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Research Article

Improved N-dimensional data
visualization from hyper-radial values

Todd Paciencia1 , Trevor Bihl2 and Kenneth Bauer3

Abstract

Higher-dimensional data, which is becoming common in many disciplines due to big data problems, are inherently

difficult to visualize in a meaningful way. While many visualization methods exist, they are often difficult to interpret,

involve multiple plots and overlaid points, or require simultaneous interpretations. This research adapts and extends

hyper-radial visualization, a technique used to visualize Pareto fronts in multi-objective optimizations, to become an

n-dimensional visualization tool. Hyper-radial visualization is seen to offer many advantages by presenting a

low-dimensionality representation of data through easily understood calculations. First, hyper-radial visualization is

extended for use with general multivariate data. Second, a method is developed by which to optimally determine

groupings of the data for use in hyper-radial visualization to create a meaningful visualization based on class separation

and geometric properties. Finally, this optimal visualization is expanded from two to three dimensions in order to

support even higher-dimensional data. The utility of this work is illustrated by examples using seven datasets of varying

sizes, ranging in dimensionality from Fisher Iris with 150 observations, 4 features, and 3 classes to the Mixed National

Institute of Standards and Technology data with 60,000 observations, 717 non-zero features, and 10 classes.
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Introduction

High-dimensional data are naturally difficult to visual-

ize in a meaningful way, as anything with more than

four dimensions provides challenges.1 Unfortunately,

many real-world datasets have much greater than

four dimensions and have complex interactions

between features, making a simple plotting of feature

subsets impractical for most purposes. While visual

data mining can be used to find structures in datasets,2

multivariate data complicates visualizations through

the presence of those many features which have differ-

ent interactions with other features.
Appropriate visualizations are frequently critical in

data analysis, adding meaning, and displaying results,

with best practices providing relatively simple and clear

output to the audience.3,4 Additionally, visualization

can provide confidence in data exploration since visual-

izations are frequently more intuitive than complex

algorithms.5 For the purposes of this research, we are

interested in being able to utilize an interpretable visu-

alization in order to identify general characteristics of a

multivariate dataset when little is known about its

underlying structure. The extent of class overlap, dis-

criminatory features, and presence of outliers and clus-

ters in the data are all useful to visualize. In the

application of classification, visualization may provide

insight into class structure and the linearity of

decision boundaries.
Various methods have therefore been proposed for

visualizing multi-dimensional datasets. However, issues

exist with these methods; some become computational-

ly expensive as the number of data features increases,
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while others are frequently not intuitive or do not lend

themselves to the visualization of many data features.

Surveys of various methods include those by Grinstein

et al.,6 Keim,5 Kromesch and Juhasz,7 Chan,8 and

Kehrer and Hauser.9 Mühlbacher et al. presented a

survey of frequently used algorithms and their fulfillment

of certain visual analytic requirements.10 The presented

hyper-radial visualization (HRV) method is incidentally

more user-friendly than many of these methods, e.g.

neural networks, k-means, support vector machines,

and t-Distributed Stochastic Neighborhood Embedding

(t-SNE), in that HRV’s basic operation and computa-

tions are straightforward, easy to implement, and if

coded properly, can allow for some degree of interactiv-

ity as the visualization is built.
The HRV concept was originally proposed by Chiu

and Bloebaum for visualization of Pareto frontiers in

multi-objective optimization problems.11 Herein, an

efficient n-dimensional multivariate data visualization

version of HRV is presented; this method is powerful in

that data features are only aggregated, rather than

transformed, to create the resulting visualization.

Whereas HRV was originally designed for comparison

of competing optimal designs, we broaden its use for

visualizing class and exemplar characteristics in multi-

variate data. In order to improve the visualization, we

also present optimization strategies to generate the

groups required for both supervised and unsupervised

cases. Now, as the number of features increases, any

two-dimensional visualization becomes inherently lim-

ited in being able to display the information present.

Here, the authors also create a three-dimensional

version to enable visualization for larger numbers

of features.
For this paper, example n-dimensional data are pre-

sented and existing visualization methods are reviewed,

followed by these contributions (in order):

1. The HRV method is extended to multivariate data.
2. An optimal group algorithm is developed for the

HRV visualization, both in the event of having

and not having class information.

3. A three-dimensional version of HRV is developed

incorporating the optimization strategies.

Example datasets

Seven example datasets, described in Table 1, are

employed to illustrate, evaluate, and compare our

HRV methods to existing visualization methods.

These datasets range in size from 150 observations

with 4 features and 3 classes in Fisher Iris,12 to

60,000 observations, 717 (non-zero) features, and 10

classes in Mixed National Institute of Standards and

Technology (MNIST).13 All datasets have multiple

classes, ranging from 2 to 10. Typically, data features

correspond to measurements, e.g. Fisher Iris contains

dimensional measurement of Iris flower petal and

sepals.12 Fisher Iris, in particular, is a common dataset

used for visualization comparison.6,14 In general, the

datasets were taken “as is”; however, 16 missing

values in the Breast Cancer dataset were imputed via

L1 nearest-neighbor approach within-class. Further

details are necessary to understand the MNIST and

Pavia datasets. MNIST contains data corresponding

to visualizing hand-written numerals, and therefore

all features are pixels in an image.13 For data quality

purposes, features (pixels) with zero range were

removed. Pavia considers a 610� 340-pixel hyperspec-

tral image (HSI) from the ROSIS sensor, capturing

bands between approximately 0.43 and 0.86 lm.15 In

HSI, each pixel of an image has an associated spectral

signature over a set of bands, or discrete intervals on

the electromagnetic spectrum.
These sets were chosen to showcase flexibility to

number of exemplars, number of features, number of

classes, and general data complexity. Since Fisher Iris12

is both a commonly used dataset and among the

smallest datasets examined herein, it will be presented

first to show the disadvantages of other methods.

Understanding the relative complexity and an ability

to generalize is important. Although a direct numerical

comparison of complexity for these datasets is difficult,

an extended Fisher ratio, from Gu et al.,19 for c classes

Table 1. Data under analysis.

Dataset Number of classes Number of features Number of observations Extended Fisher ratio (/p)

Insects16,17 4 3 36 2.08 (0.69)

Fisher12 3 4 150 30.78 (7.70)

Escherichia coli18 8 7 336 11.33 (1.62)

Breast Cancer (Diagnostic)18 2 9 699 10.93 (1.21)

Wine18 3 13 178 13.93 (1.07)

Pavia University (HSI) 15 10 103 207,400 18.54 (0.17)

MNIST (Training)13 10 717 60,000 106.60 (0.15)

HSI: hyperspectral image; MNIST: Mixed National Institute of Standards and Technology.
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summing the Fisher scores of each feature is provided.

This is

Xp
i¼1

Xc

j¼1 nj lji � l�ið Þ2Xc

j¼1 njr
2
ji

0
@

1
A (1)

where nj is the number of exemplars in class j, r2ji is the
sample variance of feature i in class j, lji is the sample
mean of feature i in class j, and l�i is the sample mean

of feature i over all classes. As the visualizations later

also imply, the Fisher dataset has the best general class
structure among these datasets.

Existing visualizations

Various methods are in literature and practice for visu-

alizing data, but all carry limitations. Though Lengler
and Eppler created a periodic table of 100 visualiza-

tions to put some structure towards situational use,

that structure does not provide a detailed explanation
of the limitations of any given technique on a specific

dataset.20 Therefore, we discuss several techniques and

their limitations here. Scatterplots are one common
method, where each feature is plotted against another

feature and simultaneous interpretations are posited.7

Alternatively, features can be plotted three at-a-time to

create three-dimensional figures. However, both of

these methods can become difficult to interpret as the
number of features or observations increase. For exam-

ple, even with a relatively small number of features and

observations, scatterplots are difficult to interpret, as
seen in Figure 1(a) for Fisher Iris.

Parallel coordinates is another commonly used

method, where features are normalized according to
their range and then each exemplar is plotted as a

line of its features.7,21 To illustrate this method,

Fisher Iris is visualized using parallel coordinates in
Figure 1(b). It is apparent that even Fisher Iris is not

easy to analyze and interpret with these coordinates
due to many overlapping lines. Logically, more com-

plex and larger datasets would be increasingly difficult

to visualize with this tool, a problem described by
Dang et al. as overplotting.22 While variants of parallel

coordinates also exist, such as connecting normalized

feature values radiating from the center of a circle akin
to a radar graph,7 or using parallel dual plots,23 these

results can still be difficult to interpret due to
overplotting.

Many additional visualization techniques exist.

These include, in part, iconographic (or glyph) dis-
plays, multi-line graphs, by-feature heat maps, logic

diagrams of features, survey plots of features, and hier-

archal methods.6,8 Additional methods include

dimensional stacking,1 multiple frames,24 and nonlin-
ear magnification.24 Mosaic matrices,25 using a hyper-
box26 and table lens,27 are also used. RadViz places
dimensional anchors (the features) around a circle,
with spring constants utilized to represent relational
values among points.14 PolyViz is a similar construct,
with each feature anchored instead as a line.6 This is
depicted for Fisher Iris in Figure 2. All of the methods
mentioned have obvious interpretation, overplotting,
and clutter issues as the number of features and/or
exemplars grows.

Some visualization techniques have been developed
in the field of multi-objective optimization to be able to
compare Pareto optimal solutions for problems with
more than three objectives. There, these objective func-
tions are optimized simultaneously. In order to deter-
mine optimality, optimal trade-offs are maintained,
where a solution is Pareto optimal if no other feasible
point is better in all objectives. Hyperspace Diagonal
Counting is a method based on the premise of Cantor’s
counting method, mapping exemplars to a line by
counting along hyperdiagonal bins that move away
from the origin.28 However, this method becomes inef-
ficient to compute as the number of features and exem-
plars grow, and may gravitate values toward the axes
thus limiting its usefulness.29 Another technique, which
we leverage herein, is presented in the next section.

Dimensionality reduction is another class of techni-
ques that can be used within visualization methods to
try and reduce the amount of information via either
feature extraction or feature selection. Of note here
are feature extraction methods that transform data to
a different space. Principal component analysis (PCA),
for instance, generates projection vectors that account
for variability found in the data.30 Thus, data can be
projected into a smaller number of dimensions (new
features) while retaining a percentage of the total var-
iance. Unfortunately, PCA projections do not guaran-
tee that characteristics of the data, such as distances
between points, are maintained. Instead, the
Johnson–Lindenstrauss theorem shows that for any
0 < � < 1, any set of n points X in Rp, and
p � k � 4 �2=2� �3=3

� ��1
ln n, there exists a map f :

Rp ! Rk that can be found in randomized polynomial
time such that for all u; v 2 X � Rp, 1� �ð Þjju� vjj2 �
jjfðuÞ � fðvÞjj2 � 1þð �Þjju� vjj2.31,32 This theorem
implies the existence of a mapping that could be
found that would maintain the distances between
points in the mapped space and the original space.
Such a mapping would be very powerful for the pur-
poses of visualization. Unfortunately, a way to explic-
itly generate this mapping has yet to be determined,
and the required bound on k relative to a small � can
still require large dimensionality. Achlioptas took it a
step further and determined a projection matrix that

Paciencia et al. 3
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Figure 1. (a) Fisher Iris feature-by-feature scatterplots and (b) parallel coordinate representation.
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satisfies the Johnson–Lindenstrauss theorem with a
modified bound on k

k � 4� 2ln 1� qð Þ
ln n

� �
�2=2� �3=3
� ��1

ln n (2)

with probability at least q.33 This is still problematic, in
that the lower bound for k, k0, is still high even for
large � and low q. For example, if n¼ 200, � ¼ 0:9,
and q¼ 0.1, k � 132. In fact, we can note from
Figure 3, a plot of this bound over worst-case ranges
of n, �, and q that the bound increases as n and q
increase, and as � decreases. Multi-dimensional scaling
is another technique that tries to approximate the
Johnson–Lindenstrauss mapping, but with Euclidean
distance as the similarity metric, the embedding is the
same as PCA scores and does not guarantee mainte-
nance of distances.34 Numerous other dimension reduc-
tion techniques exist, but they typically involve using
weighted combinations or transformations of the fea-
tures, making them very difficult to interpret in terms
of how they relate to the original data.

Bertini et al. suggested the evaluation of high-
dimensional data visualizations via (1) the extent to

which data groupings are maintained, (2) the extent

to which systematic changes in one dimension are

accompanied by changes in others, (3) the mainte-

nance of outliers, (4) the level of clutter or crowding

that could make interpretation difficult, (5) the extent

to which feature information is preserved, and (6)

any remaining aspects that may add complexity to

the visualization.35 Despite the abundance of visual-

ization techniques that exist in the literature, the

authors suggest that few, if any, meet a level of qual-

ity for several of these metrics. Therefore, we seek to

leverage an existing visualization from the optimiza-

tion field in order to attempt to satisfy, at a mini-

mum, maintenance of data groupings and outliers,

reduced clutter relative to classes, interpretability

relative to original features, and minimal complexity

of the visualization.

Hyper-radial visualization

Let Fi denote the ith feature (column) of the N� p

exemplar-by-feature dataset X. In order to create a

hyper-radial method for general data similar to the

work of Chiu and Bloebaum in multi-objective

Figure 2. Fisher Iris PolyViz visualization.
Source: Reprinted from ACM Press.6
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optimization,11 first, we normalize each feature
according to

~Fi ¼ Fi � Fi;min

Fi;max � Fi;min
2 ½0; 1� (3)

for i ¼ 1; . . . ; p, where Fi;min and Fi;max are the minimum
and maximum values of the exemplars in that feature.
Although this changes the scale of features relative to
one another, it maintains the information found within
the feature and also later ensures values in the interval
½0; 1� for the visualization, preventing outliers from
skewing the visualization too greatly.

Next, features are grouped into two sets,
most simply

G1 ¼ ~F1; ~F2; . . . ; ~Fs

� �
and G2 ¼ ~Fsþ1; ~Fsþ2; . . . ; ~Fp

n o
(4)

where s ¼ dp=2e. In their work with objective function
data, Chiu and Bloebaum did not choose such groups
in any special way.11 For each group, a hyper-radial
calculation (HRC) value is computed for each exem-
plar as

HRCj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i2Gj

~F
2

i

nj

vuut
(5)

where j¼ 1 or 2 for Gj, and nj is the number of features
in group j. To maintain an unbiased representation, the

two groups are kept equal in size. Thus, for an odd
number of features, one group is given a dummy zero
objective. With two groups, points can be plotted two-
dimensionally using the HRC values. Finally, curves of
constant distance from the origin (minimum feature
values) are added to the plot.

Fisher Iris is visualized through HRV in Figure 4(a).
As can be seen, this visualization already clearly depicts
some class boundaries. The axes are annotated with the
grouping number, e.g. G1, and the features grouped on
a given axis, e.g. F : 1 3 for feature 1 and feature 3.
Additionally, the data are not plotted through a
myriad of plots or overlapping lines, as shown in
Figure 1.

This technique is powerful in that it is easily inter-
pretable and calculable. In reality, the HRC values are
just a weighted Euclidean distance, or hyper-radial, of
the groups of normalized features from their minimum
values. This is easier to directly interpret than PCA, e.g.
where each axis is a different weighted sum of features.
With HRV, the geometry of the data is essentially
maintained through a polar plotting approach without
any true transformation of the data. Similarity between
exemplars is maintained for each feature group within
a scaled factor. Minimums occur at 0, and maximums
at 1, making it easy to relate positioning of solutions to
one another.

Improving HRV

However, there are also limitations to this initial HRV
methodology when used as a data visualization tool.
The groups aggregate information from the features,

Figure 3. k0 values as a function of error �, probability q, and n observations in reference to equation (2) and the projection from
Achlioptas.33
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and so different data points can possibly map to the

same point in the visualization. Further, the member-

ship of each group can have a significant impact on the

visualization. As overall visualization crowding is dif-

ficult to avoid in a low number of dimensions, we are

more concerned with class and outlier characteristics of

the data, and the issue of group membership.
We propose using the adapted HRV method with

multivariate data, after the addition of a few further

modifications. Adding stacked-bar histograms to each

HRC axis in the visualization can serve as an additional

way to detect and see information as no matter the

visualization, any overlap of high-volume, high-dimen-

sional data can be difficult to determine in two or three

dimensions. In the following sections, we will also

introduce a method to choose optimal groupings and

a third HRC axis for use with larger-dimensional data.
Figure 4(b) displays an HRV again for Fisher Iris

with stacked-bar histograms and different groups from

Figure 4(a), where the histogram legends denote the
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Figure 4. (a) A Fisher Iris HRV representation and (b) instead with “optimal” groups.
HRV: hyper-radial visualization.
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largest number of class exemplars in any bin, for a rel-
ative size comparison. It is clear from the visualization
that the largest separation can be achieved using the
third and fourth features (petal length and width). The
class boundaries are also now obvious, and this demon-
strates that HRV presents an effective means to visualize
this four-dimensional data in two dimensions.

As alluded to, the success of the visualization and these
improvements to HRV, for our purposes, are still entirely
dependent on a proper choice of grouped features for the
HRC computations. Therefore, next, we discuss strategies
with which to find optimal, useful groupings.

Determining optimal groupings

Given some objective Jt, here we use t simply as an index
with which to reference a specific objective function,
finding an optimal grouping in two dimensions can be
formulated as shown in equation (6), where xi is the
value of the exemplar x in the ith feature, ~xi is its nor-
malized value, and for later notation simplicity, we use vj
to denote the jth HRC axis coordinates HRCj. If p is
odd, recall that a dummy zero feature is added to one of
the groups to keep the visualization unbiased. This for-
mulation is robust to that adjustment. Additionally, this
new binary set formulation enables us to develop strat-
egies to find optimal groups. However, as the objective
functions we use and develop here are highly non-linear
directly or as a result of also having the non-linearHRC
values input, and because group selection is binary, this
problem is not trivial. That is, linear under-estimators36

or pseudo-Boolean methods37 cannot necessarily be
used here to simplify or speed the non-linear optimiza-
tion. Instead, we develop a simple heuristic method to be
able to efficiently generate an optimal, or pseudo-
optimal, visualization for data when complete enumer-
ation is not an option. In Appendix 1, we compare this
method to optimizing a relaxed version of the problem
using non-linear programming methods, relaxing the
binary constraints until a final group selection. First,
we will present objectives to use for Jt

max Jt X; yð Þ ¼ Jt v1ðXÞ; v2ðXÞð Þ

subject to
Xp
i¼1

yi ¼ dp=2e

yi 2 0; 1f g; for i ¼ 1; . . . ; p

x 2 X; where;

v1ðxÞ ¼ HRC1ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXp

i¼1 yi~x
2
iXp

i¼1 yi

vuut ; and

v2ðxÞ ¼ HRC2ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXp

i¼1 1� yið Þ~x2
iXp

i¼1 1� yið Þ

vuut

(6)

Supervised training. In the case where class informa-

tion is known, we propose that the Rayleigh coefficient

from multiple Fisher discriminant analysis (MDA) can

be used as motivation to find groups with near-optimal

class separation (or optimal in the linear sense). This

coefficient is a ratio such that its maximization

increases separation between class means and decreases

the separation within class data.
In MDA, a set of min c� 1; pð Þ optimal linear pro-

jection directions are desired, where c is the number of

classes, in order to best separate the means of the pro-

jected classes and minimize their within-class variances.

Linear directions are used in MDA because the equiv-

alent non-linear problem would increase the size of the

data due to the use of kernels in Kernel MDA, where

this latter non-linear form also necessitates a good

choice of kernel.38–40 The within-class variance matrix

of the visualization data is

SW ¼
Xc
i¼1

X
x2Xi

vðxÞ � lið Þ vðxÞ � lið ÞT (7)

where the subscripts denote the class, the HRC coor-

dinates are in column vector form, and li is the mean

of the HRC coordinates, for exemplars in class i.

The between-class variance matrix SB is defined so

that the total scatter in the visualization data is

SB þ SW. This defines

SB ¼
Xc

i¼1
ni li � lð Þ li � lð ÞT (8)

where l is the overall mean of the HRC coordinates

and ni reflects the number of exemplars in class i.41 In

MDA, data (here our visualization data) would be pro-

jected onto the multiple linear directions W, such that

the following ratio would be maximal

JðWÞ ¼ jW
TSBWj

jWTSWWj (9)

This criterion, often noted as the Rayleigh coeffi-

cient or quotient,39 is the equivalent ratio of between-

class and within-class scatter for the projected space.

Here, because jAj ¼ detðAÞ ¼
Y

l
kl, where kl are the

eigenvalues of the matrix A, this ratio uses the products

of the “variances” in the principal directions, or square

of the hyperellipsoidal scattering volume.41 Thus, a

maximization serves to maximize the between-class

scatter and minimize the within-class scatter in the

projected space. From this criterion, the optimal pro-

jections can be found via an eigen-problem.
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In our case, we do not wish to optimize to find opti-

mal projection vectors. Instead, we wish to stay in our
original visualization coordinates v(x) so that the
results are more interpretable, although the visualiza-

tion can be applied to projections as well. That is, the
axes are more easily understood if they only represent

hyper-radials, rather than some other non-linear trans-
formation, differently weighted projections, or a com-

bination thereof. Thus, we use a form of equation (9)
directly in our HRC space to form an optimization

with similar intent for input into the formulation
from equation (6). That is, we can use

J1 v1ðXÞ; v2ðXÞð Þ ¼ jSBj
jSWj (10)

where SB and SW are computed using the HRC coor-

dinates for the input data exemplars. This maximizes
the visualization between-class scatter and minimizes

its within-class scatter in its principal directions.
Unfortunately, this also means that we must solve

our formulation rather than simply solving the eigen-
problem for an optimal as in MDA.

J1 may best linearly separate the data, but the result-
ing coordinates do not simultaneously seek to spread

the data well across the axes and the determinants may
yield very small values in the normalized space. For

these reasons, we can optimize

J2 v1ðXÞ; v2ðXÞð Þ ¼ trðSBÞ
trðSWÞ (11)

where trðAÞ ¼
X

i
Aii ¼

X
l
kl. This formulation there-

fore still works to separate class means and minimize

within-class scatter, but does so at an aggregation
across the HRC axes because it uses a sum of the diag-

onal elements of SB and SW (and equivalently, the sum
of eigenvalues).

With two groups and p features, there are
p
dp=2e

� �

ways to assign features into groups. Therefore, for
smaller p, it is possible to do complete enumeration
to find optima, while for larger p, an optimization
algorithm must be used. The advantage of using this
optimization and objective functions is shown for
Fisher Iris in Figure 4.

Unsupervised training. In the case where there is no class

information, J1 and J2 are no longer useful unless pre-
dictions are made. Therefore, we propose a collection
of objectives designed to spread the data maximally

across the HRC space in various ways, under the
assumption that doing so will help to reveal classes,

overlaps, outliers, or other useful information.

The first technique is to maximize entropy over the

HRC space, where maximal entropy indicates an even

spread of data across the HRC dimensions. To do this,

we define a grid of Ng centers over the ½0; 1� � ½0; 1�
HRC axes. For each grid center point u, a density du
is computed using radial basis functions as

du ¼
X
x2X

1

r
ffiffiffiffiffiffi
2p
p ejjvðxÞ�ujj

2= 2r2ð Þ
(12)

where r is a spread parameter that defines the decay of

the basis. A grid center point with many nearby HRC

solutions will have a higher density value. The densities

are then converted to act like probabilities through

normalization

~du ¼ duX
u2Grid

du
(13)

The resulting entropy is defined as

H ¼ �
X

u2Grid
~duln ~du (14)

where ln Ng is the maximum possible value of H on the

grid. Therefore, H can be scaled by this maximum to

form an objective to maximize

J3 v1ðXÞ; v2ðXÞð Þ ¼ H

ln Ng
(15)

As with any Gaussian method, the value for r can

have a major effect. Fortunately, we know that the

coordinates will always be ½0; 1�, enabling the choice

for r to be a desired sensitivity where issues may

arise only if there are many outliers or singleton

points in grid cells. Figure 5(a) shows the optimal for

J3 on the breast cancer data, using a 33� 33 grid and
r ¼ 0:025, along with the grid entropy density, in

Figure 5(b). The benign and malignant classes are

largely separable with a minor level of overlap, and

the plot of the entropy densities shows clear evidence

of these two classes, where a large number of benign

exemplars are located near the lower bound of the

second group. Minimizing J3, instead of maximizing

it, could also serve to aid outlier identification because

the data would be made as Gaussian as possible.
Currently, the common r over the grid provides a sen-

sitivity threshold for the entropy surface. Alternatively,

adaptive radial basis functions or adaptive kernel density

estimation could be used to provide a more flexible

entropy surface by allowing the spread parameter to

Paciencia et al. 9



vary locally.42 However, this method more precisely fits
and smooths the surface to areas of high and low
density, which may decrease or increase sensitivity in an
unwanted manner. This also increases the computational
effort needed to generate the entropy. Full evaluation
of the effect of using such a method is of interest for
future research.

There are a few other objectives that serve to spread
the data points as best as possible in the HRC space,
while specifically being useful to identify outliers.
Maximizing the absolute value of the correlation
between HRC coordinates best spreads the data along
the (v1, v2) diagonal, but could also make
the visualization very linear and make it harder to see
characteristics of the data. However, a similar idea is

to maximize the combined (v1, v2) spread. One such tech-

nique is to multiply the variances found in each direction

J4 v1ðXÞ; v2ðXÞð Þ ¼
Y2
i¼1

VarðviðXÞÞ (16)

Another is to force the spread to the extremes in

both directions simultaneously while avoiding bias in

any one direction

J5 v1ðXÞ; v2ðXÞð Þ ¼
Y2
i¼1

max
x2X

viðxÞ �min
x2X

viðxÞ
	 


(17)

Yet another related objective is to minimize the

absolute value of the correlation between coordinates.
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Figure 5. Breast cancer dataset: (a) visualization with optimal J3 and (b) corresponding densities.

10 Journal of Algorithms & Computational Technology 13(0)



These objectives may become limited when the outliers

of interest are outliers only with respect to a very small

number of features relative to the size of the groups.
As an example of a large-scale application,

Figure 6 depicts the image truth and a sample of

100 signatures from each class for the Pavia

University HSI. Figure 7(a) shows J4 for this data.

In both cases, a qualitative ColorBrewer43,44 color

scheme is used to provide distinction between classes.

The groups found distinguish the non-background

classes very well, and particularly of interest is how

the painted metal sheets pixels are revealed to be

significantly different. The visualization suggests

that the background class contains material or

mixes that are similar to some of the other classes.

Several outliers are also obvious here, and the groups

indicate a subset of features that make these outliers

different. When compared to the primary compo-

nents of PCA, shown in Figure 7(b), the visualization

provides more separation between the classes

and pixels, all while the axes are more directly

interpretable.

Semi-supervised training. Additionally, HRV is suitable for

semi-supervised analysis when class information is missing

for some of the data, or if surrogate membership informa-

tion is available. Two situations will be examined to illus-

trate: first, values computed from expected groupings, e.g.

clustering algorithms, are considered; then, unknown or

new data points are considered in the presence of some

class information thereby using HRV to suggest possible

class identities. HRV naturally lends itself to the first pur-

pose, due to both HRV and methods such as k-means

clustering being Euclidean distance-based. The second pur-

pose involves using the supervised HRV methods with

unknowns as an additional class and then visually deter-

mining the hypothetical class identities of the unknown

observations.
For the clustering semi-supervised approach, the

Escherichia coli dataset will be considered. While this

dataset has known classes, for illustrative purposes,

k-means clustering will be used to find suggested

groups. E. coli consists of data from 7 features

for 336 protein sequences and 8 classes (cellular com-

ponent where each protein is found) collected on

Figure 6. Pavia University HSI: (a) gray-scale image, (b) class truth, and (c) class spectral signatures samples.
HSI: hyperspectral image.
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Figure 7. Pavia University: (a) J4 HRV solution and (b) largest variance principal components.
HRV: hyper-radial visualization.
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Figure 8. HRV applied to Escherichia coli k¼ 2, labeled with clustering result.
HRV: hyper-radial visualization.

Table 2. Escherichia coli class memberships in k-means clusters.

Protein localization site (class) Cluster 1 Cluster 2

cp (cytoplasm) 99.70% 0.30%

im (inner membrane without signal sequence) 2.98% 97.02%

pp (periplasm) 99.40% 0.60%

imU (inner membrane, uncleavable signal sequence) 0.30% 99.70%

om (outer membrane) 99.70% 0.30%

omL (outer membrane lipoprotein) 100.00% 0.00%

imL (inner membrane lipoprotein) 50.00% 50.00%

imS (inner membrane, cleavable signal sequence) 50.00% 50.00%
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various E. coli proteins.45 Since eight classes can pro-

vide an over-abundance of visual information for inter-

pretation, and because many of the classes have few

exemplars, finding statistical groups in data through

k-means may be justified. With k¼ 2 in k-means, two

clusters are found with 229 exemplars in cluster 1 and

107 exemplars in cluster 2. These resulting clusters are

depicted in Figure 8 using HRV, where a largely clean

separation between clusters is evident. When compar-

ing these clusters with the known E. coli classes, the

groupings appear to also have logical sense with the

membership information found in Table 2 describing

the groups. Analyzing the class memberships in Table 2

indicates that the clusters fall along protein types with

inner membrane localizations largely grouped together

and outer membranes, periplasm, and cytoplasm

grouped together. HRV provides further levels of

detail, both in regard to class similarity and discrimi-

natory features (Group 2 axis), that the cluster identi-

ties alone do not provide.
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Figure 9. (a) HRV applied to insect data and (b) insect data feature scatterplot.
HRV: hyper-radial visualization.
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The second type of semi-supervised approach with
HRV involves the presence of unknown or new observa-

tions, and then using HRV to ascertain information on
these unlabeled observations. The Insect dataset contains
30 observations of known species with six additional
observations of unknown species.16,17 The additional six

observations are, however, known to belong to one of the
known species. Lindsey et al. illustrated the utility of a
multidimensional projection method to cluster the
unknown species into the known groups.16 However,
using HRV can achieve the same performance without

their intensive method as exemplified in Figure 9(a),
where the insect data separate cleanly by class and
the class assignment of unknowns appears logically
distributed. Admittedly, the insect data are only three-

dimensional, but the ability to identify the classes depends
entirely on the rotation of any three-dimensional plot, as
shown in Figure 9(b).

Three-dimensional HRV

As the number of classes, features, and exemplars
increase, it becomes more challenging to display data

in a meaningful way without transforming or projecting

it, simply due to the amount of information that is being
constrained to two dimensions. Unfortunately, a trans-
formation or projection is not always intuitive to the
intended audience for visualization, or may not be effi-
cient to compute. As one example, van der Maaten and
Hinton created a relatively successful cluster visualiza-
tion of a 6000 exemplar subset of the MNIST dataset
using their t-SNE algorithm.46 However, t-SNE models
Kullback–Liebler divergence between neighborhood
conditional probabilities for all exemplars in the original
and transformed spaces. Such an approach is computa-
tionally expensive, as the conditionals are computed
for all exemplars and the transformed space is updated
iteratively via a gradient approach. Further, feature
information is lost and only a measure of aggregate
proximity is maintained. The algorithm attempts to mit-
igate crowding of points, thus artificially adjusting the
closeness of certain exemplars and clusters in the
visualization.

In terms of HRV, we propose to help mitigate these
issues by adding a third group for the HRC set of coor-
dinates. All of the formulations and any heuristics easily
adapt to incorporating the third group by adding anoth-
er set of binary variables, and dummy features are used
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as needed to ensure equal group size. In order to expand
the formulation to three groups, the binary constraints
become those shown in equation (18)

Xp
i¼1

yi ¼ dp=3e
Xp
i¼1

zi ¼ dp=3e
yi þ zi � 1 for i ¼ 1; . . . ; p
yi; zi 2 0; 1f g; for i ¼ 1; . . . ; p

(18)

As mentioned previously, as the number of classes,
exemplars, and features grows, any visualization that
tries to avoid true transformation will encounter issues
due to the amount of information being constrained to
an interpretable space. However, HRV can still be a
useful tool. For example, consider the full training
0 and 1 classes from MNIST. Removing pixels

that are 0 for all exemplars from both classes, the

number of possible groupings is still
617

206 206 205

� �
¼

617!= 206!ð Þ2205!
	 


. Figure 10 shows the visualization
found for J2 using only 8500 function evaluations of
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Figure 11. MNIST HRV representations using J1: (a) principal component scores and (b) MDA scores.
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a simple local search and random poll optimization
algorithm, described fully in Appendix 1. Group 1 is
highly discriminated and the 1-digits also present dis-
tinctly lower in Group 3. Furthermore, it is clear that
there are two classes in the data from the histograms.
Interestingly, in the unsupervised case, using J5 often
yielded the same visualization and two highly discrimi-
nated groups.

All of the desirable properties of HRV extend to
the three-dimensional representation as each axis is
still Euclidean-based for that group. In fact, using a
third axis enables more distinction between points in
the axis histograms. The only disadvantage to using
three axes vice two is that the number of possible
groupings is larger, and grows at a faster rate as a
function of p, making the optimization potentially
more difficult.

HRV can also be used to compare data projections.
Here, we use a random sample of 600 exemplars from
each class in MNIST. Figure 11 shows the J1 optima on
the principal component and MDA scores for the nine
major components in each case. Whereas the PC scores
are more compact and have significant overlap of some
classes in any direction, the MDA scores break
out better by class and are more spread. This better
geometry from the MDA result might suggest the pres-
ence of multiple classes in an unsupervised setting.
The better visualization from MDA would be expected
to some level, as MDA provides the optimal linear
projections for class separation. Additional compari-
sons to dimension reduction methods, and further
investigation into the embedded optimization problem,
are included as Appendix 1.

Conclusion

In general, the visualization methodologies proposed
here work best with a moderate number of features
and a few classes due to the constraints of dimension-
ality and maintaining feature information. However,
they have also been shown to be useful in identifying
data outliers, comparing transformations, and compar-
ing data classification complexity. With a very large
number of features, the HRC coordinates may
become more condensed due to the features being nor-
malized. This can be mitigated in part by removing
outliers, using projections, or exploring feature subsets.
If performing unsupervised exploratory analysis on a
dataset, a large number of classes can create a challenge
unless they have break-defining feature subsets. Either
way, this separation or lack of separation can still be
useful information to the user.

The HRV technique itself is very simple and does
not change the inherent properties of the data, thus
making it very easy to interpret. Additionally, the

visualization is efficient to compute. Determining opti-

mal groupings using the objectives and formulations

presented is relatively efficient, with a heuristic

needed only once the number of features becomes

large. In cases where the data have well-behaved class

structures, the visualization provides a tool to identify

this structure, and in cases where the boundaries are

more complex or overlap, the visualization enables

identification of such properties. If used dynamically,

these visualizations can also be used for purposes of

feature selection.
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Appendix 1

This appendix includes additional comparisons of the
developed HRV technique to dimension reduction
methods, as well as a discussion on the optimization
problem inherent to group selection during the forming
of the axes.

The Wine data are depicted as projected to two
dimensions by PCA and two other dimension reduc-
tion techniques in Figure 12. Local linear embedding
is a technique that uses an eigen-decomposition
derived from a local reconstruction of points based
on nearest neighbors (here, 5-nearest).47 t-SNE is not
a strict projection, but iteratively tries to maintain
similarity between points.46 The Wine dataset
includes 13 features, and is generally thought to
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Figure 12. Wine data with two axes: (a) PCA, (b) LLE, (c) t-SNE, and (d) HRV.
HRV: hyper-radial visualization; LLE: local linear embedding; PCA: principal component analysis; t-SNE: t-Distributed Stochastic
Neighborhood Embedding.
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have well-behaved class structure.18 Figure 12(d)

depicts the HRV solution, where it clearly provides

the most distinction between classes, and most closely

reflects differences between classes.
Figure 13 shows a three-dimensional visualization of

the Wine data using J1, representative of the solutions

found using Algorithm 1 with m¼ 8500 and q¼ 0.3.

The classes break out very well in this visualization.

In the two-dimensional visualization, there were only

13
7 6

� �
¼ 1716 ways to select the groups. The three-

dimensional visualization has
13
5 4 4

� �
¼ 90; 090 possi-

bilities. Thus, as alluded to, a strategy other than com-
plete enumeration is necessary to find better groupings
as either the number of features or groups increases.
One alternative is a very simple local search heuristic,
as presented in Algorithm 1 for two groups. With three
groups, the crossover adapts easily by selecting a
unique feature from each group to switch.

Algorithm 1 Local search with random poll

1: Parameters: m¼Max Iterations; q¼Mutate Probability

2: i 1; s dp=2e; y1; y2; . . . ; ys  1;

ysþ1; ysþ2; . . . ; ys�2  0; J Jt X; yð Þ
3: while i<m or until convergence do

4: ~y  y

5: G1  j : yj ¼ 1f g; G2  j : yj ¼ 0
� �

6: r1; r2; r3  randomð0; 1Þ
7: if r3 � q (Switch features between groups) then

8: r1  ds� r1e; r2  ds� r2e
9: ~yG1ðr1Þ  0; ~yG2ðr2Þ  1

10: else (Consider random permutation)

11: Rp  Random Permutation 1 : 2sð Þ
12: ~yRpð1:sÞ  1; ~yRpðsþ1:2sÞ  0

13: end if

14: ~J  Jt X;~yð Þ
15: if ~J > J then

16: J ~J; y  ~y
17: end if

18: i iþ 1

19: end while

This heuristic can be viewed as a stochastic optimiza-

tion, or a very simple genetic algorithm with a single

crossover. It seeks to search from the current best solu-

tion while also allowing for escape from local optima.

The crossover switches one feature from each group,

while for mutation, an entirely new random permutation

of features in groups is used. This simple algorithm addi-

tionally serves to reduce the number of parameters and

memory required for the heuristic. As with any heuristic,

convergence can be dependent on the starting iterate and

the number of iterations used, but this allows for some

efficiency as the number of possible groupings increases

dramatically with the number of features.
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Figure 13. Wine HRV with three axes using J1.
HRV: hyper-radial visualization.
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As another alternative, the relaxed form of equation
(6) can be solved by allowing 0 � yi � 1 for
i ¼ 1; 2; . . . ; p, rather than enforcing binary constraints
during the optimization. Upon completion of an inte-
rior point method or other nonlinear programming
algorithm, the variables can be set to 0 or 1 based
upon their magnitude, such that the largest dp=2e
become 1 and the remaining are set to 0.

To investigate use of Algorithm 1 against solving the
relaxed problem as described, we conducted more than
30 replications per setting while varying certain param-
eters and solving the Wine Quality, Wine, and MNIST
dataset HRV visualizations. In particular, m and q
were varied for Algorithm 1. Across the heuristic and
relaxed problems, we also varied the objective and
number of groups. In general, Algorithm 1 showed
better objective values when q was non-zero, and as
m increased (for obvious reasons), was fairly efficient
in converging to local maxima, and showed the ability
to outperform the relaxed problem. The interior point
method for the relaxed problem also proved to be
highly efficient.

Comparison of methods is somewhat hard to show
due to the true optima being unknown, but Figure 14
depicts the objective function value convergence of
Algorithm 1 in solving the Wine dataset with J2.
Also shown are the solution found using an interior
point method on the relaxed problem, and a genetic
algorithm. For the genetic algorithm, mutation was
as in Algorithm 1 with probability 0.2, and a single-
feature switch was done between randomly chosen
parents in a population of 50 solutions. Over 30 repli-
cations, both the genetic algorithm and the local search
converged to an equal or better solution than the
relaxed problem, on average. The diversity within
the genetic algorithm allowed it to converge faster,
but we found that with larger-dimension datasets this
benefit was somewhat negated by the much larger
memory required to store the population. On the
MNIST dataset using three groups, the relaxed prob-
lem often got stuck at the initial solution, while
Algorithm 1 improved from the initial solution in a
similar fashion to the curve shown in Figure 14.

Figure 14. Wine 3-group HRV: best function value found (l¼mean, r¼ SD).
HRV: hyper-radial visualization.
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