3 research outputs found

    Lyapunov-Krasovskii functional for discretized homogeneous systems

    Get PDF
    International audienceThe paper is devoted to stability analysis of discrete-time time-delay systems, obtained after explicit Euler discretization of (locally) homogeneous continuous-time models. The results are derived by applying the Lyapunov-Krasovskii theory. A generic structure of the functional is given that suits for any homogeneous system of non-zero degree (and it can also be used for any dynamics admitting a homogeneous approximation). The obtained conditions are utilized to demonstrate stability for a discretized delayed locally homogeneous planar system with negative and positive degrees

    Stability of a class of delayed port-Hamiltonian systems with application to microgrids with distributed rotational and electronic generation

    No full text
    Motivated by the problem of stability in droop-controlled microgrids with delays, we consider a class of port-Hamiltonian systems with delayed interconnection matrices. For this class of systems, delay-dependent stability conditions are derived via the Lyapunov-Krasovskii method. The theoretical results are applied to an exemplary microgrid with distributed rotational and electronic generation and illustrated via a simulation example. The stability analysis is complemented by providing an estimate of the region of attraction of a microgrid with delays
    corecore