27,994 research outputs found

    The role of periodic signals in the morphogenesis of Dictyostelium discoideum

    Get PDF

    Assessment and Evaluation of Sand Control Methods for a North Sea Field

    Get PDF
    Imperial Users onl

    Eye-tracking analysis in landscape perception research : influence of photograph properties and landscape characteristics

    Get PDF
    The European Landscape Convention emphasises the need for public participation in landscape planning and management. This demands understanding of how people perceive and observe landscapes. This can objectively be measured using eye tracking, a system recording eye movements and fixations while observing images. In this study, 23 participants were asked to observe 90 landscape photographs, representing 18 landscape character types in Flanders (Belgium) differing in degree of openness and heterogeneity. For each landscape, five types of photographs were shown, varying in view angle. This experiment design allowed testing the effect of the landscape characteristics and photograph types on the observation pattern, measured by Eye-tracking Metrics (ETM). The results show that panoramic and detail photographs are observed differently than the other types. The degree of openness and heterogeneity also seems to exert a significant influence on the observation of the landscape

    Particle friction angles in steep mountain channels

    Get PDF
    Sediment transport rates in steep mountain channels are typically an order of magnitude lower than predicted by models developed for lowland rivers. One hypothesis for this observation is that particles are more stable in mountain channels due to particle-particle interlocking or bridging across the channel width. This hypothesis has yet to be tested, however, because we lack direct measurements of particle friction angles in steep mountain channels. Here we address this data gap by directly measuring the minimum force required to dislodge sediment (pebbles to boulders) and the sediment weight in mountain channels using a handheld force gauge. At eight sites in California, with reach-averaged bed angles ranging from 0.5° to 23° and channel widths ranging from 2 m to 16 m, we show that friction angles in natural streams average 68° and are 16° larger than those typically measured in laboratory experiments, which is likely due to particle interlocking and burial. Results also show that larger grains are disproportionately more stable than predicted by existing models and that grains organized into steps are twice as stable as grains outside of steps. However, the mean particle friction angle does not vary systematically with bed slope. These results do not support systematic increases in friction angle in steeper and narrower channels to explain the observed low sediment transport rates in mountain channels. Instead, the spatial pattern and grain-size dependence of particle friction angles may indirectly lower transport rates in steep, narrow channels by stabilizing large clasts and channel-spanning steps, which act as momentum sinks due to form drag

    A practical review on the measurement tools for cellular adhesion force

    Full text link
    Cell cell and cell matrix adhesions are fundamental in all multicellular organisms. They play a key role in cellular growth, differentiation, pattern formation and migration. Cell-cell adhesion is substantial in the immune response, pathogen host interactions, and tumor development. The success of tissue engineering and stem cell implantations strongly depends on the fine control of live cell adhesion on the surface of natural or biomimetic scaffolds. Therefore, the quantitative and precise measurement of the adhesion strength of living cells is critical, not only in basic research but in modern technologies, too. Several techniques have been developed or are under development to quantify cell adhesion. All of them have their pros and cons, which has to be carefully considered before the experiments and interpretation of the recorded data. Current review provides a guide to choose the appropriate technique to answer a specific biological question or to complete a biomedical test by measuring cell adhesion

    Migration of Mg and other interstitial metal dopants in GaN

    Full text link
    The minimum energy paths for the migration of interstitial Mg in wurtzite GaN are studied through density functional calculations. The study also comprises Li, Na, and Be dopants to examine the dependence on size and charge of the dopant species. In all cases considered, the impurities diffuse like ions without any tendency of localizing charge. Li, Mg, and to some extent Na, diffuse almost isotropically in GaN, with average diffusion barriers of 1.1, 2.1, and 2.5 eV, respectively. Instead Be shows a marked anisotropy with energy barriers of 0.76 and 1.88 eV for diffusion paths perpendicular and parallel to the c-axis. The diffusion barrier generally increases with ionic charge and ionic radius, but their interplay is not trivial. The calculated migration barrier for Mg is consistent with the values estimated in a recent beta- emission channeling experiment

    RhoJ/TCL Regulates Endothelial Motility and Tube Formation and Modulates Actomyosin Contractility and Focal Adhesion Numbers

    Get PDF
    Objective—RhoJ/TCL was identified by our group as an endothelial-expressed Rho GTPase. The aim of this study was to determine its tissue distribution, subcellular localization, and function in endothelial migration and tube formation. Methods and Results—Using in situ hybridization, RhoJ was localized to endothelial cells in a set of normal and cancerous tissues and in the vasculature of mouse embryos; endogenous RhoJ was localized to focal adhesions by immunofluorescence. The proangiogenic factor vascular endothelial growth factor activated RhoJ in endothelial cells. Using either small interfering (si)RNA-mediated knockdown of RhoJ expression or overexpression of constitutively active RhoJ (daRhoJ), RhoJ was found to positively regulate endothelial motility and tubule formation. Downregulating RhoJ expression increased focal adhesions and stress fibers in migrating cells, whereas daRhoJ overexpression resulted in the converse. RhoJ downregulation resulted in increased contraction of a collagen gel and increased phospho–myosin light chain, indicative of increased actomyosin contractility. Pharmacological inhibition of Rho-kinase (which phosphorylates myosin light chain) or nonmuscle myosin II reversed the defective tube formation and migration of RhoJ knockdown cells. Conclusion—RhoJ is endothelial-expressed in vivo, activated by vascular endothelial growth factor, localizes to focal adhesions, regulates endothelial cell migration and tube formation, and modulates actomyosin contractility and focal adhesion numbers

    Foraging fish as zoogeomorphic agents: An assessment of fish impacts at patch, barform, and reach scales

    Get PDF
    Flume studies have demonstrated that foraging by fish can modify the structure and topography of gravel substrates, thereby increasing particle entrainment probabilities and the amount of sediment mobilized during subsequent experimental high flows. However, the zoogeomorphic impact of benthic foraging has not previously been investigated in the field. This paper reports field experiments that examined the nature and extent of disturbance of riverbed gravels by foraging fish, predominately Cyprinids, at patch, riffle, and reach scales and complementary ex situ experiments of the impacts on bed stability. At patch scale, benthic feeding fish displaced particle sizes ≤90 mm in diameter, increased bed surface microtopography and grain protrusion, and loosened surface structures. Although enhanced mobility was expected from these structural changes, foraging also caused localized coarsening of sediments, and the ex situ experiments recorded significantly reduced grain entrainment, bedload flux, and total transported mass from foraged patches. Foraging disturbed bed materials at all 12 riffles in the study reach and, on average, disturbed 26.1% of riffle area per 24 h feeding period. These findings demonstrate for the first time that foraging fish, which are widespread and feed perennially, can act as zoogeomorphic agents in rivers, affecting grain-size distributions and bed material structure, with potential implications for bed stability and bedload transport at reach and river scales. Whether fish increase or reduce bed mobility is probably dependent on a host of factors, including the net effects of both structural disturbance and biogenic particle sorting, as these affect entrainment stresses under subsequent competent flows
    • …
    corecore