes the damaged assets, the actors involved

10https://aws.amazon.com/guardduty/

11https://aws.amazon.com/guardduty/

12https://gdpr-info.eu/

https://aws.amazon.com/guardduty/
https://aws.amazon.com/guardduty/
https://gdpr-info.eu/

CHAPTER 7. CASE STUDY: AWAKE.AI 75

and presents the actions that have been taken to recover from the incident. Moreover,

suggestions on how to improve the system in order to mitigate future flaws are included.

The incident report is a quite sensitive document and so it needs to be shared only with

certain parties, who can be the Head of Engineers, the CEO and other leading figures.

In addition, it is important to create an environment of trust and transparency inside the

company which promotes the report of security incidents, without accusing or victimizing

anyone. In this way it is possible to drastically reduce the risk that someone, fearing the

consequences, decides not to report a mistake that has lead to a compromise.

8 Conclusions

A development framework that stands on the fast and continuous delivery of software

needs that a precise and adaptable security framework is applied, in order to be able to

deliver high quality and secure applications. The method applied in Awake.AI is, for sure,

not perfect, but the results achieved in the last months regarding the improvements to the

security framework have been substantial. The various mechanisms described in the the-

sis have, in fact, increased the speed and efficiency of the development framework, and

reduced the friction between developers and security professionals. This is demonstrated

by the fact that the throughput of the development has not been impacted from the inte-

gration of the described security framework, but rather the number of vulnerabilities and

flaws detected at earlier stages has been substantial. The latter has been achieved through

the integration of automatic security scanners which have contributed into "shifting secu-

rity to the left", thus reducing the number of vulnerabilities which end up in the production

environment. Being a startup company, the amount of code written in the last months in

Awake has been huge, and this fast pace would not have been possible without a proper

secure development framework put in place. In fact, especially in startups, the available

time is very restricted and thus the pressure which developers have to stand can easily

make them forget about writing secure software, which is discovered being vulnerable

only in later stages.

The great results achieved comes from the adoption of multiple, even sometimes min-

imal, best practices, which together allow to create a flexible and efficient security frame-

CHAPTER 8. CONCLUSIONS 77

work. Among them we can highlight the security training sessions provided to the de-

velopers that have allowed to build a security mindset which can help in reducing the

presence of security flaws already during the coding phase and facilitate the discussion

about security topics. The automation provided by the DevOps paradigm has allowed

to integrate security scanners in the pipelines, giving the possibility to discover vulner-

abilities as early as possible. The active participation of security engineers to the daily

meetings has helped in reducing to the minimum the friction between the pace of devel-

opment and the delivery of secure code. The adoption of the Principle of Least Privileges

(see Sec. 5.7) has restricted the access to critical resources present in the cloud or running

in the Kubernetes clusters, thus allowing to reduce the risk of malicious actors tampering

or accessing sensitive data. The integration of a strong Infrastructure as a Code culture

has speed up the deployment of new systems in the cloud and, in the case of a major

disruption, will play a key role in the fast reconstruction of the infrastructure.

Talking about the things that should be improved in the company, we can list the

fact that architectural documentation is a bit lacking or obsolete. This often leads to

the need of reverse engineering a functionality developed by other people in order to

understand it and work on it. However, the lack of a proper documentation is a common

trend in many companies and especially in startups, either because systems change so

often that a document would became obsolete quite soon, and either because developers

prefer to spend their time implementing new features rather than writing instructions. In

this regard, it may be interesting to study further how to best integrate documentation

writing to the development of new software.

The thesis didn’t analyse a mechanism for prioritizing the work between what is con-

sidered the development of new features and what is instead the work done for fixing

security vulnerabilities. Therefore, it may be interesting as a future work, to find out a

proper framework capable of providing an easy way to decide whether to work on de-

veloping a new feature for the customers or spend the time to solve a vulnerability. It is

CHAPTER 8. CONCLUSIONS 78

certain that the decision would depend on the severity of the vulnerability encountered

and on the deadlines that need to be respected to release a new functionality.

In conclusion, it is valuable to mention that the presence of a good based security

framework in Awake has been used as a key factor for attracting the attention and trust

from potential customers. Therefore, security must not be considered just a cost for a

company, but can bring value and indirect revenues by itself.

References

[1] P. M. Mell and T. Grance, “The nist definition of cloud computing”, 2011. DOI:

10.6028/nist.sp.800-145.

[2] Global cloud infrastructure market q4 2019 and full year 2019. [Online]. Avail-

able: https://canalys.com/newsroom/canalys-worldwide-cl

oud-infrastructure-Q4-2019-and-full-year-2019 (Accessed:

13.7.2020).

[3] Q. Devery, The three cloud computing service models. [Online]. Available: http

s://www.paranet.com/2012/06/18/bid-128267-the-three-ty

pes-of-cloud-computing-service-models/ (Accessed: 13.7.2020).

[4] S. Mathew and J. Varia, “Overview of amazon web services”, Amazon Whitepa-

pers, 2020.

[5] J. Clement and Feb, Amazon web services revenue 2019, Feb. 2020. [Online].

Available: https://www.statista.com/statistics/233725/de

velopment-of-amazon-web-services-revenue/.

[6] Regions and availability zones, 2018. [Online]. Available: https://aws.amaz

on.com/about-aws/global-infrastructure/regions_az/?p=n

gi&loc=2 (Accessed: 13.7.2020).

[7] Debt information for teens: Tips for a successful financial life, including facts about

the economy and personal finances, money management, interest rates, loans, credit

https://doi.org/10.6028/nist.sp.800-145
https://canalys.com/newsroom/canalys-worldwide-cloud-infrastructure-Q4-2019-and-full-year-2019
https://canalys.com/newsroom/canalys-worldwide-cloud-infrastructure-Q4-2019-and-full-year-2019
https://www.paranet.com/2012/06/18/bid-128267-the-three-types-of-cloud-computing-service-models/
https://www.paranet.com/2012/06/18/bid-128267-the-three-types-of-cloud-computing-service-models/
https://www.paranet.com/2012/06/18/bid-128267-the-three-types-of-cloud-computing-service-models/
https://www.statista.com/statistics/233725/development-of-amazon-web-services-revenue/
https://www.statista.com/statistics/233725/development-of-amazon-web-services-revenue/
https://aws.amazon.com/about-aws/global-infrastructure/regions_az/?p=ngi&loc=2
https://aws.amazon.com/about-aws/global-infrastructure/regions_az/?p=ngi&loc=2
https://aws.amazon.com/about-aws/global-infrastructure/regions_az/?p=ngi&loc=2

BIBLIOGRAPHY 80

cards, predatory lending practices, and resolving debt-related problems, 2018.

[Online]. Available: https://aws.amazon.com/about-aws/globa

l-infrastructure/ (Accessed: 22.9.2020).

[8] M. Roth, Compliance, 2018. [Online]. Available: https : / / aws . amazon

. com / compliance / shared - responsibility - model/ (Accessed:

22.9.2020).

[9] D. Merron, What is infrastructure as code? iac explained, Dec. 2018. [Online].

Available: https://www.bmc.com/blogs/infrastructure-as-cod

e/ (Accessed: 13.7.2020).

[10] “Virtualization in cloud computing”, Journal of Information Technology & Soft-

ware Engineering, vol. 04, no. 02, 2014. DOI: 10.4172/2165-7866.100013

6.

[11] Storage virtualization. [Online]. Available: https://www.enterprisestor

ageforum.com/storage-hardware/storage-virtualization.h

tml (Accessed: 13.7.2020).

[12] C. Pahl, A. Brogi, J. Soldani, and P. Jamshidi, “Cloud container technologies: A

state-of-the-art review”, IEEE Transactions on Cloud Computing, vol. 7, no. 3,

pp. 677–692, Jan. 2019. DOI: 10.1109/tcc.2017.2702586.

[13] Updating and modernizing: Moving from virtual machines to containers, Aug.

2019. [Online]. Available: https://caylent.com/moving-from-vi

rtual-machines-to-containers (Accessed: 13.7.2020).

[14] Docker inc. [Online]. Available: https://web.archive.org/web/2014

0702231323/https://www.dotcloud.com/about.html (Accessed:

13.7.2020).

https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://www.bmc.com/blogs/infrastructure-as-code/
https://www.bmc.com/blogs/infrastructure-as-code/
https://doi.org/10.4172/2165-7866.1000136
https://doi.org/10.4172/2165-7866.1000136
https://www.enterprisestorageforum.com/storage-hardware/storage-virtualization.html
https://www.enterprisestorageforum.com/storage-hardware/storage-virtualization.html
https://www.enterprisestorageforum.com/storage-hardware/storage-virtualization.html
https://doi.org/10.1109/tcc.2017.2702586
https://caylent.com/moving-from-virtual-machines-to-containers
https://caylent.com/moving-from-virtual-machines-to-containers
https://web.archive.org/web/20140702231323/https://www.dotcloud.com/about.html
https://web.archive.org/web/20140702231323/https://www.dotcloud.com/about.html

BIBLIOGRAPHY 81

[15] Docker vs virtual machine - understanding the differences, Sep. 2019. [Online].

Available: https://geekflare.com/docker-vs-virtual-machine

/ (Accessed: 13.7.2020).

[16] Shifting docker security left, Jul. 2019. [Online]. Available: https://snyk.io

/blog/shifting-docker-security-left/ (Accessed: 13.7.2020).

[17] A. Gerrard, What is kubernetes? an introduction to the container orchestration

platform, Aug. 2019. [Online]. Available: https://blog.newrelic.com

/engineering/what-is-kubernetes/ (Accessed: 13.7.2020).

[18] I. Baldini, P. Castro, K. Chang, P. Cheng, S. Fink, V. Ishakian, N. Mitchell, V.

Muthusamy, R. Rabbah, A. Slominski, and et al., “Serverless computing: Current

trends and open problems”, Research Advances in Cloud Computing, pp. 1–20,

2017. DOI: $10.1007/978-981-10-5026-8_1$.

[19] G. Adzic and R. Chatley, “Serverless computing: Economic and architectural im-

pact”, Proceedings of the 2017 11th Joint Meeting on Foundations of Software

Engineering - ESEC/FSE 2017, 2017. DOI: 10.1145/3106237.3117767.

[20] A. Wiggins, The twelve-factor app. [Online]. Available: https://12factor

.net/ (Accessed: 13.7.2020).

[21] Owasp top 10 (2017): Interpretation for serverless. [Online]. Available: https:

//owasp.org/www-pdf-archive/OWASP-Top-10-Serverless-In

terpretation-en.pdf (Accessed: 13.7.2020).

[22] M. Stoica, M. Mircea, and B. Ghilic-Micu, “Software development: Agile vs. tra-

ditional”, Informatica Economica, vol. 17, no. 4/2013, pp. 64–76, 2013. DOI: 10

.12948/issn14531305/17.4.2013.06.

[23] Waterfall model: What is it and when should you use it?, Nov. 2017. [Online].

Available: https://airbrake.io/blog/sdlc/waterfall-model

(Accessed: 29.9.2020).

https://geekflare.com/docker-vs-virtual-machine/
https://geekflare.com/docker-vs-virtual-machine/
https://snyk.io/blog/shifting-docker-security-left/
https://snyk.io/blog/shifting-docker-security-left/
https://blog.newrelic.com/engineering/what-is-kubernetes/
https://blog.newrelic.com/engineering/what-is-kubernetes/
https://doi.org/$10.1007/978-981-10-5026-8_1$
https://doi.org/10.1145/3106237.3117767
https://12factor.net/
https://12factor.net/
https://owasp.org/www-pdf-archive/OWASP-Top-10-Serverless-Interpretation-en.pdf
https://owasp.org/www-pdf-archive/OWASP-Top-10-Serverless-Interpretation-en.pdf
https://owasp.org/www-pdf-archive/OWASP-Top-10-Serverless-Interpretation-en.pdf
https://doi.org/10.12948/issn14531305/17.4.2013.06
https://doi.org/10.12948/issn14531305/17.4.2013.06
https://airbrake.io/blog/sdlc/waterfall-model

BIBLIOGRAPHY 82

[24] M. Says, V. S. says, U. Says, D. D. A. Says, J. C. Says, M. A. says, S. R. Says,

S. says, S. R. B. Says, C. M. Says, and et al., Home. [Online]. Available: http:

//tryqa.com/what-is-incremental-model-advantages-disad

vantages-and-when-to-use-it/ (Accessed: 29.9.2020).

[25] W. Lynch, The brief of history of scrum, Jan. 2019. [Online]. Available: https:

//medium.com/@warren2lynch/the-brief-of-history-of-scr

um-15efb73b4701 (Accessed: 22.9.2020).

[26] Atlassian, Kanban - a brief introduction. [Online]. Available: https://www.a

tlassian.com/agile/kanban (Accessed: 13.7.2020).

[27] G. Inc, Devops. [Online]. Available: https://www.gartner.com/en/inf

ormation-technology/glossary/devops (Accessed: 13.7.2020).

[28] J. Vehent, Securing DevOps: security in the cloud. Manning Publications Co.,

2018.

[29] L. Mukherjee, Devsecops: A definition, explanation exploration of devops security,

Apr. 2020. [Online]. Available: https://sectigostore.com/blog/dev

secops-a-definition-explanation-exploration-of-devops-

security/ (Accessed: 23.9.2020).

[30] Atlassian, Devsecops: Injecting security into cd pipelines. [Online]. Available: ht

tps://www.atlassian.com/continuous-delivery/principles

/devsecops (Accessed: 25.9.2020).

[31] What is continuous security monitoring?, Sep. 2018. [Online]. Available: https:

//digitalguardian.com/blog/what-continuous-security-mo

nitoring (Accessed: 23.9.2020).

[32] C. P. Software, What is shift left security?, Aug. 2020. [Online]. Available: https

://www.checkpoint.com/cyber-hub/cloud-security/what-is

-shift-left-security/ (Accessed: 23.9.2020).

http://tryqa.com/what-is-incremental-model-advantages-disadvantages-and-when-to-use-it/
http://tryqa.com/what-is-incremental-model-advantages-disadvantages-and-when-to-use-it/
http://tryqa.com/what-is-incremental-model-advantages-disadvantages-and-when-to-use-it/
https://medium.com/@warren2lynch/the-brief-of-history-of-scrum-15efb73b4701
https://medium.com/@warren2lynch/the-brief-of-history-of-scrum-15efb73b4701
https://medium.com/@warren2lynch/the-brief-of-history-of-scrum-15efb73b4701
https://www.atlassian.com/agile/kanban
https://www.atlassian.com/agile/kanban
https://www.gartner.com/en/information-technology/glossary/devops
https://www.gartner.com/en/information-technology/glossary/devops
https://sectigostore.com/blog/devsecops-a-definition-explanation-exploration-of-devops-security/
https://sectigostore.com/blog/devsecops-a-definition-explanation-exploration-of-devops-security/
https://sectigostore.com/blog/devsecops-a-definition-explanation-exploration-of-devops-security/
https://www.atlassian.com/continuous-delivery/principles/devsecops
https://www.atlassian.com/continuous-delivery/principles/devsecops
https://www.atlassian.com/continuous-delivery/principles/devsecops
https://digitalguardian.com/blog/what-continuous-security-monitoring
https://digitalguardian.com/blog/what-continuous-security-monitoring
https://digitalguardian.com/blog/what-continuous-security-monitoring
https://www.checkpoint.com/cyber-hub/cloud-security/what-is-shift-left-security/
https://www.checkpoint.com/cyber-hub/cloud-security/what-is-shift-left-security/
https://www.checkpoint.com/cyber-hub/cloud-security/what-is-shift-left-security/

BIBLIOGRAPHY 83

[33] D. Merron, What is a pipeline in software engineering? intro to deployment, ci, &

cd pipelines, Nov. 2018. [Online]. Available: https://www.bmc.com/blog

s/deployment-pipeline/ (Accessed: 13.7.2020).

[34] G. GuimarãesCo-founder, What is a linter and why your team should use it?, Apr.

2020. [Online]. Available: https://sourcelevel.io/blog/what-is-

a-linter-and-why-your-team-should-use-it.

[35] A. Shostack, Threat modeling: Designing for security. John Wiley & Sons, 2014.

[36] Templateninja. [Online]. Available: https://websec.io/2013/08/27/Co

re-Concepts-Trust-Boundaries.html (Accessed: 29.9.2020).

[37] M. admin, 4 risk response strategies for project management success |, Feb. 2020.

[Online]. Available: https://mrmcentral.com/4- risk- respons

e- strategies- for- project- management- success/ (Accessed:

24.9.2020).

[38] What is spoofing?, Feb. 2020. [Online]. Available: https://www.forcepoin

t.com/it/cyber-edu/spoofing (Accessed: 29.9.2020).

[39] Data tampering in the world today. [Online]. Available: https://www.ukess

ays.com/essays/information-technology/data-tampering-i

n-the-world-today.php (Accessed: 29.9.2020).

[40] Repudiation attack. [Online]. Available: https://owasp.org/www-commu

nity/attacks/Repudiation_Attack (Accessed: 29.9.2020).

[41] N. S. Team, Information disclosure issues and attacks in web applications, Jun.

2019. [Online]. Available: https://www.netsparker.com/blog/web-s

ecurity/information-disclosure-issues-attacks/ (Accessed:

29.9.2020).

https://www.bmc.com/blogs/deployment-pipeline/
https://www.bmc.com/blogs/deployment-pipeline/
https://sourcelevel.io/blog/what-is-a-linter-and-why-your-team-should-use-it
https://sourcelevel.io/blog/what-is-a-linter-and-why-your-team-should-use-it
https://websec.io/2013/08/27/Core-Concepts-Trust-Boundaries.html
https://websec.io/2013/08/27/Core-Concepts-Trust-Boundaries.html
https://mrmcentral.com/4-risk-response-strategies-for-project-management-success/
https://mrmcentral.com/4-risk-response-strategies-for-project-management-success/
https://www.forcepoint.com/it/cyber-edu/spoofing
https://www.forcepoint.com/it/cyber-edu/spoofing
https://www.ukessays.com/essays/information-technology/data-tampering-in-the-world-today.php
https://www.ukessays.com/essays/information-technology/data-tampering-in-the-world-today.php
https://www.ukessays.com/essays/information-technology/data-tampering-in-the-world-today.php
https://owasp.org/www-community/attacks/Repudiation_Attack
https://owasp.org/www-community/attacks/Repudiation_Attack
https://www.netsparker.com/blog/web-security/information-disclosure-issues-attacks/
https://www.netsparker.com/blog/web-security/information-disclosure-issues-attacks/

BIBLIOGRAPHY 84

[42] Article: What is... denial-of-service (dos): F-secure. [Online]. Available: https:

//www.f-secure.com/v-descs/articles/denial-of-service

.shtml (Accessed: 29.9.2020).

[43] J. Melnick, What is privilege escalation?, Mar. 2020. [Online]. Available: https

://blog.netwrix.com/2018/09/05/what-is-privilege-escal

ation/ (Accessed: 29.9.2020).

[44] Rapid risk assessment. [Online]. Available: https://infosec.mozilla.or

g/guidelines/risk/rapid_risk_assessment (Accessed: 13.7.2020).

[45] Sast vs. dast: What’s the difference?: Synopsys, Aug. 2019. [Online]. Available:

https://www.synopsys.com/blogs/software-security/sast-

vs-dast-difference/ (Accessed: 13.7.2020).

[46] G. Stoneburner, C. Hayden, and A. Feringa, “Engineering principles for informa-

tion technology security (a baseline for achieving security), revision a”, 2004. DOI:

10.6028/nist.sp.800-27ra.

[47] 2019 global developer report: Devsecops finds security roadblocks divide teams.

[Online]. Available: https://about.gitlab.com/blog/2019/07/15

/global-developer-report/ (Accessed: 13.7.2020).

[48] Security awareness training - what it is and why it’s critical, Sep. 2020. [Online].

Available: https://www.mediapro.com/security-awareness-tra

ining/ (Accessed: 29.9.2020).

[49] What is the system log (syslog)? - definition from techopedia. [Online]. Available:

https://www.techopedia.com/definition/1858/system-log-

syslog (Accessed: 29.9.2020).

[50] What are message brokers? [Online]. Available: https://www.ibm.com/cl

oud/learn/message-brokers (Accessed: 13.7.2020).

https://www.f-secure.com/v-descs/articles/denial-of-service.shtml
https://www.f-secure.com/v-descs/articles/denial-of-service.shtml
https://www.f-secure.com/v-descs/articles/denial-of-service.shtml
https://blog.netwrix.com/2018/09/05/what-is-privilege-escalation/
https://blog.netwrix.com/2018/09/05/what-is-privilege-escalation/
https://blog.netwrix.com/2018/09/05/what-is-privilege-escalation/
https://infosec.mozilla.org/guidelines/risk/rapid_risk_assessment
https://infosec.mozilla.org/guidelines/risk/rapid_risk_assessment
https://www.synopsys.com/blogs/software-security/sast-vs-dast-difference/
https://www.synopsys.com/blogs/software-security/sast-vs-dast-difference/
https://doi.org/10.6028/nist.sp.800-27ra
https://about.gitlab.com/blog/2019/07/15/global-developer-report/
https://about.gitlab.com/blog/2019/07/15/global-developer-report/
https://www.mediapro.com/security-awareness-training/
https://www.mediapro.com/security-awareness-training/
https://www.techopedia.com/definition/1858/system-log-syslog
https://www.techopedia.com/definition/1858/system-log-syslog
https://www.ibm.com/cloud/learn/message-brokers
https://www.ibm.com/cloud/learn/message-brokers

BIBLIOGRAPHY 85

[51] J. Kernel, What is log analysis, why you need it, tools, practices and examples, Jul.

2020. [Online]. Available: https://www.xplg.com/what-is-log-ana

lysis-and-why-do-you-need-it/ (Accessed: 29.9.2020).

[52] Strengthening cybersecurity with log forensic analysis. [Online]. Available: http

s://www.graylog.org/post/strengthening-cybersecurity-w

ith-log-forensic-analysis (Accessed: 24.9.2020).

[53] B. Adair, Using infrastructure as code as a poor man’s dr, Dec. 2018. [Online].

Available: https://www.awsadvent.com/2018/12/09/using-infr

astructure-as-code-as-a-poor-mans-dr/ (Accessed: 24.9.2020).

https://www.xplg.com/what-is-log-analysis-and-why-do-you-need-it/
https://www.xplg.com/what-is-log-analysis-and-why-do-you-need-it/
https://www.graylog.org/post/strengthening-cybersecurity-with-log-forensic-analysis
https://www.graylog.org/post/strengthening-cybersecurity-with-log-forensic-analysis
https://www.graylog.org/post/strengthening-cybersecurity-with-log-forensic-analysis
https://www.awsadvent.com/2018/12/09/using-infrastructure-as-code-as-a-poor-mans-dr/
https://www.awsadvent.com/2018/12/09/using-infrastructure-as-code-as-a-poor-mans-dr/

	Introduction
	Cloud Environments
	What is the Cloud
	Cloud Providers
	Amazon Web Services (AWS)
	Infrastructure as a Code

	Virtualization, Containers and Microservices
	Virtualization
	Introduction
	Brief history
	How virtualization works

	Shifting to container technology
	Docker
	Introduction
	Docker vs. Virtual Machines
	Security considerations

	Kubernetes
	Introduction
	Glossary
	Security considerations

	Serverless approach
	Introduction
	Function as a Service (FaaS)
	Drawbacks
	Security considerations

	Traditional vs Modern Development
	Traditional models
	Waterfall model
	Incremental model
	Security in traditional models

	Agile model
	Scrum
	Kanban

	DevOps approach
	Introduction
	Why DevOps?
	The pillars of DevOps
	Difference with traditional ops

	DevSecOps Model
	Introduction
	Challenges
	Shifting security to the left
	The DevSecOps pipeline
	Threat modeling techniques
	STRIDE
	Rapid risk-assessment
	What to do with the results of threat modeling

	Automatic security scans
	Principle of least privilege
	How to communicate with other teams
	Security training and tools

	Incidents identification and response
	Logging layers
	Collection layer
	Streaming layer
	Analysis layer

	Forensic analysis
	Recovery

	Case study: Awake.AI
	Development process
	Overview of the technology used
	DevSecOps
	Incident response and recovery

	Conclusions
	References

