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Abstract 
It is not uncommon for wells to require sand control, with thousands of them worldwide having been fitted with this 

equipment. To do so, service companies and sand control experts have over the years developed a range of guidelines, along 

with published and proprietary sand control selection methodologies. Unfortunately, many of the methodologies highlight a 

range of design criteria that are specific or complex; resulting in sand control selection being too time-consuming or difficult. 

The industry knows that there is no ‘silver bullet’ in choosing a sand control method. Consequently, a study has been 

conducted with the purpose of explaining a new sand control selection methodology that is concise and simple to understand. 

Furthermore, every sand control method can be assessed and evaluated as long as performance, reliability and cost are safely 

and economically justified. 

Guiding the engineer to the most appropriate sand control technique, the study consolidates best practice from many 

published methodologies, and integrates them with the operator’s sand management guidelines. Consisting of two flowcharts 

that end with a sand control equipment, the methodology also supplements each technical choice with a sand control selection 

table. This is where risks and concerns are outlined, assuming that the engineer has chosen the sand control resulting from the 

flowcharts. 

Establishing a sand control selection is required in a North Sea field for its proposed water injectors. The water injectors 

are planned for injection under both matrix and fracture regimes into two reservoirs; called here Sand 1 and Sand 2. Sand in 

these reservoirs will fail as a result of fracture injection, and the produced sand may backflow into the wellbore once the well 

is shut-in. Using the new methodology, openhole premium-type Stand Alone Screen (SAS) is recommended for both 

reservoirs. Naturally, the flowchart’s recommendation of premium-type SAS raises concerns, and is outlined in the sand 

control selection table. It is found that formation heterogeneity in both Sands 1 and 2 may dampen the performance of the 

premium-type SAS injectors. Using the methodology again, the flowchart also suggests the use of blank pipes and packers to 

isolate the impermeable shale sections. Inflow control valves are sized and positioned in the completions to counteract the non-

uniform water flux caused by large permeability variation. 

Now that a sand control is conceptually selected for the water injectors, the engineer can easily compare the recommended 

sand control with other techniques; as part of the overall selection process. Ultimately, this recommendation validates the use 

of the new methodology for future sand control selections. 

 
Introduction 
For over seventy years, the oil and gas industry has continually developed and used sand control completions in reservoirs to 

control sand production. This technology has played a pivotal role, and will continue to do so, as well demands are more 

challenging and performance expectations are greater. With high operating and well intervention costs, the impact of sand 

production cannot be ignored. The effect of formation sand in a well may lead to loss of integrity, and consequently cause the 

wellbore to collapse. It is absolutely crucial for the industry to manage sand actively. 

Design and selection criteria for sand control methods vary among operators and location. Choice is influenced by local 

experience, case studies and service company recommendations. To date, several design methodologies have been published. 

For instance, Price-Smith et al. (2003) and Farrow et al. (2004) have published guidelines and selection matrices that have 

been widely used by the industry. 

The main objective of this paper is to present a simple and easy to understand sand control selection methodology. The 

intention is not to reinvent the wheel, but to improve on existing sand control selections. The proposed methodology is built by 

consolidating the operator’s sand management guidelines with relevant published papers. Consolidation is then integrated into 

a new methodology based on technical experience, laboratory testing and field case studies. The methodology is separated into 

two sections – flowcharts, and a ‘traffic light’ design matrix. These flowcharts are subdivided into parts A and B. Flowchart A 

is used as a ‘first pass’ selection criterion. It is used to guide the engineer to the most appropriate sand control option. 

Flowchart B focuses on the ‘screen and gravel size’ selection, and should be used in conjunction with Flowchart A. Then, 

‘traffic light’ design matrix is used as further guidance once a sand control technique has been selected from the flowcharts. 

Imperial College 
London 
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The ‘traffic light’ concept (ranked by colour) refers to the effectiveness of the selected sand control technique in managing 

sand under a variety of wellbore and reservoir conditions. It is important to note that flowcharts and the ‘traffic light’ design 

matrix are merely guidelines for the engineer. The engineer is advised to use technical experience, rationality and in-

house/service sand control experts as part of the overall selection process. Further explanation of the new methodology will be 

discussed later in this paper. 

Study of rock mechanics and sand production prediction are important criteria in determining the most appropriate sand 

control. However, due to the limited size imposed on this paper, these topics will only be discussed briefly; focusing on how 

and why the sand may fail. 

The second objective of this paper is to assess and evaluate suitable sand control methods for water injectors. These water 

injectors are part of a Field Development Plan (FDP) and have yet to be completed. The FDP is targeting oil accumulation in 

two sandstone reservoirs. Base case development is to drill a number of water injectors with a reservoir trajectory that will give 

optimum connectivity between the wellbore and formation. Injection of water into the reservoir will have a design capacity 

that is able to accommodate both matrix and formation fracture injection pressures. This is to ensure injectivity is not lost over 

time due to formation plugging. Water injection for this field is critical, and has three objectives. Firstly, to dispose produced 

water back into the reservoir. Secondly, to optimise sweep efficiency to improve oil recovery; and thirdly to ensure reservoir 

pressure is maintained. For wellbore stability, pressure maintenance of the reservoir is important to prevent 

compaction/subsidence of the formation and sand production. 

Sand control is required to counter sand failure caused by production and operational issues. These issues can lead to 

several failure mechanisms. The failure mechanisms are water hammer, well backflow, reservoir cross flow and erosion 

(Santarelli et al., 2000). These effects, if not accounted for, will cause a significant drop in injectivity over time. Inflow control 

technology will be modelled using NETool
TM

 as part of the selection to ensure uniform injectivity across all intervals. 

In this case study, the sand control equipment is selected based on the outcome of flowcharts A and B. The ‘traffic light’ 

design matrix is then used to highlight the concerns and risks associated with the chosen sand control method. As long as the 

concerns and risks are accounted for, recommending the sand control based on the methodology can easily be justified. The 

outcome of this new methodology is an attempt to improve the selection consistency across the industry. 

 

Methodology: Sand Control Selection 
The proposed methodology for sand control concept selection using flowcharts is illustrated in Figures 1 and 2. The 

workflow in these illustrations focuses more on sand control for openhole completions. Sand control for cased hole completion 

is also outlined in Flowchart A. The flowcharts are supplemented by a sand control selection table highlighting risks and 

concerns of each technique-presented in Table D-1 to D-4 in Appendix D. 

Flowchart A – ‘First Pass’ Selection Criteria 

Flowchart A is an identification process to guide the engineer to the most appropriate sand control option. The start of this 

flowchart assumes that sand production will occur and sand control is required. The decision for an openhole or cased hole 

completion depends on rock geomechanics, wellbore stability and reservoir strategy. An openhole completion is favoured 

where high production rates are required and if the formation intervals are allowed to commingle. It is not a recommended 

completion if wellbore stability is poor and a large amount of fine sand is present. Fines are produced from the formation 

matrix as a result of increased stress and fluid movement. Cased hole completion is an alternative to openhole. It gives stability 

to wellbore integrity and provides isolation for productive intervals from unwanted gas and water. Most importantly, cased 

hole completion allows selective and oriented perforating that can delay or eliminate sand production.  

Assuming openhole completion is defined, the next design criterion is the sand size analysis. This analysis is based on the 

methodology proposed by Tiffin et al. (1998). The study is used as a screening process in Flowchart A and further evaluated in 

Flowchart B. For example, if the formation has uniformity coefficients (D40/D90) of <5, D10 grain sizes >175μm, and mobile 

fines of less than 5%, the methodology recommends Standalone Screen (SAS) or Expandable Sand Screen (ESS).  

After the study of sand size analysis, the presence and condition of shale in the formation must be studied. If a large slab of 

shale (greater than 30 ft) is present and unstable, it will require isolation. To achieve this, openhole packers and blank pipes are 

used across these sections. This is to prevent weakened shale from producing fines that can be detrimental to the sand control. 

Additionally, openhole packers can reduce annular flow and shut-off unwanted water or gas formations. 

A large variation in reservoir permeability will require the use of inflow control technology in conjunction with sand 

control. Inflow Control Devices (ICD) or Inflow Control Valves (ICV) can control the amount of liquid flow and provide a 

more uniform distribution profile between the wellbore and reservoir zones. Controlling the flow will also reduce the annular 

flow velocity, preventing the formation of ‘hot spots’ that is a concern for sand control screen. The use of ICD is more 

applicable for horizontal wells to counteract the ‘heel-to-toe’ effect (Khalil et al. 2010). The ‘heel-to-toe’ effect causes a higher 

influx of liquid at the heel of the horizontal completion. To summarise, not accounting for permeability heterogeneity in the 

selection process may lead to water or gas breakthrough at an early stage of recovery.  

ESS is recommended for reservoirs with similar permeability or when zonal isolation is not required. The advantage of 

using ESS is that it provides a larger inflow area and reduces pressure loss across the completion. It also eliminates annular 

flow between the screen annulus and wellbore. However, ESS is not recommended if the formation contains reactive shale. 
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Unstable shale can lead to breakouts or clay swelling, thus complicating its installation and use. This is because ESS has lower 

material strength than a conventional SAS. 

If D40/D90>5, D10<175μm and mobile fines are greater than 5%, Openhole Gravel Packing (OHGP) is recommended 

instead. Two types of OHGP are commonly used – Slurry Pack with Alternate Path and Water Pack; shown in Flowchart A. 

Water Pack can be applied for low and high deviated wells. The technique uses a non-damaging brine to transport, circulate 

and pack low concentrations of gravel into the annulus between the screen and the wellbore. For wells with reservoir trajectory 

below 65
o
, Flowchart A recommends Low Angle Water Pack (LAWP). This technique relies on gravity and flow rate to 

transport the gravel. Due to a low viscosity and density of the water carrier fluid, it cannot transport the gravel efficiently.  

LAWP will first transport the gravel to the bottom of the well and then pack the annular space from bottom to top. High Angle 

Water Pack (HAWP) is recommended for wells with reservoir trajectory above 65
o
 and the gravel-packing technique is called 

the Alpha/Beta design. As gravel slurry enters the screen via the openhole annulus, it settles and forms a dune (Tolan et al. 

2009) at the heel of the horizontal well section. This is called the alpha wave. As more gravel is pumped, the alpha wave 

progresses from the heel to the toe of the horizontal well, overcoming the dune and depositing gravel on the backside of the 

openhole well. Once the alpha wave reaches the toe-end of the well, the beta wave starts to circulate backwards towards the 

heel, packing the open space on the topside of the horizontal well section. Circulating HAWP is not recommended if the 

formation shale is sensitive to brine. This is because the reaction between shale and brine can cause clay swelling and the shale 

may become unstable. Consequently, shale will collapse and obstruct the wellbore. This blockage will only allow the alpha 

wave to pack the completion interval from the obstruction back to the top of the screen. As beta wave propagates back towards 

the heel of the well, the blockage could cause friction pressure to increase due to fluid being continuously pumped over a 

lengthy distance. This can cause fluid losses (leak-offs) to the formation, preventing an effective placement of gravel. The 

HAWP technique is therefore only recommended for short openhole intervals (typically less than 1000 ft).  

 

 
Figure 1: Flowchart A is used as ‘First Pass Selection Criteria’ for both openhole and cased hole wells. 
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Slurry Pack is another OHGP technique that uses a more viscous carrier fluid than the carrier fluid used for water pack. It 

stabilises the formation while ensuring well productivity is not compromised. The technique is suitable for formations with 

brine-sensitive shale, low fracture gradients (i.e. high fluid losses) and large variations in permeability. In other words, it is 

suitable for well conditions when LAWP or HAWP are not recommended. Slurry pack uses alternate path or nozzle-type shunt 

tubes to circulate the slurry down the openhole via the screen annulus; packing it from the toe and back to the heel of the 

horizontal well section. When a bridge forms in the annulus as a result of high leak-offs, the annulus packs only from the 

formed bridge back to the top of the screen. As the sand covers the top of the screen, diverting the slurry via the shunt tubes 

instead creates sufficient pressure. The slurry exits the shunt tubes below the formed bridge and packs any remaining voids in 

the screen annulus. Circulating slurry is recommended for long openhole intervals (>1000 ft).  

Flowchart B – ‘Screen and Gravel Size’ Selection Criteria. 

The proposed flowchart is illustrated in Figure 2. This section of the methodology analyses the sampling, grain sizing and 

fines identification of formation sand. The analysis requires samples that accurately define the formation, and full core 

sampling is the best method to achieve this. Sidewall core sampling is another source that is also acceptable. It is important to 

use Flowchart B to compare results with the outcome sand control selection from Flowchart A. 

Rock mineralogy study is required to identify clay and fines, which can exist in the sandstone matrix and in the shale. 

Should the need arise, Optical Microscopy (OM) can be used to identify the presence of clay and fines while X-Ray 

Diffraction (XRD) and Scanning Electron Microscope (SEM) are other techniques that can assess the mobility and swelling of 

clay in a formation. Further work can be conducted using the Cation Exchange Capacity (CEC) (Slayter et al. 2008). This 

laboratory technique measures the reactivity of shale. Understanding clay swelling will enable the engineer to foresee risks and 

concerns when evaluating various sand control options. This study will also assist the engineer in selecting a suitable drilling 

mud that is compatible to both the formation and sand control completion. For example, the presence of unstable shale raises 

concerns if LAWP/HAWP or ESS is recommended. The concerns for various sand control techniques are highlighted in Table 

D1 to D4 (Appendix D). 

The next step in Flowchart B is sand size analysis. This section of the methodology recommends the use of Dry Sieve 

Analysis (DSA) and Laser Particle Size Analysis (LPSA) to evaluate Particle Size Distribution (PSD). An example of a PSD 

study is illustrated on a semi-log plot; shown in Figure D-1 (Appendix D). The example in Figure D-1 shows 40% of the sand 

is coarser than D40 (247 m) and 90% is coarser than D90 (94 m). The D50 (214 m) is used to represent the median grain 

size in the PSD study (Saucier et al. 1974). However, D50 is not applied in the flowchart as it is proven insensitive to the 

degree of sorting (Xiang et al., 2003). This is because formation sands can have identical grain size but different size 

distributions. The D10 (Coberly et al. 1937) is used as a criterion instead for formation grain size. It is also used to design sand 

screen opening and gravel sizing. The smallest standalone screen opening is 125 m but to date, 75 m is now available 

(Franklin et al. 2011). Conventionally, if D10 <175 m, the methodology does not recommend SAS or ESS. 

Sorting is a measurement of uniformity. It is quantified in terms of the Uniformity (Uc) and Sorting (Sc) coefficients 

defined as D40/D90 and D10/D95, respectively. The former is defined by Schwartz et al. (1969), and the latter by Tiffin et al. 

(1998). Schwartz et al. (1969) classified four Uc categories: [Uc < 3: uniform], [3 < Uc < 5: moderately uniform], [5 < Uc < 

10: non-uniform] and [Uc > 10: extremely non-uniform]. For 0<Uc<5, SAS is favourable. For Uc>5, OHGP is recommended. 

DSA is limited to a minimum of 44μm (325-mesh) grain size. Therefore, sand particles with a diameter less than 44 μm are 

defined as “mobile fines” (Byrne et al. 2008). Mobile fines tend to stick to the larger grains or pass through the 325-mesh 

during DSA. Field experience and lab testing shows fines exceeding 5% have a tendency to cause screen plugging. LPSA can 

measure sand particles below 44μm and reflects the finer end of the PSD more accurately. Use both DSA and LPSA 

techniques to conduct PSD study. If the results of both techniques are incomparable, use DSA for sand control design. SAS is 

recommended for formation sample with fines less than 5%. For fines between 5-10%, OHGP should be used. If the fines are 

above 10%, increase the contact between the wellbore and formation (Tiffin et al. 1998). 

Sand Control Selection Table. 

Flowcharts A and B are supplemented by a sand control selection table. The table highlights design requirements and 

concerns for each sand control technique. These factors are illustrated in Tables D-1 to D-4 (Appendix D) and use a traffic 

light design matrix. The matrix system is presented based on colour and each colour refers to the effectiveness of a sand 

control technique in managing wellbore, reservoir and operational risks. The traffic light rating is based on the following: 

Green = preferred, yellow = acceptable, orange = use with caution and red = not recommended. This concept is similar to the 

methodology published by Farrow et al. (2004). The difference with the proposed methodology compared to Farrow et al. is 

the table is referred to after a sand control equipment is selected. For example, SAS Pre-Packed and SAS Wire Wrapped 

Screen (WWS) is red (not recommended) if the reservoir is prone to the effects of fines migration. This is highlighted in Table 

D-1. Another example is using SAS with the presence of impermeable shale streaks inside an oil bearing zone. In this scenario, 

Table D-1 indicates orange (use with caution). Caution is needed because a high degree of reservoir lamination can potentially 

allow shale to embed onto the screen. It can cause plugging and consequently screen damage. To mitigate the risk, SAS should 

be installed with blank pipes and/or packers to isolate impermeable shale sections. In summary, the user can either proceed 

using the recommended equipment or re-visit the flowcharts if the risks and concerns are unmanageable. 
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A range of sand control options has been documented in the methodology. Below are some sand control options (illustrated 

in Flowcharts A and B) that will be assessed and evaluated for a case study; discussed in the next section: 

 

- Openhole Standalone Screen (OHSAS) 

o Wire-wrapped, Pre-packed and Premium 

- Expandable Sand Screen (ESS) 

- Openhole Gravel Pack (OHGP) 

o Low Angle Circulating Water Pack 

o High Angle Circulating Water Pack (Alpha/Beta Design) 

o Slurry Pack with Alternate Path/ Shunt Tubes 

 

Flowchart B - Screen and Gravel Size Selection

Type & Behaviour of 

Clay

CEC 

meq/100g)

Swelling Smectites 80-150

Mobile Kaolinites 1-10

(Slayter et al. 2008)

Flowchart B Glossary
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CEC Cation Exchange Capacity

DIF Drill-In Fluid

DSA Dry Sieve Analysis

ESS Expandable Sand Screen
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LPSA Laser Particle Size Analysis

OM Optical Microscopy
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SEM Scanning Electron Microscope

SRT Sand Retention Test

XRD X-Ray Diffraction
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Increase contact 
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(Tiffin et al. 1998)
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No
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cause problems during sand control installation 

(Napalowski, 2010) and will dictate the type of 
DIF used.
- To determine whether GP water pack will be 

suitable for the formation

SAS only

GP-Slurry pack 
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Figure 2: Flowchart B represents ‘Screen and Gravel Size Selection’. 
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Results: Verification of Methodology 

Case Study – North Sea Field, UK 

 

Background. The North Sea field was initially discovered in 2006. It lies in the UK sector of the North Sea at a water depth of 

370 ft. There are two turbidite reservoirs of interest located in two sandstone reservoirs. For this case study, these reservoirs 

are called Sand 1 and Sand 2 – the former is divided into five zones and the latter divided into three zones. Figure E-1 in 

Appendix E shows the vertical subdivision of the reservoirs. Sand 2 has some support from an aquifer but Sand 1 has little 

natural pressure support. Both reservoirs are separated by shale, and it is uncertain whether or not Sands 1 and 2 are in 

communication. 

Sand 1 is highly heterogeneous. It contains thinly bedded sand and shale streaks (1-2 ft) embedded inside the sandstone 

matrix. The porosity ranges between 14-20%, permeability in the order of 0.2–0.7 D, and net-to-gross between 33-83%. On the 

other hand, Sand 2 is more homogeneous with little shale content. It consists of clean quality sandstone with a thick intra-

bedded shale formation (15-20 ft) separating the upper and lower zones. It has porosity in the range of 18-24% and 

permeability in the order of 0.7-1.4 D. 

Available data is obtained from several appraisal wells (Table E-1). Study of the appraisal cores and wireline logs shows 

sand failure will occur and sand control is required when completing these wells. 

 

Injection Strategy. The overall objectives of the water injectors are to dispose produced water back into the reservoir, optimise 

sweep efficiency to improve oil recovery and provide reservoir pressure maintenance. Initially, the water will be injected under 

the matrix regime. Over time, injectivity losses may occur as a result of the failed sand plugging the formation. To mitigate 

this, the design of water injectors will have the capacity to maintain and increase injection pressures to levels resulting in 

formation fracturing. Therefore, this requires a well trajectory that will give the maximum connectivity between the wellbore 

and formation. To achieve this, the orientation of the in-situ stress for the field must be determined in order to predict the 

orientation of the induced fractures. Cold Low Sulphate Seawater (LSSW) and produced formation water will be used as the 

injection fluids. This will enhance the creation of induced fractures by thermally reducing the fracture pressure (Perkins and 

Gonzales et al. 1984, Svendsen et al. 1991). 

The design capacity of the water injectors is shown in Table E-2. The water injectors will be drilled in the oil and water leg 

of Sands 1 and 2 respectively. One out of the six water injectors will commingle and provide injection support into both 

reservoirs. The initial reservoir pressure (Pi) for both reservoirs varies from 3191 to 3335 psia. Stimulation shows with water 

injection support, the maximum depletion (∆P) for both reservoirs are expected to drop between 400-500 psia, which is still 

above the bubble point pressure (Pb). To achieve this, stimulation shows the injections are required from 10, 000 to 28, 000 

stbw/d for Sand 1 and 14, 000 to 35, 000 stbw/d for Sand 2. 

The design of the water injectors will have the capacity to accommodate injection rates in the range of 40, 000 to 50, 000 

stbw/d. Figure E-2 shows the reservoir simulation of the water injectors for the first 11 years. The water injectors labelled I1 

and I2 represent wells in Sands 1 and 2, respectively. Well I1/I2 means the water injector injects into both reservoirs.  

Rock Mechanics and In-Situ Stresses. 

The load on a rock depends on in-situ stresses, reservoir pressure and drawdown. Understanding the evolution of formation 

in-situ stresses is an important step in rock mechanics. Sources of these stresses are vertical (σv), horizontal maximum (σH) and 

horizontal minimum (σh). The magnitude and orientation of these stresses are critical parameters especially when injecting 

water in the fracture regime. The wellbore should be accurately oriented along an azimuth parallel to σH (White et al. 2011). A 

good connectivity between the wellbore and formation fractures will optimise injectivity into the reservoir. 

For this case study, σv is approximated by a gradient of 0.97 psi/ft using Equation F-1 in Appendix F. The σv reflects the 

weight of the earth above the depth of interest. The σh stress gradient is approximated at 0.75 psi/ft using Equation F-2 (below). 

The equation was determined from previous Leak-Off Tests (LOT) and Formation Integrity Tests (FIT). Applying Equation F-

2, σh=5378 psi at 7150 ft TVDSS. The σh is similar to the outcome of injectivity test from a nearby appraisal well (Well D), 

where the fracture opening pressure (Pfrac) was 5450 psia (Figure F-1 in Appendix F). The similarity proves σh gradient is valid 

for this case study.  

The magnitude of σH is difficult to calculate. In most cases, all of the in-situ stresses are not required as the σv and σh are 

the key parameters in predicting sand production. Using North Sea anisotropy (σH/σh) of 1.08, σH can be calculated. Here, σv 

(0.97 psi/ft) is larger than σH and σh (0.81 psi/ft and 0.75 psi/ft) (σv>σH>σh). This is common but may not true be for active-

tectonic areas; where σv can be the intermediate or smallest stress. 

The orientation of σh can be determined from caliper or by examining drilling-induced fractures using Formation Image 

(FMI) logs. Figure 3 below shows there is no evidence of borehole breakouts or drilling-induced fractures in both the caliper 

and FMI logs. Figure F-2 in Appendix F shows the same result through a shale section in Well D. 
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Figure 3: Section of Well Est1 wireline log from 9330 to 9440ft MD (Reservoir 1). The Formation Image (FMI) and caliper logs show no 

evidence of borehole breakouts and washouts respectively. 

Absence of borehole breakouts in the appraisal wells suggests that σH and σh may have little anisotropy in the horizontal 

plane (σV>σH~σh). A geomechanical study from a nearby field show that σH and σh have magnitudes similar to each other (i.e. 

almost isotropic) (Persaud et al. 2009). 

The uncertainty in determining the in-situ stresses orientations remains large. The World Stress Map (WSM) is a useful 

starting point to reduce this uncertainty. Figure F-3 shows a schematic of the North Sea regional stresses, revealing that σH has 

a generalised NNW-SSE trend. However, the scale of the North Sea regional stress may be erroneous because the local stress 

orientation varies from one fault block to another (Yale et al. 1994). The regional trend from WSM, however, is fairly 

consistent with the local stress regimes of two nearby fields; where σH direction is 095
 o
 to 275

o
 (±20

o
) (almost W-E trend). 

Existing faults in the reservoir will give a clue of σH and σh orientations. Induced fractures tend to orient themselves in the 

same direction as the existing faults or along the azimuth of σH direction (Gorden et al. 2011). This assumption is not valid if 

the horizontal stress regime of the reservoir has changed between the time the faults were created and now, which is unlikely. 

Figure F-4 and Table F-1 in Appendix 4 shows the location and the expected fracture orientation of the water injectors. The 

uncertainties in σH/σh anisotropy limit the deviations of injectors to less than 30
o
 (near vertical) across the reservoir interval. 

This is to ensure efficient fracture connectivity is achieved regardless of the orientation of σH.  

Particle Size Distribution (PSD). 

Core data from the appraisal wells are available for study. These data were used to determine the D10 formation grain size, 

Sc, Uc and fines. DSA and LPSA techniques are used in combination to ensure the fines portions are accurately quantified. 

Figures 4 and 5 shows there are large differences of fines portion in Sands 1 and 2 when comparing DSA and LPSA 

techniques. The large difference is expected because DSA measures larger fines (>44 μm) and LPSA is more accurate for 

measuring fines below 44 μm. Fines with grain sizes below 44 μm tend to disappear as ‘dust’ and also adhere to coarser 

particles during sieving (Slayter et al., 2008). LPSA is therefore used to represent the finer end of the particles in Sands 1 and 

2. PSD for Sands 1 and 2 are shown in Figure 6 and Figure 7 respectively. 
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Figure 4: Large variation in fines for Sand 1 show LPSA gives accurate measurement of fines below 44μm. 
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Sand 2: Comparison of Dry Sieve Analysis (DSA) and Laser 
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Figure 5: Large variation in fines for Sand 2 show LPSA gives accurate measurement of fines below 44μm. 
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Figure 6: Particle Size Distribution (PSD) of Sand 1 using DSA and LPSA combined (Beesley et al. 2011). 
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Figure 7: Particle Size Distribution (PSD) of Sand 2 using DSA and LPSA combined (Beesley et al. 2011). 
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Sand 1. (Figures and tables in Appendix G, unless stated). The D50 median grain size varies widely as shown in Figure G-

1. It varies from very coarse (1083 μm) to very fine sand (105 μm) and has a mean size of 515 μm. Figure G-1 shows a range 

of D50 values obtained from DSA. The large variation in D50 across the samples indicates Sand 1 may be more heterogeneous 

than Sand 2. D10 varies from 242 to 2137 μm ( 

 

Table G-2) with a mean value of 1124 μm. Only one value in Well Est1 (at 9230 ft mD) has a D10 of 149 μm.  

Figure G-3 shows 43% of Sc is greater than 10 and that the remaining 57% is less than 10. Figure G-4 shows most of the 

core samples from Well C, Dst1 and Est1 have Uc values between 2 and 5. This shows the sand is moderately uniform. The 

percentage of fines is less than 5% and is illustrated in Figure G-5. Based on the selection in Flowchart B, the recommendation 

is either WWS or Premium/Mesh-type screens. To determine the type of screen, Figure 8 shows a plot of Uc versus fines for 

Sand 1. It demonstrates most of the fines in Sand 1 lie within the boundaries of a Premium/Mesh-type screen.  

 

Sand 2. (Figures and tables in Appendix G, unless stated). The D50 varies from coarse (609 μm) to fine sand (140 μm) and 

has a mean value of 286 μm. This is consistent with geological description, where Sand 2 is cleaner and less heterogeneous 

than Sand 1. Table G-4 shows a range of D50 values obtained from DSA. D10 varies from 283 μm to 1425 μm respectively 

with an average value of 684 μm. This is illustrated in Table G-5. All D10 values in Sand 2 are greater than 175 μm.  

The sand is moderately uniform (2<Uc<5) and fines are below 5%. Using Flowchart B, the methodology also proposes 

either WWS or Premium/Mesh-type screens. A similar plot is applied to determine the type of SAS. Figure 9 below shows 

Premium/Mesh-type screen is the recommended sand control option for Sand 2. The methodology is also applied to each 

formation zone; where Premium/Mesh-type screens are preferred. This is illustrated in Table G-7.  

 

 

Sand 1: Uc vs. Fines (%)

0

5

10

15

20

25

30

0 5 10 15 20 25 30
UC (D40/D90)

F
in

e
s
 s

u
b

 4
4
μ

m
 (

%
)

C Cst1 Cst3
D Dst1 Est1
Premium/ Mesh Wire Wrapped

 
Figure 8: Schematic showing Uc and Fines of Sand 1 within the methodology boundaries to use SAS. 

 

Sand 2: Uc vs. Fines (%) 

0

5

10

15

20

25

30

0 5 10 15 20 25 30
UC (D40/D90)

F
in

e
s
 s

u
b

 4
4

μ
m

 (
%

)

Premium/ Mesh Wire Wrapped A
Ast1 C D
Dst1 B

 
Figure 9: Schematic showing Uc and Fines of Sand 2 also within the methodology boundaries to use SAS. 
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Formation Heterogeneity. 

 

Shale and Zonal Isolation. Openhole completions provide the greatest opportunity to maximise reservoir flow potential. 

However, the presence and condition of shale in a productive formation must be investigated, as it may prove problematic. 

Earlier PSD studies suggest OHSAS is favoured sand control option. This means that the mineralogy study of shale is not 

essential; it is more useful for OHGP. Mineralogy study of clay swelling helps to determine the compatibility of the gravel 

pack carrier fluid to shale. If the study shows clay swelling is not critical, a less costly gravel pack carrier fluid can be used 

over a more sophisticated and expensive option such as lower-viscosity carrier fluid. A significant cost saving can therefore be 

achieved. 

The uppermost zone in Sand 1 (i.e. Sand 1E) is more heterogeneous than the lower zones. Across Sand 1, all five zones 

contain thin beds of sand and shale with thicknesses of less than 2 ft. Zonal isolation in Sand 1 is difficult. It is also 

unfavourable to isolate thin shale sections; risking isolating potential pay zones as well. The uncertainty of isolating shale in 

Sand 1 will be reduced after a well is drilled and logged. For estimation purposes, the thickness of shale layers in the reservoir 

is determined from the case study appraisal wells. The thickness of shale layers in Sands 1 and 2 are based on shale cut-offs 

(Vsh) of 0.4 and 0.5. This is illustrated in Table H-1 and Table H-2. Using Vsh cut-offs of 0.4 and 0.5, it calculates an average 

and maximum shale thickness of 6 ft and 25 ft respectively. These values are then used to estimate the length of blank pipes 

and packers. 

Sand 2 consists of three zones – Sand 2A, Shale 2B and Sand 2C. Sands 2A and 2C are fairly homogeneous and considered 

excellent quality sand. It contains low siltstone and mudstone content. Shale 2B is an impermeable zone; separating Sand 2A 

from Sand 2C. Its thickness varies from 2-36 ft laterally across the reservoir with an average thickness of 11 ft (Table H-3). 

Flowchart A recommends isolation of shale intervals with thicknesses greater than 30 ft by using a combination of blank pipes 

and packers. 

 

Permeability Variation. The permeability (k) of Sand 1 varies from 0.2 to 0.7 D and Sand 2 from 0.7 to 1.4 D. Figure 10 and 

Figure 11 illustrates permeability-porosity (k-) relationship with porosity cut-offs for Sand 1 and Sand 2 respectively. The left 

plot on Figure 10 shows Sand 1 has a wider k- distribution and lower R
2 

values compared to Sand 2 (Figure 11). This is 

another indication that Sand 2 is cleaner and less heterogeneous than Sand 1. 

The R
2
 values are obtained by applying a best fit regression of the k- relationship. The higher the R

2
, the less 

heterogeneous the formation is. Table H-4 in Appendix H summarised the regressed R
2
 values for all the appraisal wells. The 

average R
2 
values are therefore 0.78 and 0.83 for Sand 1 and Sand 2 respectively. However, the R

2
 needs to be verified because 

the value is also dependant on sorting. This is conducted by plotting the Rock Quality Index (RQI) versus Sc. This is illustrated 

in Figure H-1 and Figure H-2 for Sands 1 and 2 respectively. Figure H-1 shows a wider RQI and Sc distribution (i.e. less 

sorted) compared to Figure H-2. In short, this concludes that a more sorted formation is less heterogeneous (Sand 2) and a less 

sorted formation is more heterogeneous (Sand 1); validating the use of R
2
 to represent heterogeneity in this study. 
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Figure 10: Permeability and porosity relationship of Sand 1 in the horizontal and vertical direction. 
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Figure 11: Permeability and porosity relationship of Sand 2 in the horizontal and vertical direction. 
 

Uncertainty in determining permeability variation in a pre-drilled injector is large. However, study of nearby appraisal 

wells suggests there is a large variation in permeability; especially in Sand 1. Figure 12 shows Sand 1 has anisotropic vertical 

(kV) and horizontal (kH) permeabilities, with a vertical-horizontal permeability ratio (kV/kH) ranging from 0.001 to 100. 

Following that, Figure 13 shows Sand 2 is less anisotropic compared to Sand 1. More kV/kH plots for Sands 1 and 2 are 

illustrated in Figure H-3 in Appendix H. Flowchart A recommends the use of blank pipes, packers and inflow control 

technology to counteract the effects of permeability variation in Sands 1 and 2. Large permeability variation can result in 

several aforementioned failure mechanisms that are common in water injectors. 

Split Injection Rate and Annular Flow 

As the need for inflow control technology to be integrated with SAS has been established, a study on how to design and 

optimise this integrated completion is required. Inflow-control technology will help to optimise sweep efficiency in highly 

heterogeneous Sand 1 and provide pressure support in Sand 2. It will also help to avoid formation fractures in the high 

permeability zones by controlling the amount of water intake. ‘Active’ ICV and ‘Passive’ ICD (Birchenko et al. 2008) helps to 

improve equalisation and distribution of water evenly across each pay zone. The base design is to position one ICV combined 

with openhole packers per zone. ICV is preferred because it is surface-controlled and does not require well intervention. ICD 

however is more suited to counteract the ‘heel-to-toe’ effect seen in horizontal wells (Birchenko et al. 2008). 
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Figure 12: Vertical-to-horizontal permeability ratio (KV/KH) in Sand 1 is more anisotropic than Sand 2. 
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Sand 2: KV/KH (Well B) (for I2b)
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Figure 13: Schematic shows the KV/KH in Sand 2 is less anisotropic compared to Sand 1. 
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Figure 14: NETool

TM
 shows Barefoot and SAS completions matches. 

 

NETool
TM

 wellbore simulation is used to model the injection profile in SAS with integrated ICV. It simulates the volume 

of water injection into each pay zone based on the position and settings of ICVs. For instance, if a high permeability pay zone 

takes more water, optimising the ICV aperture in NETool
TM

 can control the increased injection. This will improve water 

distribution meaning better pressure support and an efficient drainage of water into all zones. A workflow explaining the 

process of NETool
TM

 simulator is explained further in Appendix K. NETool
TM

 has one limitation – the software cannot 

simulate the injection profile when SAS is modelled with ICV. This is because an ICV is installed within the SAS. Therefore, 

the simulation can only model openhole (barefoot) completion with ICV, assuming it as SAS with ICV. To validate this 

assumption, injection profiles with barefoot- and SAS-only completion are stimulated, and highlighted in . Both injection 

profiles in  matches, which means barefoot with ICV can be used as a model to resemble SAS with ICV. 

Average permeability-thickness (kh) in Sands 1 and 2 are used to calculate the injection allocations (i.e. split ratio) of each 

zone. The objective of determining the allocations each zone is to tailor the ICV settings. In doing this, water injection can be 

optimised for each zone according to the calculated allocations. Table I-1 to Table I-4 in Appendix I summarises the injection 

allocations for all water injectors in Sands 1 and 2. 

For this case study, I1 and I2 represent the water injectors in Sand 1 and Sand 2 respectively. I1b is used as an example for 

this case study and illustrated in Figure 15. Design capacity for this well is 40, 000 stbw/d; which is in the fracture injection 

regime. I1b has reservoir drainage of 220 ft. Its kh split ratio is 52% (Upper Sand 1) and 48% (Lower Sand 1). This means the 

design injection rates are 20, 700 stbw/d and 19, 500 stbw/d for Upper Sand 1 and Lower Sand 1 respectively. Simulation was 

initially conducted with SAS-only completion. The injection profile in SAS-only completion shows 77% of water will be 

injected into Upper Sand 1. This creates an uneven distribution of water; meaning ICV will be required to balance the injection 

profile. Optimisation of SAS completed with various ICV apertures is sensitised. The outcome of the sensitivity analysis is an 

optimised ICV configuration that matches the injection allocations. The results show that both ICVs in I1b with a 5% opening 

will give injection rates of 20, 800 stbw/d and 19, 200 stbw/d into Upper Sand 1 and Lower Sand 1, respectively. This shows 

injection into Upper Sand 1 can be reduced to 52% of the total injection rate compared to 77% for an SAS-only completion. 

This means less water injection into Upper Sand 1 and more water injection into Lower Sand 1. Figure 16 shows the water flux 

profile for SAS-only and SAS-ICV completions. The plot shows an improved fluid flow across Sand 1 when ICVs are used. 

Barefoot SAS only 
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The injection rates based on the optimised ICV for all water injectors are highlighted from Table I-5 to I-7 and the ICV settings 

are summarised in Table I-8. Plots to compare injection allocations, water flux profiles and completions for the other five 

injectors are in Figure I-1 to I-10. 
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Figure 15: Split design injection rate into the Upper & Lower Sand 1 for I1b. 

 

In SAS-ICV injectors (Figure 17), water will flow out of the well (blue arrow) and into the annulus (red arrow). Most of the 

water will flow into the reservoir whilst the remaining water will flow in the annulus. Sensitivity analysis with water injection 

rates at every ten thousand barrels from 10, 000 to 50, 000 stbw/d shows there is some fluid velocity in the space between the 

SAS annulus and openhole wellbore. 

The annular velocity profile of I1b injector in Figure 18 shows the topmost screen joint (i.e. the heel) is potentially the 

weakest point in the completion and the screen is expected to fail first as a result of hot spotting. This effect causes screen 

plugging and erosion if the annular fluid velocity exceeds the erosion (threshold) velocity (Ve). The Ve varies among operators 

and is controlled by solids content of the injected fluid, fluid particles size and SAS selection (Cameron et al. 2007). Several 

references suggested the safe limits of annular flow velocity for WWS and Premium screens are 1 ft/s and 2 ft/s respectively 

(Wong et al. 2003). 

The maximum annular flow velocity in Figure 18 at the topmost screen joint is 2 ft/s, if the water is injected at 50, 000 

stbw/d. At lower injection rates, the effect of annular velocity reduces. Reservoir strategy for this well shows the maximum 

injection rate is 24, 000 stbw/d and averages at 12, 000 stbw/d.  In this case, the risk of screen erosion caused by hot spots is 

minimal. If reservoir management calls for water injection up to 50, 000 stbw/d from I1b, risk of screen erosion is moderate 

and still within acceptable limits. The study also shows compartmentalisation using packers have minimal effect on reducing 

the annular velocity. This is demonstrated in Figure I-13, where up to four packers were used to isolate and did not reduce the 

annular velocity. Sensitivity analyses on the annular velocity of the other water injectors are illustrated from Figure I-11 to 

Figure I-13. In summary, Sand 1 has low risk of screen erosion between 10, 000 – 30, 000 stbwd, moderate risk at 40, 000 

stbw/d and high risk at 50, 000 stbw/d. Sand 2 has low annular velocity risk for all water injection rates except for the 

commingling water injector. The results of the sensitivity analyses are highlighted in Table I-9. 
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Figure 16: Water flux from well into Sand 1 (Top/Middle: SAS only vs. SAS+ICV). Bottom: Completion design. 

 

 
Figure 17: Schematic of a typical SAS-ICV completion for this case study 

 

 
Figure 18: Annular velocity (v) with zonal isolation in the integrated SAS+ICV completion. The circled (red) shows the top most screen 

joint is the weakest point of the completion. 
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Conclusions 
 

A new methodology, this paper recommends sand control selection in a concise and easy to understand manner for six water 

injectors in a North Sea field. The methodology is presented as a combination of flowcharts and a sand control selection table 

matrix, enabling the engineer to assess the risk of the recommended equipment. 

The water injectors are vertical or deviated at less than 30
o
 into the reservoir sections and independent of σH azimuth 

orientation. Sand control for all six water injectors in Sands 1 and 2 has been evaluated in accordance to this new methodology 

as per below: 

 Openhole SAS is the preferred technique. 

- Premium-type SAS is recommended, because most of the sand has D10 greater than 175 µm, moderately 

uniform, and have fines of less than 5%. This option is suitable to accommodate an injection capacity of up 

to 50, 000 stbw/d and remain stable under a high rugosity wellbore. 

- WWS is not recommended. Prone to fines migration, WWS is susceptible to screen erosion and plugging. 

Both reservoirs have fines greater than 2%, exceeding the methodology boundaries that enable them to use 

WWS. 

 OHGP such as LAWP, HAWP and Slurry Pack are not recommended because gravel packs are likely to displace 

when injecting at fracture regimes. OHGP also has higher operational risks, and is a more expensive option. 

 Cased Hole Gravel Pack (CHGP) and High Rate Water Pack (HRWP) are also not recommended as both may suffer 

from limited outflow, perforation plugging and high completion skin values. In fact, wellbore stability for this case 

study shows that casing is not necessary. 

 

Premium-type SAS utilising blank pipes and packers will be integrated to isolate shale sections. ICV will be included to 

even out the non-uniform distribution of water injection, caused by the effects of permeability variation. In addition, NETool
TM

 

modelling simulates different optimised ICV apertures to match the injection allocations for all water injectors; calculated from 

permeability-thickness. Sensitivity analyses at various injection rates shows flow velocity in the screen annulus is below the 

critical erosional velocity for Premium-type SAS.  

In summary, the methodology is validated and supplemented by risks and concerns. The risks are large permeability 

variation and presence of shale in the oil bearing zones. As long as ICV, blank pipes and packers are included to manage the 

risks, the use of Premium-type SAS as a sand control equipment for this case study is justified. 

 

Suggestions for Further Work 
 

 Expand the methodology further for cased hole sand control 

 To include sand retention study and design of screen slot sizing in the methodology 

 Simulate and compare injection flow profiles in the field’s production life. 

 The evaluation of installing back-flow check valve to reduce the water ‘hammer’ effect when wells are shut-in. 

 Comparison of injection performance (nodal analysis) for various sand control options using Skin, Injectivity Index 

(II) and Completion Efficiency (CE) as the sensitivity parameters. 

 

Nomenclature 
∆P Pressure Drop [psi] 

APT Alternate Path Technology 

bbl/d Barrels per day 

CEC Cation Exchange Capacity 

CHGP Cased Hole Gravel Pack 

D Darcy 

D10 Particle Size (10th percentile) 

D40 Particle Size (40th percentile) 

D50 Particle Size (50th percentile) 

D90 Particle Size (90th percentile) 

DIF Drill-In Fluids 

DSA Dry Sieve Analysis 

ESS Expandable Sand Screen  

FMI Formation Image Log 

GP Gravel Pack 

HRWP High Rate Water Pack 

I1 Sand 1 Water Injector 

I2 Sand 2 Water Injector 

ICD Inflow Control Device 

ICV Inflow Control Valves 

ID Internal Diameter 

kH Horizontal Permeability [mD] 

kh Permeability Thickness [md.ft] 

k-ø Permeability-Porosity Relationship 

kv Vertical Permeability [mD] 

kv/kH Vertical-Horizontal Permeability Ratio 

LPSA Laser Particle Sieve Analysis 

MD Measured Depth 

NAF Non Aqueous Fluid 

NTG Net to Gross [%] 

OBM Oil Based Mud 

OD Outer Diameter 

OHGP Open Hole Gravel Pack 

OM Optical Microscopy 

Pfrac Fracture Opening Pressure [psia] 

PLT Production Logging Tool 
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PPS Pre-packed Screen 

PSD Particle Size Distribution 

R
2
 Linear Regression 

RQI Rock Quality Index 

SAS Standalone Screen 

Sc Sorting Coefficient (D10/D95) 

SCS Sand Control Selection 

SEM Scanning Electron Microscopy 

SOBM Synthetic Oil Based Mud 

SRT Sand Retention Test 

st sidetrack 

stbw/d Stock Tank Barrels of Water per Day 

TVDSS Total Vertical Depth Subsea 

Uc Uniformity Coefficient (D40/D90) 

v Annular Fluid Velocity [ft/s] 

Ve Critical Erosional Velocity [ft/s] 

WBM Water Based Mud 

WC Wellbore Condition 

WI Water Injector 

WWS Wire Wrapped Screen 

XRD X-Ray Diffraction 

μm Micron 

σH Maximum Horizontal Stress Gradient [psi/ft] 

σh Minimum Horizontal Stress Gradient [psi/ft] 

σv Vertical (Overburden) Stress Gradient [psi/ft] 
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APPENDIX A: CRITICAL LITERATURE MILESTONES TABLE 

 

Paper Year Title Authors Contribution 
58-066 

(API) 

1958 “Sand Exclusion in Oil and 

Gas Wells” 

G.H.Tausch, C.B.Corley First to discuss the theory and methods of sand 

exclusion i.e. bridging and consolidation of sand 

grains. 

 

2330 

 

1968 

“Successful Sand Control 

Design for High Rate Oil and 

Water Wells” 

D.H.Schwartz 

 

1. First to describe sand control design procedure 

for oil producer and water injector wells. 

2. First to present methods for designing gravel 

packed completion. 

 

39437 

 

1998 

 “New Criteria for Gravel and 

Screen Selection for Sand 

Control”  

D.L.Tiffin, G.E.King, 

R.E. Larese, L.K.Amoco 

1. First to present guidelines for sand control 

completion technique and gravel size selection 

based on reservoir sand size distribution. 

2. Consolidated proposed design criteria based on 

field experience and experiments on cores from 

various formations. 

 

85540 

 

2003 

“ Design Methodology for 

Selection of Horizontal 

Openhole Sand-Control 

Completions Supported by 

Field Case Histories” 

C.Price-Smith, C.Bennett, 

J.M.Gilchrist, E.Pitoni, 

R.C.Burton, R.M.Hodge, 

J.Troncoso, S.A.Ali, 

R.Dickerson 

1. First to propose a generalized and unified 

methodology for determining when, what and how 

to install horizontal openhole completions.  

2. Presented a risk analysis by integrating all 

relevant factors. 

88493 2004 “Screening Methodology for 

Downhole Sand Control 

Selection” 

C.Farrow, D.Munro,  

T.McCarthy 

First to propose a methodology incorporating a 

combination of flowchart and sand control selection 

matrix. 

93564 2005 “Designing Effective Sand 

Control Systems to Overcome 

Problems in Water Injection 

Wells” 

H. Sadrpanah, R. Allam,  

A.Acock, M.Norris, 

T.O’Rouke 

1. First to provide guideline in selecting and 

designing sand control systems for water injector 

wells. 

2.  Summaries causes of sand control failures based 

on detailed case studies. 

106018 2007 “ICD Screen Technology 

Used To Optimize 

Waterflooding in Injector 

Well” 

A.G. Raffn, S. Hundsnes, 

S. Kvernstuen, T. Moen 

Propose an innovative completion of inflow control 

technology with sand control screens for injection 

wells 

107539 2007 “Successful Installation of 

Stand Alone Sand Screen in 

More Than 200 Wells – The 

Importance of Screen 

Selection Process and Fluid 

Qualification” 

A.M.Mathisen, G.L. 

Aastveit, E. Alteras 

1. First to recommend a sand control selection 

practice based on comprehensive screen selection 

and fluid qualification process. 

2. First to publish testing and ranking of different 

screen designs based on sand retention and 

plugging properties. 

112283 2008 “Equalization of the Water 

Injection Profile of a Subsea 

Horizontal Well: A Case 

History” 

A.S. Amaral, J. 

Augustine, K. Henriksen, 

V.F.,Rodrigues, 

D.E. Steagal, 

L.C.A.Paixao 

First global installation of a water injector well with 

a lower completion system that include both 

premium sand control screens and inflow control 

technology to equalize injection profile. 

 

114781 

 

2008 

“Sand Management: What 

Are We Sure Of?” 

 

A.G. Slayter, M.Byrne,  

C.A. McPhee, P.McCurdy 

First to propose a methodical framework with 

defined objectives, tasks and activities for the 

execution and qualification of sand control design  

 

128038 

 

2010 

“Improved Selection Criteria 

for Sand Control – When Are 

“Fines” Fines?” 

 

M.Byrne, A.G. Slayter,  

P.McCurdy 

First to redefine classification of “fines” by 

considering the impact it has on the formation and 

its ability to move through the pores of unperturbed 

rock 

137057 2010 “Optimizing Injection Wells 

through Innovative 

Completion 

A. Khalil, M. Elasmar, S. 

Shafie 

First to apply influx control device (ICD) in an 

injector well for carbonate formation. 
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APPENDIX B: CRITICAL LITERATURE REVIEWS 

API 58-066, 1958 

First presented during a meeting at the Southern District, Division of Production, Houston, Texas, February 1958. 

 

Title: Sand Exclusion in Oil and Gas Wells 

 

Authors: Tausch, G. H., Corley C. B. Jr. 

 

Contribution to the understanding of sand control concept selection: This paper describes the two general methods of sand 

control. The methods are 1) bridging of sand grains and 2) consolidation of sand in place. Each method also describes the 

design criteria required when selecting a sand exclusion technique. 

 

Objective of the paper: A detailed examination of sand exclusion techniques. The techniques studies are slotted/wire-

wrapped screen, gravel packing, plastic coated walnut shells and plastic consolidation. 

 

Methodology used: The bridging of sand grains is controlled by the size of the openings in the standalone screen and gravel 

pack. The size of the openings is determined by analysing the D10 sieved from dry analysis. The D10 i.e. the formation sand 

sizing grain diameter is an important criterion for the design of the bridging method. Consolidation of grains uses plastic 

material and the critical design criteria are formation permeability and temperature instead. 

 

Conclusion reached: Bridging techniques can be applied on initial completion and consolidation techniques after completion 

(i.e. when there is an indication of formation sand produced). Both techniques have different design criterion.  

  

Comments: This paper unifies sand control techniques into two techniques for both oil and water-producing wells. For the 

bridging method, the paper describe slotted line, wire wrapped screens and gravel pack as the solution. Detailed design and 

effectiveness of the sand control equipment was only briefly discussed. The grain size analysis focussed only on the minimum 

formation size (D10) for the screen slot design. 
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Journal of Petroleum Technology, September 1969 

Presented at the SPE 39
th

 Annual California Regional Fall Meeting held in Bakersfield, USA 7-8 November, 1968 

 

Title: Successful Sand Control Design for High Rate Oil and Water Wells 

 

Authors: Schwartz, D. H. 

  

Contribution to the understanding of sand control concept selection:  

 

Objective of the paper: To present a technique for designing gravel flow packed liner completion. Design criteria are 

formation analysis, gravel-to-sand ratio and velocity through slots. The objective is to design a sand control for high rate oil 

producer and water injections wells. Subsequently, a sand control design is recommended that is sufficient to last through 

secondary recovery projects (~ 10 years). 

 

Methodology used: Describes the Tyler Standard Screen Scale (sieve analysis) to measure the grain diameter (Dx) and 

uniformity coefficient (C). Dx refers to the sieve size distribution (cumulative, %). C is determined from the slope of the sieve 

analysis: 

 

C = D40/D90 

 

The equation above shows a sieve opening at which 40% of the sand is being retained divided by another sieve opening at 

which 90% of the sand is being retained. Below is the description of the C value: 

 

C < 3: Uniform Sand 

C > 5: Non-uniform sand 

 

Describes the parameter of the Gravel-to-Sand Ratio (G-S) i.e. the gravel grain size to the formation sand grain size: 

 

- G-S ≤4 will give a stable pack 

- G-S between 10 and 13 will give an unstable pack due to the invasion of formation into the pack 

- G-S between 6 and 8 will give the most optimum design  

 

The final methodology describes the effects of velocity towards the gravel flow pack. Increasing velocity will tend to destroy 

the pack stability. A design curve was plotted in determining the gravel and formation critical grain size for the design of the 

gravel and screen opening respectively.  

 

Conclusion reached: Successful and control design can be achieved by defining the sand, gravel design and quality of control 

of gravel once it is in place. 

 

Comments: The paper provided some understanding of how to measure the sand grains from sieve analysis. The methodology 

focuses solely on gravel pack techniques. 
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SPE 39437, 1998 

This paper was presented at the 1998 SPE Formation Damage Control Conference held in Lafayette, LA, 18-19 February 

 

Title: New Criteria for Gravel and Screen Selection for Sand Control 

 

Authors: Tiffin, D.L., King, G. E., Larese, R. E., Britt L. K. 

 

Contribution to the understanding of sand control concept selection: A proposed criterion has been published focussing 

primarily on reservoir sand size distribution. The criterion methodology focuses on the distribution of the grain sizes in terms 

of sorting. The study also evaluates the concerns of formation with very high fines content. Methodology uses field experience 

and experiments on reservoir cores worldwide as part of the study. 

 

Objective of the paper: To propose a new sorting criteria and completion techniques relating to the selection of gravel and 

screen size. The proposed criterion focuses on sorting techniques and mobility of fines. 

 

Methodology used: Added a new piece of design information to the commonly used Saucier’s criteria for screen and gravel 

size selection. Design methodology uses D50, D40/D90, D10/D95 and mobility of fines particles for sand control selection. If 

D50 < 75μm, gravel pack is preferred as fines constitutes a large portion of the sand distribution making screens impractical. 

The D10/D95 is a new criterion and used to distinct variation between the size and sorting ranges of formation sand. 

 

Conclusion reached: The proposed criteria for evaluating formation sand sorting values are presented below: 

 
Table B-1: Formation Sand Sorting Values 

Sorting Proposed Purpose 

D50 Standard Saucier Criteria 

D40/D90 Screen Damage Ratio from Pall 

D10/D95 

Size range between common 

minimum and maximum particle 

sizes 

Sub 325 mesh 
Quantity of sub 44micron 

particles (fines) 

 

Several case studies were conducted using the methodology and summarised below: 

 
Table B-2: Proposed Sorting Criteria 

Completion Techniques D40/D90 D10/D95 
Sub 325 

mesh (fines) 

Bare screen <3 <10 <2% 

Bare screen with woven 

mesh screens 
<5 <10 <5% 

Gravel placed in high rate 

water pack 
<5 <20 <5% 

Gravel and Fines-passing 

screen 
<5 <20 >10% 

Enlarge the wellbore through 

fracturing or horizontal/ 

multilateral well 

>5 >20 >10% 

 

Comments: This paper presents a solid method in determining the screen and gravel size selection. It highlights the various 

sorting methods and most importantly the concern of fines mobility. The summary of case studies tabulated above provides a 

much better understanding of what type of sand control is needed based on the formation sand size distribution. This study also 

highlights the need to enlarge the wellbore if large quantity of fines is present. 
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SPE 85504, June 2003 

This paper was first presented at the 2000 SPE European Petroleum Conference held in Paris, France, 24-25 February. The 

paper was revised for publication from paper SPE 65140. 

 

Title: Design Methodology for Selection of Horizontal Openhole Sand-Control Completions Supported by Field Case 

Histories 

 

Authors: Price-Smith, C., Parlar, M., Bennet, C., Gilchrist, J. M., Pitoni, E., Burton, R. C., Hodge, R. M., Troncoso, J., Ali, S. 

A., Dickerson, R. 

 

Contribution to the understanding of sand control concept selection: This paper discusses a unified methodology for 

determining the type of sand control needed for openhole horizontal completions. It highlights a step-by-step guide from 

predicting sand to establishing the type of sand control needed. The criteria in determining the type of sand control is based on 

field experience, knowledge and experimental data. This paper also provided a range of critical design criterion when selecting 

a sand control technique from a range screens and gravel packs available to date. The criterion includes deepwater and non-

deep water environments. Several case histories were applied to support the methodology proposed.   

 

Objective of the paper: To propose a unified and well-defined set of guidelines for selecting a sand control technique. The 

paper provides specific factors that links ‘when’, ‘what’ and ‘how’ to install sand control in openhole horizontal completions. 

 

Methodology used: In deepwater environments (>1500ft), the cost of intervention outweighs the sensitivity cost of screen 

selection and gravel pack (GP). For non-deep water environments (<1500ft), initial screening uses formation sand size 

distribution as per Tiffin criteria. The methodology describes the presence of shale in productive sand requires isolation 

through the use of blank pipes or mechanical inflatable packers. 

 

The methodology highlights in detail the design criterion that affects the type of gravel pack. Two types of GP are commonly 

used: GP-Water Pack and GP-Shunt Pack. The use of GP-Water Pack depends primarily on the pay length, shale content/ 

reactivity and drilling fluid compatibility. GP-Water Pack is preferred over GP-Shunt pack when the formation sand is uniform 

and NTG is high i.e. > 60-80%. Depending on the scenario, GP-Shunt Pack is preferred in high-risk environments because the 

success ratio for this method is 100%. 

 

The methodology also highlights several critical concerns before and after installing a sand control technique. Details of the 

methodology are presented in table formats. The proposed methodology was checked and compared against 10 case studies. 

 

Conclusion reached: The methodology (unified set of guidelines) should be use cautiously and requires further validation and 

refining when selecting the most appropriate sand control. Based on the validating methodology with the case studies, the 

results is summarised below: 
Table B-3: Sand Control recommended using Price-Smith et al. methodology 

Median Grain Size 

(D50) 

Uniformity 

(D40/D90) 

Fines 

content 

Production 

Rate 
Sand Control Recommended 

> 75μm High Low Low Wire Wrapped Screen 

> 75μm Moderate Moderate Low Prepacked Screen or Premium Screen 

> 75μm High Low High 

Prepacked Screen or Premium Screen 

(Large screen OD required to minimize 

annular flow) 

- Use gravel pack when D50< 75μm. GP-Shunt Pack is recommended for low NTG, reactive shale, OBM and low 

fracture gradient. GP-Water Pack is for high NTG, absence of reactive shale, WBM and high fracture gradient 

environments. 

- For deepwater environment (i.e. intervention cost outweighs sand control cost), the most reliable sand control 

technique must be used. 

 

Comments: This paper gives a detailed overview over a range of design criteria that needs to be conducted prior to choosing 

the suitable sand control. Further design criterion is added in this paper such as the presence and reactivity of shale, NTG and 

depth of water. The paper has unified a unique methodology when selecting a sand control technique compared to other 

published papers. The ten case studies focused on horizontal openhole completions but did not use well length as a design 

criterion.  
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SPE 88493, October 2004 

This paper was presented at the 2004 SPE Asia Pacific Oil and Gas Conference and Exhibition held in Perth, 18-20 October 

 

Title: Screening Methodology for Downhole Sand Control Selection 

 

Authors: Farrow, C., Munro, D., McCarthy, T. 

  

Contribution to the understanding of sand control concept selection: This paper introduces a sand control selection matrix 

using a traffic light output system. The system ranks available sand control techniques based on likelihood and consequences. 

The likelihood factor is based on a range of design criteria and the consequences factor is related to risks. 

 

Objective of the paper: To develop a screening methodology by evaluating and ranking of available sand control techniques. 

The methodology incorporates a combination of a flowchart and a sand control selection matrix.  

 

Methodology used: The flowchart is used for initial screening. It addresses which sand control options are suitable. The 

flowchart highlights the type, location and deviation of the well under study. 

 
Figure B-1: The proposed initial selection flowchart and sand control ‘traffic light’ selection output. 

 

The above figure on the right indicates sand control techniques vs. design criteria.  The matrix uses a colour code output. 

Green represent no concerns, yellow = some concern, orange = significant concern and red = ruled out. Any sand control 

techniques that receives red are eliminated immediately. Remaining sand control options are then evaluated by comparing the 

colour output of other design criteria. 

 

Selection matrix includes additional design criteria in the sand control selection. The criteria are reservoir length, reservoir 

fluid characteristics and production performance. Well intervention, cost, reliability and installation are risks criteria that are 

also included in the matrix. Methodology has been applied on three case studies. Case study 1 and 2 are cased-hole wells on 

existing platforms. Case 3 is an open-hole well for a sub-sea development. Gravel pack and standalone screen are the 

recommended sand control option for the former and latter respectively. 

  
Conclusion reached: Screening methodology using the flowchart and the selection matrix enables transparent evaluation and 

balanced ranking of sand control options. Additional critical design criteria on top of the common ones are highlighted. 

 

Comments: This paper gives a unique methodology for sand control selection. Output of the methodology can be evaluated 

and compared with established sand control techniques for a particular area. It uses a range of design criteria and requires input 

from static and dynamic perspective. To date, this is the best methodology to yield the optimum sand control. 
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SPE 106018, April 2007 

This paper was presented at the 2007 SPE Production and Operations Symposium held in Oklahoma City, Oklahoma, USA, 31 

March-3 April 

 

Title: ICD Screen Technology Used To Optimize Waterflooding in Injector Well 

 

Authors: Raffn, A.G., Hundsnes, S., Kvernstuen, S., Moen, T. 

 

Contribution to the understanding of sand control concept selection: This paper highlights the use sand controlled screens 

with integrated flow control devices for open-hole completed water injectors. It discusses the risk of erosion and plugging on 

the screens caused by the irregular flow distribution due to large permeability variation in the formation. 

  

Objective of the paper: To present an innovative completion with sand control and inflow control devices to improve water 

injection profiles in various sand formation zones. It is modelled and tuned using reservoir stimulations. 

  

Methodology used: The completion consists of wire-wrapped sand screen with inflow control device. The test was to 

understand flow and erosion on injector wells with screens and ICD. Flow is based on Bernoulli equation: 

 

    
 

Pressure drop is generated by fluid flow through the nozzles. The relationship above shows ICD is used to restrict and 

stimulate flow into high and low permeability zones respectively; providing a much inflow distribution of water into the 

permeable zones. 

 

Conclusion reached: Stimulation runs identify the possibility of controlling injection rates into individual zones. This paper 

also highlights that ICD injector completion is significantly less influenced by permeability contrasts compared to a standard 

screen completion. 

 

Comments: Nothing significant. However, the paper gives a good understanding that injected fluids prefers to flow into high 

permeability streaks; leading to early breakthrough and poor recovery that must be prevented 
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SPE 107539, June 2007 

This paper was presented at the 2007 European Formation Damage Conference held in Scheveningen, The Netherlands, 30 

May-1 June 

 

Title: Successful Installation of Stand Alone Sand Screen in More Than 200 Wells – The Importance of Screen Selection 

Process and Fluid Qualification 

 

Authors: Mathisen, A.M., Aastveit, G. L., Alterås, E. 

 

Contribution to the understanding of sand control concept selection: This paper highlights the failure of active sand 

control caused by long shale sections, high content of fine material and incompatibility of completion fluids to the formation. 

 

Objective of the paper: To recommend a practice based on comprehensive screen selection by testing and ranking of 

different screen designs. The study includes a fluid qualification process by ensuring the drilling and completion fluid is 

compatible during the sand screen installation. 

  

Methodology used: 
 

1) Sand retention and screen plugging testing were used to rank the screen designs as part of the sizing selection. Data for the 

tests were collected from the formation’s weakest and poorest uniformity/sorting coefficients. The preparation of the data was 

originally from sand failure studies and particle sand distribution (PSD). The PSD analysis was plotted using dry sieve analysis 

and quality checked with Laser Particle Size Analysis (LPSA). Wire-Wrapped, Premium and Expandable screens were used 

for the tests. 

 

2) Geological evaluation on the reservoir heterogeneity was used to identify shale sections between the core and the planned 

well path. The outcome of the evaluation determines the number of blank pipers and/or packers required to isolate unstable 

shale sections. 

 

3) Inflow control technology was recommended to minimise annular flow. This phenomena transports particles in the annular 

hence increases the risk of screen plugging. The paper highlights the use of inflow control device (ICD) to reduce annular flow 

and provide a uniform inflow profile across the horizontal section of a well. Blank pipes and packers are also used to reduce 

annular flow.  

 

Conclusion reached: Sand retention and plugging studies shows Premium screens has the lowest pressure drop combined 

with high sand retention and permeability. Inflow control technology and isolation devices are recommended for formations 

with long shale sections and/or high content of fine material.  

 

Comments: This paper provides a comprehensive ranking on various screen designs using formation sand properties.  It 

highlights the importance of sand retention and screen plugging even though it is conducted only at laboratory conditions. The 

paper also gives a brief justification of using inflow control technology and isolation devices as part of the sand control 

selection. 
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SPE 112283, February 2008 

This paper was presented at the 2008 Formation Damage Control held in Lafayette, Louisiana, 13-15 February 2008 
 

Title: Equalization of the Water Injection Profile of a Subsea Horizontal Well: A Case History 

 

Authors: Amaral, A. S., Augustine, J., Henriksen, K., Rodrigues, V.F., Steagal, D.E., Paixão, L.C.A., Barbosa, P. 

 

Contribution to the understanding of sand control concept selection: This paper focuses on the installation of water 

injector well with a lower completion system that incorporates both premium sand control screens and profile equalization. A 

schematic of the injector completion details was presented. 

 

Objective of the paper: To create a uniform outflow profile in sand controlled completions for subsea horizontal water 

injectors. 

 

Methodology used: Sand controlled completions such as standalone screens do not provide equalization of the water injection 

profile. An open-hole gravel pack provides some equalization but is affected by cost, risk and complexity. 

 

Water injector well locations were defined and reservoir stimulation with desired injection rates was achieved. The stimulation 

shows uniform injection is required along the horizontal section. This is to prevent water-fingering and early breakthrough. 

Injection profiles at various injection rates were therefore stimulated. Severe imbalance of water influx into the reservoir was 

observed at the heel section of the horizontal water injector when non-equalizing sand controlled completion was used. 

Completion with screens and equalization provides a much better distribution of injected water into the horizontal section (i.e. 

heel to toe) of the well. 

 

Conclusion reached: The use of equalization, screens and isolation packers enhances and improves water injection profile. It 

eliminates the chance of annular flow occurring. 

 

Comments: This paper highlights inflow control devices can be used with sand controlled screens if equalize outflow profile 

is required in a water injector well. However, the findings are based only on a subsea horizontal well. 
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SPE 114781, October 2008 

This paper was presented at the 2008 SPE Asia Pacific Oil & Gas Conference and Exhibition held in Perth, Australia, 20-22 

October 

 

Title: Sand Management: What Are We Sure Of? 

 

Authors: Slayter, A. G., Byrne, M., McPhee, C. A., McCurdy, P. 

 

Contribution to the understanding of sand control concept selection: This paper highlights best practice on several design 

criteria for openhole wells that require sand control. Rock mineralogy, particle size distribution (PSD), screen-to-openhole 

annulus, screen failure mechanisms and screen collapse/ buckling are the design criteria discussed.  

 

Objective of the paper: To propose a systematic framework to address critical design criteria in a timely and ordered manner. 

Sand control design criteria usually tangled with more than one objective.  

 

Methodology used: 
1) Rock mineralogy study: Used X-Ray Diffraction (XRD) to identify the presence and type of clays. Cation Exchange 

Capacity (CEC) is used to measure the reactivity of shale (i.e. swelling of clays). Dynamic Flow through Test 

(DTTT) is part of the study to assess the clay behaviour when fluids are circulated at high rates through a core 

sample. This study is important to determine the compatibility of water-based mud (WBM) for gravel water packs.  

 
Table B-4: Typical CEC values for specific clays 

Type & Behaviour of Clay CEC meq/100g) 

Swelling Smectites 80-150 

Mobile Kaolinites 1-10 

2) PSD study: Laser Particle Sieve Analysis must be performed on top of the dry sieve analysis. This is to quality check 

the particle size distribution from both techniques. Fines are its ability to move between pores of a rock. Rock grain 

sizes smaller than 325mesh (44µm) are categorised as fines. The 44 µm cut-off is based on the finest sand screen 

available to date. Fines greater than 10% is a concern for all sand control options. The study recommends wellbore 

enlargement and this proposal is consistent with Tiffin’s criteria.  

3) Screen-to-Openhole Annulus study shows annular removal is necessary to prevent flow behind the pipe. This will 

prevent screen erosion and plugging caused by hot spots and fine particles respectively. Flow in the annular can be 

prevented by using inflow control devices (ICD) and expandable annular packers. Significant cost reduction as 

opposed to wellbore enlargement. The presence of annular can also be removed by using ESS.  

4) Screen failure mechanisms are plugging and erosion. Critical erosion velocities are. Determined. Allowable critical 

flow rates for both liquid and gas flow are tabulated below. This is based on consolidation from various operators: 

 
Table B-5: Critical flux rates to avoid erosion for various sand control completions 

Sand Control Screen System Critical V for Liquid (ft/s) 
Critical V for Gas 

Flow (ft/s) 
Company 

Expandable Sand Screen (ESS) 1 1 Weatherford 

Wire Wrapped Screen (WWS) 1 6 US Filter, Johnson Screen 

Woven and Wire Wrapped Screen 1 Not available Shell 

Cased Hole Gravel Pack (CHGP) 10 20 BP 

5) Screen collapse/ buckling can occur when screen is plugged. This can be mitigated if the well is bean up slowly after 

being idle for unknown period of time. The presence of shale is the likely cause of screen plugging because shale is 

unstable and brittle. It will weaken and collapse onto sand screen. This increases the likelihood of screen failure. 

 

Conclusion reached: Successful sand management requires an organised approach when executing all design selection 

criteria. The use of ICDs and packers must be evaluated as part of a continuous approach in developing optimum sand control 

system.  

  

Comments: The paper highlights additional information that is very useful in defining the selection criteria. More focus the 

critical design and limitation of sand control screens. Expandable sand screen (ESS) was introduced to remove annular space 

in the wellbore. Critical flow rates are useful to minimise screen erosion. Flow rates in the annulus can be lowered by 

installing flow control devices and isolation packers as part of the sand control completion. 
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SPE 128038, February 2010 

This paper was presented at the 2010 SPE International Symposium and Exhibition on Formation Damaged held in Perth, 

Australia, 20-22 February. 

 

Title: Improved Selection Criteria for Sand Control – When Are “Fines” Fines? 

 

Authors: Byrne, M., Slayter, A. G., McCurdy, P. 

 

Contribution to the understanding of sand control concept selection: This paper highlights new definition of fines. This is 

to ensure an optimum and tailored sand control is selected. A modified sand control selection process to account the new 

definitions is proposed in this paper. 

 

Objective of the paper: To provide a discussion on fines. It explains how fines should be measured, classified and 

interpreted. The paper also reviews previous published literature on fines and existing sand control selection guidelines.  

 

Methodology used: Initial review shows conventional guidelines used in determining sand control systems were Schwartz 

(1969) and then Tiffin et al. (1998). Both of the methodology with some additional guidelines were consolidated and 

integrated into a flowchart. The definition of fines as “less than 44 µm” is inappropriate for sand control selection in very fine 

grained rocks because it may have a high percentage of “less than 44 µm fraction”. The new definition of fines is presented in 

the left flowchart below. With the modified definition of fines, the right flowchart presents an enhanced sand control selection 

process: 

 
Figure B-2: Definition of fines 

 

Conclusion reached: The paper highlights the meaning of “fines” from an engineering perspective. It redefines fine from 

being “less than 44µm” to “to be considered as part of the rock that can move through the pores of intact rock”. A clear 

distinction is made between fines moving in intact rock and fines present in the rock that collapsed between the formation face 

and the sand control completion. 

  

Comments: This paper provides an engineering view of defining fines for sand control. The flowcharts are useful to find the 

true meaning of fines during the sand control selection. It is useful because if the formation fails and deposit into the annulus, 

the sizing of fines will be different and further study will be required. 
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SPE 137057, November 2010 

This paper was presented at the 2010 Abu Dhabi International Petroleum Exhibition & Conference held in Abu Dhabi, UAE, 

1-4 November.  

 

Title: Optimizing Injection Wells through Innovative Completion 

 

Authors: Khalil, A., Elasmar, M., Shafie, S. 

 

Contribution to the understanding of sand control concept selection: None. However, the inclusion of inflow control to 

achieve uniform injection profile in water injectors is required.   

 

Objective of the paper: To share its application of influx control device (ICD) for an injector well for in a carbonate 

formation. The completion shows an intelligent wellbore completion that gives an even distribution of injected water along the 

wellbore (heel to toe). 

  
Methodology used: Initial review shows heel-to-toe effects, permeability contrasts and existence of fracture thieves are causes 

of imbalance water injection profile into the reservoir. Stimulation was modelled to estimate the water injection distribution. 

Case A and Case B were run. Case A is a barefoot (no inflow control) completion. Case B is a completion completed with 

inflow control. Study was conducted on both cases using a wellbore hydraulics stimulator. 

 

The requirement injection split ratio into the reservoir is 40% (heel):60% (toe). The barefoot completion (Case A) failed to 

honour the requirement split ratio. Most of the water injected took the path of least resistance and flowed into the high 

permeability zones, located near the heel section of the well. Sensitivity runs was conducted for Case B to achieve the 

optimized completion. The optimized completion indeed honoured the design injection split ratio. It provided a much better 

distribution of injected water from the heel to the toe section of the well.  

 

Injection log was then conducted and the injected split ratio with the optimized completion was 44% (heel):56% (toe); closed 

to the design requirement modelled in the wellbore hydraulic stimulator 

 

Conclusion reached: Most of the injected water will take the path of least resistance and flow into a higher permeable zone; 

causing early water breakthrough and poor reservoir sweep of the oil. 

 

Comments: This paper provides a good background on how to model and optimize inflow control devices with sand 

controlled completion in a wellbore hydraulic stimulator. 
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APPENDIX C: NOMENCLATURE 

∆P Pressure Drop [psi] 

APT Alternate Path Technology 

BHT Bottom Hole Temperature 

CEC Cation Exchange Capacity 

DIF Drill-In Fluids 

DSA Dry Sieve Analysis 

ECD Equivalent Circular Density 

ESS Expandable Sand Screen  

FG Fracture Gradient 

FMI Formation Image Logs 

GP Gravel Pack 

HRWP High Rate Water Pack 

ICD Inflow Control Device 

ICV Inflow Control Valves 

ID Internal Diameter 

LPSA Laser Particle Sieve Analysis 

NAF Non Aqueous Fluid 

NNW North-North West Direction 

NTG Net to Gross [%] 

OBM Oil Based Mud 

OD Outer Diameter 

Pfrac Fracture Opening Pressure [psia] 

PLT Production Logging Tool 

PP Pore Pressure 

PSD Particle Size Distribution 

PPS Pre Packed Screen 

RQI Rock Quality Index 

SAS Standalone Screen 

SCS Sand Control Selection 

SOBM Synthetic Oil Based Mud 

SRT Sand Retention Test 

SSE South-South East Direction 

WBM Water Based Mud 

WC Wellbore Condition 

WI Water Injector 

WWS Wire Wrapped Screen 
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APPENDIX D: METHODOLOGY 
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Figure D-1: PSD for Sand 2C in Well Dst1 

 
Table D-1: Sand Control Selection Table for various types of Standalone Screens (SAS) 

SAS Preferred Acceptable Use With Caution Not Recommended

Low Fracture Gradient High Rugosity/Severe Washout Deviation 0-55
o

Prone to fines migration

High Leakoff Concerns Deviation 55
o
-75

o
NTG < 60-80% Use of breakers

Small Bore Hole ID < 6" High production rate Multiple oil bearing zones 

isolated by non-productive 

barriersDrill with OBM High frequency of well intervention High Variable Permeability/ 

Lamination

Drill with WBM/ SOBM Risk of installing equipment

Unstable/ Reactive shale Equipment lifespan/ reliability

High static BHT

Horizontal length 0 - 4000ft, >4000ft

High depleted reservoir

Cost effectiveness

Low Fracture Gradient High Rugosity/Severe Washout Deviation 0-55
o

Prone to fines migration

High Leakoff Concerns Deviation 55
o
-75

o
NTG < 60-80% Use of breakers

Small Bore Hole ID < 6"

High production rate

Multiple oil bearing zones 

isolated by non-productive 

barriers

Drill with OBM
High frequency of well intervention

High Variable Permeability/ 

Lamination

Drill with WBM/ SOBM Risk of installing equipment Equipment lifespan/ reliability

Unstable/ Reactive shale Cost effectiveness

High static BHT

Horizontal length 0 - 4000ft, >4000ft

High depleted reservoir

Low Fracture Gradient Deviation 55
o
-75

o Prone to fines migration Use of breakers

High Leakoff Concerns High frequency of well intervention Deviation 0-55
o

Small Bore Hole ID < 6" Risk of installing equipment NTG < 60-80%

High Rugosity/Severe Washout Cost effectiveness Multiple oil bearing zones 

isolated by non-productive 

barriersDrill with OBM High Variable Permeability/ 

Lamination

Drill with WBM/ SOBM

Unstable/ Reactive shale

High static BHT

Horizontal length 0 - 4000ft, >4000ft

High depleted reservoir

High production rate

Equipment lifespan/ reliability

WWS (All critical concerns 

combined)

Pre-packed (All critical 

concerns combined)

Premium (All critical 

concerns combined)

 
Table D-2: Sand Control Selection Table for Expandable Sand Screens (ESS) 
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Expandable Sand Screen 

(ESS)
Preferred Acceptable Use With Caution Not Recommended

Low Fracture Gradient Prone to fines migration High Rugosity/Severe Washout

High Leakoff Concerns Use of breakers

Small Bore Hole ID < 6" Unstable/ Reactive shale

Drill with OBM

Drill with WBM/ SOBM

High static BHT

Horizontal length 0 - 4000ft, >4000ft Deviation 55
o
-75

o
Deviation 0-55

o

High depleted reservoir NTG < 60-80%

Multiple oil bearing zones isolated by 

non-productive barriers

High Variable Permeability/ 

Lamination

High production rate

High frequency of well intervention

Risk of installing equipment

Equipment lifespan/ reliability

Cost effectiveness

Operation Critical Concerns

Reservoir Critical Concerns

Wellbore Critical Concerns

 
 

Table D-3: Sand Control Selection Table for OHGP-LAWP/ HAWP 

OHGP-LAWP/ HAWP Preferred Acceptable Use With Caution Not Recommended

Small Bore Hole ID < 6" Low Fracture Gradient Drill with OBM

Drill with WBM/ SOBM High Leakoff Concerns

High static BHT High Rugosity/Severe Washout

Prone to fines migration

Use of breakers

Unstable/ Reactive shale

Deviation 0-55
o High Variable Permeability/ 

Lamination
Deviation 55

o
-75

o Horizontal length > 4000ft

Horizontal length 0 - 1000ft Horizontal length 1000 - 4000ft

NTG < 60-80% Multiple oil bearing zones 

isolated by non-productive 

barriersHigh depleted reservoir

High production rate Cost effectiveness Risk of installing equipment

High frequency of well intervention

Equipment lifespan/ reliability

Wellbore Critical Concerns

Reservoir Critical Concerns

Operation Critical Concerns

 
 

Table D-4: Sand Control Selection Table for OHGP-Slurry Pack 

OHGP-Slurry Pack Preferred Acceptable Use With Caution Not Recommended

Low Fracture Gradient Drill with WBM/ SOBM Small Bore Hole ID < 6"

High Leakoff Concerns High static BHT

High Rugosity/Severe Washout

Drill with OBM

Prone to fines migration

Use of breakers

Unstable/ Reactive shale

Deviation 55
o
-75

o
Deviation 0-55

o
Horizontal length > 4000ft

Horizontal length 0 - 4000ft High Variable Permeability/ 

Lamination

NTG < 60-80%

Multiple oil bearing zones isolated 

by non-productive barriers

High depleted reservoir

High production rate Cost effectiveness Risk of installing equipment

High frequency of well intervention

Equipment lifespan/ reliability

Wellbore Critical Concerns

Reservoir Critical Concerns

Operation Critical Concerns
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APPENDIX E: CASE STUDY BACKGROUND 
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Figure E-1: Sand 1 (Upper) and Sand 2 (Lower) vertical cross-sections. 

   
Table E-1: Data from appraisal wells used for the case study 

# Field Formation 
Proposed 

WI 
SCAL Wireline Logs PVT 

Well 

Test 
XRD 

    Wells 

1 Area B Sand 2 I2a A, Ast1 A, Ast1 A A  

2 Area C Sand 2 I2b B B, Bst1, F B -  

3 Area A Sand 1 I1a Ast1, Est1 Ast1, Est1 C, D, Est1 C, D C, Cst1, Cst3 

4 Area A Sand 1 I1b C, Cst1, Cst3 C, Cst1, Cst2, Cst3 C, D, Est1 C, D C, Cst1, Cst3 

5 Area A Sand 1 I1c C,Cst3,D,Dst1 C, Cst3, D, Dst1 C, D, Est1 C, D Dst1, Est1 

6 Area A/ Area 

B 

Sand 1/ 

Sand 2 

I1/I2 C,Cst3,D,Dst1 C, Cst3, D, Dst1 C, D, Est1 C, D Dst1, Est1 

 
Table E-2: Design injection requirement for the water injectors 

# Field Formation Proposed WI 
Reservoir P 

(psia) 

Design injection 

capacity (stbw/d) 

Minimum 

WH 

Injection P 

(psi) 

Fracture 

Injection P 

(psi) 

1 Area B Sand 2 I2a 3236 50, 000 4000 6200 

2 Area C Sand 2 I2b 3335 50, 000 4000 6200 

3 Area A Sand 1 I1a 3191 20, 000-50, 000 4000 6200 

4 Area A Sand 1 I1b 3191 20, 000-50, 000 4000 6200 

5 Area A Sand 1 I1c 3191 20, 000-50, 000 4000 6200 

6 Area A/ Area B Sand 1/ Sand 2 I1/I2 3191/ 3236 50, 000 4000 6200 

 
 
 



Assessment and Evaluation of Sand Control Methods for a North Sea Field 41 

 

Water Injection Simulation
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Figure E-2: Reservoir stimulation shows six wells water injection rates for the first 11 years (Beesley et al. 2011). 
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APPENDIX F: SANDING FAILURE PREDICTION 

 

Overburden (Vertical) (σv) Stress Gradient 

σv (psi) = 1.16  10
-5

 TVDSS
2 
(ft) + 0.941  TVDSS (ft)-354…………………………………………………………….Eq.F-1 

 

The equation above was calculated by integrating the density-log data of Wells A and Ast1. It was then compared with Wells 

C, F and E. Comparison was similar indicating the equation above is valid for the case study. Therefore, the σv gradient 

remains approximately at 0.95 psi/ft. 

 

Minimum Horizontal Stress Gradient 

σh (psi) = 1.59  10
-6

 TVDSS
2 
(ft) + 0.785  TVDSS (ft)-316…………………………………………….......…………... Eq.F-2 

 

The equation above is derived from previous work FIT/ LOT of several wells from a nearby field. Values obtained from the 

equation shows similarities with the injectivity test conducted on Well D: 

 

Maximum Horizontal Stress Gradient 

σH (psi) = 1.71  10
-6

 TVDSS
2 
(ft) + 0.848  TVDSS (ft)-341……………………………………...……….......………... Eq.F-3 

 

σH gradient is assumed to have the same form as σh gradient (taking σH/σh=1.08): 
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Figure F-1: Fracture opening pressure of 5450psi (Sand 1D in Reservoir 1). 
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Figure F-2: FMI log of Well D (injectivity test well) through the shale section. 

 

 
Figure F-3: The WSM showing the orientation of σH of the North Sea, UK (courtesy of Helmholtz Centre Potsdam). 
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Figure F-4: The location of WIs (including fracture orientations and faults) in seismic and reservoir models. 

 
Table F-1: Expected hydraulic fracture orientation of the water injectors  

Proposed WIs Expected Hydraulic Fracture Orientation (Degrees Azimuth) 

I1/I2 045
o
N and 135

o
N 

I1a 060
o
N and 120

o
N 

I1b 010
o
N and 190

o
N 

I1c 045
o
N and 135

o
N 

I2a 065
o
N and 245

o
N 

I2b 065
o
N and 245

o
N 
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APPENDIX G: PARTICLE SIZE DISTRIBUTION 

Sand 1: D50 (Median Grain Size)D50 cut-off=75μm
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Figure G-1: D50 distribution for Sand 1 

 
Table G-1: D50 minimum, average and maximum values derived from PSD of Sand 1 DSA 

D50 Sand 1 (μm) 

Well Min Average Max 

C 80 730 1284 

Cst1 108 370 861 

Cst3 93 531 1201 

D 169 541 1093 

Dst1 106 559 1119 

Est1 72 360 938 

Average 105 515 1083 
 

Sand 1: D10 (Formation Grain Size for Sizing)
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Figure G-2: D10 distribution for Sand 1 
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Table G-2: D10 minimum, average and maximum values derived from PSD of Sand 1 DSA 

D10 Sand 1 (μm) 

Well Min Average Max 

C 200 1481 2588 

Cst1 248 804 1922 

Cst3 292 1190 2508 

D 331 1205 255 

Dst1 232 1253 2611 

Est1 149 808 2938 

Average 242 1124 2137 
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Figure G-3: Sc of Sand 1 

 
Table G-3: Sc (D10/D95) minimum, average and maximum values derived from PSD of Sand 1 DSA 

Sc 
(D10/D95) 

Sand 1 (μm) 

Well Min Average Max 

C 6 12 30 

Cst1 4 11 26 

Cst3 7 13 34 

D 6 14 24 

Dst1 6 12 18 

Est1 4 10 24 

Average 6 12 26 
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Sand 1: Uniformity Coefficient (D40/D90)
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Figure G-4: Uc vs. depth for Sand 1 

 

Sand 1: Fines (<44μm)
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Figure G-5: Formation fines (%) vs. depth for Sand 1 
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Sand 2: D50 (Median Grain Size)
D50 cut-off=75μm
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Figure G-6: D50 distribution for Sand 2 

 
Table G-4: D50 minimum, average and maximum values derived from PSD of Sand 2 DSA 

D50 Sand 2 (μm) 

Well Min Average Max 

A 110 215 318 

Ast1 136 291 568 

B 125 238 523 

C 181 292 408 

D 113 298 761 

Dst1 174 382 1078 

Average 140 286 609 

 

Sand 2: D10 (Formation Grain Size for Sizing)
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Figure G-7: D10 distribution for Sand 2 

D50 is more concentric 
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Table G-5: D10 minimum, average and maximum values derived from PSD of Sand 2 DSA 

D10 Sand 2 (μm) 

Well Min Average Max 

A 237 531 899 

Ast1 338 775 1612 

B 109 628 1361 

C 447 668 979 

D 215 698 1769 

Dst1 351 802 1928 

Average 283 684 1425 
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Figure G-8: Sc of Sand 2 

 
Table G-6: Sc (D10/D95) minimum, average and maximum values derived from PSD of Sand 2 DSA 

Sc 
(D10/D95) 

Sand 2 (μm) 

Well Min Average Max 

A 4 10 41 

Ast1 5 14 47 

B 5 9 19 

C 7 12 27 

D 7 13 28 

Dst1 6 12 54 

Average 6 12 36 
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Sand 2: Uniformity Coefficient (D40/D90)
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Figure G-9: Uc vs. depth for Sand 2 

 
Figure G-10: Formation fines (%) vs. depth for Sand 2 
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Table G-7: Recommended sand control strategy based on Flowchart B for each unit in Sands 1 and 2 

Sand 1 Formation
Min Mean Max Min Mean Max Min Mean Max

D10 (μm) 942 149 693 1967 202 1120 2938

D50 (μm) 501 72 325 983 93 488 1201

UC (D40/D90) 5.6 2 4 8 2 4 6

SC (D10/D95) 14 4 13 34 5 11 28

Fines (sub44μm) 2.4 0.1 5 24 0.1 2 15

Recommended Sand Control (Flowchart)

D10 (μm) SAS OHGP SAS SAS SAS SAS SAS

D50 (μm) SAS OHGP SAS SAS SAS SAS SAS

SC (D10/D95) OHGP SAS OHGP OHGP SAS OHGP OHGP

UC (D40/D90) OHGP WWS Prem./ Mesh OHGP WWS OHGP OHGP

Fines (sub44μm) Prem./ Mesh WWS Prem./ Mesh OHGP WWS WWS OHGP

Sand 1 Formation
Min Mean Max Min Mean Max Min Mean Max

D10 (μm) 220 1452 2588 580 1325 2371 798 1600 2548

D50 (μm) 107 692 1284 287 611 1053 419 812 1223

UC (D40/D90) 2.5 4.1 5.7 3.1 4.7 6.5 3.2 4.2 5.1

SC (D10/D95) 6 12 30 7 14 24 7 11 15

Fines (sub44μm) 0.1 1 12 0.2 1 3 0.1 0.5 2

Recommended Sand Control (Flowchart)

D10 (μm) SAS SAS SAS SAS SAS SAS SAS SAS SAS

D50 (μm) SAS SAS SAS SAS SAS SAS SAS SAS SAS

SC (D10/D95) SAS OHGP OHGP SAS OHGP OHGP SAS OHGP OHGP

UC (D40/D90) WWS OHGP OHGP WWS OHGP OHGP WWS OHGP

Fines (sub44μm) WWS WWS OHGP WWS WWS Prem./ Mesh WWS WWS WWS

Sand 2 Formation
Min Mean Max Min Mean Max Min Mean Max

D10 (μm) 215 1004 1978 767 1185 1837 244 657 1769

D50 (μm) 113 510 1078 352 602 911 109 260 761

UC (D40/D90) 4 5 7 4 4 5 2 3 6

SC (D10/D95) 11 22 54 8 10 14 5 10 41

Fines (sub44μm) 0.3 4.7 12.7 0.1 0.6 1.1 0.0 2.2 11.3

Recommended Sand Control (Flowchart)

D10 (μm) SAS SAS SAS SAS SAS SAS SAS SAS SAS

D50 (μm) SAS SAS SAS SAS SAS SAS SAS SAS SAS

SC (D10/D95) OHGP OHGP OHGP SAS SAS OHGP SAS SAS OHGP

UC (D40/D90) Prem./ Mesh Prem./ Mesh OHGP Prem./ Mesh Prem./ Mesh Prem./ Mesh WWS Prem./ Mesh OHGP

Fines (sub44μm) WWS Prem./ Mesh OHGP WWS WWS WWS WWS Prem./ Mesh OHGP

Sand 2 Formation
Min Mean Max Min Mean Max Min Mean Max

D10 (μm) 237 655 1612 401 749 1375 415 708 952

D50 (μm) 124 248 454 179 370 749 209 301 433

UC (D40/D90) 2 3 6 3 4 6 3 3 5

SC (D10/D95) 4 12 47 10 14 16 6 10 16

Fines (sub44μm) 0.1 3.5 10.9 1.3 4.0 6.2 0.1 1.7 3.7

Recommended Sand Control (Flowchart)

D10 (μm) SAS SAS SAS SAS SAS SAS SAS SAS SAS

D50 (μm) SAS SAS SAS SAS SAS SAS SAS SAS SAS

SC (D10/D95) SAS OHGP OHGP SAS OHGP OHGP SAS SAS OHGP

UC (D40/D90) WWS Prem./ Mesh OHGP Prem./ Mesh Prem./ Mesh OHGP Prem./ Mesh Prem./ Mesh Prem./ Mesh

Fines (sub44μm) WWS Prem./ Mesh OHGP WWS Prem./ Mesh OHGP WWS WWS Prem./ Mesh

Sand 2 Formation
Min Mean Max Min Mean Max

D10 (μm) 351 490 643 447 682 979

D40 (μm) 205 254 311 240 369 501

D50 (μm) 174 214 254 211 311 408

D90 (μm) 73 88 98 64 102 133

D95 (μm) 54 66 73 35 68 94

UC (D40/D90) 3 3 3 3 4 6

SC (D10/D95) 7 7 9 7 12 27

Fines (sub44μm) 1.2 1.8 2.9 0.8 2.9 5.9

Recommended Sand Control (Flowchart)

D10 (μm) SAS SAS SAS SAS SAS SAS

D50 (μm) SAS SAS SAS SAS SAS SAS

SC (D10/D95) SAS SAS SAS SAS OHGP OHGP

UC (D40/D90) Prem./ Mesh Prem./ Mesh Prem./ Mesh Prem./ Mesh Prem./ Mesh OHGP

Fines (sub44μm) WWS WWS Prem./ Mesh WWS Prem./ Mesh OHGP

Sand 2A

Reservoir 2

Sand 1B

Sand 2A

Sand 1F (N/A) Sand 1E Sand 1D

Reservoir 1

Reservoir 1

Sand 2C

Sand 2C

Reservoir 2

Reservoir 2

Shale 2B

Sand 1ASand 1C
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APPENDIX H: FORMATION CONDITION AND SHALE 

 
Table H-1: Shale thickness determination of Sand 1 water injectors based on nearby appraisal logs 

I1b Shale Thickness (ft MD)  
I1/I2 &  

I1c 
Shale Thickness (ft MD) 

Vsh cut-off = 0.5 Min Average Max  Vsh cut-off = 0.5 Min Average Max 

C 0.3 3.1 18.4  C 0.3 3.1 18.4 

Cst1 3.5    Cst3 0.4 4.6 13.9 

Cst2 1.0 3.6 13.5  D 0.3 9.6 24.6 

Cst3 0.4 4.6 13.9  Dst1 0.8 3.6 8.0 

 0.3 6.2 18.4   0.3 7.3 24.6 

         

I1b Shale Thickness (ft MD)  Vsh=0.4 Min Average Max 

Vsh cut-off = 0.5 Min Average Max  Shale Thick. (ft) 0.3 6 25 

Est1 0.5 1.5 2.5      

 0.5 1.5 2.5      

 
Table H-2: Shale thickness determination of Sand 2 water injectors based on nearby appraisal logs 

I1b Shale Thickness (ft MD)  
I1/I2 & 

I1c 
Shale Thickness (ft MD) 

Vsh cut-off = 0.4 Min Average Max  Vsh cut-off = 0.4 Min Average Max 

C 0.4 3.6   C 0.4 3.6  

Cst1 4.5    Cst3 0.4 7.2 18.6 

Cst2 1.0 4.6 23.0  D 0.3 9.2 25.0 

Cst3 0.4 7.2 18.6  Dst1 0.5 3.2 8.5 

 0.4 7.0 23.0   0.3 7.0 25.0 

         

I1a Shale Thickness (ft MD)  Vsh=0.4 Min Average Max 

Vsh cut-off = 0.4 Min Average Max  Shale Thick. (ft) 0.3 6 25 

Est1 0.5 1.8 3.5      

 0.5 1.9 3.5      

 
Table H-3: Minimum, average and maximum of intra-shale layer in Shale 2B (coloured) 

  
Thickness (ft MD) 

Appraisal Wells Proposed Injectors 
Min. Avg. Max. 

Units A Ast1 B Bst1 F I2b I2a 

Sand 2C 135 201 116 136 8 87 104 8 112 201 

Shale 2B 7 8 5 8 10 36 2 2 11 36 

Sand 2A 84 177 125 135 84 161 48 48 116 177 
 
 

Table H-4: R2 values of Sand 1 and Sand 2 

Sand 1 C Cst1 Cst3 D Dst1 Est1 Avg. 

R
2
 0.80 0.91 0.64 0.74 0.83 0.78 0.78 

         

Sand 2 A Ast1 B C D Dst1 Avg. 

R
2
 0.82 0.73 0.88 0.92 0.82 0.79 0.83 

 
 
 
 
 
 
 
 



Assessment and Evaluation of Sand Control Methods for a North Sea Field 53 

 

 

Sand 1 - RQI vs. Sc

0

5

10

15

20

25

30

35

40

45

50

0 2 4 6 8 10 12 14 16 18 20
RQI

S
c

C Cst1 Cst3 D Dst1 Est1

 
Figure H-1: Rock Quality Index (RQI) vs. Sorting (Sc) of Sand 1  

 

 

Sand 2 - RQI vs. Sc
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Figure H-2: Rock Quality Index (RQI) vs. Sorting (Sc) of Sand 2  
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Sand 1: KV/KH (Well C) (for I1a)
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Sand 1 - KV/KH  (Well Cst3) (for I1a)
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Figure H-3: KV/KH for I1a injector; and for I2 injector (bottom right). 
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APPENDIX I: INJECTION SPLIT RATIO AND ANNULAR FLOW 

 
Table I-1: Ratio of kh per unit in Sand 1 for three WIs 

Zone Units Ratio of kh per unit Proposed WI Design Rate (STWB/d) 

Upper Sand 1 
Sand 1E 

0.51 

I1a, I1b, I1c 

20476 
Sand 1D 

Lower Sand 1 

Sand 1C 

0.49 19524 Sand 1B 

Sand 1A 

 
Table I-2: Ratio of kh per unit in a Sand 2 WI (I2a) 

Zone Units Ratio of kh per unit Proposed WI Design Rate (STWB/d) 

Upper Sand 2 Sand 2C 111 

I2a 

35436 

Intra-Shale Shale 2B 11 - 

Lower Sand 2 Sand 2A 75 14564 

 
Table I-3: Ratio of kh per unit in a Sand 2 WI (I2b) 

Zone Units Ratio of kh per unit Proposed WI Design Rate (STWB/d) 

Upper Sand 2 Sand 2C 0.61 

I2b 

30318 

Intra-Shale Shale 2B - - 

Lower Sand 2 Sand 2A 0.39 19682 
 

Table I-4: Ratio of kh per unit in Sands 1 and 2 for a commingling WI (I1/ I2) 

Zone Units Ratio of kh per unit Proposed WI Design Rate (STWB/d) 

Upper Sand 1 
Sand 1E 

0.16 

I1 

7904 
Sand 1D 

Lower Sand 1 

Sand 1C 

0.15 7537 Sand 1B 

Sand 1A 

Upper Sand 2 Sand 2C 0.49 

I2 

24492 

Intra-Shale Shale 2B - - 

Lower Sand 2 Sand 2A 0.20 10066 
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Table I-5: A summary of ICV aperture required to achieve the injection split ratios for water injectors in Sand 1 

I1b 
NETool

TM
 (±5%) 

SAS only SAS + ICV ICV Configuration 

Zone Units 
kh ratio 

per unit 

Design Rate 

(stbw/d) 

Split 

Ratio 

Injection 

Rate 
Split 

Ratio 

Injection 

Rate 
ICV 

Upper 

Sand 1 

Sand 1E 
0.51 20476 0.35 14000 0.52 20800 5% opening 

Sand 1D 

Lower 

Sand 1 

Sand 1C 

0.49 19524 0.65 26000 0.48 19200 5% opening Sand 1B 

Sand 1A 

          

I1c 
NETool

TM 
(±5%) 

SAS only SAS + ICV ICV Configuration 

Zone Units 
kh ratio 

per unit 

Design Rate 

(stbw/d) 

Split 

Ratio 

Injection 

Rate 
Split 

Ratio 

Injection 

Rate 
ICV 

Upper 

Sand 1 

Sand 1E 
0.51 20476 0.35 14000 0.52 20880 70% opening 

Sand 1D 

Lower 

Sand 1 

Sand 1C 

0.49 19524 0.65 26000 0.48 19120 15% opening Sand 1B 

Sand 1A 

          

I1a 
NETool

TM 
(±5%) 

SAS only SAS + ICV ICV Configuration 

Zone Units 
kh ratio 

per unit 

Design Rate 

(stbw/d) 

Split 

Ratio 

Injection 

Rate 
Split 

Ratio 

Injection 

Rate 
ICV 

Upper 

Sand 1 

Sand 1E 
0.51 20476 0.52 20680 0.83 33200 9% opening 

Sand 1D 

Lower 

Sand 1 

Sand 1C 

0.49 19524 0.48 19320 0.17 6800 80% opening Sand 1B 

Sand 1A 
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Table I-6: ICV aperture in the commingling I1/ I2 for Sands 1 and 2 

PI/BI-M-BK 
NETool

TM 
(±5%) 

SAS only SAS + ICV ICV Configuration 

Zone Units 
kh ratio 

per unit 

Design Rate 

(stbw/d) 

Split 

Ratio 

Injection 

Rate 
Split 

Ratio 

Injection 

Rate 
ICV 

Upper 

Sand 1 

Sand 1E 
0.16 7904 0.07 3500 0.15 7719 6% opening 

Sand 1D 

Lower 

Sand 1 

Sand 1C 

0.15 7537 0.13 6500 0.15 7572 100% opening Sand 1B 

Sand 1A 

Upper 

Sand 2 
Sand 2C 0.49 24492 0.41 20500 0.50 24959 100% opening 

Intra-

Shale 

Shale 

2B 
- - - - - -  

Lower 

Sand 2 
Sand 2A 0.20 10066 0.39 19500 0.20 9750 7% opening 
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Table I-7: A summary of ICV aperture required to achieve the injection split ratios for water injectors in Sand 2. 

I2b 
NETool

TM 
(±5%) 

SAS only SAS + ICV ICV Configuration 

Zone Units 
kh ratio 

per unit 

Design Rate 

(stbw/d) 

Split 

Ratio 

Injection 

Rate 
Split 

Ratio 

Injection 

Rate 
ICV 

Upper 

Sand 2 
Sand 2C 0.61 30318 0.69 34500 0.61 30400 30% opening 

Intra-

Shale 

Shale 

2B 
- - - - - -  

Lower 

Sand 2 
Sand 2A 0.39 19682 0.31 15500 0.39 19600 60% opening 

          

I2a 
NETool

TM 
(±5%) 

SAS only SAS + ICV ICV Configuration 

Zone Units 
kh ratio 

per unit 

Design Rate 

(stbw/d) 

Split 

Ratio 

Injection 

Rate 
Split 

Ratio 

Injection 

Rate 
ICV 

Upper 

Sand 2 
Sand 2C 0.71 35436 0.96 48000 0.73 36550 15% opening 

Intra-

Shale 

Shale 

2B 
- - - - - -  

Lower 

Sand 2 
Sand 2A 0.29 14564 0.04 2000 0.27 13450 80% opening 
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Figure I-1: I1c injection profile comparison for SAS only and SAS with ICV. 
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Figure I-2: Water flux from I1c into Sand 1. Bottom: Completion design. 
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Figure I-3: I1a injection profile comparison for SAS only and SAS with ICV. 

 

 

 
Figure I-4: Water flux from I1a into Sand 1. Bottom: Completion design. 
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Figure I-5: I2b injection profile comparison for SAS only and SAS with ICV. 

 

 
Figure I-6: Water flux from I2b into Sand 2. Bottom: Completion design. 
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Figure I-7: I2a injection profile comparison for SAS only and SAS with ICV. 

 

 
Figure I-8: Water flux from I2a into Sand 2. Bottom: Completion design. 
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Figure I-9: I1/ I2 injection profile comparison for SAS only and SAS with ICV. 

 

 
Figure I-10: Water flux from I1/ I2 into Sands 1&2. Bottom: Completion design. 
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Table I-8: Completion parameters of the six water injectors with optimised ICVs aperture. 

Well Parameters Sand 1 Sand 2 Sand 1 Sand 2 

Water Injector I1a I1b I1c I2a I2b I1/ I2 

Reservoir Drainage 

MD (ft) 
197 217 222 154 283 143 264 

Wellbore Diameter 
8.5"OD 

(6"ID) 

8.5"OD 

(6"ID) 

8.5"OD 

(6"ID) 

8.5"OD 

(6"ID) 

8.5"OD 

(6"ID) 

8.5"OD 

(6"ID) 

8.5"OD 

(6"ID) 

Screen Diameter 
7.6"OD 

(6.184"ID) 

7.6"OD 

(6.184"ID) 

7.6"OD 

(6.184"ID) 

7.6"OD 

(6.184"ID) 

7.6"OD 

(6.184"ID) 
7.6"OD (6.184"ID) 

Blank Pipe 
3.5"OD 

(2.875"ID) 

3.5"OD 

(2.875"ID) 

3.5"OD 

(2.875"ID) 

3.5"OD 

(2.875"ID) 

3.5"OD 

(2.875"ID) 
3.5"OD (2.875"ID) 

Inflow Control Valve 

(ICV) 

5.8"OD 

(2.875"ID) 

5.8"OD 

(2.875"ID) 

5.8"OD 

(2.875"ID) 

5.8"OD 

(2.875"ID) 

5.8"OD 

(2.875"ID) 
5.8"OD (2.875"ID) 

Upper Zone ICV 9% opening 5% opening 
70% 

opening 

15% 

opening 

30% 

opening 

6% 

opening 

100% 

opening 

Lower Zone ICV 
80% 

opening 
5% opening 

15% 

opening 
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opening 

60% 

opening 

100% 

opening 

7% 

opening 
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Figure I-11: Annular velocity of water injectors in Sand 1. 
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Figure I-12: Annular velocity of water injectors in Sand 2. 
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Figure I-13: Annular velocity of water injectors in Sands 1 & 2 (commingle). 

 

Table I-9: Sensitivity analysis of annular fluid velocities from 10-50kstbw/d for water injections in both reservoirs. 

Sand 1 Screen Annular Velocity (ft/s) (NETool
TM

) 

Water Injectors (2) I1a (3) I1c 

Injection Rates (stbw/d) 10K 20K 30K 40K 50K 10K 20K 30K 40K 50K 

Sand 1 
Upper Sand 1 0.5 0.8 1.2 1.6 2.0 0.5 0.8 1.3 1.7 2.1 

Lower Sand 1 0.1 0.2 0.4 0.5 0.5 0.3 0.5 0.7 1.0 1.2 

Sand 2 
Upper Sand 2           

Lower Sand 2           

            

Sand 2 Screen Annular Velocity (ft/s) (NETool
TM

) 

Water Injectors (4) I2a (5) I2b 

Injection Rates (stbw /D) 10K 20K 30K 40K 50K 10K 20K 30K 40K 50K 

Sand 1 
Upper Sand 1           

Lower Sand 1           

Sand 2 
Upper Sand 2 0.5 0.8 1.2 1.6 2.0 0.5 0.8 1.2 1.6 2.0 

Lower Sand 2 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.5 0.5 0.6 

            

            

Sand 1 & Sand 2 Screen Annular Velocity (ft/s) (NETool
TM

)      

Water Injectors (6) I1/ I2  < 1.5ft/s Low Risk   

Injection Rates (stbw /D) 10K 20K 30K 40K 50K      

Sand 1 
Upper Sand 1 0.5 0.8 1.3 1.7 2.1  1.5 - 2ft/s Moderate Risk  

Lower Sand 1 0.5 0.8 1.2 1.5 1.9      

Sand 2 
Upper Sand 2 0.5 0.7 1.1 1.4 1.8  >2ft/s High Risk   

Lower Sand 2 0.3 0.5 0.7 0.9 1.2      
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APPENDIX J: iPoint 2011 (Perigon Solutions) 

The iPoint software is a visual and an integrated tool for subsurface wellbore data. The tool enables the user to have an 

integrated visual of core and wireline log interpretation in a single screen. Below is a visual example of various geological and 

reservoir description of one of the appraisal wells used in the case study. 

 

 
Figure J-1: Visual view used to interpret appraisal cores and wireline logs of the case study. 
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APPENDIX K: NETool
TM

 5000.0.0.0 (Landmark) 

The use of NETool
TM

 is to build a numerical model based on the reservoir, completion and fluid input. The software is 

populated with well information, reservoir and completion data prior to performing the stimulations. The reservoir model 

(using the standard black-oil Eclipse E100 stimulator) was uploaded into NETool
TM

. The co-ordinates and survey data of the 

water injectors was imported from Landmark’s COMPASS
TM

.  

Figure K-1 below shows the data requirements for NETool
TM

 stimulation and Figure K-2 is prior to stimulation: 

 

FLUID PROPERTIES

Input Data

- PVT (Eclipse INIT File)

- Tubing Lift Performance 

(Prosper)

- Relative Permeability (Eclipse 

DATA file)

RESERVOIR 

PARAMETERS

NETOOL
TM

 DATA 

REQUIREMENTS

- Skin

- Injectivity Index (Water 

Injector)

- Reservoir Pressure

- Saturations, Permeabilities 

(Eclipse DATA file)

WELL COMPLETION 

AND DEFINITIONS

Landmark COMPASS
TM

- Well Trajectory

- Well Segment Intervals

- Completion Configuration

- Completion Parameters

Stimulation Control
- Well Type

- Water injection target

- Numerical Resolution

- Pipe flow model

�

 
Figure K-1: NETool

TM
 workflow data input. 
 

 
Figure K-2: NETool

TM
 main menu prior to stimulation. 


