44,950 research outputs found

    A moving mesh method with variable relaxation time

    Full text link
    We propose a moving mesh adaptive approach for solving time-dependent partial differential equations. The motion of spatial grid points is governed by a moving mesh PDE (MMPDE) in which a mesh relaxation time \tau is employed as a regularization parameter. Previously reported results on MMPDEs have invariably employed a constant value of the parameter \tau. We extend this standard approach by incorporating a variable relaxation time that is calculated adaptively alongside the solution in order to regularize the mesh appropriately throughout a computation. We focus on singular problems involving self-similar blow-up to demonstrate the advantages of using a variable relaxation ime over a fixed one in terms of accuracy, stability and efficiency.Comment: 21 page

    Adaptive Energy Preserving Methods for Partial Differential Equations

    Full text link
    A method for constructing first integral preserving numerical schemes for time-dependent partial differential equations on non-uniform grids is presented. The method can be used with both finite difference and partition of unity approaches, thereby also including finite element approaches. The schemes are then extended to accommodate rr-, hh- and pp-adaptivity. The method is applied to the Korteweg-de Vries equation and the Sine-Gordon equation and results from numerical experiments are presented.Comment: 27 pages; some changes to notation and figure

    Numerical simulation of conservation laws with moving grid nodes: Application to tsunami wave modelling

    Get PDF
    In the present article we describe a few simple and efficient finite volume type schemes on moving grids in one spatial dimension combined with appropriate predictor-corrector method to achieve higher resolution. The underlying finite volume scheme is conservative and it is accurate up to the second order in space. The main novelty consists in the motion of the grid. This new dynamic aspect can be used to resolve better the areas with large solution gradients or any other special features. No interpolation procedure is employed, thus unnecessary solution smearing is avoided, and therefore, our method enjoys excellent conservation properties. The resulting grid is completely redistributed according the choice of the so-called monitor function. Several more or less universal choices of the monitor function are provided. Finally, the performance of the proposed algorithm is illustrated on several examples stemming from the simple linear advection to the simulation of complex shallow water waves. The exact well-balanced property is proven. We believe that the techniques described in our paper can be beneficially used to model tsunami wave propagation and run-up.Comment: 46 pages, 7 figures, 7 tables, 94 references. Accepted to Geosciences. Other author's papers can be downloaded at http://www.denys-dutykh.com

    A computational method for the coupled solution of reaction–diffusion equations on evolving domains and manifolds: application to a model of cell migration and chemotaxis

    Get PDF
    In this paper, we devise a moving mesh finite element method for the approximate solution of coupled bulk–surface reaction–diffusion equations on an evolving two dimensional domain. Fundamental to the success of the method is the robust generation of bulk and surface meshes. For this purpose, we use a novel moving mesh partial differential equation (MMPDE) approach. The developed method is applied to model problems with known analytical solutions; these experiments indicate second-order spatial and temporal accuracy. Coupled bulk–surface problems occur frequently in many areas; in particular, in the modelling of eukaryotic cell migration and chemotaxis. We apply the method to a model of the two-way interaction of a migrating cell in a chemotactic field, where the bulk region corresponds to the extracellular region and the surface to the cell membrane

    An equation-free computational approach for extracting population-level behavior from individual-based models of biological dispersal

    Full text link
    The movement of many organisms can be described as a random walk at either or both the individual and population level. The rules for this random walk are based on complex biological processes and it may be difficult to develop a tractable, quantitatively-accurate, individual-level model. However, important problems in areas ranging from ecology to medicine involve large collections of individuals, and a further intellectual challenge is to model population-level behavior based on a detailed individual-level model. Because of the large number of interacting individuals and because the individual-level model is complex, classical direct Monte Carlo simulations can be very slow, and often of little practical use. In this case, an equation-free approach may provide effective methods for the analysis and simulation of individual-based models. In this paper we analyze equation-free coarse projective integration. For analytical purposes, we start with known partial differential equations describing biological random walks and we study the projective integration of these equations. In particular, we illustrate how to accelerate explicit numerical methods for solving these equations. Then we present illustrative kinetic Monte Carlo simulations of these random walks and show a decrease in computational time by as much as a factor of a thousand can be obtained by exploiting the ideas developed by analysis of the closed form PDEs. The illustrative biological example here is chemotaxis, but it could be any random walker which biases its movement in response to environmental cues.Comment: 30 pages, submitted to Physica

    Well-balanced rr-adaptive and moving mesh space-time discontinuous Galerkin method for the shallow water equations

    Get PDF
    In this article we introduce a well-balanced discontinuous Galerkin method for the shallow water equations on moving meshes. Particular emphasis will be given on rr-adaptation in which mesh points of an initially uniform mesh move to concentrate in regions where interesting behaviour of the solution is observed. Obtaining well-balanced numerical schemes for the shallow water equations on fixed meshes is nontrivial and has been a topic of much research. In [S. Rhebergen, O. Bokhove, J.J.W. van der Vegt, Discontinuous Galerkin finite element methods for hyperbolic nonconservative partial differential equations, J. Comput. Phys. 227 (2008) 1887–1922] we introduced a well-balanced discontinuous Galerkin method using the theory of weak solutions for nonconservative products introduced in [G. Dal Maso, P.G. LeFloch, F. Murat, Definition and weak stability of nonconservative products, J. Math. Pures Appl. 74 (1995) 483–548]. In this article we continue this approach and prove well-balancedness of a discontinuous Galerkin method for the shallow water equations on moving meshes. Numerical simulations are then performed to verify the rr-adaptive method in combination with the space-time discontinuous Galerkin method against analytical solutions and showing its robustness on more complex problems

    A Provably Stable Discontinuous Galerkin Spectral Element Approximation for Moving Hexahedral Meshes

    Full text link
    We design a novel provably stable discontinuous Galerkin spectral element (DGSEM) approximation to solve systems of conservation laws on moving domains. To incorporate the motion of the domain, we use an arbitrary Lagrangian-Eulerian formulation to map the governing equations to a fixed reference domain. The approximation is made stable by a discretization of a skew-symmetric formulation of the problem. We prove that the discrete approximation is stable, conservative and, for constant coefficient problems, maintains the free-stream preservation property. We also provide details on how to add the new skew-symmetric ALE approximation to an existing discontinuous Galerkin spectral element code. Lastly, we provide numerical support of the theoretical results
    • …
    corecore