567 research outputs found

    Standard Cell-Based Ultra-Compact DACs in 40-nm CMOS

    Get PDF
    In this paper, very compact, standard cell-based Digital-to-Analog converters (DACs) based on the Dyadic Digital Pulse Modulation (DDPM) are presented. As fundamental contribution, an optimal sampling condition is analytically derived to enhance DDPM conversion with inherent suppression of spurious harmonics. Operation under such optimal condition is experimentally demonstrated to assure resolution up to 16 bits, with 9.4–239X area reduction compared to prior art. The digital nature of the circuits also allows extremely low design effort in the order of 10 man-hours, portability across CMOS generations, and operation at the lowest supply voltage reported to date. The limitations of DDPM converters, the benefits of the optimal sampling condition and digital calibration were explored through the optimized design and the experimental characterization of two DACs with moderate and high resolution. The first is a general-purpose DAC for baseband signals achieving 12-bit (11.6 ENOB) resolution at 110kS/s sample rate and consuming 50.8μW50.8\mu \text{W} , the second is a DAC for DC calibration achieving 16-bit resolution with 3.1-LSB INL, 2.5-LSB DNL, 45μW45\mu \text{W} power, at only 530μm2530\mu \text{m}^{2} area

    Design and implementation of 4 bit binary weighted current steering DAC

    Get PDF
    A compact current-mode Digital-to-Analog converter (DAC) suitable for biomedical application is repesented in this paper .The designed DAC is binary weighted in 180nm CMOS technology with 1.8V supply voltage. In this implementation, authors have focused on calculaton of Non linearity error say INL and DNL for 4 bit DAC having various type of switches: NMOS, PMOS and Transmission Gate. The implemented DAC uses lower area and power compared to unary architecture due to absence of digital decoders. The desired value of Integrated non linearity (INL) and Differential non linearity (DNL) for DAC for are within a range of +0.5LSB. Result obtained in this works for INL and DNL for the case DAC using Transmission Gate is +0.34LSB and +0.38 LSB respectively with 22mW power dissipation

    Emerging Relaxation and DDPM D/A Converters: Overview and Perspectives

    Get PDF
    In this paper, two emerging, digital-intensive, matching-indifferent, bitstream digital-to-analog (D/A) conversion techniques proposed in the last years, namely: the Relaxation D/A Conversion (ReDAC) and the Dyadic Digital Pulse Modulation (DDPM)-based D/A conversion, are reviewed and compared. After the basic concepts are introduced, the main challenges and research achievements over the last years are summarized and the performance of different integrated circuit (IC), field-programmable gate array (FPGA) and microcontroller-based ReDACs and DDPM-DACs are discussed and compared, highlighting advantages and open research questions. Present applications of the two techniques in voltage and current mode A/D conversion, RF modulation, digitally controlled switching-mode power converters, and machine learning accelerators will be discussed, and future application perspectives will be outlined

    A 6-bit, 500-MS/s current-steering DAC in SiGe BiCMOS technology and considerations for SFDR performance

    Get PDF
    This paper presents a six-bit current-steering digital-to-analogue converter (DAC), which optimises the spurious free dynamic range (SFDR) performance of high-speed binary weighted architectures by lowering current switch distortion and reducing the clock feed-through effect. A novel current source cell is implemented that comprises heterojunction bipolar transistor current switches, negative-channel metal-oxide semiconductor (NMOS) cascode and NMOS current source to overcome distortion by specifically enhancing the SFDR for high-speed DACs. The DAC is implemented using silicon-germanium (SiGe) BiCMOS 130 nm technology and achieves a better than 21.96 dBc SFDR across the Nyquist band for a sampling rate of 500 MS/s with a core size of 0.1 mm2 and dissipates just 4 mW compared to other BiCMOS DACs that achieve similar SFDR performance with higher output voltages, resulting in a much larger power dissipation

    Fully Synthesizable Low-Area Digital-to-Analog Converter With Graceful Degradation and Dynamic Power-Resolution Scaling

    Get PDF
    In this paper, a fully synthesizable digital-to-analog converter (DAC) is proposed. Based on a digital standard cell approach, the proposed DAC allows very low design effort, enables digital-like shrinkage across CMOS generations, low area at down-scaled technologies, and operation down to near-threshold voltages. The proposed DAC can operate at supply voltages that are significantly lower and/or at clock frequencies that are significantly greater than the intended design point, at the expense of moderate resolution degradation. In a 12-bit 40-nm testchip, graceful degradation of 0.3bit/100mV is achieved when V_DD is over-scaled down to 0.8V, and 1.4bit/100mV when further scaled down to 0.6V. The proposed DAC enables dynamic power-resolution tradeoff with 3X (2X) power saving for 1-bit resolution degradation at iso-sample rate (iso-resolution). A 12-bit DAC testchip designed with a fully automated standard cell flow in 40nm consumes 55µW at 27kS/s (9.1µW at 13.5kS/s) at a compact area of 500µm^2 and low voltage of 0.55V

    Design of Relaxation Digital-to-Analog Converters for Internet of Things Applications in 40nm CMOS

    Get PDF
    A 10-bit-400kS/s and a 10-bit-2MS/s Relaxation Digital to Analog Converters (ReDAC) in 40nm are presented in this paper. The two ReDACs operate from a 600mV power supply, occupy a silicon area of less than 1,000um^2. The first/second DAC achieve a maximum INL of 0.33/0.72 LSB and a maximum DNL of 0.2/1.27 LSB and 9.9/9.4 ENOB based on post-layout simulations. The average energy per conversion is less than 1.1/0.73pJ, corresponding to a FOM of 1.1/1.08 fJ/(conv. step), which make them well suited to Internet of Things (IoT) applications. (PDF) Design of Relaxation Digital-to-Analog Converters for Internet of Things Applications in 40nm CMOS. Available from: https://www.researchgate.net/publication/336552301_Design_of_Relaxation_Digital-to-Analog_Converters_for_Internet_of_Things_Applications_in_40nm_CMOS [accessed Nov 16 2019]

    Doctor of Philosophy

    Get PDF
    dissertationSince the late 1950s, scientists have been working toward realizing implantable devices that would directly monitor or even control the human body's internal activities. Sophisticated microsystems are used to improve our understanding of internal biological processes in animals and humans. The diversity of biomedical research dictates that microsystems must be developed and customized specifically for each new application. For advanced long-term experiments, a custom designed system-on-chip (SoC) is usually necessary to meet desired specifications. Custom SoCs, however, are often prohibitively expensive, preventing many new ideas from being explored. In this work, we have identified a set of sensors that are frequently used in biomedical research and developed a single-chip integrated microsystem that offers the most commonly used sensor interfaces, high computational power, and which requires minimum external components to operate. Included peripherals can also drive chemical reactions by setting the appropriate voltages or currents across electrodes. The SoC is highly modular and well suited for prototyping in and ex vivo experimental devices. The system runs from a primary or secondary battery that can be recharged via two inductively coupled coils. The SoC includes a 16-bit microprocessor with 32 kB of on chip SRAM. The digital core consumes 350 μW at 10 MHz and is capable of running at frequencies up to 200 MHz. The integrated microsystem has been fabricated in a 65 nm CMOS technology and the silicon has been fully tested. Integrated peripherals include two sigma-delta analog-to-digital converters, two 10-bit digital-to-analog converters, and a sleep mode timer. The system also includes a wireless ultra-wideband (UWB) transmitter. The fullydigital transmitter implementation occupies 68 x 68 μm2 of silicon area, consumes 0.72 μW static power, and achieves an energy efficiency of 19 pJ/pulse at 200 MHz pulse repetition frequency. An investigation of the suitability of the UWB technology for neural recording systems is also presented. Experimental data capturing the UWB signal transmission through an animal head are presented and a statistical model for large-scale signal fading is developed

    Analog processing by digital gates: fully synthesizable IC design for IoT interfaces

    Get PDF
    Analog integrated circuits do not take advantage of scaling and are easily the bottleneck in terms of cost and performance in Internet of Things (IoT) sensor nodes integrated in nanoscale technologies. While this challenge is most commonly addressed by devising more “digital friendly” analog cells based on traditional design concepts, the possibility to translate analog functions into digital, so that to implement them by true digital gates, is now emerging as a promising alternative. This last approach, which challenges the idea that “analog circuits will be always needed”, is presented in this tutorial starting from the theoretical background to its application in digital-based operational amplifiers, voltage references, oscillators and data converters integrated on silicon which have proposed in recent literature. The applicability of the concepts to the design of ICs which are natively portable across technology nodes and highly reconfigurable, thus enabling dynamic energy quality scaling, as well as a low design effort and a fast time-to-market will be described

    Wideband CMOS Data Converters for Linear and Efficient mmWave Transmitters

    Get PDF
    With continuously increasing demands for wireless connectivity, higher\ua0carrier frequencies and wider bandwidths are explored. To overcome a limited transmit power at these higher carrier frequencies, multiple\ua0input multiple output (MIMO) systems, with a large number of transmitters\ua0and antennas, are used to direct the transmitted power towards\ua0the user. With a large transmitter count, each individual transmitter\ua0needs to be small and allow for tight integration with digital circuits. In\ua0addition, modern communication standards require linear transmitters,\ua0making linearity an important factor in the transmitter design.In this thesis, radio frequency digital-to-analog converter (RF-DAC)-based transmitters are explored. They shift the transition from digital\ua0to analog closer to the antennas, performing both digital-to-analog\ua0conversion and up-conversion in a single block. To reduce the need for\ua0computationally costly digital predistortion (DPD), a linear and wellbehaved\ua0RF-DAC transfer characteristic is desirable. The combination\ua0of non-overlapping local oscillator (LO) signals and an expanding segmented\ua0non-linear RF-DAC scaling is evaluated as a way to linearize\ua0the transmitter. This linearization concept has been studied both for\ua0the linearization of the RF-DAC itself and for the joint linearization of\ua0the cascaded RF-DAC-based modulator and power amplifier (PA) combination.\ua0To adapt the linearization, observation receivers are needed.\ua0In these, high-speed analog-to-digital converters (ADCs) have a central\ua0role. A high-speed ADC has been designed and evaluated to understand\ua0how concepts used to increase the sample rate affect the dynamic performance
    corecore