358 research outputs found

    Convergence of a variational iterative algorithm for nonlocal vibrations analysis of a nanotube conveying fluid

    Get PDF
    The amplitudes of the forced oscillations of a nano-structure conveying fluid are the solutions of an inhomogeneous integral-differential system. This is solved by an easily accessible scheme based on the variational iteration method (VIM), Galerkin’s method and the Laplace transform techniques. The presented method is accompanied by the study of the convergence of the iterative process and of the errors. In the literature, the dynamic response of a viscoelastic nanotube conveying fluid is frequently obtained by an iterative method. This leads to the double convolution products, whose presence will be avoided in the new method proposed in this paper. Thus, the numerical results will be obtained much faster and more accurately

    A semi-analytical approach for the response of nonlinear conservative systems

    Get PDF
    This work applies Parameter expanding method (PEM) as a powerful analytical technique in order to obtain the exact solution of nonlinear problems in the classical dynamics. Lagrange method is employed to derive the governing equations. The nonlinear governing equations are solved analytically by means of He’s Parameter expanding method. It is demonstrated that one term in series expansion is sufficient to generate a highly accurate solution, which is valid for the whole domain of the solution and system response. Comparison of the obtained solutions with the numerical ones indicates that this method is an effective and convenient tool for solving these types of problems

    Nonlinear Dynamics

    Get PDF
    This volume covers a diverse collection of topics dealing with some of the fundamental concepts and applications embodied in the study of nonlinear dynamics. Each of the 15 chapters contained in this compendium generally fit into one of five topical areas: physics applications, nonlinear oscillators, electrical and mechanical systems, biological and behavioral applications or random processes. The authors of these chapters have contributed a stimulating cross section of new results, which provide a fertile spectrum of ideas that will inspire both seasoned researches and students

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    A state-of-the-art review on theory and engineering applications of eigenvalue and eigenvector derivatives

    Get PDF
    Eigenvalue and eigenvector derivatives with respect to system design variables and their applications have been and continue to be one of the core issues in the design, control and identification of practical engineering systems. Many different numerical methods have been developed to compute accurately and efficiently these required derivatives from which, a wide range of successful applications have been established. This paper reviews and examines these methods of computing eigenderivatives for undamped, viscously damped, nonviscously damped, fractional and nonlinear vibration systems, as well as defective systems, for both distinct and repeated eigenvalues. The underlying mathematical relationships among these methods are discussed, together with new theoretical developments. Major important applications of eigenderivatives to finite element model updating, structural design and modification prediction, performance optimization of structures and systems, optimal control system design, damage detection and fault diagnosis, as well as turbine bladed disk vibrations are examined. Existing difficulties are identified and measures are proposed to rectify them. Various examples are given to demonstrate the key theoretical concepts and major practical applications of concern. Potential further research challenges are identified with the purpose of concentrating future research effort in the most fruitful directions.Ministry of Education (MOE)The first and third authors gratefully acknowledge the financial support from the Singapore Ministry of Education through the award of research project grant AcRF Tier 1 RG183/17

    Mathematical modelling with experimental validation of viscoelastic properties in non-Newtonian fluids

    Get PDF
    The paper proposes a mathematical framework for the use of fractional-order impedance models to capture fluid mechanics properties in frequency-domain experimental datasets. An overview of non-Newtonian (NN) fluid classification is given as to motivate the use of fractional-order models as natural solutions to capture fluid dynamics. Four classes of fluids are tested: oil, sugar, detergent and liquid soap. Three nonlinear identification methods are used to fit the model: nonlinear least squares, genetic algorithms and particle swarm optimization. The model identification results obtained from experimental datasets suggest the proposed model is useful to characterize various degree of viscoelasticity in NN fluids. The advantage of the proposed model is that it is compact, while capturing the fluid properties and can be identified in real-time for further use in prediction or control applications. This article is part of the theme issue 'Advanced materials modelling via fractional calculus: challenges and perspectives'

    Vibration, Control and Stability of Dynamical Systems

    Get PDF
    From Preface: This is the fourteenth time when the conference “Dynamical Systems: Theory and Applications” gathers a numerous group of outstanding scientists and engineers, who deal with widely understood problems of theoretical and applied dynamics. Organization of the conference would not have been possible without a great effort of the staff of the Department of Automation, Biomechanics and Mechatronics. The patronage over the conference has been taken by the Committee of Mechanics of the Polish Academy of Sciences and Ministry of Science and Higher Education of Poland. It is a great pleasure that our invitation has been accepted by recording in the history of our conference number of people, including good colleagues and friends as well as a large group of researchers and scientists, who decided to participate in the conference for the first time. With proud and satisfaction we welcomed over 180 persons from 31 countries all over the world. They decided to share the results of their research and many years experiences in a discipline of dynamical systems by submitting many very interesting papers. This year, the DSTA Conference Proceedings were split into three volumes entitled “Dynamical Systems” with respective subtitles: Vibration, Control and Stability of Dynamical Systems; Mathematical and Numerical Aspects of Dynamical System Analysis and Engineering Dynamics and Life Sciences. Additionally, there will be also published two volumes of Springer Proceedings in Mathematics and Statistics entitled “Dynamical Systems in Theoretical Perspective” and “Dynamical Systems in Applications”

    Spectral/hp Finite Element Models for Fluids and Structures

    Get PDF
    We consider the application of high-order spectral/hp finite element technology to the numerical solution of boundary-value problems arising in the fields of fluid and solid mechanics. For many problems in these areas, high-order finite element procedures offer many theoretical and practical computational advantages over the low-order finite element technologies that have come to dominate much of the academic research and commercial software of the last several decades. Most notably, we may avoid various forms of locking which, without suitable stabilization, often plague low-order least-squares finite element models of incompressible viscous fluids as well as weak-form Galerkin finite element models of elastic and inelastic structures. The research documented in this dissertation includes applications of spectral/hp finite element technology to an analysis of the roles played by the linearization and minimization operators in least-squares finite element models of nonlinear boundary value problems, a novel least-squares finite element model of the incompressible Navier-Stokes equations with improved local mass conservation, weak-form Galerkin finite element models of viscoelastic beams and a high-order seven parameter continuum shell element for the numerical simulation of the fully geometrically nonlinear mechanical response of isotropic, laminated composite and functionally graded elastic shell structures. In addition, we also present a simple and efficient sparse global finite element coefficient matrix assembly operator that may be readily parallelized for use on shared memory systems. We demonstrate, through the numerical simulation of carefully chosen benchmark problems, that the finite element formulations proposed in this study are efficient, reliable and insensitive to all forms of numerical locking and element geometric distortions
    corecore