19 research outputs found

    Visualización de procesos naturales aplicando granularidad temporal difusa rugosa a imágenes de speckle

    Get PDF
    Presentamos una metodología para visualizar procesos naturales aplicando granularidad temporal a imágenes de patrones de moteado laser dinámico. Esta metodología permite identificar niveles de actividad empleando pocas imágenes y además, visualizar como la actividad evoluciona en el tiempo en casos donde otras técnicas alternativas no lo detectan. Se muestran dos ejemplos, uno relativo a la detección de daño en manzanas y otro relativo al tiempo de secado de pintura, ambos de interés comercial e industrial.We present a methodology to visualize a natural process by applying computational granularity to dynamic laser speckle pattern images. This methodology not only allows to identify activity levels with few images but also to visualise how the activity evolves over time even when alternative techniques do not detect it. Two examples are shown, one relative to detection of bruise in apples and other relative to paint drying time, which are of commercial/industrial interest.Fil: Dai Pra, Ana Lucia. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; ArgentinaFil: Rabal, Hector Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; Argentin

    Exploring parallel coordinates plots in virtual reality

    Get PDF
    Parallel Coordinates Plots (PCP) are a widely used approach to interactively visualize and analyze multidimensional scientific data in a 2D environment. In this paper, we explore the use of Parallel Coordinates in an immersive Virtual Reality (VR) 3D visualization environment as a means to support the decision-making process in engineering design processes. We evaluate the potential of VR PCP using a formative qualitative study with seven participants. In a task involving 54 points with 29 dimensions per point, we found that participants were able to detect patterns in the dataset compared with a previously published study with two expert users using traditional 2D PCP, which acts as the gold standard for the dataset. The dataset describes the Pareto front for a three-objective aerodynamic design optimization study in turbomachinery.Cambridge European & Trinity Hall Scholarshi

    Improved N-dimensional Data Visualization from Hyper-radial Values

    Get PDF
    Higher-dimensional data, which is becoming common in many disciplines due to big data problems, are inherently difficult to visualize in a meaningful way. While many visualization methods exist, they are often difficult to interpret, involve multiple plots and overlaid points, or require simultaneous interpretations. This research adapts and extends hyper-radial visualization, a technique used to visualize Pareto fronts in multi-objective optimizations, to become an n-dimensional visualization tool. Hyper-radial visualization is seen to offer many advantages by presenting a low-dimensionality representation of data through easily understood calculations. First, hyper-radial visualization is extended for use with general multivariate data. Second, a method is developed by which to optimally determine groupings of the data for use in hyper-radial visualization to create a meaningful visualization based on class separation and geometric properties. Finally, this optimal visualization is expanded from two to three dimensions in order to support even higher-dimensional data. The utility of this work is illustrated by examples using seven datasets of varying sizes, ranging in dimensionality from Fisher Iris with 150 observations, 4 features, and 3 classes to the Mixed National Institute of Standards and Technology data with 60,000 observations, 717 non-zero features, and 10 classes

    IPCP: Immersive Parallel Coordinates Plots for Engineering Design Processes

    Get PDF
    Computational engineering design methods and tools are common practice in modern industry. Such approaches are integral in enabling designers to efficiently explore larger and more complex design spaces. However, at the same time, computational engineering design methods tend to dramatically increase the number of candidate solutions that decision-makers must interpret in order to make appropriate choices within a set of solutions. Since all candidate solutions can be represented in digital form together with their assessment criteria, evaluated according to some sort of simulation model, a natural way to explore and understand the complexities of the design problem is to visualize their multidimensional nature. The task now involves the discovery of patterns and trends within the multidimensional design space. In this work, we aim to enhance the design decision-making process by embedding visual analytics into an immersive virtual reality environment. To this end, we present a system called IPCP: immersive parallel coordinates plots. IPCP combines the well-established parallel coordinates visualization technique for high-dimensional data with immersive virtual reality. We propose this approach in order to exploit and discover efficient means to use new technology within a conventional decision-making process. The aim is to provide benefits by enhancing visualizations of 3D geometry and other physical quantities with scientific information. We present the design of this system, which allows the representation and exploration of multidimensional scientific datasets. A qualitative evaluation with two surrogate expert users, knowledgeable in multidimensional data analysis, demonstrate that the system can be used successfully to detect both known and previously unknown patterns in a real-world test dataset, producing an early indicative validation of its suitability for decision support in engineering design processes.Cambridge European and Trinity Hall; Engineering and Physical Sciences Research Council (EPSRC-1788814

    Virtual reality-based parallel coordinates plots enhanced with explainable ai and data-science analytics for decision-making processes

    Get PDF
    We present a refinement of the Immersive Parallel Coordinates Plots (IPCP) system for Virtual Reality (VR). The evolved system provides data-science analytics built around a well-known method for visualization of multidimensional datasets in VR. The data-science analytics enhancements consist of importance analysis and a number of clustering algorithms including a novel SuMC (Subspace Memory Clustering) solution. These analytical methods were applied to both the main visualizations and supporting cross-dimensional scatter plots. They automate part of the analytical work that in the previous version of IPCP had to be done by an expert. We test the refined system with two sample datasets that represent the optimum solutions of two different multi-objective optimization studies in turbomachinery. The first one describes 54 data items with 29 dimensions (DS1), and the second 166 data items with 39 dimensions (DS2). We include the details of these methods as well as the reasoning behind selecting some methods over others.</jats:p

    A Visual Analytics Approach to Debugging Cooperative, Autonomous Multi-Robot Systems' Worldviews

    Full text link
    Autonomous multi-robot systems, where a team of robots shares information to perform tasks that are beyond an individual robot's abilities, hold great promise for a number of applications, such as planetary exploration missions. Each robot in a multi-robot system that uses the shared-world coordination paradigm autonomously schedules which robot should perform a given task, and when, using its worldview--the robot's internal representation of its belief about both its own state, and other robots' states. A key problem for operators is that robots' worldviews can fall out of sync (often due to weak communication links), leading to desynchronization of the robots' scheduling decisions and inconsistent emergent behavior (e.g., tasks not performed, or performed by multiple robots). Operators face the time-consuming and difficult task of making sense of the robots' scheduling decisions, detecting de-synchronizations, and pinpointing the cause by comparing every robot's worldview. To address these challenges, we introduce MOSAIC Viewer, a visual analytics system that helps operators (i) make sense of the robots' schedules and (ii) detect and conduct a root cause analysis of the robots' desynchronized worldviews. Over a year-long partnership with roboticists at the NASA Jet Propulsion Laboratory, we conduct a formative study to identify the necessary system design requirements and a qualitative evaluation with 12 roboticists. We find that MOSAIC Viewer is faster- and easier-to-use than the users' current approaches, and it allows them to stitch low-level details to formulate a high-level understanding of the robots' schedules and detect and pinpoint the cause of the desynchronized worldviews.Comment: To appear in IEEE Conference on Visual Analytics Science and Technology (VAST) 202

    Effective Visualization Approaches For Ultra-High Dimensional Datasets

    Get PDF
    Multivariate informational data, which are abstract as well as complex, are becoming increasingly common in many areas such as scientific, medical, social, business, and so on. Displaying and analyzing large amounts of multivariate data with more than three variables of different types is quite challenging. Visualization of such multivariate data suffers from a high degree of clutter when the numbers of dimensions/variables and data observations become too large. We propose multiple approaches to effectively visualize large datasets of ultrahigh number of dimensions by generalizing two standard multivariate visualization methods, namely star plot and parallel coordinates plot. We refine three variants of the star plot, which include overlapped star plot, shifted origin plot, and multilevel star plot by embedding distribution plots, displaying dataset in groups, and supporting adjustable positioning of the star axes. We introduce a bifocal parallel coordinates plot (BPCP) based on the focus + context approach. BPCP splits vertically the overall rendering area into the focus and context regions. The focus area maps a few selected dimensions of interest at sufficiently wide spacing. The remaining dimensions are represented in the context area in a compact way to retain useful information and provide the data continuity. The focus display can be further enriched with various options, such as axes overlays, scatterplot, and nested PCPs. In order to accommodate an arbitrarily large number of dimensions, the context display supports the multi-level stacked view. Finally, we present two innovative ways of enhancing parallel coordinates axes to better understand all variables and their interrelationships in high-dimensional datasets. Histogram and circle/ellipse plots based on uniform and non-uniform frequency/density mappings are adopted to visualize distributions of numerical and categorical data values. Color-mapped axis stripes are designed in the parallel coordinates layout so that correlations can be fully realized in the same display plot irrespective of axes locations. These colors are also propagated to histograms as stacked bars and categorical values as pie charts to further facilitate data exploration. By using the datasets consisting of 25 to 130 variables of different data types we have demonstrated effectiveness of the proposed multivariate visualization enhancements

    Doctor of Philosophy

    Get PDF
    dissertationWith the ever-increasing amount of available computing resources and sensing devices, a wide variety of high-dimensional datasets are being produced in numerous fields. The complexity and increasing popularity of these data have led to new challenges and opportunities in visualization. Since most display devices are limited to communication through two-dimensional (2D) images, many visualization methods rely on 2D projections to express high-dimensional information. Such a reduction of dimension leads to an explosion in the number of 2D representations required to visualize high-dimensional spaces, each giving a glimpse of the high-dimensional information. As a result, one of the most important challenges in visualizing high-dimensional datasets is the automatic filtration and summarization of the large exploration space consisting of all 2D projections. In this dissertation, a new type of algorithm is introduced to reduce the exploration space that identifies a small set of projections that capture the intrinsic structure of high-dimensional data. In addition, a general framework for summarizing the structure of quality measures in the space of all linear 2D projections is presented. However, identifying the representative or informative projections is only part of the challenge. Due to the high-dimensional nature of these datasets, obtaining insights and arriving at conclusions based solely on 2D representations are limited and prone to error. How to interpret the inaccuracies and resolve the ambiguity in the 2D projections is the other half of the puzzle. This dissertation introduces projection distortion error measures and interactive manipulation schemes that allow the understanding of high-dimensional structures via data manipulation in 2D projections
    corecore