research

Well-balanced rr-adaptive and moving mesh space-time discontinuous Galerkin method for the shallow water equations

Abstract

In this article we introduce a well-balanced discontinuous Galerkin method for the shallow water equations on moving meshes. Particular emphasis will be given on rr-adaptation in which mesh points of an initially uniform mesh move to concentrate in regions where interesting behaviour of the solution is observed. Obtaining well-balanced numerical schemes for the shallow water equations on fixed meshes is nontrivial and has been a topic of much research. In [S. Rhebergen, O. Bokhove, J.J.W. van der Vegt, Discontinuous Galerkin finite element methods for hyperbolic nonconservative partial differential equations, J. Comput. Phys. 227 (2008) 1887–1922] we introduced a well-balanced discontinuous Galerkin method using the theory of weak solutions for nonconservative products introduced in [G. Dal Maso, P.G. LeFloch, F. Murat, Definition and weak stability of nonconservative products, J. Math. Pures Appl. 74 (1995) 483–548]. In this article we continue this approach and prove well-balancedness of a discontinuous Galerkin method for the shallow water equations on moving meshes. Numerical simulations are then performed to verify the rr-adaptive method in combination with the space-time discontinuous Galerkin method against analytical solutions and showing its robustness on more complex problems

    Similar works