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PREFACE  

This is the fourteenth time when the conference “Dynamical Systems: Theory 
and Applications” gathers a numerous group of outstanding scientists and engineers, who 
deal with widely understood problems of theoretical and applied dynamics.  

Organization of the conference would not have been possible without a great effort of 
the staff of the Department of Automation, Biomechanics and Mechatronics. The patronage 
over the conference has been taken by the Committee of Mechanics of the Polish Academy 
of Sciences and Ministry of Science and Higher Education of Poland. 

It is a great pleasure that our invitation has been accepted by recording in the history 
of our conference number of people, including good colleagues and friends as well as a large 
group of researchers and scientists, who decided to participate in the conference for the 
first time. With proud and satisfaction we welcomed over 180 persons from 31 countries all 
over the world. They decided to share the results of their research and many years 
experiences in a discipline of dynamical systems by submitting many very interesting 
papers.  

This year, the DSTA Conference Proceedings were split into three volumes entitled 
“Dynamical Systems” with respective subtitles: Vibration, Control and Stability of Dynamical 
Systems; Mathematical and Numerical Aspects of Dynamical System Analysis and 
Engineering Dynamics and Life Sciences. Additionally, there will be also published two 
volumes of Springer Proceedings in Mathematics and Statistics entitled “Dynamical Systems 
in Theoretical Perspective” and “Dynamical Systems in Applications”.  

These books include the invited and regular papers covering the following topics:  
• asymptotic methods in nonlinear dynamics, 
• bifurcation and chaos in dynamical systems, 
• control in dynamical systems, 
• dynamics in life sciences and bioengineering, 
• engineering systems and differential equations, 
• non-smooth systems 
• mathematical approaches to dynamical systems 
• original numerical methods of vibration analysis, 
• stability of dynamical systems, 
• vibrations of lumped and continuous systems, 
• other problems. 
Proceedings of the 14th Conference „Dynamical Systems - Theory and Applications" 

summarize 168 and the Springer Proceedings summarize 80 best papers of university 
teachers and students, researchers and engineers from all over the world. The papers were 
chosen by the International Scientific Committee from 370 papers submitted to the 
conference. The reader thus obtains an overview of the recent developments of dynamical 
systems and can study the most progressive tendencies in this field of science.  
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Our previous experience shows that an extensive thematic scope comprising dynamical 
systems stimulates a wide exchange of opinions among researchers dealing with different 
branches of dynamics. We think that vivid discussions will influence positively the creativity 
and will result in effective solutions of many problems of dynamical systems in mechanics 
and physics, both in terms of theory and applications.  

We do hope that DSTA 2017 will contribute to the same extent as all the previous 
conferences to establishing a new and tightening the already existing relations and scientific 
and technological cooperation between both Polish and foreign institutions.  

 
 
 
 

On behalf of both  
Scientific and Organizing Committees 

 
 
 

Chairman 
Professor Jan Awrejcewicz 
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Experimental observations on rotor-to-stator contact

Oliver Alber, Ulrich Ehehalt, Richard Markert, Georg Wegener

Abstract: If a exible rotor contacts its stator, the nonlinearities induced by

contact may result in a great variety of vibration phenomena. This article

presents experimental results gained at test rigs. Fundamental phenomena are

analyzed and discussed. First, a modular kit for rotordynamic experiments is

described. The kit allows customizing the properties of rotor and stator that

are relevant for the dynamic behavior. The system allows to specify target

values for natural frequencies, modal damping, clearance width, contact fric-

tion and others. Basic con�gurations based on this kit were used to study the

inuence of mass, sti�ness and damping of both rotor and stator, contact fric-

tion and misalignment of the stator on the vibration of the rotor-stator system.

Extensions of the kit allowed the experimental investigation of systems with

a multitude of natural frequencies, highly exible stators and even drop down

and overload incidents of rotors supported by active magnetic bearings. The

article also analyzes and explains the various vibration phenomena resulting

from contact. In particular, resonance diagrams from run-up and run-down

processes, orbit plots and frequency spectra are utilized to discuss the dynamic

characteristics. The motion types encountered include not only rotor syn-

chronous motions, but also multi frequency motions (forward and backward

whirl), sub- and super-harmonic motions, motions including sidebands as well

as chaotic motions. Emphasis is put on sensitive system parameters and on

existence and stability of the various types of motion.

1. Introduction

If a rotor contacts its stator, the rotor-stator system becomes nonlinear and, due to rubbing,

a wide variety of di�erent motion types are possible. Contact and rubbing between rotating

and stationary parts of rotating machinery may lead to severe failures. However, not every

rubbing event will necessarily lead to a destruction of the rotor system. Thus, a priori know-

ledge about the various types of rotor motion and their characteristics is necessary allowing

early detection of contact from measured vibration signals and predicting the severity of the

resulting rotor motion.

If the rotor contacts the stator, the following typical motion patterns may arise: purely

synchronous, sub- and superharmonic vibrations, forward and backward whirl, motion with

sidebands around the rotor speed and even chaotic motions [11]. These types of motion may

exist parallel and independent from each other. They may occur depending on the rotor and

stator parameters, but also on the rotor speed and the initial conditions of the rotor-stator

motion [5].
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A �rst insight into the manifold dynamics

of a rotor contacting its stator can already

be gained with the simple Jeffcott rotor

model of Figure 1 extended by a stator taking

into account the friction between rotor and

stator.

Run-up experiments of a test rotor

similar to the Jeffcott rotor shown in Fi-

gure 1 may generate for instance amplitude

curves as shown in Figure 2. The curves in

Figure 2 show the amplitude jbr

R

j of the rotor

deection of an unbalanced rotor during

a slow run-up. The measured curves are

compared to the characteristic steady state

synchronous unbalance response, which may

develop if the contact friction �

F

is low.

Flexible

Shaft k

R

Rotor

Mass m

R

Stator

Suspension k

S

M

�

R

�

Clearance s

Contact

Friction �

F

Stator

Mass m

S

Stator

Damping b

S

Figure 1. Jeffcott rotor with a simple

model of a exible stator

Just after the rotor deec-

tion jbr

R

j exceeds the clear-

ance s, the rotor contacts

the stator and due to the

high contact friction the syn-

chronous unbalance response

(a) becomes unstable. The

synchronous motion changes

to a non-synchronous quasi-

periodic forward whirl (b). If

the rotor speed increases fur-

ther, the forward whirl may

disappear. However, as can

be seen on the right hand side

of Figure 2, the forward whirl

!

R

!

RS

1000 2500

rotor speed 
 [rpm]

0

1

r

o

t

o

r

d

e



e

c

t

i

o

n

j

b
r

R

j

[

m

m

]

(a)

(a)

(a)

(b)

(c)

s=0.23mm

!

R

� 1570 cpm

!

S

� 4640 cpm

!

RS

� 2240 cpm

�

F

� 0:20

alu-steel contact

Figure 2. Measured rotor deection during run-up

can turn into a much more dangerous motion. In this case the rotor amplitude jumps very

quickly to large values. Backward whirl (c) is established where the rotor center orbits

opposite to the direction of the rotor rotation.

It can also be observed that backward whirl may occur in the speed range where the syn-

chronous unbalance response is stable. Under certain conditions the backward whirl becomes
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unstable and the motion turns back to synchronous whirl and follows the steady state

unbalance response curve with small amplitudes. Figure 2 shows only three of a plurality

of possible motion types which may arise if the rotor contacts the stator [4]. Extensive

theoretical investigations as well as experimental results for many more motion patterns and

phenomena are presented in the theses [2, 10, 18].

This article presents a selection of experimental results which have been obtained with

experimental setups of a modular rotor kit. First, the modular rotor kit used for conducting

principle rotor dynamic investigations is described. Subsequently, various measured motion

types are analyzed and discussed. Finally, some phenomena are discussed which were ob-

served experimentally on rotor and stator systems with several eigenfrequencies within the

speed range of the rotor.

2. Modular TUD kit for rotordynamic experiments

General description of the TUD kit: Most studies on rotor-stator contact are theoretical us-

ing either analytical or numerical approaches. The results depend very much on the modeling.

Contradictions may arise with di�erent model approaches. Therefore, it is essential to verify

experimentally the calculated dynamic phenomena and the underlying model assumption.

For demonstration and experimental veri�cation of various rotordynamic e�ects, a exib-

le rotordynamic kit as sketched in Figure 3 was designed in 1981 and has been continuously

expanded and improved at the TUD (Technische Universit�at Darmstadt). The modular

kit allows to quickly assemble test rigs for examining various rotordynamic phenomena by

combining individual components. The core of this modular kit is a high-strength, 8 mm

thick shaft, on which disks, ball bearings, bushes of journal and magnetic bearings, external

dampers and many other accessories may be clamped at any desired axial position. The

additional components are �xed to the shaft by special cone-type clamping sleeves generating

high contact force. High contact force suppresses micro slip and avoids destabilization by

internal rotor damping. For safety reasons, the rotor deections are limited directly at the

a

n

g

u

l

a

r

e

n

c

o

d

e

r



e

x

i

b

l

e

s

t

a

t

o

r

s

h

a

f

t

d

a

m

p

e

r

d

i

s

k

b

e

a

r

i

n

g

c

o

u

p

l

i

n

g

d

r

i

v

e

clearance

Figure 3. Principle of the modular kit for basic rotordynamic experiments
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disks by retainer bearings. The rotor is driven by a speed-controlled electric motor connected

to the rotor by a exible coupling. The radial displacements of disks and stators are measured

in two orthogonal directions by contactless eddy current sensors. An incremental angular

encoder attached to the rotor generates sine and cosine signals of the current angle of rotation.

The measured displacements and the rotational signals are �ltered and subsequently recorded

and analyzed by a measuring PC.

Additional components are, for example, elastic bearings, journal bearings [8], active

magnetic bearings [20], external actuators on the bearing or on the shaft, viscous dampers,

controllable ERF dampers [7], as well as various disks for demonstrating gyroscopic e�ects

[15, 17]. A similar but less comprehensive modular system is o�ered by Bentley Nevada [9].

First experimental results in [14] address non-stationary balancing methods on the test

rig shown in Figure 4. Subsequently, passive and active measures for passing the resonance

including retainer bearings were investigated experimentally [1, 19].

Figure 4. Test rig for non-stationary balancing [16]

With the modular TUD kit, various rotor-stator con�gurations were assembled to in-

vestigate the inuences of various system parameters on motion patterns and phenomena

caused by contact and rubbing between rotor and stator.

Test rig for SDOF rotor-stator systems: To verify the theoretical results for rotor-stator

systems with a single disk and a single stator ring (SDOF) experimentally, the rotor-stator

test rig shown in Figure 5 (left) was built. It consists of a simple rotor and a exible stator.

The shaft is supported by ball bearings at both ends and carries a disk in the middle. A

cylindrical bush at the front side of the rotor disk contacts the stator if the rotor deection

exceeds the clearance. The SDOF stator body (a) is exibly suspended within the rigid

housing (b) by four stator springs (c). The stator mass can be changed by adding mass

12



a

b

c

d

e

f

g

Figure 5. Test rig for SDOF systems; left: assembled test rig; right: stator assembly [10]

elements (d). The lower spring housings (e) can be �lled with oil to adjust the stator

damping. The stator can be centered to the rotor or a desired misalignment can be set up

by shifting the suspensions (f) of the stator springs. The stator body can accommodate

di�erent contact rings (g). Thus, di�erent clearances s and di�erent friction coe�cients

�

F

between rotor and stator can be realized by simply changing the contact rings. For

the experiments discussed in this paper, the radial clearance between rotor and stator was

mostly set to s=0:23mm.

The rotor deection r

R

(t)=w

R

(t)+i v

R

(t) was measured in vertical and horizontal di-

rection. The measured rotor deection components w

R

(t) and v

R

(t) are post-processed to

illustrate the orbits and to calculate the spectra by transforming into the frequency domain,

W

R

(

e


) and V

R

(

e


). The forward component (positive frequency range

e


 > 0) is simply

calculated by summing up the complex spectra of the two orthogonal displacement compo-

nents. The backward component (negative frequency range

e


<0) however is calculated by

summing up the conjugate complex spectra of the two orthogonal displacement components

given in the positive frequency range,

R(

e


) = W (

e


) + i V (

e


) for

e


 > 0

R(

e


) = W

�

(�

e


) + i V

�

(�

e


) for

e


 < 0:

(1)

Test rig for MDOF rotor-stator systems: The setup of the test rig for conducting the

experimental investigation on rotor and stator systems with several eigenfrequencies within

the speed range of the rotor (MDOF) is similar to the one for SDOF systems described in

the previous paragraph [3]. Drive, instrumentation and signal processing are identical. The

shaft is supported by ball bearings and carries two disks and an external damper as presented

in Figure 6 (left). A contact ring is mounted on the left disk a to provide the contact to the
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stator if the rotor deection exceeds the clearance. The two lowest resonance frequencies of

the rotor are below 50 Hz and located within the speed range of the rotor.

The stator with two (complex) degrees of freedom consists of an inner ring (mass m

S1

)

and an outer ring (mass m

S2

). The two stator rings are connected to each other and to the

stator cage by springs. To illustrate the operation principle, a functional design sketch of the

MDOF stator is shown in Figure 6 (right). Contact rings of di�erent sizes and materials can

be inserted to adjust the friction coe�cient and the gap size at the contact position. Tilting

of the stator rings is avoided by guiding each ring with thin exible beams. The lowest two

natural frequencies of the stator system are also located within the speed range of the rotor.

M

D

O

F

s

t

a

t

o

r

d

i

s

k

d

a

m

p

e

r

n

o

t

c

o

n

n

e

c

t

e

d

b

e

a

r

i

n

g

cage

m

S1

m

S2

m

R

Figure 6. Test rig for MDOF systems; left: assembled test rig; right: sketch of the stator [2]

3. Measured Motion Types of SDOF Rotor-Stator Systems

Synchronous Motion: For isotropic rotors, the

synchronous motion excited by unbalance oc-

curs always whenever the rotor is not in contact

with the stator. Furthermore, synchronous mo-

tion can also occur when rotor and stator con-

tact each other, if rotor and stator are isotropic

and concentric, even though the total restoring

force F

tot

of the rotor contacting the stator is

nonlinear. As illustrated in Figure 7, for syn-

chronous motion the absolute value of the rotor

deection r

R

remains constant per revolution

and thus the same holds for the total restoring

force as well.

z

y

s s

j

b

F

tot

j

r

R

s

Figure 7. Total restoring force of a rotor-

stator system with clearance s
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Depending on the natural frequencies !

R

and !

S

of rotor and stator, the unbalance

response curves may have signi�cantly di�erent shapes, [12]. Figure 8 (left) shows the mea-

sured rotor deection during run-up (black curve) and run-down (grey curve) for a system

with a stator classi�ed as very light (!

S

�!

R

). As soon as the rotor contacts the stator the

unbalance response curve is bent and hangs over towards higher speeds. This leads to the

well known jump phenomenon typical for non-linear systems. If the synchronous unbalance

response under contact is stable the motion is purely syn-

chronous even though the entire system under contact is

nonlinear. This is illustrated by the orbit at 
=1600 rpm

and the corresponding spectrum shown in Figure 8 right.

!
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!
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1000 2500rotation speed 
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!

R

� 1570 cpm

!

S

� 3020 cpm
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�

F

� 0:20

alu-steel contact
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(
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[
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m

]
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e
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.4

0

j
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r

R

j

[

m

m

]

Figure 8. Measured unbalance response; left: rotor deection of synchronous motion during

slow run-up and slow run-down; right: rotor orbit and spectrum at 
=1600 rpm

For a rotor-stator system with a heavy stator (!

S

<!

R

), the main branch of the unbal-

ance response does not exceed the clearance during normal run-up and run-down. For such

systems however, an additional isolated synchronous branch (island) can occur at subcritical

rotor speed, marked by (b) in Figure 9 (left). This isolated branch will not be reached during

normal operation as illustrated by the grey curve depicting a run-down. To enter into the

isolated branch, the rotor was forced into contact with the stator at 
 � 1300 rpm. The

subsequent run-up (black curve) �rst follows the isolated branch. At the upper speed limit

of the isolated branch, the rotor amplitude drops down to small values and the rotor stays in

contact with the stator during the subsequent run-up. Rotor and stator do not separate in

the shown speed range even though the rotor amplitude is smaller than the clearance. The

unbalance response on the isolated branch at 
=1160 rpm (b) and also at the normal area
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at 1800 rpm (c) is stable and the motion under contact is

synchronous as demonstrated by the orbits and the spectra

in Figure 9 (right).
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Figure 9. Measured unbalance response; left: rotor deection of synchronous motion during

slow run-up and slow run-down; right: rotor orbits and spectra at two rotor speeds

The synchronous motion under contact may become unstable in a certain speed range

and then another vibration pattern emerges. Depending on the parameters, the unstable

speed range occurs in the subcritical speed range (right after rotor and stator get into contact

during run-up), or in the supercritical speed range, [10].

Forward Whirl: Forward whirl can emerge when the synchronous unbalance response be-

comes unstable. An even lighter stator compared to the one of Figure 8 results for example

in an unbalance response curve shown in Figure 10 (left). The synchronous motion becomes

unstable in the speed range between 
 � 1300 rpm and 1640 rpm and non-synchronous

quasi-periodic forward whirl emerges. Forward whirl is characterized by an additional com-

ponent with a negative non-synchronous frequency leading to a non-constant amplitude. The

previously smooth line becomes an area.

The orbit in Figure 10 (right) is not closed, it takes about �ve revolutions to traverse

the shown segment at 
=1470 rpm. The frequency spectrum in Figure 10 (right) shows the

forward (positive) rotor speed 
=1470 rpm and a smaller component with the negative fre-

quency

e


=�1180 cpm whirling backwards. As the forward whirling component dominates,

the orbit is in overall traversed in direction of rotor rotation.
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Figure 10. Measured unbalance response; left: rotor deection of forward whirl during

slow run-up and slow run-down; right: rotor orbit and spectrum at 
=1470 rpm

Backward Whirl: Backward whirl can emerge in cases when the synchronous unbalance

response becomes unstable. In addition, backward whirl is also possible in speed ranges where

the synchronous motion with or without contact is stable or stable forward whirl exists. This

is demonstrated by Figure 11 with the same parameters as in Figure 10. During the shown

run-up (black line) the rotor was forced from non-contacting state into permanent contact

already at very low speed. Subsequently, backward whirl emerges throughout a wide speed

range characterized by high vibration amplitudes and large contact forces. As illustrated,

backward whirl can co-exist with all other stable motion patterns.

Backward whirl is characterized by a dominating component with non-synchronous neg-

ative frequency leading to a non-constant amplitude as shown in Figure 11. The shape of

the orbit in Figure 11 (right) is similar to the one of the forward whirl. However, the back-

ward whirling component dominates over the synchronous component and hence the orbit

traverses against the rotating direction. The backward whirling frequency is typically higher

than the rotational frequency and the backward whirl causes high reverse bending stresses.

The waterfall diagram of the run-up shown in Figure 11 demonstrates that frequency

and amplitude of the backward whirling component are nearly independent from the running

speed, con�rming theoretical results given in [10, 13].
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Figure 11. Measured unbalance response; left: rotor deection of backward whirl during

slow run-up triggered by arti�cial disturbance at low rotor speed; right: rotor orbit and

spectrum for backward whirl at 
=1700 rpm; bottom: waterfall diagram of run-up

While the existence of backward whirl strongly depends on the relation between friction

coe�cient and rotor damping, its whirling frequency is not signi�cantly inuence by the

two parameters. The measured frequency and amplitude of the backward component are

shown by the circles in Figure 12 verifying the analytical results. Unless the frequency, the

amplitude of the backward component strongly increases with increasing friction �

F

and

decreases with increasing rotor damping D

R

.
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Figure 12. Frequency and amplitude of the asynchronous backward component of a system

with a light stator depending on rotor damping D

R

and friction coe�cients �

F

Subharmonic Vibrations: Subharmonic vibrations occur if stator and rotor are not con-

centrically aligned. Figure 13 shows the unbalance response of a rotor with a stator misalign-

ment of approximately 80% of the clearance. Due to the misalignment, contact is established

during run-up already before the rotor deection exceeds the nominal clearance. With in-

creasing rotor amplitudes full annular contact is established and the amplitude follows on

average the synchronous unbalance response (grey line) of

the corresponding aligned system. Due to the high mis-

alignment rotor and stator do not separate in the super-
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Figure 13. Measured unbalance response for misaligned stator; left: rotor amplitudes during

run-up and run-down; right: orbit and spectrum of the subharmonic motion at 
=3300 rpm
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critical speed range. Around 
� 3300 rpm a subharmonic resonance occurs. It takes two

rotor revolutions to fully traverse the orbit shown in Figure 13 (right). The subharmonic

orbit contains only the frequencies

e


=
 = �1 ;�0.5 ; : : : ; 1 and is hence closed after two

revolutions.

Vibrations with Side Bands: For a system with light stator, the unbalance response curve

is not bent. For such a system the synchronous unbalance response can become unstable

in the supercritical speed range, [10]. In Figure 14 (left) a slow run-up for such a system

is shown. The synchronous unbalance response becomes unstable in the speed range from


�1710 rpm to 
�1810 rpm. The spectrum shown in Figure 14 (right) shows that in this

speed range the synchronous component is still dominant, but several minor components ap-

pear with a frequency spacing of �

e


 � 30 cpm. Due to

the multitude of vibration components the orbit amplitude

varies.
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Figure 14. Measured unbalance response; left: rotor amplitudes during slow run-up; right:

orbit and spectrum for motion with sidebands at 
=1790 rpm
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4. Measured Motion Types at MDOF Rotor-Stator Systems

Interaction of individual modes of MDOF rotor-stator systems: In speed ranges where only

one rotor and one stator mode are interacting during contact, the same phenomena were

measured with MDOF systems as described in the previous section for SDOF systems. This

presumes rotor and stator systems with quite separated natural frequencies. Amplitude

curves, orbits and spectra show the same typical shapes which occur in SDOF rotor-stator

systems.

Coexistence of several backward whirl characteristics: Figure 15 (left) shows the mea-

sured rotor deection at the disk contacting the stator. The rotor has a very low damping.

During run-up, immediately after the rotor has passed the �rst resonance range, backward

whirl occurs. It is noteworthy that in the subsequent run-up di�erent backward characteris-

tics are observed. As the spectrum in Figure 15 (right) proves, these backward whirls have

di�erent frequencies and amplitudes. Within the speed ranges A and C, the frequency of

the backward component is lower than that within range B. Frequency and rotor amplitude

change when the motion changes from one backward characteristic to the other. The exper-

iments con�rm the theory [2,6] that backward whirl motions with di�erent whirl frequencies

may coexist.
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Figure 15. Measured unbalance response; left: rotor deection of contacting disk during

slow run-up and slow run-down; right: short time fast Fourier transformation (STFFT)

MDOF rotor-stator systems with interacting modes: For certain parameter constellations,

the dynamics of MDOF systems can not be described adequately by simple SDOF treat-

ment. This is particularly the case if more than one rotor and one stator mode determine

the dynamics in the relevant speed range. Figure 16 shows the measurements at a test setup,

in which the �rst two stator natural frequencies are located close to the �rst rotor natural
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frequency; one below and one above the �rst rotor resonance. During run-up, just after the

rotor is contacting the stator at the rotor's �rst eigenfrequency, motions with sidebands and

partial contact are observed. After passing the �rst resonance, the rotor separates from the

stator and continues running up without contact. When the rotor speed reaches the second

natural frequency of the rotor, the rotor contacts the stator again and partial contact occurs.

Again, the motion includes synchronous and sideband components.
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Figure 16. Measured unbalance response; rotor deection of contacting disk during slow

run-up and slow run-down containing several di�erent motion patterns

The run-down (black curve) shows another phenomenon: An isolated branch with syn-

chronous motion under contact exists in the speed range from 2000 rpm to 2500 rpm, that

is between the two rotor eigenfrequencies. During run-down the vibration within the second

rotor resonance triggers the system to jump to the isolated branch. The motion pattern

at this island is synchronous. This motion with contact occurs even though a non-contact

motion of the rotor with small amplitudes would be possible in parallel. Although the rotor

speed is far away from the resonance zones of the subsystems and the motion is synchronous,

quite large rotor deections can occur. The synchronous motion on the isolated branch will

continue until the branch ends or until the motion on the branch becomes unstable. There-

after, the rotor returns to the non-contact motion with small synchronous deection. This

motion remains during subsequent run-down until the rotor speed approaches the �rst rotor

resonance. During run-up the isolated branch will not be reached due to the small rotor

deection unless there is an external disturbance.
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5. Conclusion

The presented modular kit for rotordynamic experiments allows precise experimental obser-

vations on rotor-stator contact, which have been used for the validation of theoretical models.

The experimental results verify impressively most simulation results found in literature and

the theoretical hypothesis that the friction coe�cient is a major determining parameter for

asynchronous motion. All motion patterns measured at SDOF rotor-stator systems can also

be observed at MDOF systems, if the rotor and stator resonances are clearly separated. How-

ever, at MDOF systems modal interaction leads to new phenomena like coexisting backward

whirl motions or modi�cation of the resonance curves.
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Torsional vibration energy harvesting through transverse 

vibrations of a passively tuned beam 

 

 

Panagiotis Alevras, Stephanos Theodossiades, Homer Rahnejat, Tim Saunders 

Abstract: The paper highlights the potential of harvesting vibration energy from 

mechanical systems in the form of electrical power to activate remote electronic 

devices. The principal idea is based upon the resonant response of a lightweight 

oscillator subjected to applied external excitation, coupled with an electrodynamic 

transducer (e.g. piezoelectric material, inductive coils). As far as the mechanical system 

is concerned, the aim is to maximize the harvested energy when an attachment vibrates 

with relatively high amplitudes. This means that the system natural frequency should 

be close to the expected dominant frequency of the applied (host) vibrations. However, 

in practice the dominant vibration frequency varies either within a limited range due to 

system uncertainties or across a large band due to the fundamental operation of the host 

structure, such as in rotational power transmission systems with speed variations. 

Recently, the introduction of nonlinearities has been proposed in order to compensate 

for small-scale frequency shifts. Nevertheless, in most cases one cannot fully bypass 

the necessary tuning effects, attributed to linear stiffness components in system 

dynamics. In this paper, a rotational vibration energy harvester is outlined, based upon 

a beam attachment, coupled with an electromagnetic transducer. The stiffening effect 

due to centrifugal action is utilized in order to passively tune the attachment to the 

dominant frequency of the rotational host structure. A reduced order model of the 

harvester is presented and its power extraction potential is assessed. 

1. Introduction 

Vibration energy harvesting is an emerging field, converting the environmental vibration energy of a 

host structure or machine for usable electric output [1]. This energy can then potentially be used to 

power low consumption electronic devices, such as wireless sensors. Common energy harvesters 

initially comprised linear oscillators, coupled with an electrodynamic element, such as piezoelectric 

patches or permanent oscillatory magnets in the proximity of a coil of thin wire. The main drawback of 

this technique is the limited frequency response of such oscillators [2]. Briefly, these harvesters need 

to be tuned to a certain frequency in order to resonate with the host’s vibrations. However, mechanical 

systems often operate across a wide range of frequencies leading to mistuning of the harvesting devices. 

Consequently, their efficiency in terms of power output dramatically reduces when frequency variations 

occur. 
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In recent years, the introduction of non-linearity has broadened the frequency band response of 

mechanical oscillators [3-4]. Many researchers have employed the transverse vibrations of a beam, 

attached to a host structure to exploit its nonlinear response. A recent review is provided by Wei and 

Jing [5]. Erturk and Inman studied a distributed beam model for piezoelectric energy harvesting [6]. 

They also studied experimentally a bimorph cantilever beam for enhanced harvesting capabilities [7]. 

Recently, significant progress has been made with bi-stable energy harvesters, a vast majority of which 

concern transverse vibrations of buckled beams [8]. 

An overwhelming majority of reported studies have considered the translational vibration 

problems in this regard, largely neglecting the opportunities with torsional systems that abound in 

powertrains and rotor dynamic applications. One can conceive the design of a piezo-generator, based 

on torsional stressing of its active elements [9-10]. Furthermore, the piezoelectric cantilever design has 

been used for either torsional vibratory modes with piezoelectric attachments, or in bending modes, 

extending radially from a shaft subjected to torsional oscillations [11]. 

In this paper, a vibration energy harvester based on transverse beam vibrations is proposed for 

rotational systems. Torsional vibrations in rotor systems often experience large scale frequency shifts 

attributed to changing operating speed. The proposed concept aims to passively tune the beam element 

of the harvester to the speed-dependent torsional vibrations. This is accomplished through induced 

centrifugal action acting upon an attached beam as an agent for passive tuning. The design strategy is 

presented and the harvested power is predicted numerically. 

2. System modelling 

A disc (D) is assumed to rotate with angular speed 𝜔 = 2𝜋𝑛/60, as shown in Fig. 1. A thin beam of 

length 𝐿, width 𝑎 and thickness 𝑏 is attached to the disc with one end connected to its rotational axis 

via the support S1. The other end is connected at an eccentric location on the disc via the support S2, 

such that the beam extends radially from the disc centre. These supports can be one of clamped, pinned 

or roll independent from each other. The beam has modulus of elasticity 𝐸, density 𝜌 and it is positioned 

with its width 𝑏 perpendicular to the plane of the disc, such that it can experience transverse vibrations 

along the disc’s plane. The distance of a point P on the beam from the axis of rotation is denoted by 𝑥, 

whereas the beam deflection in the transverse direction is denoted by 𝑤(𝑥). A magnet is fixed at an 

arbitrary point P on the beam via a massless, rigid link. A coil of thin wire is also fixed onto the disc, 

at a position such that the magnet lies within the coil. Torsional vibrations of the disc D cause transverse 

beam vibrations with respect to its rotating plane. The vibratory response of the beam entails relative 

motion between the magnet and the coil, thus inducing a coil voltage due to electromagnetic coupling, 

𝑘𝑐 . Then, an electric load with an electric resistance equal to the coil’s, 𝑅𝑙 = 𝑅𝑐, is connected at the 
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coil ends, completing the circuit. The harvested energy is usually taken as the energy that the load 

consumes. This also holds for the harvested power as well. The described system corresponds to an 

elemental vibration energy harvester for the purpose of demonstrating the utility of the proposed 

concept. 

 

Figure 1.   Sketch of the proposed torsional vibration energy harvester. 

It is assumed that the beam is sufficiently thin to follow the Euler-Bernoulli beam theory. 

Therefore, considering an axial load 𝑃(𝑥), the transverse vibrations of the beam are described by the 

following spatio-temporal differential equation: 

𝑚1(𝑥)�̈� + 𝑐1�̇� +
𝜕

𝜕𝑥
[𝑃(𝑥)𝑤′] + 𝐸𝐼𝑤′′′′ −

𝐸𝐴

2𝐿
𝑤′′ ∫ (𝑤′)2𝑑𝑥 = −𝑚1(𝑥)�̈�

𝐿

0
, (1) 

where 𝑚1(𝑥) = [𝜌𝛢 + 𝛭𝛿(𝑥 − 𝐿1)], 𝐴 = 𝑎𝑏 is the beam cross-sectional area, 𝑐1 is the viscous 

damping coefficient, 𝐼 is the second area moment of inertia of the beam cross-section and 𝑧 denotes the 

disc’s vibration response. Using a single mode approximation such that 𝑤(𝑥, 𝑡) = 𝑞(𝑡)𝜑(𝑥), where 

𝜑(𝑥) is the first mode shape, one arrives at:  

𝑚�̈� + 𝑐�̇� + 𝑘𝑞 + 𝑘3𝑞3 = −𝑓𝑚�̈�, (2) 

where 

𝑚 = ∫ 𝜌𝛢𝜑2 𝑑𝑥
𝐿

0
+ 𝛭𝜑2(𝐿1), (3) 

𝑐 = ∫ 𝑐1𝜑2 𝑑𝑥
𝐿

0
, (4) 
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𝑘 = 𝐸𝐼 ∫ (𝜑′′)2 𝑑𝑥
𝐿

0
+ ∫ 𝑃(𝑥) (𝜑′)2 𝑑𝑥

𝐿

0
, (5)  

𝑘3 = −
𝐸𝐴

2𝐿
∫ 𝜑′′𝜑 𝑑𝑥

𝐿

0 ∫ (𝜑′)2 𝑑𝑥
𝐿

0
, (6) 

𝑓𝑚 = ∫ 𝜌𝛢𝜑 𝑑𝑥
𝐿

0
+ 𝛭𝜑(𝐿1), (7) 

 

Figure 2.   Two cases of boundary conditions: (a) clamped-clamped; (b) clamped-roll. 

3. Passive tuning of the beam 

The axial load in the proposed concept is as a result of the centrifugal action on the beam and the lumped 

mass, 𝑀. This is heavily dependent on the boundary conditions. In this paper, two cases of beam support 

are considered: (i)- clamped-clamped (C-C) and (ii)- clamped-roll (C-R), as shown in Fig. (2). The axial 

load depends on the position of the lumped mass, 𝐿1, representing the magnet and its fixture, and on 

the disc’s rotational speed. Fig. (3) shows the axial load across the span of the beam with respect to the 

position of the mass, 𝐿1 and the rotation speed, 𝑛. Note that for C-C boundaries the load is tensile when 

𝑥 < 𝐿1 and compressive elsewhere, whereas for the C-R supports the load is always tensile. This is 

caused by the axial reaction of the outer clamp, contrary to the inability of the roll support to contribute 

in the axial direction. 

𝜌, 𝛢, 𝛦, 𝐿 𝜌, 𝛢, 𝛦, 𝐿 

𝑀 𝑀 

𝐿1 

𝑥 

𝐿1 

𝑥 

𝜔 𝜔 
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Figure 3.   Axial load acting on the beam along its length. The left column corresponds to C-C support 

and the right column to C-R. The top figures depict the influence of the position 𝐿1 at 2000 

rpm and the bottom figures show the influence of the rotation speed 𝑛 for 𝐿1 = 0.5𝐿. 
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The axial load variation induces the beam modal frequencies to vary accordingly. Following the 

reduced model in Eq. (2)-(7), the natural frequency can be calculated as:  

𝑓𝑛 =
1

2𝜋
√

𝑘

𝑚
, (8) 

As an example we consider a beam with the following characteristics: 𝐸 =  200 𝐺𝑃𝑎, 𝐿 =

 50𝑚𝑚, 𝑏 =  5𝑚𝑚, 𝑡 =  0.5𝑚𝑚, 𝜌 =  7810 𝑘𝑔/𝑚3, 𝑀 =  0.100 𝑘𝑔. Fig. (4) shows the variation of 

the beam’s first modal frequency with respect to the rotational speed of the disc, 𝑛. As the torsional 

vibrations in most rotational systems directly correspond to the system rotational speed, one can 

potentially passively tune the beam to the frequency of the speed-dependent vibrations, subjected to 

proper design provisions and a priori knowledge of the expected system response. Therefore, resonant 

conditions may be maintained in a wide-band of frequencies, promoting efficient vibration energy 

harvesting. 

 

Figure 4.   Dependence of the model’s modal frequency for varying speed and different positions of the 

mass 𝑀; (a) C-C boundaries; (b) C-R boundaries. 

Fig. (4) shows the frequency variations for the two considered boundary condition options. 

Depending on the desired variation of the system’s natural frequency, one can choose the proper 

boundary conditions to passively tune the beam to higher or lower frequencies. Note that with the C-C 

supports, if the mass is positioned at the middle of the beam no tuning would be achieved. This is 

𝑓𝑛(𝐻𝑧) 

𝐿1 = 0.6𝐿 

𝐿1 = 0.4𝐿 

𝐿1 = 0.5𝐿 

𝐿1 = 0.6𝐿 

𝐿1 = 0.5𝐿 

𝐿1 = 0.4𝐿 

𝑛 (𝑟𝑝𝑚) 𝑛 (𝑟𝑝𝑚) 
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consistent with Fig. (3c), which shows that the tensile load is opposing symmetrically the compressive 

load. 

As a second example, consider the case of torsional vibrations in automotive powertrains. In such 

systems, vibrations unfold with a frequency directly linked to the system’s rotational speed; specifically 

to the engine’s firing frequency. In order to achieve efficient vibration energy harvesting, resonant 

conditions must be satisfied across a wide operating frequency range, which is nearly impossible with 

typical linear harvesters. The design proposed herein requires the modal frequency to closely match the 

expected vibration frequency. Consider then the following beam: 𝐸 =  200 𝐺𝑃𝑎, 𝐿 =  80 𝑚𝑚, 𝑏 =

 15 𝑚𝑚, 𝑡 =  0.2 𝑚𝑚, 𝜌 =  7810 𝑘𝑔/𝑚3, 𝑀 =  0.100 𝑘𝑔, which is clamped at one side and 

supported by a roller at the other. Fig. (5) shows the variation of the beam’s first modal frequency with 

the system’s rotational speed. The magnet is fixed at 𝐿1 = 0.575𝐿 in order to ensure good coincidence 

with the excitation frequency. It is observed that the modal frequency is tuned such that it remains close 

to the excitation frequency. In this manner, the harvester’s response is expected to reside close to the 

resonant region. 

 

Figure 5.   Variation of the C-R beam’s first modal frequency across a wide range of frequencies (solid 

line), plotted with the expected dominant frequency of the host’s torsional vibrations 

(circles). 
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4. Harvested power 

Including the electric circuit in the equations of motion introduces an additional damping term which 

dissipates energy from the beam and so, 𝑐1 = 𝑐𝑚 + 𝑐𝑒 , where 𝑐𝑒 = 𝑘𝑐
2/2𝑅𝑙. Furthermore, the harvested 

power is given by: 

𝑃𝑙 =
𝑘𝑐

2

2𝑅𝑙
�̇�2(𝐿1), (8) 

 

Figure 6.   Comparison of the power output; (a) harvester tuned by centrifugal effect; (b) harvesters 

tuned at different shaft speeds. 

(a) 

(b) 
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Adopting these formulae for the assumed beam in Fig. (5), selected for the purpose of 

demonstration 𝑘𝑐 =  11 𝛵𝑚, 𝑅𝑙 =  50 𝛺, then the harvested power with the proposed passively tuned 

concept – Fig. (6a) – is compared with several non-tunable harvesters with set frequencies in the range 

of interest in Fig. (6b). One can readily observe that the passively tuned harvester demonstrates a far 

wider frequency response as opposed to its narrow-band counterparts tuned at specific frequencies. 

5. Conclusions 

In this paper, a concept for harvesting vibration energy from rotating systems is presented. The concept 

utilizes the dependence of a thin beam’s natural frequency on externally applied axial loads. A means 

of passively tuning the harvester to the host’s torsional vibrations through the utilization of the 

centrifugal action is proposed. It is shown that the proposed device can target a wide frequency range 

offering resonant vibration energy harvesting over a large range of operating conditions of the host 

structure. 
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Natural oscillations of rectangular plates with holes: using 

Reissner’s approach 

 

 

Igor V. Andrianov, Jan Awrejcewicz, Alexander A. Diskovsky 

Abstract: The problem regarding the influence of holes on natural oscillations of 

rectangular plates has not been completely solved yet. Analytical solutions based on the 

traditional Rayleigh-Ritz and Bubnov-Galerkin approaches are associated with 

difficulties due to the approximate choice of the approximating functions for the plate 

deflections which should satisfy the boundary conditions. In this work, in order to study 

the influence of an arbitrary hole on the frequencies of a rectangular plate with an 

arbitrary hole, Reissner’s variational principle is employed. In order to validate the 

proposed algorithm, a test problem is solved aimed defining the fundamental frequency 

of the continuous simply supported square plate. The proposed algorithm of the 

estimation of fundamental frequency of vibrations of the rectangular plates with a free 

hole possesses numerous advantages in comparison to the methods used in earlier 

published works. Namely, it does not introduce any limits on the dimension form and 

location of the hole and can be extended to study a few holes and other boundary 

conditions for both the plate and the hole. However, the obtained frequencies can be 

either larger or smaller than the exact values, and there is no any way to estimate the 

sign of this deviation. 

The problem regarding influence of holes on the natural oscillations of rectangular plates is not 

completely solved yet. Analytical solutions based on the traditional Rayleigh-Ritz and Bubnov-

Galerkin approaches are associated with difficulties due to the approximate choice of the approximating 

functions for the plate deflections which should satisfy the boundary conditions [1]. 

This is why the many investigations have been aimed on carrying out either experimental [2] or 

theoretical-experimental studies [3]. The mentioned and my other papers have been focused on study 

of the square plates with clamping edges, since the latter boundary conditions are easily realized 

experimentally. Free vibrations of simply supported square plates with centrally located circle holes 

have been also investigated in reference [4]. 

However, the results obtained there have been limited to the relatively small holes: 2 / 0.3r a   (a 

– length of the plate side; r – hole radius).  

In this work, in order to study influence of an arbitrary hole on the frequencies of rectangular plate 

with arbitrary hole (Fig.1) the Reissner’s variational principle is employed [5]. This principle has been 

successfully used in reference [6] to the problems of deflections of a cantilever plate. It seems that a 
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similar like approach can be used effectively also in the case of our problems because the fundamental 

difficulties of investigation of the free vibrations of the cantilever and multi-coupled plates (different 

boundary conditions should be satisfied on different parts of a contour) coincide. 

 

 

Figure 1. Investigated plate with a hole 

 

In the case of the natural oscillations of thin plates the Reissner’s variation principle takes the 

following form 

2 2 2
2 2
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where: w – oscillation form; 
3

2
;

12(1 )
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D





 E – Young modulus;   - Poisson’s coefficient;   - 

circular frequency;   - mass density per unit plate surface; n – normal vector to the hole contour, A – 

area of plate, , ;a x y a    s – coordinate along hole contour. 

The variational equation (1) is equivalent to a differential equation of plate equilibrium state, 

physical relations of elasticity and static boundary conditions on the hole contour C (see Fig. 1). 

Equation (1) is used for the approximate determination of the eigenfrequency of plate vibration in 

the following way. Deflection and moments are approximated independently through the function with 

a few (not defined yet) parameters in order to satisfy boundary conditions on the plate edges. 

Substituting those expressions into the variational equation (1) and carrying out the variational 

procedure the algebraic system of linear homogeneous equations with respect to the parameters is 
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obtained. Comparing the determinant of the system of equations to zero, we find the equation for the 

eigenfrequency. 

A success of the so far described method depends on how accurately the assumed functions for 

deflection and moments approximate the real/true functions while appropriately choosing the undefined 

parameters. Therefore, in order to improve convergence of the computational process it is reasonable 

to require satisfaction of the approximating the boundary conditions functions on the hole contour. 

Note, that in the latter case the curvilinear integral in formula (1) vanishes, and the input system of 

equations is essentially simplified. 

The boundary conditions for the simply supported square plate with free hole (Fig.1) are taken  

for 2 1, 0, 0M      and for  2 1, 0, 0,M      (2) 

whereas on the contour C they have the following forms 

2 2

2 2

cos sin 2 cos sin 0,

(cos sin ) ( )cos sin 0,

cos sin 0,

n

nt

n

M M M M

M M M M

M M M M
Q

  

  

   

   

   

 
   

   

    

      
       

      

  (3) 

where: 
2

;
x

a
   

2
;

y

a
     - angle between the axis x and a normal to the hole contour C. 

 

Here we have employed boundary conditions on contour C (3) in the form proposed by Poisson. 

This differs from the Kirchhoff’s boundary conditions, since the taken ones can be solved only with 

respect to ,M  ,M  .M  In result, on the hole boundary we obtain 

0.M M M       (4) 

Deflection and moments can be described by the following relations satisfying the boundary 

conditions 

1 1 1 2 2 2

1 1

3 3 3 4 4 4

1 1

, ,

, .

k k

n n n n

n n

k k

n n n n

n n

w c M c

M c M c



 

   

   

 

 

 

 

 

 
  (5) 

 

Here 0i   on those parts of the boundary which require satisfactions of the boundary conditions 

(2), (3); in  - certain a priori chosen approximating functions; inc  - arbitrary constants. Now, 

employing the R  - function method [7-9] to construct ,i  it is not difficult to satisfy boundary 

conditions of the plate with a hole of an arbitrary form. 
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The described algorithm has been realized numerically to study influence of the free central circle 

hole localized in a square plate on its fundamental frequency of vibration. For simplicity, we have used 

only one approximating functions in the series (5), i.e. 

 

2 2 2

1 2

2 2 2 2 2 2

3 4

cos cos , ( )cos cos ,
2 2 2 2

( )cos cos , ( )sin sin ,
2 2 2 2

w c M c R

M c R M c R



 

   
 

   
   

   

     

 (6) 

where: 2 / .R r a  Our results have been compared with those obtained by Hegarty [4] (Fig. 2). The 

largest error on amount of 16% occurs for small holes; increase of the hole dimension it decrease up to 

10%. 

 

Figure 2. The fundamental frequency of the plate versus hole radius  

(1 – results reported in [4]; 2 – our results) 

 

This error has its motivation in a lack of a guarantee of the limiting transition to the continuous 

plate by the taken approximation of the moments (6). However, Hegarty obtained only upper estimation 

of the fundamental frequency, and hence the real error is lower. 

In order to validate the proposed algorithm, a taste problem is solved in order to define the 

fundamental frequency of the continuous simply supported square plate. Its deflection and moments 

are approximated by the following formulas: 

1 2

3 4

cos cos , cos cos ,
2 2 2 2

cos cos , sin sin .
2 2 2 2

N N N N
c M c

N N N N
M c M c



 

   


   

 

 

  (7) 
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Note that in this case a difference comparing with the exact result achieved only 2%. 

It should be emphasized that the proposed algorithms of the estimation of fundamental frequency 

of vibrations of the rectangular plates with free hole possesses numerous advantages in comparison to 

the methods used in works [1,4]. Namely, it does not introduce any limits on the dimension form and 

location of a hole, and can be extended to study a few of holes and other boundary conditions for the 

plate and hole. 

There is, however, one drawback while applying the Reissner’s principle to the problems of 

vibrations. In contrary to the Rayleigh-Ritz method, which allows to estimate frequencies located over 

their exact values, the Reissner’s method cannot guarantee this rule [5]. In words, the obtained 

frequencies can be either larger or smaller than the exact values, and there is no any way to estimate a 

sign of this deviation. 
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The pendulum dynamic analysis with DC motors and generators 

for sea waves energy harvest 

 

 

Rafael Avanço, Angelo Tusset, Marcelo Suetake, Helio Navarro, José Balthazar, 
Airton Nabarrete 

Abstract: The present analysis is based on ideal and nonideal excitation of a pendulum. 

The models studied considered 4 different pendulous mechanisms and comparisons 

among them. The first mechanism is a pendulum ideally excited on its pivot by a crank-

shaft-slider mechanism above it and the second a nonideal excitation of the same 

mechanism powered by a DC motor. The third considers also a nonideal excitation, 

however the crank and the DC motor are on the left side of the pendulum, so 

horizontally displacing its support. Finally, the last considers a DC generator above the 

pendulum collecting energy from its motion. The pendulum is suspended on a boat by 

its pivot and sea waves shakes the set. Hence, the generator is spun by the pendulum 

pivot co-axially linked to the axis of the motor or linked by the crank-shaft-slider, where 

this crank is co-axially coupled to the generator. The first mechanism exhibits different 

types of motion including chaos, rotations, oscillations and fixed points for the main 

resonance frequency and subhamonic frequencies. The second and third, due to the 

nonideal source of energy, more commonly demonstrates results with synchronization. 

The last, where the DC generator is coupled to the pendulum, is the novelty brought by 

this paper. The types of motion observed in the pendulum coupled to the DC generator 

include both rotations and oscillations. 

1. Introduction 

This article provide analyses of 4 different models and comparisons among them. The first mechanism 

consists of a pendulum parametrically excited by a crank-shaft-slider mechanism. The vertical 

displacement on the pivot of the pendulum approaches to the harmonic motion when the crank radius 

is smaller enough when compared to the shaft length. The second mechanism is a DC motor executing 

the motion on the pivot of the pendulum in the vertical direction using the same crank-shaft-slider 

mechanism. The third mechanism is also a pendulum coupled to a crank-shaft-slider powered by a DC 

motor, but the crank is on the left side of the pendulum, so moving horizontally the support of the 

pendulum. The fourth mechanism studied is the novelty. The model include a DC generator coupled to 

a pendulum. This pendulum is harmonically vibrated on its pivot and the motion of the pendulum 

provokes the rotation of the generator shaft. 
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2. Dynamical models 

2.1. Ideal excitation with a crank-shaft-slider mechanism 

This model was developed and firstly analyzed in Avanço et al [1-2]. The crank rotates with constant 

speed moving the support of the pendulum in the vertical direction. In comparison with the classical 

parametric pendulum studied in Leven and Koch [3], the mechanism analyzed in this section, and 

represented in Fig.1, exhibits more complexity. The same mechanism of [3] was well studied in Xu et 

al [4], where the focus was the rotating orbits.   

Figure 1.   The crank-shaft-slider mechanism 

Considering the center of the crank as the zero level of potential energy, the equations of kinetic 

energy and potential energy are written in Eq.2 and Eq.3, respectively. The Cartesian coordinates are 

represented in terms of the angles  and  in Eq.1: 

𝑥 = 𝑙sinα
𝑦 = −𝑎cosθ − 𝑏cosψ − 𝑙cosα

  (1) 

The kinetic energy is given by T and the potential energy by V: 
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𝑇 =
1

2
𝑚(�̇�2 + �̇�2)  (2) 

𝑉 = −𝑚𝑔𝑦  (3) 

The length of the pendulum is given by 𝑙, the bob in the tip of the pendulum has mass m,  the crank 

length is represented by𝑎, the shaft length is the letter𝑏, all of them according to the Fig.1. 

A function F is defined duo to the intrinsic trigonometric relation between the angles  and  The 

value of the angle  is written in terms of the values of  and the lengths 𝑎and𝑏. 

𝐹 = sinθ +
𝑎

𝑏
⋅

sinθcosθ

(1−
𝑎2

𝑏2
sin2θ)0.5

  (4) 

The Lagrangian function is written in terms of the coordinates  and , determined by the 

subtraction T-V: 

𝐿 =
1

2
𝑚(𝑙2α̇2cos2α + [𝑎θ̇𝐹 + 𝑙α̇sinα]2) + 𝑚𝑔𝑙cosα + 𝑚𝑔𝑏(1 −

𝑎2

𝑏2
sin2θ)1 2⁄ +𝑚𝑔𝑎cosθ  (5) 

Applying the derivatives related to α  and α̇  we obtain the Langrange equation related to the 

coordinate : 

𝑑

𝑑𝑡

𝜕𝐿

𝜕α̇
−

𝜕𝐿

𝜕α
= 𝐺α

𝑛𝑐   (6) 

The result is the Eq. 7, where the dots mean the derivatives related to the physical time t. The 

nonconservative force in the right-hand side of Eq.7 is given by the dissipation in the joint. The term c  

is the coefficient of the viscous friction. 

𝑚𝑙2α̈ + 𝑚𝑎𝑙θ̇�̇�sinα + 𝑚𝑔𝑙sinα = −𝑐𝑙2α̇  (7) 

Inserting the dimensionless time τwe obtain derivatives related to it. The physical time t multiplied 

by the natural frequency of the pendulum ω0 results in the dimensionless term. The derivatives are 

found through the chain rule and are present in Eq.8. 

τ = ω0𝑡α′ =
𝑑α

𝑑τ
=

1

ω0

𝑑α

𝑑𝑡
α′′ =

𝑑2α

𝑑τ2
=

1

ω0
2

𝑑2α

𝑑𝑡2
ω =

𝑑θ

𝑑τ
=

1

ω0

𝑑θ

𝑑𝑡
𝐹′ =

𝑑𝐹

𝑑τ
=

1

ω0

𝑑𝐹

𝑑𝑡
  (8) 

The other  dimensionless terms are demonstrated in Eq.9 and our final differential equation is the 

Eq.10. 

ω =
θ̇

ω0
𝑝 =

𝑎

𝑙

θ̇2

ω0
2 ε =

𝑎

𝑏
γ =

𝑐

𝑚ω0
  (9) 

The final differential equation is given in dimensionless terms: 

α′′ + γα′ + sinα(1 + 𝑝cos(ωτ) +
ε𝑝cos(2ωτ)

[1−ε2sin2(ωτ)]1 2⁄ +
ε3𝑝sin2(2ωτ)

[1−ε2sin2(ωτ)]3 2⁄ ) = 0 (10) 

In Fig.2 the Poincaré section is plotted which demonstrates chaotic appearance. As it was verified 

in Avanço et al [1] and Xu et al [4] , after a cascade of doubling period the chaotic motion may rises.   
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Figure 2.   The Poincaré section shows the chaotic attractor with the parameters p=2.8,  =1.8 and 

=0.9 

The other types of motion include rotational motion, oscillations and fixed point. The Fig.3 

demonstrates time history and Poincaré section with 2-period rotation. 

Figure 3.   Time history and Poincaré section for ideal excitation with p =11.6,  = 0.102,  = 4.9 and 

=0.4 

2.2. Nonideal vertical excitation with a crank-shaft-slider mechanism 

In this model the pendulum is excited by a crank powered with a DC motor. The consequence is the 

pendulum interfere in the motion of the crank, while in the ideal model in the section 2.1 the crank 

speed is not affected by the pendulum dynamics. 

The kinetic energy of the whole system includes the inertia of the rotor in the motor and the disc 

considered above the pendulum. The sum of the moment of inertia of the disc and the rotor is J.   

Therefore, the Lagrangian function in this case consists in: 

𝐿 =
1

2
𝐽θ̇2 +

1

2
𝑚(𝑙2α̇2cos2α + [𝑎θ̇𝐹 + 𝑙α̇sinα]2) + 𝑚𝑔𝑙cosα +𝑚𝑔𝑏(1 −

𝑎2

𝑏2
sin2θ)1 2⁄ +

𝑚𝑔𝑎cosθ  (11) 

The dynamical system is represented in Fig.4, where the unique difference is the presence of the 

inertia of the disc in the crank. 
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In this case, two degrees of freedom demand two coordinates and consequently two Lagrange 

equations: 

𝑑

𝑑𝑡

𝜕𝐿

𝜕α̇
−

𝜕𝐿

𝜕α
= 𝐺α

𝑛𝑐

𝑑

𝑑𝑡

𝜕𝐿

𝜕θ̇
−

𝜕𝐿

𝜕θ
= 𝐺θ

𝑁𝐶
  (12) 

The Lagrangian equations are found with the derivatives considering the 2 degrees of freedom. 

The Eq.13 was found by the coordinate  and the Eq.14 by the coordinate . 

𝐽θ̈ + 𝑚𝑎2𝐹2θ̈ + 𝑚𝑎2𝐹�̇�θ̇ + 𝑚𝑎𝐹𝑙cos(α)α̇2 +𝑚𝑎𝐹𝑙sin(α)α̈ + 𝑚𝑔𝑎𝐹 = 𝑀𝑚𝑜𝑡𝑜𝑟 − 𝑐𝑚θ̇  (13) 

𝑚𝑙2α̈ + 𝑚𝑎𝑙sin(α)𝐹θ̈ + 𝑚𝑎𝑙sinα�̇�θ̇ + 𝑚𝑔𝑙sinα = −𝑐𝑙2α̇  (14) 

 The torque supplied by the motor is given by the Eq.(15). The terms KT and KE represent the 

constant of torque and speed constant equals 127.10-3 Nm/A. The voltage set is given by U.   

𝑀𝑚𝑜𝑡𝑜𝑟 =
𝐾𝑇𝑈

𝑅
−

𝐾𝐸𝐾𝑇θ̇

𝑅
  (15) 

Using dimensionless time derivatives, the Eq 13, Eq.14 and Eq.15 lead to the Eq.16, Eq.17 and 

Eq.18: 

𝐽ω0
2θ′′ + 𝑚𝑎2𝐹2ω0

2θ′′ + 𝑚𝑎2𝐹𝐹′θ′ω0
2 +𝑚𝑎𝐹𝑙cos(α)ω0

2α′2

+𝑚𝑎𝐹𝑙sin(α)ω0
2α′′ + 𝑚𝑔𝑎𝐹 = 𝑀𝑚𝑜𝑡𝑜𝑟 − 𝑐𝑚θ′ω0

  (16) 

α′′ + γα′ +
𝑎sin(α)𝐹θ′′

𝑙
+

𝑎

𝑙
sin(α)𝐹′θ′ + sin(α) = 0  (17) 

𝑀𝑚𝑜𝑡𝑜𝑟 =
𝐾𝑇𝑈

𝑅
−

𝐾𝐸𝐾𝑇

𝑅
ω0θ′  (18) 

Where the derivative of function F: 

𝐹′ = θ′cosθ + ε
θ′cos(2θ)

(1−ε2sin2θ)1 2⁄
+ ε3

θ′sin2(2θ)

4(1−ε2sin2θ)3 2⁄
 (19) 

The results obtained in Fig.5 are the time history and dimensionless angular speed of the pendulum. 

In the Fig.6 the dimensionless angular speed of the crank is plotted. The term  in the vertical axis is 

the same of  in Eq.17 and Eq.18. The voltage set is 4.5 Volt.   

 

Figure 4.   Time history and dimensionless angular speed of the pendulum  for V=4.5 Volt 
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Figure 5.   Dimensionless angular speed of the crank 

Someone may observe that when the pendulum performed two cycles the crank performed four 

cycles in the interval between 530 and 535 forτ.A visible occurrence is a synchronization of the 

pendulum and crank speed. 

The situation in Fig.3 did not have its parameters chosen by chance. They are worked out by the 

results seen in the simulation of Fig.5 and Fig.6 , when the voltage is 4.5 Volt. The mean value of the 

crank speed in Fig.6 was used in the ideal model of 2.1 section where the crank has a constant speed 

approached to 4.9 for the parameter .   

The ideal model from section 2.1 demonstrated a rotational motion for the pendulum and the 

nonideal model from 2.2 section demonstrated an oscillatory solution. Hence there is a good reason to 

not approach a nonidel model to an ideal model. In some conditions it may be observed high 

discrepancies.   

2.3. Nonideal horizontal excitation with a crank-shaft-slider mechanisms 

This nonideal mechanism was analyzed in Belato et al [5], in the PhD Thesis [6] and in Krasnopolskaya 

and Shvets[7]. A DC motor powered the crank which moves horizontally the support of the pendulum. 

The reference for the potential energy is the center of the crank. The Eq.20 brings the position of the 

pendulum in terms of the angles and the length of the links. 

Figure 6.   Pendulum nonideally excited in the horizontal direction 

𝑥𝑝 = 𝑎cosθ + 𝑏cosϕ + 𝑙sinα

𝑦𝑝 = −𝑙cosα
 (20) 

The kinetic energy considers the inertia of the rotor and the pendulum: 

𝑇 =
1

2
𝑚[𝑥�̇�

2 + 𝑦�̇�
2] +

1

2
𝐽θ̇2

𝑉 = −𝑚𝑔𝑙cosα
 (21) 
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In this case we have two degrees of freedom related to the coordinates  and  The right hand side 

of the Eq.22 are the nonconservative generalized forces. 

𝑚𝑙2α̈ − 𝑚𝑎𝑙�̇�θ̇cosα − 𝑚𝑎𝑙𝐹θ̈cosα + 𝑚𝑔𝑙sinα = 𝑄α
𝑁𝐶

𝐽θ̈ + 𝑚𝑎2𝐹
𝑑𝐹

𝑑θ
θ̇2 +𝑚𝑎2𝐹2θ̈ − 𝑚𝑎𝐹𝑙α̈cosα +𝑚𝑎𝐹𝑙α̇2sinα = 𝑄θ

𝑁𝐶   (22) 

The nonconservative generalized forces for the two coordinates are the external torques acting in 

the directions  and : 

𝑄α
𝑁𝐶 = −𝑐α𝑙

2α̇

𝑄θ
𝑁𝐶 = −𝑐𝐴𝑎

2𝐹2θ̇ + 𝑀𝑚𝑜𝑡𝑜𝑟

  (23) 

The Eq.24 and Eq.25 are the differential equations governing the system and in Eq.26 there are the 

dimensionless terms: 

(𝐽ω0
2 +𝑚𝑎2𝐹2ω0

2)θ′′ = −𝑚𝑎2𝐹
𝜕𝐹

𝜕θ
ω0
2θ′2 +𝑚𝑎𝐹𝑙cosαω0

2α′′ − 𝑚𝑎𝐹𝑙sinαω0
2α′2

−𝑐𝐴𝑎
2𝐹2ω0θ′ + 𝑀𝑚𝑜𝑡𝑜𝑟 − 𝑐𝑚θ′ω0

  (24) 

α′′ =
𝑎

𝑙

𝜕𝐹

𝜕θ
(cosα)θ′2 +

𝑎

𝑙
𝐹(cosα)θ′′ − sinα −

𝑐αα′

𝑚ω0
 (25) 

Below it is represented the dimensionless terms and in Eq.27 these dimensionless terms are 

inserted: 

𝐶1 =
𝑚𝑎2

𝐽
𝐶2 =

𝑚𝑎𝑙

𝐽
𝐶3 =

𝑐𝐴𝑎
2

𝐽ω0
𝐶4 =

𝐾𝑇𝑉

𝑅𝐽ω0
2

𝐶5 =
𝐾𝐸𝐾𝑇

𝑅𝐽ω0
𝐶6 =

𝑎

𝑙
𝐶7 =

𝑐α

𝑚ω0
ε =

𝑎

𝑏

   (26) 

θ′′ = −
𝐶1𝐹

1+𝐶1𝐹
2

𝜕𝐹

𝜕θ
θ′2 +

𝐶2𝐹cosα

1+𝐶1𝐹
2
α′′ −

𝐶2𝐹sinα

1+𝐶1𝐹
2
α′2 − 𝐶3𝐹

2θ′ + 𝐶4 − 𝐶5θ′

α′′ = 𝐶6
𝜕𝐹

𝜕θ
(cosα)θ′2 + 𝐶6𝐹cosαθ′′ − sinα − 𝐶7α′

  (27) 

In this section, the results from nonideal excitation are not compared with the respective ideal 

excitation as executed for the vertical nonideal excitation. The intention of this section is to 

demonstrated the diferent types of motion observed for small changes in the parameter control. The 

term 𝐶4 is the parameter control and stand for the voltage set. 

The graphics in Fig.8 represent the phase portraits of  the pendulum for C4 equals 12.9 in Fig.8(a), 

C4 equals 13.02 in Fig.8(b), C4 equals 13.125 in Fig.8(c) and C4 equals 22.5 in Fig.8(d). As the control 

parameter C4 increases, more periods appears in the phase portraits when you compare Fig.8(a), (b) and 

(c). Finally, about the Fig.8(d) a quasiperiodic motion occurs. It has 2 peaks of frequency (0.1465 Hz 

and 0.2411 Hz), which means according to Parker and Chua [8] a quasiperiodic attractor takes place, 

because the spikes of the spectrum are not spaced at integer multiples of one particular frequency. 
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Figure 7.   Phase portraits for the pendulum under nonideal excitation in horizontal direction 

Figure 8.   The power spectral density (FFT) for the angle. 

2.4. Parametric pendulum coupled to a DC generator 

The intention with the modeling in this section is to obtain the pendulum motion and energy harvest 

from sea waves. The pendulum is suspended on a boat and its joint goes up and down. A DC generator 

has the shaft that spin with the same speed of the pendulum, because they are linked. 
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Figure 9.   The pendulum under sinusoidal excitation 

The pendulum moved by a crank-shaft-slider mechanism may have its excitation approached to a 

sinusoidal function when the parameter e approaches to zero. The term which represents the excitation 

by sea waves is the parameter p and the electric current in the generator causes an opposing torque to 

the spin of the pendulum. The Eq.(28) brings the differential equation of the pendulum motion under 

the influence of sea waves and the DC generator. The term  means the angular frequency of the 

excitation,𝐾𝑇is the torque constant and 𝑖 is the electric current. 

𝑚𝑙2α̈ + 𝑐𝑙2α̇ + 𝑚𝑔𝑙sinα = −𝑚𝑎𝑙Ω2cos(Ω𝑡)sinα − 𝐾𝑇𝑖  (28) 

The respective dimensionless equation is the Eq.29 where it was used the dimensionless terms 

present in Eq.30 and in Eq.9: 

α′′ = −γα′ − sinα[1 + 𝑝cos(ωτ)] − β𝐼  (29) 

The term I is considered a dimensionless current where Q is an arbitrary value for electric charge 

and. The term β considers the torque constant 𝐾𝑇 and λconsiders the speed constant 𝐾𝐸. 

β =
𝐾𝑇𝑄

𝑚𝑙2ω0
𝐼 =

𝑖

𝑄ω0
λ =

𝐾𝐸

𝑄ω0𝐿
ζ =

(𝑅𝑎+𝑅𝐿)

ω0𝐿
  (30) 

The electric equation of the DC generator is present below in Eq.31, where the 𝑅𝑎 is an additional 

resistor for test and RL is the internal resistance of the armature. 

𝐿
𝑑𝑖

𝑑𝑡
= −(𝑅𝑎 + 𝑅𝐿)𝑖 + 𝐾𝐸α̇  (31) 

The dimensionless version of the electric equation of the generator is written in Eq.(32) 

𝑑𝐼

𝑑τ
= −ζ𝐼 + λα′  (32) 

The dimensionless parameters for the results found and plotted in Fig.10 are p=5,  =0.1,  = 1.8, 

 = 1 and  = 1. The result of the pendulum motion was a 1-period rotation. The Fig.10 shows the time 

history of the pendulum and the phase portrait on the right side. 
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Figure 10.   Time history and phase portraits for rotational solution of the pendulum 

Afterwards, the parameter𝑝which stands for the amplitude of excitation was decreased to the value 

2.2. The result obtained was a 2-period oscillation. The time history and the phase portrait are in Fig.11. 

 

Figure 11.   Time history and phase portrait for two-period oscillation with p=2.2 

As expected, the pendulum coupled to a DC generator could performed both oscillations and 

rotations. Considering that the DC generator works as a damper that opposes to the pendulum motion, 

other results as fixed point and tumbling chaos may probably be obtained. It is just an issue of variate 

the parameters of amplitude and frequency of the excitation. 

Probably, if a more powerful generator is considered to be used, it will be necessary to increase the 

amplitude of excitation, the mass and length of the pendulum and the frequency will need to fit. 
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4. Conclusions 

In this paper, 4 different mechanisms with pendulum were studied. The last of them was the generator 

coupled to the pendulum. The main practical motivation for the study of pendulums in mechanisms is 

the energy harvest from sea waves. The usage of DC motor in these mechanism is justified by the fact 

that it is the DC generator with a inverted function. In this paper the objective reached was the 

demonstration of the different types of motion present both in DC motor or generator. Another 

important reflection is about the divergence between the ideal and nonideal models. Under the same 

conditions of amplitude and frequencies the type of motion may be completely different. 
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Dissipative dynamics of a geometrically nonlinear Bernoulli-Euler beam 

under the action of a transverse load and color noises 

 

Jan Awrejcewicz, Nikolay P. Erofeev, Vitalyi Dobriyan, Vadim A. Krysko 

 

Abstract. In this paper a theoretical background of nonlinear dynamics for Euler-

Bernoulli flexible beams under the transverse alternating load influence with account 

of color noises is proposed. It is shown that the concept of a phase transition admits a 

further generalization. For such systems the medium properties are time 

impermanent, as usually assumed in the study of nonequilibrium phenomena, but are 

subject to random time variations known as external noise. The random nature of the 

medium induces a more complicated system behavior. This new type of 

nonequilibrium transitions in [1] is called noise induced transitions. In this paper we 

investigate the effect of color noises on a system with an infinite number of degrees-

of-freedom. 

 

Keywords: geometric nonlinearity, Bernoulli-Euler beam, color noise, noise-induced transition. 

 

1. Introduction 

In deterministic systems several scenarios for the transition of a system from periodic to chaotic 

vibrations are known and well described. These are scenarios of Ruelle and Takens [2], where only 

three frequencies are used. The "noisy" scenario behavior has been found numerically after 

occurrence of a strange attractor implied three by three consecutive period doubling bifurcations. This 

means that simple deterministic systems are able to generate internal noise. The scenarios were found 

through the sequence of Andronov-Hopf bifurcations and through intermittence and noisy effects [3]. 

The random nature of the medium is capable of inducing a much richer variety of vibration modes 

than those described in the well-known scientific literature. Transitions from one structure to another 

in their properties are analogous to equilibrium phase transitions and transitions encountered in 

nonequilibrium systems under determinated external influences. It is possible to extend classical 

transitions to phenomena in which noise plays an important role. This makes it possible to study 

theoretically the transitions induced by noise through a numerical study (see references [4-10]). The 

present paper aims to generalize these studies to the case of noise-induced transitions. 

The study of complex oscillations for distributed systems is an important issue, but the available 

results, in general, are obtained for mathematical models with one freedom degree. In the works of 
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Szemplinska-Stupnicka [11], Azrar [12] and Azrar et al. [13] the oscillations of distributed systems 

are replaced by a single-mode approximation in the Bubnov-Galerkin method. The results of the 

studies should be regarded rather as qualitative, since an increase in the number of modes often leads 

to substantially different modes of oscillation. In work [4], studies of global bifurcations and chaotic 

dynamics in nonlinear nonplanar oscillations of a cantilever beam under the influence of axial 

harmonic excitations and transverse excitations at the free end of a beam are presented. Analysis of 

the chaotic phenomena in the problems of vibrations of plates and shells with geometric nonlinearity 

are carried out in references [5-10]. In this paper we study oscillations of a geometrically nonlinear 

Bernoulli-Euler beam as a system with many freedom degrees when adding an external component in 

the form of colored noises. For example, white noise is a generalized stationary random process X(t) 

with a constant spectral density. The term "white" was assigned by analogy with white light, which in 

the visible part of the spectrum has the whole set of frequencies. The correlation (generalized) 

function of the white noise process has the form:    2 ,B t t   where 2  is a positive constant, 

and  t  is the delta function. An essentially nonlinear character of the behavior of plates and shells 

under loading by sound pressure has been found in a number of works. Gaussian white noise as a 

model is well suited for the mathematical description of many natural processes. The concept of color 

noise is introduced by analogy with the term white noise: the distribution of the color noise spectrum 

corresponds to the distribution of the visible part of the light spectrum of the corresponding color. 

 

2. Problem statement 

The investigation object is a single-layer isotropic elastic beam (Fig. 1), which is a two-dimensional 

zone of space R2 with a Cartesian coordinate system introduced as follows: in the beam body a 

reduction line is fixed, being called further the midline z = 0. The OX axis is directed from the left to 

the right along the median line, whereas the OZ axis goes downwards, and it is perpendicular to OX. 

In this coordinate system, the beam as a 2D domain Ω, is defined as follows: 

  hzhax  ;,0 ,  t0 . Here and in the following we will use the notation: 2h  - 

height, a  — length of the beam. 

 

Figure 1. Scheme of the investigated beam. 
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3. Mathematical model 

The mathematical model is constructed on the basis of the Bernoulli-Euler hypothesis and taking into 

account the nonlinear dependence between deformations and displacements in the form of Kármán. A 

system of differential equations in displacements, describing the motion of a beam with energy 

dissipation is obtained from the system of equations for a nonlinear plate [14] in the case of one 

spatial coordinate, and it has the following form 
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(1) 

where: ( , )w x t  - beam deflection, ( , )u x t  - beam movement along the OX axis,   - dissipation 

coefficient, ),( txqq   - transverse load, ( )q t  - color noise (obtained from MATLAB), E  - 

Young's modulus, γ - specific weight, g  - gravity acceleration. Dimensionless variables are 

introduced as follows:  
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          (2) 

Taking into account (2) the system (1) is written in the following form:  
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where bars over the dimensionless parameters are omitted for simplicity. 

The following boundary conditions are introduced 

0),(),0(),(),0(),(),0( 2222  xtawxtwtaututawtw , (4) 

and the following initial conditions are taken into account 

0 0
0 0

( , ) ( , )
( , ) ( , ) 0.

t t
t t

w x t u x t
w x t u x t

t t 
 

 
   

 
 (5) 

 

4. Method of solution 

We replace the differential operators with respect to the spatial variable x by the difference operators 

for the functions ( , ), ( , )w x t u x t  with the help of finite difference method (FDM) with approximation 

 2hO . System (3) reduces to an ordinary differential equations system of the following form:  
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1 1, 2 2,( , ), ( , ), 0,..., ,i i h i i i i h i iw w L w u u u L w u i n       (6) 

where n stands for the number of partitions with respect to spatial coordinates, and the difference 

operators 1, ,hL  2,hL  have the standard form. Boundary and initial conditions are added to the system 

(6) in a difference form. The differential problem is solved by the Runge-Kutta method of the fourth 

accuracy regarding time. The increase in order of the method did not lead to significant changes in the 

results and only the running time increased of the employed numerical programs. 

 

5. Determining Lyapunov exponents 

Wolf et al. [15] proposed an algorithm that allows us to estimate non-negative Lyapunov exponents 

on the basis of time series. They have shown that the Lyapunov exponents are related to the 

exponentially fast divergence or convergence of neighboring orbits in the phase space. Conceptually, 

the method relies on a previously developed technique. There is a tracking of the long-term growth 

rates of small volume elements in the attractor. The method calculates the largest Lyapunov exponent 

from a single coordinate sample and is used when the evolution equations of the system are unknown 

and all of their phase coordinates cannot be measured. The methods of Kantz [16] and Rosenstein 

[17] are based on the construction of time functions, taking into account the divergence in the phase 

space of the nearest neighboring points through a certain time period. Next, it is proposed to find the 

most straightforward section of such functions (that is not always possible) and the tangent of the 

slope angle of this section will be approximately equal to the largest Lyapunov exponent. 

 

6. Analysis of the obtained results 

In order to study the behavior of nonlinear beams under the action of the harmonic transverse load 

)sin(0 tqq p  with the addition of color noise with amplitude ,nC  a software package has been 

developed that allows to build maps of the oscillations type depending on the control parameters 

 0 , ,p nq C  (Table 1), for which the power spectra and Lyapunov exponents (LEs) are constructed 

and analyzed for each set of values  0 , ,p nq C . The algorithm makes it possible to identify on the 

maps the areas of periodic oscillations, the period doubling bifurcation areas, the beam vibration 

zones with independent frequencies (quasi-periodicity) and the chaotic zones (Tables 1, 2). 

The beam vibrations have been examined over a time interval  0; 2024 ,t  the number of 

partitions in FDM  80;160 ,n   the beam length to thickness ratio 50,   and the results are obtained 

for the central point of the beam middle plane. In order to get a map of the vibration type, the range of 

the external load amplitudes 0 [100;60000]q   has been divided into 600 parts, the frequency interval 
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of the external load  0.0003;12p   to 350 parts. In other words the 5101.2   different 

combinations of control parameters have been considered during the numerical simulations. The 

identification of the vibrations type for each of the combinations has been based on the signal 

analysis, the Fourier power spectrum, the Morlet wavelet spectrum, the phase and modal portraits, the 

autocorrelation function, and the Lyapunov exponent for every noise type. 

During the study, a frequency was chosen for which the noise action with a small amplitude did 

not change the system state. In connection with this, studies were made for the system state when the 

noise was added with an amplitude 50000nC   comparable to the amplitude of the periodic load. 

 

Table 1. Different kinds of vibrations on the plane 0{ , }pq   

0,nC   n=40 (point 1 means studied point) 

  
 

Table 2. Color notation 

 - periodic vibrations 

 - chaotic vibrations 

 - bifurcation vibrations 

 - 2 independent frequencies 

 - damped vibrations 

 - undefined vibrations 

 - asymmetric vibrations 

 

Table 3. Largest Lyapunov exponents 

Kantz Rosenstein Wolf 
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The spectral density of the used color noises is approximately proportional to the law 1 ,f 
 

where f  is the frequency of the spectrum, and   has the following values: 2    – violet noise; 

1   – blue noise; 0   – white noise; 1   – pink (flicker) noise; 2   – brownian noise. 

The values of all time series for color noises are located on the interval [-1; 1] and the coefficients 

nC  are added to the harmonic load. Tables 4 and 5 present the Morlet wavelet transform, Fourier 

p

1 1 

0q

p

0q
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spectra, signal waveforms, the Poincaré maps, 2D and 3D phase portraits for beam partitions 

n={80;160} for nC =50000. 

 

Table 4. Vibration characteristics computed for fixed 0 =1.0853, 0q =50000 
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Table 5. Vibration characteristics computed for fixed n=160, Cn=50000, 
0 =1.0853, 

0q =50000 

 Morlet Gaus32 FFT W(t) Phase 2D Phase 3D Poincaré maps 
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In order to estimate the largest Lyapunov exponent by the methods of Kantz and Rosenstein, it 

is necessary to find the tangent of the slope angle of the most straightforward graph section for the 

corresponding method functions of t (Table 3). For this purpose, an algorithm was constructed for 

fitting the curve by the method of least squares with the specification of the least length of the 

approximating segment along time axis as a percentage of the total number of points. In this case all 

possible points of the graph are taken for a given minimum time length in percent and the segment 
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with the least sum of squares of the deviations for the original data from this segment has been 

selected.

  

Table 6. Largest Lyapunov exponents for studied solutions 

2  

W: 0.00011 

K: 0.00765 
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R: 0.00065 
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K: 0.03360 
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R: 0.06540 

0.04201 

 

7. Conclusions 

As can be seen in Table 4, the increase in the number of partitions within [40;160]n  practically 

does not affect the results of the studies, and therefore the option was chosen with the maximum 

n=160. Table 6 shows the values of the largest Lyapunov exponents estimated using the Wolf 

calculation (W), Kantz (K) and Rosenstein (R) (the last 2 in two ways) methods. It can be seen that 

the calculation results can produce values that differ by several orders of magnitude for the same 

noise, whereas they correlate well between different types of noise (a chaotic state is measured by 

positive values of the Lyapunov exponents). 

From the obtained dependencies (Table 5) one may conclude that the least noticeable effect on the 

system is associated with addition of violet noise where vibrations of the system remain periodic. The 

maximum effect takes place in the case of pink noise, and other noises generate chaotic vibrations of 

the system. The employed Morlet and Gauss wavelet transforms demonstrated uneven frequencies 

distribution in time for chaotic vibrations in a quite predictable way, but the Morlet wavelet more 

clearly revealed the system response at low frequencies. For the studied signals the largest Lyapunov 

exponents are positive, which indicates chaotic state of the system, whereas the heuristic spectrum 

analyzer used in the program did not always detect this state. All this once again confirms a need to 

use several methods for analyzing dynamic processes in the studied system. 
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Gyroscopic forces and asymptotic stability for mechanical systems
with partial energy dissipation

Jan Awrejcewicz, Nataliya Losyeva, Volodymyr Puzyrov

Abstract: We study the stability problem for autonomous non - conservative
mechanical system in presence of potential, gyroscopic, and dissipative forces.
The matrix of dissipative forces is semi-positive, so Kelvin - Chetaev theo-
rems cannot be applied. The significance of gyroscopic forces (GF) and their
contribution to the overall phenomenon is discussed. The fact that energy dis-
sipation is incomplete is essential, because the influence of gyroscopic terms
in this case may be significantly different from the full dissipation case. It is
shown that this influence may be both positive and negative (there are some
sets in space of parameters where the asymptotic stability of the motion is
broken). As an example, the problem of passive stabilization of permanent ro-
tations of Lagrange gyroscope is considered. It is proved that adding a dashpot
to gyro with stretched inertia ellipsoid stabilizes its permanent rotations with
the exception of some ”critical” values. The last may be found analytically
from special conditions.

1. Introduction

In 1879 W. Thomson and P. Tait [1] put their attention on the fact that equations of

motion of the system, in which the gyroscopes are present, contain terms linear with respect

to velocities with a skew-symmetric coefficient matrix. When these terms are treated as

forces, then their work on the actual displacement of the system will be zero
∑n
i=1 Γi dqi = 0.

This property was accepted by Thomson and Tait for the general definition of gyroscopic

forces and, using it, they proved several theorems on the stability of the motion of gyroscopic

systems. Gyroscopic forces can be found not only in systems containing gyroscopes, but

also in various mechanical, electrical and other systems in which gyroscopes are absent.

Therefore, for the systems of the most diverse physical nature, one can draw far-reaching

analogies that can be used in various constructions. Non-conservative systems with both

dissipative and gyroscopic force are widely presented in numerous publications from physical

viewpoint [2 - 6], as well as for application purposes [7, 8].

Let the equilibrium position of the conservative mechanical system be unstable. Is it

possible to stabilize it by adding dissipative forces, i.e. to select the force in such a way that

the equilibrium position which is unstable in the presence of potential forces only becomes
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stable or asymptotically stable? The answer to this question is negative. Also it is known

that such an equilibrium position can be stabilized by a certain combination of dissipative

and circulation forces, but can this goal be achieved in the absence of the latter? In the case

when the dissipation is complete (the matrix D is positive) the answer to this question is

given by classical Kelvin-Chetaev [1, 9, 10] theorems:

Theorem 1. If the equilibrium of the mechanical system is stable under the action of

potential forces only, it becomes asymptotically stable while adding dissipative forces with

full dissipation.

Theorem 2. If the isolated equilibrium is unstable under the action of potential forces

only, it cannot be stabilized by adding arbitrary dissipative forces with full dissipation.

Theorem 3. If the isolated equilibrium is unstable under the action of potential forces

only, it remains unstable while adding arbitrary gyroscopic forces and dissipative forces with

full dissipation.

At the same time, concerning Theorem 1, as noted in a number of works (see, for

instance [11 - 13]), the requirement that the matrix characterizing dissipative forces should

be positive is in some cases superfluous. In particular, a semi-positive matrix as a rule

(with the exception of a set of measure zero) makes the stable equilibrium position of the

conservative system asymptotically stable. However, how important is the influence of the

gyroscopic forces in this case? Does the statement of the theorems 2, 3 extend to the case

of partial energy dissipation?

In this paper, we would like to draw attention to two points: 1) In contradiction to

Theorem 3, partial dissipative forces can make the gyroscopically stabilized motion of the

system asymptotically stable; 2) Gyroscopic forces can ”spoil” the asymptotic stability of

the system. Namely, a motion that is asymptotically stable with potential forces and partial

dissipative forces can become marginally stable when the gyroscopic forces are added.

2. Main results

We consider the motion of a holonomic mechanical system subject to stationary, ideal con-

straints. The position of this system is specified by n positional and m cyclic generalized

coordinates. If such a system has stationary motion, then stability problem may be solved

by consideration the linearized system which may be presented in the following form

Mξ̈ +Bξ̇ +Kξ = 0, (1)

where M,K,B are square real matrices (two first of them are symmetric and positive), B is

semi-positive and always may be separated on symmetric (dissipative) and skew-symmetric

(gyroscopic) components B = D +G, ξ ∈ Rn.
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Below we use the block notation for square matrix P of s+ l order in the form

P =

 P 11 P 12

P 21 P 22

 ,

where P 11,P 22 are square matrices of s and l orders respectively, and P 12, P 21 stand for

the corresponding rectangle matrices. Also we split the vector ξ on sub-vectors

ξ = col(x, y), x ∈ Rs, y ∈ Rl.

We suppose that matrix D = 0s
⊕

diag(d1, d2, · · · , dl). In other words the right lower

block D22 is diagonalized, and three other blocks are zero matrices. Matrix D22 is positive.

Similarly, we denote differential operators

L = M
d2

dt2
+B

d

dt
+K, L11 = M11

d2

dt2
+G11

d

dt
+K11,

and the corresponding lambda-matrices (matrix polynomials)

Λ(λ) = Mλ2 +Bλ+K, Λ11(λ) = M11λ
2 +G11λ+K11. (2)

Let λ0 be some eigenvalue of L11, and β10− the corresponding eigenvector, i.e.

Λ11(λ0)β10 = 0s.

Here 0s means the matrix-column with s zero elements. Introduce the equality

Λ21(λ0)β10 = 0l. (3)

For our purposes we shall use the following theorem [14]:

Theorem 4. Let us consider a mechanical system which motion equations are described

by (1) and suppose that none of the eigenvectors of operator L11 satisfies condition (3). Then

adding to system an arbitrary dissipative force, which provides full dissipation on ẏ leads to

the following results:

I) If all eigenvalues of matrix K are positive, then equilibrium of (1) becomes asymp-

totically stable. Stability is exponential and uniform.

II) If matrix K has some negative eigenvalues – then equilibrium is unstable, even if it

was stabilized before by gyroscopic forces. Among particular solutions of the system at least

one has negative Lyapunov characteristic number.

Comparing with the statements of theorems 1 - 3, in case of incomplete dissipation

results of Kelvin - Chetaev theorems mostly persist, excluding some special relations be-

tween quantitative values that characterize the forces (some surfaces in space of mechanical
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parameters). A way of finding these relations is proposed by formulas (3). The key differ-

ence, we believe, is that case of full dissipation allows to solve the problem in qualitative

manner – by analysis only potential (or potential and gyroscopic) forces, and conclusion does

not depend on quantitative nature of them. In other words, only signs of matrix eigenvalues

are important, not their exact values or connections between them. When dissipation is

partial, this feature is lost, as it follows from (3). In particular, if matrix D is positive and

system (1) is asymptotically stable or unstable, varying the GF cannot change this. The

case of partial energy dissipation is somewhat opposed to this circumstance. More precisely,

this property is inherent only with respect to ”pure dissipative” component y of state vector,

and variation of the other gyroscopic terms related to x− component can change the result.

2.1. Example 1

Let system (1) is given with matrices

M =


5 0 2 0

0 1 0 0

2 0 2 0

0 0 0 1

 , G =


0 g1 0 g2

−g1 0 0 0

0 0 0 g3

−g2 0 −g3 0

 , K =


4 0 2 0

0 1 0 0

2 0 2 0

0 0 0 3

 ,

D = h diag(1, 1, 0, 0), (4)

and g1, g2, g3 are unknown parameters.

Suppose that there exist λ0 and β0 which satisfy (3). This means that all minors of

second order of the matrix

Λ? =

 2λ2 + 2 0 2λ2 + 2 −g3λ
g2λ 0 g3λ λ2 + 3

T

are equal to zero. In fact, otherwise the rank of Λ? is maximal, and (3) cannot take place.

The rank of matrix Λ? is less then 2 if and only if all minors of second order are equal

to zero. This fact leads to restrictions

g2 = g3, (5)

and

f(λ) = 2(λ2 + 1)(λ2 + 3) + g23λ
2 = 0. (6)

For any value of g3 the polynomial f(λ) has purely imaginary roots only, hence if

g2 6= g3, then rank Λ = 2, and, according to theorem, system MDGK is asymptotically
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stable. However, if (5) holds, then system (1), (4) is marginally stable. Its characteristic

polynomial

det(Mλ2 + (D +G)λ+K) =

∣∣∣∣∣∣ 3λ2 + hλ+ 2 g1λ

−g1λ λ2 + hλ+ 1

∣∣∣∣∣∣
∣∣∣∣∣∣ 2λ2 + 2 g3λ

−g3λ λ2 + 3

∣∣∣∣∣∣
has two pairs of purely imaginary roots and four roots with negative real part. The last

correspond to variables x1, x2, ẋ1, ẋ2 − the ”direct dissipative part” of state vector, and this

does not depend from magnitude of g1.

Over against, the borderline between marginal stability and asymptotic stability of the

system is tied with restriction (5), which determines a set in subspace of system parameters,

associated with x being a component of state vector, where asymptotic stability is lost.

3. Passive stabilization of Lagrange’s gyroscope permanent rotations

Figure 1. Rigid body with dashpot.

Consider a rigid body with a fixed point O, and introduce it into consideration two

coordinate systems: the fixed one OXY Z and system Oxyz which is connected with the

body. It is assumed that the body is dynamically symmetric, and the center of mass C of

the body belongs to the axis Oz. As generalized coordinates that determine the position
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of the coordinate system Oxyz with respect to the fixed one, we choose the Euler angles

θ, ϕ, ψ which are introduced in a common way (Fig.1). Inside the body a dashpot is situated

which is considered as mass m that can oscillate along the line which is orthogonal to axis of

symmetry Ox and intersects it in point O1. It is connected with carrier by viscoelastic spring

with stiffness κ and coefficient of damping ~. Since the body is dynamically symmetric, we

can assume that dashpot axis is collinear to the principal axis of inertia of the body (for

example, the second). The corresponding radius vector in the coordinate system connected

with the body can be written as

r1 = l1 eX + η eY = (l1, η, 0),

where η is the distance from point O1.

Taking into account the formula v1 = ŕ1 +ω× r1, where ŕ1 is the relative derivative

on time (relative velocity) and ω is the angular velocity of the rigid body, the following

expression for kinetic energy of dashpot holds

K1 =
1

2
m[η̇2 + 2 lN η̇ω3 + η2(ω2

1 + ω2
3)− 2 lN ηω1ω2 + l2N (ω2

2 + ω2
3)].

Components of angular velocity vector are given by the kinematic Euler relations

ω1 = θ̇ cosϕ+ ψ̇ sin θ sinϕ, ω2 = −θ̇ sinϕ+ ψ̇ sin θ cosϕ, ω3 = ϕ̇+ ψ̇ cos θ. (7)

The generalized inertia tensor of the system may be written as

Ĩ =


I1 +mη2 −ml1 η 0

−ml1 η I2 +ml21 0

0 0 I3 +m(η2 + l21)

 . (8)

The potential forces are presented by gravitational force and elasticity of the spring. Hence,

the potential energy of the system is given by the following formula

Π = g sin θ [(Ml +ml1) sinϕ+mη cosϕ] +
1

2
κη2,

where M is the mass of the rigid body, l = |OC|, l1 = |OO1|.
The kinetic energy of the system is as follows

K = K0 +K1 =
1

2
〈ω, Ĩω〉+m〈ω, r1 × ŕ1〉+mŕ21 =

1

2

4∑
j,s=1

ajs ξ̇j ξ̇s.

Here ξ = (θ, ϕ, η, ψ)T , generalized coordinate ψ is cyclic, and

a11 = I1cos
2ϕ+ Ĩ2sin

2ϕ+ 2mlNηsinϕ cosϕ, a12 = 0, a13 = 0,
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a14 = sinϕ [(I1 − Ĩ2)sinϕ cosϕ+mlNη(sin2ϕ− cos2ϕ)], a22 = Ĩ2 +mη2, a23 = mlN ,

a24 = cosθ(Ĩ2 +mη2), a33 = m, a34 = mlNcosθ,

a44 = I1sin
2θ sin2ϕ+ Ĩ2(sin2θ cos2ϕ+ cos2θ) +mη2cos2θ − 2mlNηsin

2θ sinϕ cosϕ.

Excluding the cyclic velocity

ψ̇ =
1

a44
(βψ − a14θ̇ − a24ϕ̇− a34ξ̇),

where βψ represents cyclic constant, we can write the following Routh kinetic potential

LR =
1

2a44

3∑
j,s=1

(ajsa44 − aj4as4) ξ̇j ξ̇s +
βψ
a44

3∑
j=1

aj4 ξ̇j −W, W =
β2
ψ

2a244
+ Π.

Then equations of the motion of mechanical system under study are

d

dt

∂LR
∂q̇j

− ∂LR
∂qj

= Qj , Q = (0, 0,−~η̇)T , (j = 1, 3). (9)

Stationary motions of mechanical system are governed by equality grad W = 0 or

g cos θ [(Ml +mlN ) sinϕ+mη cosϕ]−
β2
ψ

a244

∂a44
∂θ

= 0,

g sin θ [(Ml +mlN ) cosϕ−mη sinϕ]−
β2
ψ

a244

∂a44
∂ϕ

= 0,

gmη sin θ cosϕ−m
β2
ψ

a244
(η cos2θ − lNsin2θ sinϕ cosϕ) + κη = 0.

It is easy to see that the last system has a solution (π/2, π/2, 0) and equations (9) has

equilibrium

θ0 =
π

2
, ϕ0 =

π

2
, η0 = 0, θ̇0 = 0, ϕ̇0 = 0, η̇0 = 0, (10)

which describes permanent rotations of the body with angular velocity βψ/I1 and with

”frozen” mass m. To investigate the stability of solution (9) let us introduce the following

perturbations

θ = ξ̃1 +
π

2
, ϕ = ξ̃2 +

π

2
.

For our purpose it is sufficient to get linear approximation of (9), i.e. terms of second order

from LR :

L
(2)
R =

1

2
[Ĩ2(ξ̇21 + ξ̇22) +mη̇2] +ml1ξ2η+

βψ
I1
{ξ̇1[(Ĩ2 − I1)ξ̃2 +ml1η]− Ĩ2ξ̇2ξ̃1 −ml1η̇ξ1}+
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+
β2
ψ

2I21
[(Ĩ2 − I1)(ξ̃21 + ξ̃22)− 2ml1ξ̃2η] +

g

2
(Ml +ml1)(ξ̃21 + ξ̃22) +mgξ̃2η −

1

2
κη2.

Introducing the dimensionless parameters

ξ3 =
η

l1
, τ =

βψ
I1
t, a =

I2 +ml21
I1

, p =
ml21
I1

, µ =
MglI1
β2
ψ

,

µ1 =
mgl1I1
β2
ψ

, h =
~
βψ
, κ =

κI1
β2
ψ

, (11)

we finally arrive to system (1) with the matrices

M =


a 0 0

0 a p

0 p p

 , D = diag(0, 0, h), G =


0 2a− 1 2p

−2a+ 1 0 0

−2p 0 0

 ,

K =


a− 1− µ− µ1 0 0

0 a− 1− µ− µ1 −1− µ1

0 −1− µ1 κ

 .

To satisfy the requirements of paragraph 1 of theorem 4, matrix K must be positive,

and hence the following restrictions are yielded:

a− 1− µ− µ1 > 0, κ >
p2(1 + µ1)2

a− 1− µ− µ1
. (12)

If a gyro is upstanding (the case of top), parameters µ, µ1 are positive, and the first inequality

(12) requires a > 1 (I2+ml21 > I1), i.e. the generalized inertia ellipsoid is stretched (rotations

around major axis). Also the angular velocity of rotation must be high enough. Then the

second inequality (12) gives the lower limit value for stiffness of the spring κ.
In order to make sure that stabilization is in effect – solution (10) is asymptotically

stable – we have to consider the following matrix

Λ? =

 aλ2 + a− 1− µ− µ1 −(2a− 1)λ −2pλ

(2a− 1)λ aλ2 + a− 1− µ− µ1 p(λ2 − 1− µ1)

T

.

If its rank is equal to 2, the motion is asymptotically stable, if not – it is marginally stable.

The last case means that columns of matrix Λ? are proportional, and therefore

2(aλ2 + a− 1− µ− µ1) = (2a− 1)(λ2 − 1− µ1), (13)

(aλ2 + a− 1− µ− µ1)2 + (2a− 1)2λ2 = 0. (14)
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Expressing λ2 from (13) and substituting into (14) we have

(2a− 1)2[(µ2
1 + 4µ1 + 4)a2 − 2(µµ1 + 2µ+ 2µ1 + 4)a+ µ2 + 4µ+ µ1 + 4] =

= (2a− 1)2{[(µ1 + 2)a− µ− 2]2 + µ1}.

Triangle inequalities for moments of inertia I1 < 2I2 imply a > 1/2, and the system (13) -

(14) is inconsistent. Consequently, rank Λ? = 2, and the motion is asymptotically stable.

It happens because energy transfer between ”pure dissipative” variable ξ3 and two others

occurs, and this transfer with respect to ξ1 is implemented by GF influence only for any

values of gyroscopic terms (without exceptions).

The last feature surprisingly changes when gyroscope is pendent (hanging down). To

analyze this case we can add a sign ”-” before g in formulas (11), now µ, µ1 are negative.

With this change, if

a =
2 + µ±

√
−µ1

2 + µ1
, (15)

then rank Λ? = 1, and the motion is marginally stable. This inference can be easily verified,

because there are purely imaginary eigenvalues ± i (1 +
√
−µ1). Equality (15) determines

two critical values for angular velocity value ω. Notice that mass, stiffness and viscosity of

dashpot don’t affect condition (15) – only position of point O1 (parameter l1) is essential.

Remark. We proved that inequalities (12) are the sufficient conditions of asymptotic

stability of the motion studying. At the same time they give the necessary conditions of

asymptotic stability. In fact, if at least one of these inequalities takes the opposite sign,

then the matrix K has positive eigenvalue, and according to paragraph 2 of theorem 4 (as

rank Λ? = 2) the solution (10) is unstable.

4. Discussion and concluding remarks

In this paper we turned our attention to the role played by gyroscopic forces in stability issues

for systems with incomplete energy dissipation. Influence of these forces can seriously differ

from the case of full energy dissipation. In particular, some stabilizing effect are possible

which are not available in common frames of the Kelvin-Chetaev theorems. As an example

the stabilization of symmetrical rigid body rotations is considered. It is shown that energy

dissipation in dashpot is conveying to the whole body due to presence of GF, and without

it this stabilization is not possible.
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Control of vibrations of multistory buildings with use of passive 

dampers 

 

Ersin Aydin, Baki Öztürk, Maciej Dutkiewicz 

Abstract: The purpose of the paper is application of additional dampers which will absorb the 

part of energy supplied to the building. The cost function is defined as the sum of damping 

coefficients of the dampers. Minimizing the sum of the damping coefficients of the added dampers is 

the criteria for analysis. After the optimal designs and the minimum costs and their variation with 

respect to fundamental period and target added damping are found, the optimal designs are tested 

using the spectral analysis. Numerical example for six storey building is presented to prove the 

validity of the proposed method. The numerical results show that the proposed damper optimization 

method is efficient to find optimal damper distribution for a target damping ratio. 

1. Introduction 

Application of supplemental dampers has transitioned from protection related structures to 

commercial applications on building structures and bridges exposed to seismic or wind loads. Fluid 

damping technology has been proven to be thoroughly reliable and robust for implementation to 

structures. A fluid viscous damper is one of the commonly known passive dampers.  

The results of reducing the seismic response of multi-storey shear buildings with first storey 

damping were presented by an optimization study [1]. In this study, authors remarked that flexibility 

of structure actually affected the optimal damping of system; and suitable objective functions were 

proposed for both short and high buildings. Ashour and Hanson [2] conducted an interesting study on 

the optimal placement of visco-elastic dampers in relation to seismic excitation. An evaluation of the 

effect of added visco-elastic dampers on reducing the earthquake response of multi-storey steel frame 

structures was presented by Zhang et al [3]. The seismic responses of simple building structures were 

examined in a study carried out by Hahn and Sathiavageeswaran [4] to assess the effects of different 

distributions and magnitudes of damping derived from added visco-elastic dampers. A simple optimal 

design procedure was proposed by which dimension and number of visco-elastic dampers could be 

determined and the results of the proposed method were also supported by experimental 

measurements [5]. Cao and Mlejnek [6] developed a finite element perturbation method, which 

provided a simple tool for the prediction of damping in a wide frequency range without the need for 

repeated analyses. An algorithm was introduced to find the optimum sets of storey stiffness 
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coefficients and damping coefficients of the dampers of an elastic planar shear building with viscous 

dampers [7]. 

For planar building frames, a new objective function considering base shear force transfer 

function was defined; and the optimal damper’s both location and size were determined [8]. 

Cimellaro [9] defined top absolute acceleration as an objective function to find. A gradient based 

evolutionary optimization procedure was proposed for determining the optimal allocation of added 

visco-elastic dampers and their supporting members to minimize the transfer function of the sum of 

interstorey drifts [10]. A new optimal damper placement method using penalty function and first 

order optimization theory in long span suspension bridges was presented by Wang [11]. A gradient-

based evolutionary optimization methodology is presented for finding the optimal design of viscous 

dampers to minimize an objective function defined for a linear multi-storey structure [12]. An optimal 

damper method was investigated to find optimal seismic design of added viscous dampers in yielding 

plane frames and the total added damping is minimized for allowable values of local performance 

indices under the excitation of a set of ground motions in both regular and irregular structures 

[13].Applications for the seismic design of building structures equipped with viscous damperswere 

carried out [14].Some basic methodologies were also compared with respect to some structural 

response and usability measures in practice [15]. A new objective function for finding optimal size 

and location of the added viscous dampers was proposed based on the elastic base moment in planar 

steel building frames [16]. 

 In the present study, a cost function that is the sum of damping coefficients of the added 

dampers is minimized to find optimal damping coefficients of the added dampers under a specified 

added damping ratio and both lower and upper bounds of each damping coefficient of the added 

dampers. Differential Evolution, Nelder Mead and Simulated Annealing are used to solve the simple 

optimization problem.  

2. Theoretical formulation  

In the paper an n-storey shear building model such as linear manufactured viscous dampers that 

are added to each story shown in Fig. 1 is considered. 
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Figure 1.   n-Storey shear building model with supplemental dampers 

Two ends of the viscous dampers have different velocity since one end is attached to one 

building storey and the other end to a different storey. These devices produce damping forces in 

proportion to relative velocity between each one of the ends. These elements achieve the energy 

dissipation during an external vibration such as a wind and an earthquake excitation. The damping 

force of a linear viscous damper is given as 

𝐹𝑎𝑑 = 𝑐𝑎𝑑 . �̇� (1) 

where 𝑐𝑎𝑑, �̇�  denote the damping coefficient of manufactured viscous damper and relative 

velocity between each one of the ends of damper, respectively. This type of manufactured damper is 

considered to add to each one of storeys in a shear building shown in Fig.1. After the dampers are 

inserted to the structure subjected to earthquake vibration, the equation of motion can be written as  

𝑴�̈�(𝑡) + (𝑪 + 𝑪𝒂𝒅)�̇�(𝑡) + 𝑲𝒖(𝑡) = −𝑴𝒓ü𝑔(𝑡) (2) 

where M, C and K present mass, structural damping and stiffness matrices, respectively,�̈�(𝑡),

�̇�(𝑡)and𝒖(𝑡) are acceleration, velocity and displacement vectors, respectively. The r denotes 

influence vector that all elements is equal to one, ü𝑔(𝑡)is defined as ground acceleration. Cad is the 

non-proportional damping matrix that should be designed optimally to minimize an objective. The 

matrix,Cad can be decomposed into corresponding added viscous dampers and is written as  
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𝑪𝒂𝒅 = 𝑐1𝑪𝟏 + 𝑐2𝑪𝟐 + ⋯+ 𝑐𝑛𝑪𝒏 (3) 

where𝑐𝑖  (𝑖 = 1,… , 𝑛)correspondsto the damping coefficient of ith added damper; and 𝑪𝑖  (𝑖 =

1,… , 𝑛) denotes the location matrix of the ith added damper. Moreover, the location matrix is also 

equal to the partial differential of Cad with respect to ith added damping coefficient of dampers as 

𝑪𝑖 =
𝜕𝑪𝑎𝑑

𝜕𝑐𝑖
 (4) 

As an example; for values of𝑖 = 1 and 2 

𝑪1 =

[
 
 
 
 
 
 
 
1 0 … 0 0 … 0 0
0 0 … 0 0 … 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 … 0 0 … 0 0
0 0 … 0 0 … 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 … 0 0 … 0 0
0 0 … 0 0 … 0 0]

 
 
 
 
 
 
 

𝑛𝑥𝑛

𝑪2 =

[
 
 
 
 
 
 
 

1 −1 … 0 0 … 0 0
−1 1 … 0 0 … 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 … 0 0 … 0 0
0 0 … 0 0 … 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 … 0 0 … 0 0
0 0 … 0 0 … 0 0]

 
 
 
 
 
 
 

𝑛𝑥𝑛

 (5) 

In the fundamental mode,the damping ratio is calculated as follows 

2𝜁1𝜔1 =
𝝓𝟏

𝑻(𝑪+𝑪𝒂𝒅)𝝓𝟏

𝝓𝟏
𝑻𝑴𝝓𝟏

=
𝝓𝟏

𝑻𝑪𝝓𝟏

𝝓𝟏
𝑻𝑴𝝓𝟏

+
𝝓𝟏

𝑻𝑪𝒂𝒅𝝓𝟏

𝝓𝟏
𝑻𝑴𝝓𝟏

 (6) 

where𝜁1 denotes damping ratio after dampers are inserted to the structure,𝝓𝟏is the normalized 

fundamental mode vector and 𝜔1 is the undamped natural circular frequency of the model structure. 

The first term on the right side of Eq. (6) covers proportional damping matrix, and therefore there are 

no couplings between first mode and any of the other modes. This situation is expressed as 

𝝓𝟏
𝑻𝑪𝝓𝒊

𝝓𝟏
𝑻𝑴𝝓𝒊

= {
2𝜁𝑠𝜔1 𝑖 = 1

0 𝑖 ≠ 1
 (7) 

where𝜁𝑠 denotes structural damping ratio for the fundamental mode. The second term on the 

right side of Eq. (6) include non-proportional damping matrix. However, only for purposes of a 

simplified design it is convenient to assume that 

𝝓𝟏
𝑻𝑪𝒂𝒅𝝓𝒊

𝝓𝟏
𝑻𝑴𝝓𝒊

= {
2𝜁𝑎𝑑𝜔1 𝑖 = 1

0 𝑖 ≠ 1
 (8) 

where𝜁𝑎𝑑 denotes added damping ratio for the fundamental mode. The Eq. (6) can be rewritten 

as follows  

2𝜁1𝜔1 = 2(𝜁𝑠 + 𝜁𝑎𝑑)𝜔1 (9) 

and; therefore 

𝜁1 = 𝜁𝑠 + 𝜁𝑎𝑑 (10) 
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Structural damping ratio 𝜁𝑠 is generally assumed to be constant as 0.02 in steel structures or 0.05 

in RC structures. The parameter 𝜁1 denotes the desired value of the damping ratio when the dampers 

are inserted to the structure. The parameter 𝜁𝑎𝑑, which occurs due to the effects of the added dampers, 

is the added damping ratio.The desired 𝜁𝑎𝑑 is determined from Eq.(10), if the structural damping ratio 

and the desired total damping ratio are known. Therefore, the desired added damping ratio is 

calculated as 

𝜁𝑎𝑑 = 𝜁1−𝜁𝑠 (11) 

The Eq.(6) can be rewritten for only added damping ratio as  

2𝜁𝑎𝑑𝜔1 =
𝝓𝟏

𝑻𝑪𝒂𝒅𝝓𝟏

𝝓𝟏
𝑻𝑴𝝓𝟏

= 𝑐1
𝝓𝟏

𝑻𝑪𝟏𝝓𝟏

𝝓𝟏
𝑻𝑴𝝓𝟏

+ 𝑐2
𝝓𝟏

𝑻𝑪𝟐𝝓𝟏

𝝓𝟏
𝑻𝑴𝝓𝟏

+ ⋯+ 𝑐𝑛
𝝓𝟏

𝑻𝑪𝒏𝝓𝟏

𝝓𝟏
𝑻𝑴𝝓𝟏

 (12) 

where the coefficients (𝜇𝑖) of the ci can be written as follows 

𝜇𝑖 =
𝝓𝟏

𝑻𝑪𝒊𝝓𝟏

𝝓𝟏
𝑻𝑴𝝓𝟏

 (13) 

The formula of the desired added damping ratio for fundamental mode is writtenas below using 

eqs. (12)- (13) 

𝜁𝑎𝑑 =
1

2𝜔1

(𝜇1𝑐1 + 𝜇2𝑐2 + ⋯+ 𝜇𝑛𝑐𝑛) =
1

2𝜔1

∑ 𝜇𝑖𝑐𝑖
𝑛
𝑖=1  (14) 

3. Definition of optimal damper problem for shear buildings 

The aim of an optimal design is to minimize or maximize an objective or multiple objectives. 

Some objective functions appeared such as top displacements, maximum interstorey drifts, sum of 

interstorey drifts, base shears, top absolute accelerations, overturning moments, a defined damage 

index, and combinations of some structural performance functions in the previously mentioned 

literature. Various objective functions can be used in order to solve optimal damper problem and the 

importance of various cost functions can increase for different types of structures. While the decrease 

in displacements or inter-storey drifts is important for a displacement-based design, some internal 

forces and accelerations can be important for a forced-based design. In other words, a defined 

structural damage index and an energy index may be important for various structures.  

In this study,design variables are considered as the damping coefficients of the added dampers. 

Optimal damper problem is based on minimization of total cost of the dampers that is expressed as 

the sum of damping coefficients of the added dampers which is given as 

Min.𝑓 = ∑ 𝑐𝑖
𝑛
𝑖=1  (15) 
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The cost function to be minimizedin Eq.(15)indicatesthe total damping coefficient of the added 

dampers. Eq.(14) can be rewritten as an equality constraint in terms of  the added damping ratio  

𝜁𝑎𝑑 =
1

2𝜔1

(𝜇1𝑐1 + 𝜇2𝑐2 + ⋯+ 𝜇𝑛𝑐𝑛) =
1

2𝜔1

∑ 𝜇𝑖𝑐𝑖
𝑛
𝑖=1  (16) 

where 𝜁𝑎𝑑 is a fixed damping ratio that can be given as a desired damping ratio. The fundamental 

natural circular frequency and the parameter 𝜇𝑖 are known parameters from the vibration 

characteristics of the structure. Both objective function and equality constraint are the linear function 

of the design parameters.  

Taking into account the inequality constraints on the upper and lower bounds of the damping 

coefficients of each added damper gives the following 

0 ≤ 𝑐𝑖 ≤ 𝑐�̅� (i=1,2,…,n)  (17) 

where𝑐�̅�is the upper bound of damping coefficient of the damper in ith story. In practical 

applications, a damper capacity and size which corresponds to the upper bound of the added damper 

should be restricted because of commercial and manufacturing limitations. 

The three various numerical minimization methodssuch as Differential Evolution, Nelder Mead 

and Simulated Annealing, which are well known in the optimization literature, are used to solve the 

optimization problem. These methods present the good agreement between them according to the 

numerical results in this problem.  

4. Numerical Examples 

Six-storey shear buildings, as shown in Fig. 2 is considered as numerical example.  

 

Figure 2.   6-Storey buildings with supplemental dampers 
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Figure 3.   The variation of the cost function according to iteration number for ad =0.40 
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Figure 4.   The variation of minimum values of cost function according to period of the structure for 

different added damping ratios 

 

Each one of story mass is equal to 3.2 104 kg. Structural damping in the fundamental mode is 

assumed as 0.02 and itis proportional to mass. The upper value of a damping coefficient isassumed to 

be 8 106 Ns/m. Storey stiffness is uniformly distributed to storeys.  Stiffness is changed in a certain 

range to attain to a certain period. Design variables (c1, c2, c3, c4, c5 and c6) are taken as the damping 

coefficient of added dampers for each storey. The sum of the design variables is minimized under a 

target added damping ratio and both upper and lower bound of the added damping coefficients. 

Optimization is done for different values of added damping ratio and different structural period. 

Optimal damping coefficients of the added dampers and the minimum value of the total damping 

coefficient are calculated at the optimization stage under an equality constrained (𝜁𝑎𝑑) and inequality 

constraints of the upper and lower bounds (0, 𝑐�̅�) of each added damping coefficients. Figure3 

illustrates the variation of the cost function with respect to iteration number for different structural 

period cases, while the added damping ratio is fixed to 0.40. It can be seen from Figure 3 that the 

decrease of structural period brings along the increase of the minimum cost function. Figure 4 

illustrates the variation of the minimum cost function with respect to fundamental period for each 

target added damping ratio. When the added damping ratio is low, the optimal solutions appear in a 

wide period range. The increase of  𝜁𝑎𝑑 bring on moving of the optimal solutions to the upper period 

regions. Figure 5 shows the variation of the optimal values of design variables with respect to the 

fundamental period. The increase of the target damping ratio means that the dampers should be 

distributed to more storeys.  
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Figure 5.   The variation of optimal values of design variables according to period of the structure for 

different target damping ratios 
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Figure 6.   The variation of the cost function according to iteration number for T1 =0.5s 

 

In the next case, the optimal solutions are calculated for different target damping ratios by fixing 

the fundamental period. Figure 6 shows the variation of the cost function with respect to iteration 

number for different 𝜁𝑎𝑑 in case of T1= 0.5s. The minimum values of the cost function are given in 

this figure. The increase of added damping ratio results in the increase of the minimum value of cost 

function.  
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5. Conclusions 

The optimization problem is constructed based on minimizing the sum of the damping 

coefficients of the added dampers under a target added damping ratio in the first mode and both upper 

and lower bounds of the added dampers. Both the cost function and the constraint functions are linear 

function of the design variables. Three different numerical minimization methods are used for 

justification in this study. The results obtained from minimization methods match with each other. 

The effects of variation of the fundamental period and the target added damping ratio above the 

optimal designs are also investigated. The numerical results reveal that the increase of the 

fundamental period results in the decrease of cost function value for a fixed upper bound of added 

damping coefficient and a specified target added damping ratio. The more added damping ratio is 

needed, the more the cost function value occurs. In the numerical examples, the upper bound of the 

added damping coefficients is taken as a fixed value.  
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Stokes flow through a tube with wavy wall

W lodzimierz Bielski, Ryszard Wojnar

Abstract: We propose a study of the flow in a tube with wavy wall adopting Malevich -
Mityushev - Adler’s method, and find a correction to Hagen-Poiseuille’s solution. The
problem is to be solved by expanding the velocity and pressure fields in Fourier series
involving an infinite set of unknown coefficients. The boundary surface is expanded in
Taylor’s series. A perturbation expansion in terms of the powers of the small parameter
ε of the full set of Stokes’ equations yields a cascade of boundary value problems which
are solved at each step in closed form. Even in the first order approximation O(ε), new
results are obtained.

1. Introduction

The problem of flow through a tube with a wavy wall appears in different applications. It

is important in hemorheology and hemodynamics, both fields of physiology, [1, 2]. It is

well known that the two leading causes of death, myocardial infarction (heart attack), and

stroke, may each directly result from an arterial system that has been slowly and progressively

compromised by years of deterioration. An artery wall thickens as a result of invasion and

accumulation of white blood cells and proliferation of intimal-smooth-muscle cell creating an

atheromatous (fibro-fatty) plaque. This limits dynamic blood flow and in the consequence

the oxygen flow within the brain.

The task is related also to problem of stream flow past the rough bottom and walls,

in peculiarity in a channel with obstacles on the bottom, studied in geophysics and civil

engineering, [3, 4]. And so, M. Lessen and P.-S. Huang investigated Hagen-Poiseuille’s flow

in a pipe with axially symmetric wavy walls, and studied the effect of small amplitude wall

waviness on a steady flow. They assumed that the steady motion is composed of a spatially

averaged mean flow and a periodic disturbance due to the wall wave, [4].

We adopt the method introduced in Malevich - Mityushev - Adler’s papers, [5, 6]. The

application of an analytical algorithm yields efficient formulae for the velocities and discharge.

We consider a Stokesian pressure driven flow in pipe with a wavy wall, see Fig.1. The problem

is axially-symmetric, and in cylindrical co-ordinates r, ϕ, z it does not depend on ϕ. The

radius R of the pipe cross-section is a periodic function of the z-axis. In our example the

waviness is described by a cosinus function R = R0 + εa cosKz, with K = 2π/λ, where

λ denotes the length of the wall wave. When the small parameter ε increases, Hagen -

Poiseuille’s flow (ε = 0) is disturbed and eddies can arise above a critical value.
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Figure 1. Cross-section of the considered axially-symmetric tube. Here R0 is the mean

value of the pipe radius, ε is a dimensionless smallness parameter, a is the amplititude of

the wall waveness, and λ denotes the length of the wall waveness.

We apply an overall external gradient pressure ∇p ≡ −G along the z-direction. It can be

described by a constant jump along the z-axis of the periodic cell p(z+λ, r)−p(z, r) = −λG.
A. E. Malevich, V. V. Mityushev and P. M. Adler, [5, 6], have shown how to apply the

asymptotic analysis to reduce the problem of flow in channels with curvilinear walls to the

problem of flow with the plane ones.

We consider flow through an axially symmetric pipe with a curvilinear (wavy) wall. Its

radius is, however, constant in the mean. In the cylindrical coordinates the z-axis is simply

the axis of rotational symmetry of the tube, and the r-axis is perpendicular to the z-axis.

In an example, we will accept the wall surface S(x) described by the sinusoid, cf. Fig. 1

r = S(z) = R0 + ε a cosKz

where S(z) is a smooth periodic function and ε is a small parameter. The mean value of

the S(z) is R0. The coefficient a renders the amplitude of the wavy shape of the wall, and

K = 2π/λ, where λ denotes the length of the wall wave.

For the infinitely differentiable function S(z) a cascade of boundary value problems is

deduced. The boundary conditions are substituted by Maclaurin’s expansions, and the

solution (the velocity and pressure fields) is calculated in the form of both, ε expansions and

Fourier’s series. The case ε = 0 corresponds to the zero-th approximation problem.

We express the velocity and the pressure as the expansions in powers of ε.

p(r, z) =

∞∑
m=0

pmε
m and v(r, z) =

∞∑
m=0

vmε
m
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2. Geometrical description

Further the steady flow will be considered only. Moreover, the gravity components will be

assumed to be zero, and the fluid will be assumed to be incompressible, it is ρ = constant.

The axisymmetric flow will be considered with the assumption of no tangential velocity

(vϕ = 0), and the remaining quantities are being independent of the angle ϕ. The problem

becomes two-dimensional. We simplify notation by substitution

vr ≡ u and vz ≡ v

The continuity equation for the steady flow reads

1

r

∂

∂r
(ru) +

∂v

∂z
= 0. (1)

Navier-Stokes’ equations are

ρ

(
u
∂u

∂r
+ v

∂u

∂z

)
= −∂p

∂r
+ η

{
1

r

∂

∂r

(
r
∂u

∂r

)
+
∂2u

∂z2
− u

r2

}

ρ

(
u
∂v

∂r
+ v

∂v

∂z

)
= −∂p

∂z
+ η

{
1

r

∂

∂r

(
r
∂v

∂r

)
+
∂2v

∂z2

} (2)

In the case of Hagen-Poiseuille’s flow in a tube with constant radius equal to R0, it is a = 0.

Because the problem is axially-symmetric, we deal with only one velocity component v,

directed parallely to the z-axis of the cylindrical co-ordinates. Two equations are identically

satisfied and the third equation reads

1

r

∂

∂r

(
r
∂v

∂r

)
= − 1

η

∂p

∂z
(3)

Integrating Eq.(3) with ∂p/∂z = constant, and with the boundary condition v = 0 at r = R0

results in, [7],

v =
G

4η
(R2

0 − r2) (4)

Here G denotes the constant pressure gradient G ≡ − dp/dz = constant. We write also

v = G
R2

0

4η

(
1− r2

R2
0

)
(5)

This is Hagen-Poiseuille’s law describing the velocity distribution in the steady flow in tube.

3. Axially symmetric steady Stokesian flow

We neglect the inertial terms (at left hand side) in Navier-Stokes equations, and introduce

notation u(r, z) ≡ vr(r, z) and v(r, z) ≡ vz(r, z).

85



Let v = (u, v) be an unknown two dimensional velocity field, and p be an unknown field

of the pressure. We have u = u(r, z), v = v(r, z) and p = p(r, z). These fields satisfy:

the equation of incompressibility

1

r

∂(ru)

∂r
+
∂v

∂z
= 0 (6)

and Stokes’ equations

− ∂p

∂r
+ η

{
1

r

∂

∂r

(
r
∂u

∂r

)
+
∂2u

∂z2
− u

r2

}
= 0

− ∂p

∂z
+ η

{
1

r

∂

∂r

(
r
∂v

∂r

)
+
∂2v

∂z2

}
= 0

(7)

The equations are subject to the boundary conditions

u = 0 and v = 0 at S(z) (8)

3.1. Natural units

For convenience, new units are introduced, and new variables indicated by primes are given

r = R0 r
′ and z = R0 z

′ (9)

Moreover,

u = v̆ u′, v = v̆ v′ and p = p̆ p′ (10)

Here R0 is the mean radius of the pipe cross-section, v̆ is equal to four times the maximum

velocity in Hagen-Poiseuille’s problem, cf. Eq.(5), v̆ = (G/η)R2
0 and p̆ = GR0. The

following equality holds (R0/η) (p̆/v̆) = 1. In these units our equations are:

equation of incompressibility

1

r′
∂(r′u′)

∂r′
+
∂v′

∂z′
= 0

and Stokes’ equations

− ∂p′

∂r′
+

1

r′
∂

∂r′

(
r′
∂u′

∂r′

)
+

∂2u′

∂(z′)2
− u′

(r′)2
= 0

−∂p
′

∂z′
+

1

r′
∂

∂r′

(
r′
∂v′

∂r′

)
+

∂2v′

∂(z′)2
= 0

with the boundary conditions u′ = 0 and v′ = 0 at S(z′). For brevity, the primes for

new variables are suppressed in the rest of this paper.
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3.2. Zero-th approximation

We regard Hagen-Poiseuille’s solution as the zero-th approximation of a solution we are

looking for. We consider the following set of equations treated a zero-th approximation

∂p0
∂r

= 0 and
1

r

∂

∂r

(
r
∂v0
∂r

)
= 1 (11)

which are subject to the boundary conditions

v0 = 0 at r = R0 (12)

Moreover, we have

u0 = 0 and
∂p0
∂z

= − 1 for 0 ≤ r ≤ R0 and −∞ < z <∞ (13)

In this approximation the velocity vector has only one not vanishing component v0 = v0(r),

cf. [7]. Hagen-Poiseuille’s solution in the natural units reads

u0 = 0, v0 =
1

4

(
1− r2

)
and

∂p0
∂z

= − 1 (14)

4. General solution

The unknown fields u, v and p satisfy the following set composed of the equation of incom-

pressibility and Stokes’ equations

1

r

∂(ru)

∂r
+
∂v

∂z
= 0

{
1

r

∂

∂r

(
r
∂u

∂r

)
+
∂2u

∂z2
− u

r2

}
− ∂p

∂r
= 0

{
1

r

∂

∂r

(
r
∂v

∂r

)
+
∂2v

∂z2

}
− ∂p

∂z
= 0

(15)

The equations are subject to the boundary conditions

u = 0 and v = 0 at S(z) (16)

In the accepted frame of reference, see Fig.1,

r = S(x) = 1 + εa cos Kz (17)
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4.1. Expansion in ε series

The unknown velocity components and pressure functions are expanded in the ε series

u(r, z) =

∞∑
m=0

um(r, z) εm, v(r, z) =

∞∑
m=0

vm(r, z) εm, p(r, z) =

∞∑
m=0

pm(r, z) εm (18)

At the wall, it is at r = 1 + εa cos z a Taylor’s series of a function, say g = g(r, z), is

g(1 + εa cos z, z) =

∞∑
m=0

εm
(εa cos z)m

m!
· ∂

mg

∂rm

∣∣∣∣
r=1

and the wall boundary conditions for the functions (18) are represented by series

u(1 + εa cos z, z) =

∞∑
m=0

εm
m∑

k=0

ak

k!
cosk z · ∂

kum−k

∂rk

∣∣∣∣
r=1

v(1 + εa cos z, z) =

∞∑
m=0

εm
m∑

k=0

ak

k!
cosk z · ∂

kvm−k

∂rk

∣∣∣∣
r=1

p(1 + εa cos z, z) =

∞∑
m=0

εm
m∑

k=0

ak

k!
cosk z · ∂

kpm−k

∂rk

∣∣∣∣
r=1

(19)

In this manner the search for solution of the set of equations (15) with the boundary

conditions (16) is substituted by solving these equations with the conditions (19).

4.2. Reduced problem

Solving the problem subject to the boundary conditions given at the waved boundary

r = 1 + εa cos z was reduced to the problem with the boundary being a cylindrical surface

r = 1 without waves, but with modified values of boundary conditions. This means that at

each step m the set (15) must be solved with the modified boundary conditions (19).

Substituting expansions (18) into Eqs. (15) leads to the equations

1

r

∂(rum)

∂r
+
∂vm
∂z

= 0

{
1

r

∂

∂r

(
r
∂um

∂r

)
+
∂2um

∂z2
− um

r2

}
− ∂pm

∂r
= 0

{
1

r

∂

∂r

(
r
∂vm
∂r

)
+
∂2vm
∂z2

}
− ∂pm

∂z
= 0

(20)
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The solution um, vm and pm is looked for in the form of Fourier’s series

um(r, z) =

∞∑
s=1

α(m)
s (r) (A(m) sin sz + B(m) cos sz)

vm(r, z) =

∞∑
s=1

β(m)
s (r)

∂

∂z
(A(m) sin sz + B(m) cos sz)

pm(r, z) =

∞∑
s=1

γ(m)
s (r) (A(m) sin sz + B(m) cos sz)

(21)

with r-functions α
(m)
s , β

(m)
s and γ

(m)
s , as well the constants A(m) and B(m) must be found.

Substituting the expansions (21) into Eqs.(20) we obtain for the incompressibility equation

and for Stokes’ equations, respectively,

1

r

d

dr

(
rα(m)

s (r)
)
− β(m)

s (r)s2 = 0 (22)

1

r

d

dr

(
r

d

dr
α(m)
s (r)

)
−
(
s2 +

1

r2

)
α(m)
s (r)− d

dr

(
γ(m)
s (r)

)
= 0 (23)

1

r

d

dr

(
r

d

dr
β(m)
s (r)

)
− s2β(m)

s (r)− γ(m)
s (r) = 0 (24)

4.3. Solution of the system

To solve the system (22)–(24) we differentiate Eq.(24). To eliminate γ
(m)
s (r) we subtract

(23) from the result and get the equation, in which we substitute β
(m)
s (r) using Eq.(22)

β(m)
s (r) =

1

s2
1

r

d

dr

(
rα(m)

s (r)
)

(25)

After an arrangement we have

d4α
(m)
s

dr4
+

2

r

d3α
(m)
s

dr3
−
(

3

r2
+ 2s2

)
d2α

(m)
s

dr2
+

(
3

r3
− 2s2

r

)
dα

(m)
s

dr
+

+

(
s4 +

2s2

r2
− 3

r4

)
α(m)
s = 0

(26)

A comment: Equation (26) for large r reads

d4α
(m)
s

dr4
− 2s2

d2α
(m)
s

dr2
+ s4α(m)

s = 0

Such an equation is discussed in [5]. Its general solution reads

α(m)
s (r) = (C

(sm)
1 r + C

(sm)
2 ) esr + (C

(sm)
3 r + C

(sm)
4 ) e−sr

But this is not our case, as we need the range of 0 ≤ r ≤ 1 (the interior of the tube). �
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The solution of the Eq. (26) reads

α(m)
s (r) = C1 r I0(sr) + C2 xK0(sr)+

+C3[2 ·K1(sr) +K0(sr) sr] · x · [I0(sr) ·K1(sr) +K0(sr) · I1(sr)] +

+C4

(
4x2I20 (sr) ·K1(sr) · s2 − 8r · Io(sr) ·K1(sr) · I1(sr) · s+

)
+C4

(
4r2I0(sr) ·K0(sr) · I1(sr) · s2 − 8r · I2o (sr) ·K0(sr) · s+

)
+C4

(
16I0(sr) ·K0(sr) · I1(sr)− s3r3F (

3

2
, 3, 3, s2r2) ·K0(sr)

)
(27)

where I0(sr), I1(sr) and K0(sr),K1(sr) are modified Bessel functions of the first and the

second kind, respectively. Unlike the ordinary Bessel functions, which are oscillating as

functions of a real argument, In and Kn are exponentially growing and decaying functions,

respectively. Like the ordinary Bessel function Jn, the function In goes to zero at r = 0

for n > 0 and is finite (equal 1) at r = 0 for n = 0. Analogously, as Bessel functions of

the second kind, the modified function Kn diverges at x = 0 with the singularity being of

logarithmic type, [9].

For small arguments r ≤ n, both In(r) and Kn(r) become, asymptotically, simple powers

of their argument

In(r) ≈ 1

n!

( r
2

)n
n ≥ 0, K0(r) ≈ − ln r, Kn(r) ≈ (n− 1)!

2

( r
2

)−n

n > 0 (28)

The confluent function is defined as

F (a; b; c, r) =

∞∑
n=0

(a)n (b)n
(c)n n!

rn (29)

where, for example, (a)n ≡ a · (a+ 1) · (a+ 2) · · · · (a+ n− 1).

Finding α
(m)
s by Eq.(27), the expressions (25) and (24) give β

(m)
s and γ

(m)
s , respectively.

5. An example

In this example we consider the waviness of the tube wall described by the relation

R = 1 + ε cos z (30)

it is we take a = 1 and K = 1. Moreover, in this example all terms with coefficients ε in

powers greater than 2 are omitted. In peculiar, the small parameter expansions (18) read

u(r, z) = u0(r, z) + ε u1(r, z) + ε2 u2(r, z)

v(r, z) = v0(r, z) + ε v1(r, z) + ε2 v2(r, z)

p(r, z) = p0(r, z) + ε p1(r, z) + ε2 p2(r, z)

(31)
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In calculations of the functions α
(m)
s , β

(m)
s and γ

(m)
s we use approximations of the type

(28),

I0(r) = 1, I1(r) =
r

2

K0(r) ≈ − ln r, K1(r) ≈ 1

r
, F (

3

2
, 3, 3, s2r2) = 1, s = 0, 1, 2

(32)

We get

α(m)
s (r) = C1 ·r−C2 ·r · ln(sr)+C3

(
2

sr
− r · ln(sr)− sr

2
ln(sr)

)
− C4 ·s3r3 · ln(sr) (33)

and consequently, by Eq.(25)

β(m)
s (r) =

1

s2
1

r

d

dr

(
rα(m)

s (r)
)

=
1

s2
{2C1 − C2[1 + 2 ln(sr)]}

−C3
1

s2

{
5

2
+ (2 + s) · ln(sr)

}
− C4 · sr2 · [1 + 4 · ln(sr)]

(34)

By Eqs.(24) and (34) we obtain

γ(m)
s (r) = − {2C1 − C2[1 + 2 ln(sr)]}+ C3

{
5

2
+ (2 + s) · ln(sr)

}
+

+C4

{
4 · s ·

(
1 +

1

r
− 4 ln(sr)

)
+ s3r2 · [1 + 4 · ln(sr)]

} (35)

Above, u0(1, z) and v0(1, z) are known and equal to zero, while p0(1, z) = −z+C is a linear

function of z, with C being an arbitrary constant.

5.1. Elaboration of the example

By Eq.(21) for m = 1 we have

u1(r, z) = α1(r)(A sin z +B cos z)

v1(r, z) = β1(r)(A cos z −B sin z)

p1(r, z) = γ1(r)(A sin z +B cos z)

(36)
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where α1(r), β1(r) and γ1(r) are given by Eqs.(33), (34) and (35) with s = 1, it is We get

α1(r) = C1 · r − C2 · r · ln r + C3

(
2

r
− r · ln r − r

2
ln r

)
− C4 · r3 · ln r

β1(r) = 2C1 − C2[1 + 2 ln(sr)] − C3

(
5

2
+ 3 · ln r

)
− C4 · r2 · (1 + 4 · ln r)

γ1(r) = − [2C1 − C2(1 + 2 ln r) + C3

(
5

2
+ 3 · ln r

)
+

+C4

{
4 ·
(

1 +
1

r
− 4 ln r

)
+ r2 · (1 + 4 · ln r)

}
(37)

To avoid the singularity at r = 0 in expressions for v1(r) and p1(r) in the set (36) we put

C2 = 0, C3 = 0 and C4 = 0 (38)

Then

α1(r) = C1 · r, β1(r) = 2C1 and γ1(r) = − 2C1 (39)

and Eqs.(36) become

u1(r, z) = C1 · r · (A sin z +B cos z)

v1(r, z) = 2C1 · (A cos z −B sin z)

p1(r, z) = − 2C1 · (A sin z +B cos z)

(40)

If the expansions (18) are limited up to O(ε2), only the terms with m = 0, 1 must be left,

and the boundary conditions (19) reduce to the following ones

u(1 + εa cos z, z)
.
= u0(1, z) + ε

(
u1(1, z) + cos z · ∂u0(r, z)

∂r

∣∣∣∣
r=1

)

v(1 + εa cos z, z)
.
= v0(1, z) + ε

(
v1(1, z) + cos z · ∂v0(r, z)

∂r

∣∣∣∣
r=1

)

p(1 + εa cos z, z)
.
= p0(1, z) + ε

(
p1(1, z) + cos z · ∂p0(r, z)

∂r

∣∣∣∣
r=1

)
(41)

where
.
= means the asymptotic equality with the accuracy O(ε2). By solution (14)

u0(1, z) = 0, v0(1, z) = 0
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and p0 is a linear function of z only. Moreover

∂u0(r, z)

∂r

∣∣∣∣
r=1

= 0,
∂v0(r, z)

∂r

∣∣∣∣
r=1

= − 1

2
and

∂p0(r, z)

∂r

∣∣∣∣
r=1

= 0

Hence

u(1 + εa cos z, z)
.
= u0(1, z) + ε u1(1, z)

v(1 + εa cos z, z)
.
= v0(1, z) + ε

(
v1(1, z)− 1

2
cos z

)
p(1 + εa cos z, z)

.
= p0(1, z) + ε p1(1, z)

(42)

Next, we submit Fourier’s series (21) into Taylor’s expansions (19) taken at the wall bound-

ary up to O(ε2) approximation, and after exploiting relations (39) we received

u(1 + εa cos z, z)
.
= u0(1, z) + ε · C1 (A sin z +B cos z)

v(1 + εa cos z, z)
.
= v0(1, z) + ε ·

(
2C1 (A cos z −B sin z)− 1

2
cos z

)
p(1 + εa cos z, z)

.
= p0(1, z)− ε · 2C1 (A sin z +B cos z)

(43)

The subscripts and coefficients at z are put s = 1. Above, u0(1, z) and v0(1, z) are known

and equal to zero, cf. Eqs.(14).

The boundary conditions should be satisfied separately at each power of ε. Thus we find

2C1A =
1

2
and B = 0 (44)

Finally, we get

u(r, z) = u0(r, z) + εu1(r, z) =
1

2
ε sin z

v(r, z) = v0(r, z) + εv1(r, z) =
1

4

(
1− r2

)
+ ε cos z

p(r, z) = p0(r, z) + εp1(r, z) = −z − 1

2
ε sin z + C

(45)

where C is an arbitrary constant (only gradient of pressure are important in the flow).

6. Conclusions

We have presented a study of an axisymmetrical (it is two-dimensional) flow in the tube with

wavy wall in the first order approximation of the parameter ε, which denotes the amplitude

of the wall waviness. The wall waviness results in appearance of transversal velocity and

variations of pressure. These two phenomena are periodic functions of the longitudinal

variable z.
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ul. Ksiȩcia Janusza 64 (wbielski@igf.edu.pl).

Ryszard Wojnar, Ph.D.: Institute of Fundamental Technological Research, PAS, 02-106 Warszawa,
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Analysis of the propagation of the vibration of the rail vehicle 

while driving with and without locomotive wheel slip 

 

Rafał Burdzik, Łukasz Konieczny, Bogusław Nowak, Jakub Młyńczak,  
Jacek Rozmus 

Abstract:Wheel-rail contact properties determine safety of rail vehicle, thus there are 

very wide scope of papers on this scientific problem. The number of papers focused on 

aspect of influence of wheel-rail contact on vibration is much less numerous. Thus the 

paper deals with vibration occurred by the wheel-rail contact while rail vehicle is 

passing by. The major source of railway rolling noise is the structural vibration of the 

wheel and rail which is generated by the combination of small-scale undulations on the 

wheel and rail contact surfaces. The profile irregularity of a railway line is one of the 

essential vibration sources for vehicles and track. The experiments were conducted on 

the test track. The track used was composed of two rails lying on wood sleepers joined 

by railpads. The scope of research contained measurement of axial vibration for the 

regular drive of train simulator (without locomotive wheel slip) and for the mixed drive 

process (including locomotive wheel slip). Such the situations can be considered as 

vibration generated by friction rolling and sliding. 

1.Introduction 

Wheel-rail contact properties determine safety of rail vehicle, thus there are very wide scope of papers 

on this scientific problem.The number of papers focused on aspect of influence of wheel-rail contact 

on vibration is much less numerous. Thus the paper deals with vibration occurred by the wheel-rail 

contact while rail vehicle is passing by. The major source of railway rolling noise is the structural 

vibration of the wheel and rail which is generated by the combination of small-scale undulations on the 

wheel and rail contact surfaces. The profile irregularity of a railway line is one of the essential vibration 

sources for vehicles and track.When wheelsets suffer variational traction/braking torque  or  a  stick/slip  

vibration,the  dominant  vibration  frequency  is  the  longitudinal frequency  of  contact patch.As the 

frequency of contact patch is a specific value, it produces theperiodicimpact to the wheels as well as to 

the wear ofwheel rim, this may lead the polygonization of wheels. It  is  well  known  that  in  the  

contact  zone  between  railway  wheel  and  rail  the  surfaces   must  be  strong  enough  to  resist  the  

normal  (vertical)  forces  introduced  by  heavy  loads  and  the  dynamic  response  induced  by  track  

and  wheel  irregularities.The dynamic phenomena accompanying the wheel rolling over a road (rail, 

track), with lateral slip effects occur in rolling of a wheel and wheelset on a straight track in the case of 

lateral load and especially on curves. Different curvature radii and rotary oscillations of wheelsets result 
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in skew rolling and, in turn, in lateral slip oscillation in the contact zone between the wheel and rail. It 

significantly increases noise, vibrations and wear [1,2,9,10,13,15,16,18]. 

2. Research object 

The research was conducted on experimental rail track at Faculty of Transport (Katowice) Silesian 

University of Technology. The experimental rail track is composed of two rails lying on wood sleepers 

joined by rail pads. On the experimental rail track was moving the test truck. The view of the 

experimental rail track is shown in the figure 1. 

 

Fig.1.Experimental rail truck in Faculty of Transport (Katowice) 

The scope of research contained measurement of axial vibration for the regular drive of test truck 

simulator (without wheel slip) and for the mixed drive process (including wheel slip). Such the 

situations can be considered as vibration generated by friction rolling and sliding. 
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3.Measuremnt system 

The signals were recorded in digital form with 5kHz sampling frequency. The scheme of 

measurement system has been depicted in fig. 2. The acceleration of vibration were measured by VIS-

311A .sensors. The accelerations were recorded with the use of specially mounting kitfor 

accelerometers (fig.3). For the data acquisition the analog-digital cardNi 9233was used.. The main 

technical parameters of the cardNi 9233 are 24 bit resolution, max 25 kHz sampling. 

 

 

 

 

 

 
Fig. 2. Scheme of measurement system 

 

Fig.3.Specially mounting kit for accelerometers 

4. Method of analysis  

As the result of the research the vibration signals were collected.The digital signals were analysed 

with MatLab software. The signals are non-stationary thus  processing should be conducted 

simultaneously in the time and frequency domain. The STFT is a simple and effective method widely 

used in machine diagnostics [3-8,11,12,14,17].  The result of STFT are 3-dimensional spectrum 

presenting the behavior of signal amplitude in time and frequency domain. 

The Short Time Fourier Transform equation: 

Computer with 

MatLab software 

Acceleration 

sensor VIS-311A 

Analog Digital 

Converter Ni 9233 
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  dtbtwetxfbS ftj )()(),( 2
 

where: (t-b)- window width  

The STFT algorithm is as follows. Frequency analysis is made by Fast Fourier Transformation 

(FFT) for the following fragment of signal multiply by window function with constant width w(t-

b)=const. The following fragments are analysed independently. The main disadvantage of this method 

is constant width  of window. For example when using narrow window in time domain we can get good 

time resolution but in the resolution in frequency domain will be worst. For rectangle window the jump 

function changes at the beginning and at the end of windows are the source of leak in spectrum. For 

minimalizing of this kind of effects other windows are often used (for example triangle, Hanning, 

Hamming) [15,16]. 

Thus the windows width is treated as a compromise between resolution in time and frequency 

domain.  

 

 

Fig.4. STFT procedure with overlap and with added  zeros 
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To improve the resolution in frequency domain it can be used zero-complementing method. This 

method is based on adding samples with zero value of amplitude to the original signal to multiple the 

number of samples of the signal.  

The next method of improving the selectivity of STFT method is superposition of windows (each 

sample is used several times for single FFT process). 

The paper presents some result of acceleration of vibration. For the signal processing the STFT 

with the Hamming window were used. Each window of the signal was 100% elongated by using 

complement zero method and analysed with FFT process. The windows were superpositioned in 50 % 

- fig.4.  

It can be noticed that using overlappingwindowsand addingzerosincreases theprecision of 

thedeterminationof individualspectralcomponents ofthe spectrogramSTFT. Zero-paddingdirectly 

affects thefrequency resolutionspectraof individualcomponents. In contrast,the 

overlappingwindowsallows to overcome theclear limitspassbetween thesespectra. In the 

end,appliedoperationsallowed to determinethe smoothedspectrographSTFTespeciallyfor further 

analysisof a particularfrequency band selection. 

5. Results of STFT analysis 

The results of STFT procedure for acceleration signals (in three direction x,y,z) measured without wheel 

slip  are presented in figures 5,7,9  and measured without wheel slip  are presented in figures  

6,8,10. 

 

 

Fig.5. Time realization and STFT result without wheel slip (x - axis) 
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Fig.6. Time realization and STFT result with wheel slip (x - axis) 

 

 

 

Fig.7. Time realization and STFT result without wheel slip (y - axis) 
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Fig.8. Time realization and STFT result with wheel slip (y - axis) 

 

 

 

Fig.9. Time realization and STFT result without wheel slip (z - axis) 
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Fig.10. Time realization and STFT result withwheel slip (z - axis) 

6. Conclusion 

Designated spectra STFT allow simultaneous observation of signal structure in the frequency and 

time domain. Both for with and without wheel slipcases, there are a broadband impulse in signal and 

that is associated with the quality of co-operation in the rail wheel contact. In the case of x and y 

direction, the frequency components dominate in the range up to about 1 kHz while the z direction in 

the range up to 0.5 kHz. It is difficult to distinguish the state of cooperation on the basis of the evaluation 

of vibration signals or spectra alone. Further research will focus on proposing estimators (based, for 

example, on analyzes in selected frequency bands), to classify and distinguish the nature of cooperation 

in the rail wheel contact. 
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Modeling, simulation and control of a pipe inspection mobile 

robot with an active adaptation system 

 

 

Michał Ciszewski, Tomasz Buratowski, Mariusz Giergiel 

Abstract: In this paper, a tracked inspection mobile robot with an active adaptation 

system is presented. It can be used for visual inspection of various pipelines. 

Mathematical modeling of pedipulator mechanisms that allow adaptation of the robot 

to different shapes and sizes of pipes is described with focus on forward and inverse 

kinematics methods, implemented in MATLAB software. Application of a custom 

trajectory planning algorithm for the pedipulators is shown with numerical and 

graphical validation. Co-simulations of the robot motion, prepared in V-REP and 

MATLAB software are performed for rough surfaces, horizontal pipes with 

connections and straight vertical pipes. A prototype of the robot with a model-based 

control system is tested and laboratory experiments are compared to the simulation 

results. Different motion scenarios of the robot are shown with focus on adaptation 

capabilities of the motion unit to work environment. 

1. Introduction 

Inspection of pipelines has several objectives. After building a new pipeline, it is required by regulations 

that the pipe must be inspected by a device, equipped with a camera. In addition, inclination of the pipe 

has to be precisely measured. With the initial inspection, engineering errors can be found and eliminated 

before exploitation of an industrial facility. Other uses of inspection techniques include periodical 

checks of pipe condition or documentation of old pipes.  

Due to the fact that pipelines are not accessible by operators for direct visual assessment, robotic 

inspection systems are applied for search of leakages, discontinuities, corrosion, blockages and other 

defects. The robots have to be designed to move in changeable environment because wide variety of 

pipelines exist in industry. Horizontal pipelines are relatively easy to inspect, but inclined or vertical 

pipe segments with junctions can be challenging for designers of robot motion units and control system 

engineers. 

At present, there exist many constructions of pipe inspection robots. The most popular ones are 

wheeled platforms intended for visual monitoring of horizontal pipelines, equipped with Pan-Tilt-Zoom 

cameras such as ABE Group products [1]. Tracked motion units are also used in the robots. A manually 

adjustable chassis for motion in different types of pipelines is present in Inuktun Versatrax 300, which 

can move in horizontal pipe segments of rectangular or circular cross-section, beyond Ø300 mm [2].  
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Several robots that operate in vertical pipes are also present in the market. The Inuktun Versatrax 

Vertical tracked robot features pantograph adjustment mechanism and can be used in vertical pipes with 

diameters in range Ø200÷300 mm [2]. Another solution is provided by Neovision company that offers 

a tracked robot, Jetty, intended for inspection and cleaning of vertical ducts [3]. It features six track 

drive modules, mounted on pantograph mechanisms and provides inspection of circular and rectangular 

ducts with diameters from Ø400 mm to Ø1300 mm in extended arm version. 

In this paper, a tracked inspection robot with an active adaptation mechanism is presented with 

focus on modeling, simulations and control system that can serve as a versatile inspection device. The 

robot is able to move in pipes and ducts with round and rectangular cross-section that are horizontal or 

vertical, with bends and interconnections. 

2. Mechanical structure of the robot 

The design of the robot adaptable driving mechanism is based on two pedipulators that control the pose 

of track drive modules. Virtual mechanical model of the robot is shown in Fig. 1. Each pedipulator is a 

subsystem, attached to the body (2) that consists of two actuated rings (3, 4), front and rear arm (5, 6) 

and a track drive module (1). The rings, with an axis of rotation in the center of the robot body are 

driven by servomotors, from which torque is transferred by sprockets of internal meshing gear 

transmissions. Front and rear arms are mounted to the rings by revolute joints. Other sides of the arms 

are attached to the track drive module by rotary joints. The rear arm is equipped with an additional 

servomotor that sets orientation of the track module with respect to the arm. 

 

Figure 1.   Robot model: 1 – track drive module; 2 – robot body; 3 – front rotating ring; 4 – rear 

rotating ring; 5 – front arm; 6 – rear arm; 7 – camera; 8 – light; 9 – waterproof connector 

By assembling two pedipulator modules, motion unit of the robot can adapt to different types of 

pipes and thus realize dexterous manipulations, resembling capabilities of human legs. The robot is 
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equipped with eight drives in total, from which six servomotors are responsible for setting position and 

orientation of two independently motorized track drive modules. 

The robot model was created in Autodesk Inventor software. In the CAD 3D model creation 

process, optimization of construction, drive selection and initial validation of operational capabilities 

were conducted with the assumptions of maximum versatility, compactness and watertightness. 

3. Mathematical modeling of the robot 

Mathematical modeling of the robot was divided into three main sections: kinematic motion model for 

even surfaces and parallelly oriented tracks, described in [4], dynamic model of the robot motion in 

water that was shown in [5] and kinematic modeling of pedipulator motion necessary for adaptation of 

the robot chassis to changeable work environment. The last modeling task, presented in this paper, 

involves unconventional modeling approach focused on control of robot servomotors to attain desired 

poses of two track drive modules. Inverse kinematics solution is implemented iteratively in an original 

algorithm for calculation of pedipulators transformation trajectories. 

The pedipulator mechanism can be treated as planar, due to the fact that the rotational joints axes 

are parallel. One pedipulator consists of six rotary joints of which three are actuated (see Fig. 2). The 

mechanism was divided into two planar manipulators with two and three degrees of freedom that 

represent front and rear parts of the pedipulator to facilitate modeling tasks.  

 

Figure 2.   Kinematic model of pedipulator: 𝜃𝑟1-rear ring (5) rotation angle; 𝜃𝑓1-front ring (2) rotation 

angle; 𝜃𝑟3 - rear arm rotation angle with respect to track drive module (1); 𝜃𝑟2, 𝜃𝑓2 – 

unactuated joints rotation angles. 
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Forward kinematic equations for the pedipulators were formulated for 2-DOF (front) and 3-DOF 

(rear) manipulators extracted from the structure with usage of Denavit-Hartenberg notation. 

Additionally, it was assumed that the manipulators have to move their end-effectors concurrently to 

fulfil constraints of the closed kinematic chain. It is realized by equating x and y positions of both D-H 

transformation matrices [6].  

Inverse kinematics task is the most important calculation procedure for control of the pedipulators. 

Analytical methods cannot be simply used for the tasks due to complex mechanical structure, existence 

of redundancies and kinematic constraints that arise in these closed kinematic chains. Numerical 

differential kinematics with usage of manipulator Jacobian is an effective approach for calculation of 

inverse kinematics, but for the closed structure, additional conditions had to be applied.  

Calculation of manipulator Jacobian matrices was done on the basis of D-H transformation 

matrices, with use of a method shown in [7]. Next, a numerical algorithm was used that on the basis of 

Virtual Work principle, iteratively minimizes error between initial and goal poses of the end-effector. 

This method, whilst valid for dynamic modeling is useful in general inverse kinematics [8]. In Fig. 3, a 

scheme of the 3-DOF (rear) manipulator, extracted from the pedipulator structure is presented. 

 

Figure 3.   Scheme of the 3-DOF manipulator inverse kinematics – numerical solution.  

ξΔ- end-effector pose difference, ξE(pEx, pEy, ϕEz) – end-effector current pose  

ξE
∗  (pEx

∗ , pEy
∗ , ϕEz

∗  )  - end-effector desired pose. 

Principle of this method relies on a so called “special spring” between current and desired pose. 

This spring is a set of generalized external forces 𝐺𝐸 that are able to change position and orientation of 

the end-effector towards the desired pose. It is proportional to the difference between poses, where 

proportionality is denoted by a constant 𝛾𝑃 as stated in Eq. 1. Current pose at a given calculation step 
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ξE〈k〉, is computed with forward kinematics (Eq. 2), where q〈k〉 represents current estimate of inverse 

kinematics solution and TE,0 is a transformation matrix from end-effector to base coordinate system. 

GE ∝ Δ(ξE, ξE
∗ ) → GE = γP ∙ Δ(ξE, ξE

∗ ), (1) 

𝜉𝐸〈𝑘〉 = 𝑇𝐸,0(𝑞〈𝑘〉), (2) 

External forces Q that act on the end-effector can be mapped to joint forces and torques for each 

calculation step k with usage of Eq. 3 by application of manipulator Jacobian transpose 𝐽(𝑞〈𝑘〉)𝑇. The 

mapping is never singular as it can be in the case of velocity kinematics using Jacobian approach, 

therefore it can be efficiently used for numerical solution of complex inverse kinematics problems [8]. 

𝑄〈𝑘〉 = 𝐽(𝑞〈𝑘〉)𝑇 ∙ 𝐺𝐸〈𝑘〉 (3) 

By assumption that the virtual robot does not have joint motors, but only viscous dampers that 

impose proportionality of applied forces to joint velocity, it is possible to express generalized joint 

velocity by Eq. 4 and for a discrete time-update of joint coordinates by Eq. 5, where B is a joint damping 

coefficient and αC is a gain selected according to desired calculation convergence speed. 

�̇�〈𝑘〉 = 𝑄〈𝑘〉/𝐵, (4) 

𝑞〈𝑘 + 1〉 = 𝛼𝐶 ∙ �̇�〈𝑘〉 + 𝑞〈𝑘〉, (5) 

The calculations are performed iteratively until the magnitudes of generalized external forces 

𝐺𝐸  that actuate the manipulator to desired pose are sufficiently small. With usage of this method, 

numerical determination of inverse kinematics can be executed.  The analyzed robot has less than 6-

DOF, therefore a mask vector M has to be applied that specifies controllable degrees of freedom. In 

this case it is used to select 𝑝𝐸𝑥, 𝑝𝐸𝑦, 𝜙𝐸𝑧 coordinates on a planar.  

𝑄〈𝑘〉 = 𝐽(𝑞〈𝑘〉)𝑇 ∙ 𝑑𝑖𝑎𝑔(𝑀) ∙ 𝐺𝐸〈𝑘〉. (6) 

Finally, after substitution of Eq. 4, 5, 6, discrete update of joint coordinates for an under-

actuated robot is given by Eq. 7. 

𝑞〈𝑘 + 1〉 = 𝛼𝐶 ∙
𝐽(𝑞〈𝑘〉)𝑇∙𝑑𝑖𝑎𝑔(𝑀)∙𝐺𝐸〈𝑘〉

𝐵
+ 𝑞〈𝑘〉. (7) 

The method specified above is used for numerical inverse kinematics calculations of the 3-DOF 

and also 2-DOF manipulators, subdivided from the robot pedipulator structure. It is integrated as a part 

of the calculation procedure, described in the trajectory calculation algorithm and plays an important 

role in control system of the robot. 
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4. Trajectory calculation algorithm for pedipulators transformation 

For trajectory planning, a dedicated algorithm was developed that is composed of different methods 

utilized iteratively, numerical inverse kinematics based on Jacobian transpose and pseudo-inverse, 

analytical inverse kinematics, forward kinematics, sets of geometric conditions and custom rules. 

Pedipulator poses dedicated for particular pipe sizes were determined from the 3D CAD model of 

the robot. With usage of this data, all angular positions of pedipulators joints were saved and used as 

initial and final poses for trajectory generation. The second step was to generate 5th order polynomial 

interpolated joint space trajectories for the front manipulator between initial and final poses. Next, 

inverse kinematics problem was solved with usage of Jacobian transpose for the rear manipulator to 

match its position with end-effector of the front manipulator. In case of this pipe inspection robot, 

calculation of the pedipulator analytical inverse kinematics problem gives 8 solutions for the entire 

structure. Therefore, additional conditions were used for the planar manipulators with limitation of joint 

rotation angles. The final step was to eliminate oscillations of the manipulator, caused by transition 

through singular positions. Finally, joint trajectories of both 2-DOF and 3-DOF planar manipulators 

were merged and only actuated joints were selected to perform reconfiguration of the pedipulators. The 

calculations were performed in MATLAB software with addition of the Robotics Toolbox [8]. As a 

result, smooth trajectories for transformation of both robot pedipulators were obtained. Due to the fact 

that each pedipulator mechanism is a closed kinematics chain of specific structure, it is sufficient to use 

three motors to set particular pose of one track drive module.  

  
(a) (b) 

Figure 4.   Pedipulator transformations from the neutral pose – drives positions, velocities and 

accelerations: (a) to a Ø210 mm horizontal pipe; (b) to a Ø242 mm vertical pipe. 
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On the basis of the previously presented mathematical models, implemented in the original 

algorithm, joint trajectories for different transformations were obtained. Transformation time was 

assumed to be 5 seconds for all cases to ensure easier comparison of the results. The results for 

transformation from neutral pose to horizontal pipes with diameter Ø210 mm and vertical pipe with 

diameter Ø242 mm is shown in Fig. 4. It can be noted that results of the transformations are smooth 

due to utilization of 5th
 order polynomial interpolation and application of custom rules for trajectory 

generation task. The presented approach is effective for solving inverse kinematics task for the closed 

kinematics chain of the robot. 

Graphical validation of the trajectories on a pedipulator model is shown in Fig. 6. All characteristic 

points were marked with cylinders. Traces of trajectories of all joints and track contact points are 

visualized in range from initial to final pose. The visualization was prepared in MATLAB software. 

  
(a) (b) 

Figure 5.   Pedipulators transformation trajectory from the neutral pose to a Ø210 mm horizontal pipe: 

(a) initial pose; (b) final pose. 

5. Co-simulation is MATLAB and V-REP software 

Co-simulations of the robot control in V-REP and MATLAB environments were prepared to analyze 

and verify mathematical models of the robot, especially trajectory calculation for adaptation of 

pedipulators to different work environments. V-REP is a multi purpose robotic simulation software that 

allows integration of control algorithms or connection with external applications to run the models. 

Robot model creation process was described in [6]. The co-simulation of robot model required creation 

of a MATLAB/Simulik schematic diagram that allowed integration of the previously described 

trajectory planning algorithm with hardware support of a physical joystick used for control of the robot 

model, as well as synchronous communication with the V-REP simulator. 

The simulations involved tests in horizontal pipes with different diameters and obstructions such 

as bends and reducers. In Fig. 6a, the robot after negotiation of a bend is shown. Reconfiguration of the 

pedipulators is controlled with usage of the control algorithm developed in MATLAB, whereas, track 
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drives velocities are adjusted in real time by the operator by the hardware joystick. In Fig. 6b, the robot 

is depicted in a vertical pipe run. In this case, the simulation shows ability of the pedipulators to extend 

the track drives and exert clamp force, sufficient to move vertically. Several attempts to negotiate a 

pipe segment with smooth diameter change was made, but due to limitations of the robot model in 

rubber track contact with the pipe, it was not always possible to safely guide the robot through. To 

check whether the prototype would be capable of driving on rough surfaces, a special simulation 

environment was prepared. The simulation was stable for motion on a randomly generated rough 

terrain, as depicted in Fig. 7a. 

  
(a) (b) 

Figure 6.   Simulation of the robot motion: (a) horizontal a Ø315 mm pipe; (b) vertical Ø242 mm pipe. 

  
(a) (b) 

Figure 7.   Simulation of the robot motion on rough terrain: (a) simulation environment; (b) drive 

position comparison during pedipulators transformation. 

Operation of the robot model in the V-REP environment was compared to the theoretical 

pedipulators trajectory planning results obtained in MATLAB. In Fig. 7b, comparison of drive positions 

for pedipulator transformation phase is shown. The absolute position error between those two models 

do not exceed 1.5 degrees. It should be noted that the theoretical results obtained in MATLAB do not 

take into consideration gravitational dependencies and elasticity of joints. However, in the V-REP 

model, the Bullet simulation engine, used for the simulations, adds some elasticity and damping to 

revolute joints. Nevertheless, the results can be viewed as valid, since very precise positioning is not 

crucial for proper operation of the prototype. 
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6. Prototype of the pipe inspection robot 

A prototype of the tracked mobile robot for pipeline inspection is shown in Fig. 8. The robot subsystems 

were integrated with a control system, designed for compatibility with the trajectory planning 

algorithm, remote operation by a joystick control and transmission of video signal to operator by a 

tether cable. Prototype tests were conducted in different environments. The robot in a horizontal pipe 

is shown in Fig. 8a. Transformation of pedipulators was successfully verified in a pipe reducer, based 

on trajectory obtained from the trajectory planning algorithm.  

   
(a) (b) (c) 

Figure 8.   Prototype of the robot: (a) transformation in a horizontal Ø315 to Ø242  mm pipe;  

(b) vertical  Ø242 mm pipe; (c) horizontal surface. 

Operation of the prototype in a vertical pipe segment is depicted in Fig. 8b. The tests proved that 

the robot can operate in dry and wet vertical pipes. Operation of the prototype on horizontal surfaces 

with tracks oriented parallelly was also checked (see Fig. 8c) along with motion on inclined surfaces 

and negotiation of obstacles. 

7. Conclusions 

Application of mathematical tools and computer simulations proved to be effective and provided initial 

testing platform of control system designed for the robot’s pedipulators. The modeling approach with 

use of differential kinematics and iterative solution of inverse kinematics problem was integrated in a 

trajectory planning algorithm that enables to smoothly transform of the robot’s motion unit for operation 

in different types of pipelines. The simulations performed in V-REP and MATLAB provided valuable 

resources for control system of the robot prototype with tuning and optimization of the original 

pedipulator trajectory calculation algorithm. A prototype of the pipe inspection robot was checked and 

previously simulated functionalities were verified during laboratory experiments.  

The future works would include elaboration of an active adaptation system with regulation of 

extension forces, based on measurements from current drain sensors for the servomotors and the tracks. 

This system would provide improved safety during motion in vertical pipelines with sediments, 

obstructions and other disturbances of pipe geometry by automatic adjustment of clamp force. 

113



References 

[1] ABE Group. Kamery do inspekcji rurociągów i kanalizacji. 2017.  [Online]. Available: http://abe-

group.eu/kamery-inspekcyjne/. [Accessed: 26-Sep-2017] 

[2] Inuktun, Inuktun | The Multi-Mission Modular Robotics Company, 2017.  [Online]. Available: 

http://inuktun.com/en/products/. [Accessed: 26-Sep-2017] 

[3] NEOVISION s.r.o. Jetty, Cleaning and inspectional robot for air-induction ducting.  [Online]. 

Available: http://www.neovision.cz/sols/jetty.html. [Accessed: 31-Mar-2016] 

[4] Ciszewski, M.,  Buratowski, T., Giergiel, M., Kurc, K., Malka. P. Mobile inspection robot. Applied 

Mechanics and Materials, 319 (2013), 385–392.  

[5] Ciszewski, M., Buratowski, T., Giergiel, M., Malka, P., Kurc, K., Virtual Prototyping, Design and 

Analysis of an in-Pipe Inspection Mobile Robot. Journal of Theoretical and Applied Mechanics 52, 2 

(2014), 417–429.  

[6] Ciszewski, M., Mitka, Ł.,  Buratowski, T.,  Giergiel, M. Modeling and simulation of a tracked 

mobile inspection robot in MATLAB and V-REP software. Postępy robotyki, vol. 1, 195 (2016), Prace 

Naukowe Politechniki Warszawskiej. Elektronika, Warszawa, 135–144.  

[7] Wu C. H., Young, K. Y., An efficient solution of a differential inverse kinematics problem for 

wrist-partitioned robots. IEEE Transactions on Robotics and Automation 6, 1 (1990), 117–123.  

[8] Corke, P. Robotics, Vision and Control: Fundamental Algorithms in MATLAB. Springer Science 

& Business Media, 2011 

Michał Ciszewski, (Ph.D. student): AGH University of Science and Technology, Faculty of Mechanical 

Engineering and Robotics, Department of Robotics and Mechatronics, Al. Mickiewicza 30, 30-059 

Kraków, Poland (mcisz@agh.edu.pl). 

Tomasz Buratowski, (DSc): AGH University of Science and Technology, Faculty of Mechanical 

Engineering and Robotics, Department of Robotics and Mechatronics, Al. Mickiewicza 30, 30-059 

Kraków, Poland (tburatow@agh.edu.pl). 

Mariusz Giergiel, (Professor): AGH University of Science and Technology, Faculty of Mechanical 

Engineering and Robotics, Department of Robotics and Mechatronics, Al. Mickiewicza 30, 30-059 

Kraków, Poland (giergiel@agh.edu.pl). “The author gave a presentation of this paper during one of the 

conference sessions.”  

114



Effect of anisotropy on surface wave attenuation through fluid 

medium: a comparison between Rayleigh and Love type waves 

 

 

Nathan Paul Craig, Harriet Grigg 

Abstract: Surface wave propagation in anisotropic materials is common for biosensor 

based applications, in which contact between the device and a fluid layer is required. 

The attenuation of the propagating wave due to the fluid layer is different depending on 

the choice of the wave, due to the generation of pressure waves by out of plane 

displacements. In the isotropic cases, the Rayleigh wave type experiences greater 

attenuation than the multi-layer Love wave type which only has a transverse 

displacement. In the case of an anisotropic wave the displacement axis no longer lines 

up with the direction of propagation. A generalised anisotropic Love wave propagating 

in a multi-layered structure comprised of anisotropic materials will no longer have a 

zero valued out of plane displacement. The effect of this anisotropy on Love waves is 

investigated by numerical analysis and compared to the Rayleigh wave type. The results 

show an increase in attenuation in generalised Love wave solutions for cases of interest 

to the application mentioned, for which wave displacements are presented. 

1. Introduction 

Surface acoustic wave (SAW) propagation through anisotropic structures is of interest for applications 

such as biosensors, in which contact between the devices and a fluid layer is a requirement [1]. The 

fluid layer can cause leakage of energy out of the system by the generation of pressure waves, by out 

of plane displacements, leading to leaky type wave existence. Understanding the effect of anisotropy 

on the waveforms is necessary for the mitigation of the effects of fluid loss in the design. 

A number of different SAW types exist in a multi-layered structure, this paper compares the effect 

of the Rayleigh and Love wave types on a fluid, in which the Love wave has the most appealing 

properties. In the isotropic case the Rayleigh wave may exists in a half space; traveling along the surface 

as a combination of displacements in the propagation and out of plane directions in an elliptical motion 

which decays into the bulk of the material. Many generalised Rayleigh wave types exist in anisotropic 

half spaces [2], they also may exist in multi-layered mediums [3] and at material interfaces [4]. In 

addition another type of wave that may exist in a half space is the leaky wave [5], the fluid-elastic waves 

which will be studied are a type of leaky wave. The Love wave is a wave type which only existences 

in a multi-layered medium. It is allowed to exist when the velocity is greater than the shear bulk velocity 
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of the layer but less than the shear bulk of the substrate [6]. In the isotropic case the Love wave travels 

along the surface with only a transverse displacement and decays into the bulk of the substrate. 

 Traditionally, Love waves are perceived to be more suitable to the application of biosensors than 

Rayleigh waves, which leak energy through fluid coupling. A majority of the materials of interest for 

biosensors cannot be assumed as isotropic and so the anisotropic effects of materials must also be 

considered; for these cases the quasi Love waves which now exists, will no longer be purely transverse. 

The purpose of this study is to investigate the effect of material anisotropy on Love waves in contact 

with a fluid medium and compare to the Rayleigh wave type. The contributions of the anisotropy of the 

layer and substrate to the overall waveform will be considered, which are dependent on the material 

properties and cut rotation. These inputs effect the propagation direction, decay depth and out of plane 

displacements which can contribute to the energy leakage by fluid or various acoustic sinks.  

The anisotropy causes rotational variation of solutions around a crystal cut which is of interest in 

circular geometry biosensors which take advantage of degenerate modes [7]. Quartz on silicon 

configuration leads to a material combination which is compatible for propagating non-leaky Love 

waves, due to the velocity condition and exists even in the non-fluid case. Though these waves can exist 

in a pure mechanical case for high symmetry directions, does not imply that these waves have the 

desired properties of the isotropic Love wave. Quartz in the cut of interest has a six fold rotation axis 

whereas silicon has a four fold rotation axis in the highly symmetric directions taken as common cuts. 

Hexagonal crystals are assumed to have an isotropic transverse plane due to the hexagonal shape, this 

is similar to quartz but without the additional stiffness coefficients that deforms this plane. Therefore, 

if a cut exists that has low rotational variation in a cubic crystal it will most likely be in the form of a 

deformed hexagonal plane, not only will this cut have desirable properties for circular based biosensors 

but may also have a six fold rotation axis similar to quartz. In this study the waveforms in these 

anisotropic low variation cuts will be compared to the highly symmetric cases. 

2. Mathematical formulation 

The Stroh formulation [8] is capable of solving, through the use of numerical methods, wave 

propagating in anisotropic half spaces. Making some extensions to this formulation will allow the study 

of leaky waveforms in a multi-layered medium. Starting with the 3-dimensional linear homogenous 

wave equation below: 

𝐶𝑖𝑗𝑘𝑙
𝜕2𝑢𝑙

𝜕𝑥𝑗𝜕𝑥𝑘
= 𝜌

𝜕2𝑢𝑖

𝜕𝑡2 . (1) 

The solution using the Stroh formulation with attenuation is assumed in the following form: 

𝑢𝑖 = 𝐴𝑖𝑒
(𝛼−𝑖𝑘)[(𝑚𝑗−𝑝𝑛𝑗)𝑥𝑗 − 𝑣𝑡], (2) 
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where summation is assumed over repeating indices i, j, k, l = 1 to 3 and with wave propagation set in 

the −𝑘𝑚𝑗𝑥𝑗 direction. Substituting the solution and rearranging results into the eigenvalue problem: 

[𝐶𝑖𝑗𝑘𝑙(𝑚𝑗 + 𝑝𝑛𝑗)(𝑚𝑘 + 𝑝𝑛𝑘) − 𝜌𝑣2𝛿𝑖𝑙]𝐴𝑙 = 0. (3) 

As a result of the definition of velocity (v) as: 

 𝑣 =
𝜔

(𝑘−𝑖𝛼)
, (4) 

the problem is a function of velocity alone instead of attenuation (α), wave number (k) and frequency 

(ω) reducing the numerical computation when searching over lines of constant velocity. 

The solutions to the eigenvalue problem are the partial waves which are found through the 

multiplier p in which the summation forms the wave solutions for each layer shown below:  

𝑢𝑖 = ∑ 𝐵𝑟𝐴𝑖
(𝑟)6

𝑟=1 𝑒(𝛼𝑖−𝑘)[(𝑚𝑗−𝑝(𝑟)𝑛𝑗)𝑥𝑗 − 𝑣𝑡]
. (5) 

For half spaces only three partial waves are required in the summation for the boundary conditions; 

therefore the three which are discarded are the solutions that yield exponential increase into the bulk of 

the material, which is not a characteristic of surface waves. The solutions can now be used to form a 

boundary condition determinant where numerically zero values are waves which may exist. The 

boundary conditions used in this investigation are the continuity of tractions (t) in the following form: 

𝑡𝑖 = 𝐶𝑖𝑗𝑘𝑙
𝜕𝑢𝑙

𝜕𝑥𝑘
𝑛𝑗 , (6) 

and displacements at material boundaries. For all the cases presented in this paper the fluid interface is 

fixed at 𝑛𝑗𝑥𝑗 = 0 and the elastic interface is fixed at 𝑛𝑗𝑥𝑗 = 1. 

2.1. Linearised fluid wave equation 

Assuming a small signal approximation on equations of state [9] the mass continuity equation and 3-

dimensional linearised fluid equation of motion can be written in the following form: 

1

𝑣0
2

𝜕𝑃

𝜕𝑡
+ 𝜌0

𝜕2𝑢𝑖

𝜕𝑥𝑖𝜕𝑡
= 0, (7) 

−
𝜕𝑃

𝜕𝑥𝑖
+ 𝜇𝑖𝑗𝑘𝑙

𝜕3𝑢𝑙

𝜕𝑥𝑗𝜕𝑥𝑘𝜕𝑡
= 𝜌0

𝜕2𝑢𝑖

𝜕𝑡2 . (8) 

Assuming a solution for both the pressure (P) and displacement (𝑢𝑖) in the form (2) a coupled 

eigenvalue problem can be formulated. The 1-dimensional pressure amplitude can be arranged out to 

get the 3-dimensional eigenvalue problem for the displacement amplitudes as follows: 

[(𝛼 − 𝑖𝑘)𝑣 ∙ 𝜇𝑖𝑗𝑘𝑙(𝑚𝑗 + 𝑝𝑛𝑗)(𝑚𝑘 + 𝑝𝑛𝑘) + (𝑚𝑖 + 𝑝𝑛𝑖)2𝜌0𝑣0
2𝛿𝑖𝑙 − 𝜌0𝑣2𝛿𝑖𝑙]𝐴𝑙 = 0. (9) 
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 The form of the eigenvalue problem imposes a pressure wave that couples to the out of plane 

displacements through the partial solutions. The wavelength and propagation direction of this pressure 

wave is dependent on k and α. The boundary conditions along the interface of the elastic surface and 

fluid half space may be formed using the displacements and fluid tractions given by the following: 

  𝑡𝑖 = −𝑃𝛿𝑖𝑗𝑛𝑗 + 𝜇𝑖𝑗𝑘𝑙
𝜕2𝑢𝑙

𝜕𝑥𝑘𝜕𝑡
𝑛𝑗 . (10) 

2.2. Numerical methods 

Numerical methods are required to obtain a solution to both the individual eigenvalue problems of each 

material and the boundary condition determinant. A complex phase tracking algorithm is developed for 

fast tracking over lines of constant complex phase (see fig. 1) by making use of ridge tracking methods 

[10]. Using this method, a close approximation for all complex minimums can be made within a set 

boundary, to be followed by a secondary search using any preferred numerical method. The number of 

partial wave solutions is given by the characteristic equation of (3), whereas the boundary condition 

determinant may allow infinite solutions depending on the geometry. 

 

Figure 1.   The partial wave determinant of an isotropic material, color map denotes absolute value of 

the complex phase of the determinant. 

3. Results and discussion 

Two cases of interest are studied in this paper, the first is detailed in section 3.2, the isotropic and cubic 

combinations in which the anisotropy can be scaled using a factor. The second, discussed in section 

3.3, is the study of the particular case of trigonal quartz on cubic silicon in which the effect of conflicting 

anisotropies is of interest, for material properties see [11]. The fluid used for all the cases presented is 

water [12] at a constant temperature of 25°C. For both cases the cut of low variation of cubic materials 

is used, which is discussed in the following section. 
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3.1. Rotational variation of silicon 

A low variation cut can be found by inspecting the longitudinal bulk wave variation around all cuts of 

a crystal, in this case silicon (see fig. 2). The rotations are preformed around the Stroh vectors 𝒎 and 

𝒏 and the third direction at the tangent to this plane denoted as 𝒑; the angles are given in this order 

[𝒎 𝒑 𝒏] angles are denoted [φ θ ψ]. The cut which will be averaged over is in the 𝒎-𝒑 plane, to ensure 

that the low variation cut is suitable for Love waves which are only a transverse displacement. Great 

circle rotations can be applied directly to the stiffness tensors [13] to allow independent rotations 

between layers or to the Stroh vectors which rotates the whole geometry. 

 

Figure 2.   Presented is the surface of rotation variation of silicon bulk waves in the 𝒎-𝒑 plane. Colour 

map denotes cut variation.  

The low variation cut is given by the minimum of fig. 2 which is the cut [0.763 0.628 𝜓]. The bulk 

waves are compared to the original [0 0 𝜓] symmetric cut of silicon (see fig. 3), which corresponds to 

the crystal cut in miller indices [001]. It is clear that six peaks are now present in the new cut and can 

be rotated in line with the Quartz six fold rotation.  The combination between these materials is still 

compatible for Love wave propagation in this new cut. 

 

Figure 3.   Bulk waves of quartz and silicon in the 𝒎-𝒑 plane for the silicon cuts [0 0 𝜓] and [0.763 

0.628  𝜓 +
𝜋

6
] (solid points), both compared to quartz cut [0 0 𝜓] (unfilled points). 
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Additionally, a second compatible region for cuts above the second quartz bulk wave, between the 

first and second bulk waves of silicon, is now possible using the low variation cut. The supersonic 

Rayleigh and Love types in this region, will have additional bulk wave contributions leading to leaky 

wave types into the bulk of the substrate. The leakage is not desirable and so the investigation is 

restricted to the first compatible region between the first bulk waves of quartz and silicon. 

3.2. Effect of anisotropic contributions between layer and substrate 

The effect of the anisotropies of each layer on the overall structure of the Love wave and the coupling 

to the fluid is studied, making use of the low variation cut from the previous section. The materials 

under investigation are cubic copper [14] on cubic silicon, due to the high compatibility for Love wave 

propagation under transformations of the anisotropic factor [11]. 

Setting the anisotropic factors of both layers to 𝐴 = 1 reduces the problem to a layered isotropic 

case, for which both Love waves and Rayleigh type waves exist (see fig. 4). The fluid layer shows 

greater coupling to the Rayleigh wave due to the non-zero out of plane displacement (in the 𝒏 ∙ 𝒙 given 

by 𝑥3). Note the numerically zero displacements in the 𝑥1 and 𝑥3 directions for the Love wave. 

 

 

Figure 4.   For the isotropic case, on the top Rayleigh type wave displacements (𝑘 = 3.12 and 𝛼 =

−0.068) and on the bottom are the Love wave displacements (𝑘 = 4.19 and 𝛼 = 0) all 

normalised to the wave length, red lines are displacements along the boundaries. 

The anisotropic factor of the substrate is increased to 𝐴𝑠𝑢𝑏 = 1.5, and rotational data for the first 

Rayleigh mode (see fig. 5) and Love mode (see fig. 6) is computed for the substrate cuts [0 0 𝜓] and 

low variation cut [0.763 0.628 𝜓]. 
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Figure 5.   Isotropic on cubic case, the Rayleigh wave solutions for substrate cut [00 𝜓] and [0.763 

0.628 𝜓]. From left to right are the wave number, attenuation and average surface 𝑢3 

displacement plots at a velocity of 2000𝑚𝑠−1. 

 

Figure 6.   Isotropic on cubic case, the Love wave solutions for substrate cut [00 𝜓] and [0.763 

0.628 𝜓]. From left to right are the wave number, attenuation and average surface 𝑢3 

displacement plots at a velocity of 2000𝑚𝑠−1. 

The wave number takes on the structure of the substrate for both types of wave indicating that a 

significant portion of the wave exists in the substrate. The attenuation value is a combination of the 

leakiness due to anisotropy and the fluid coupling. The Love wave attenuation for the low variation cut 

is slightly larger than the high symmetry cut, with similar out of plane displacements. 

 The effect of an anisotropic layer on rotational variation will be considered in the next section but 

first the displacements are presented for the case of both materials with an anisotropic factor of 𝐴 =

1.5. For the layer cut [0.763 0.628 𝜓] the first Rayleigh type and Love modes are presented for 

substrate cut [0 0 𝜓] in fig. 7 and substrate cut [0.763 0.628 𝜓] in fig. 8. 
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Figure 7.   For layer cut [0.763 0.628 𝜓] on substrate cut [0 0 𝜓] the displacements. On the top the 

Rayleigh mode (𝑘 = 2.68, 𝛼 = −0.057) and on the bottom the Love mode (𝑘 = 2.83, 𝛼 =

−0.001) at a velocity of 2000𝑚𝑠−1. Red lines trace boundary displacements. 

 

 

Figure 8.   For layer cut [0.763 0.628 𝜓] on substrate cut [0.763 0.628 𝜓] the displacements. On the 

top the Rayleigh mode (𝑘 = 2.74, 𝛼 = −0.037) and on the bottom the Love mode (𝑘 =

2.72, 𝛼 = −0.021) at a velocity of 2000𝑚𝑠−1. Red lines trace boundary displacements. 

By setting the layer cut to [0.763 0.628 𝜓], which has off axis anisotropic displacements, the line 

between Love and Rayleigh waves becomes burred unlike the distinctive waves presented in the 

isotropic case. For the high symmetry cut of the substrate [0 0 𝜓] the waveforms share contributions of 

the other wave type. When the substrate also has the low variation cut [0.763 0.628 𝜓], for the first 
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mode only, the wave number and attenuation are almost the same value and have an almost 

indistinguishable displacement pattern. 

3.3. Effect of quartz and silicon cut anisotropy on Love waves 

Comparisons will be made between the SAWs that exist in the low variation cut and high symmetry 

cut of cubic crystal, with a quartz layer that has a six fold rotation axis. For both cuts the wave number, 

attenuation and surface displacement are presented for the generalised multi-layer Rayleigh (see fig. 9) 

and Love (see fig. 10) type waves. The velocity is fixed at 4000𝑚𝑠−1 which is above the first shear 

wave velocity of quartz and below the bulk velocities of silicon. 

 

Figure 9.   From left to right are the wave number, attenuation and average surface 𝑢3 displacement 

plots for Rayleigh type waves for substrate cuts [0 0 𝜓 +
𝝅

6
] and [0.763 0.628 𝜓 +

𝝅

6
] at 

fixed velocity of 4000𝑚𝑠−1. 

 

Figure 10.   From left to right are the wave number, attenuation and average surface 𝑢3 displacement 

plots for Love type waves for substrate cuts [0 0 𝜓 +
𝜋

6
] and [0.763 0.628 𝜓 +

𝜋

6
] at fixed 

velocity of 4000𝑚𝑠−1. 

It is clear that the cut [0.763 0.628 𝜓 +
𝜋

6
] for both wave types no longer has any cubic behavior 

opposite to the [0 0 𝜓 +
𝜋

6
] cut which shows a dominated cubic behavior imposed by the substrate. 

Focusing on the attenuation of the Love wave, the [0 0 𝜓 +
𝜋

6
] cut not only has the largest variation but 

severally different behaviors in the displacements. This is due to the changing Rayleigh type 

displacement between the two layers and can be shown by the comparison between the maximum peaks, 

123



observed at  
𝜋

4
, and at the minimums, observed at  

𝜋

6
. Presented is the comparison of 𝑢3 displacement 

surface with projections (see fig. 11) and displacement vectors (see fig. 12) between both points 

mention for high symmetry cut.  

  

Figure 11.   Presented are the 𝑢3 displacement surfaces and projections for the Love wave solution of 

the [0 0 𝜓 +
𝜋

6
] cut for, on the left, point 

𝜋

6
 and on the right point  

𝜋

4
. Displacements 

normalised to maximum surface displacement. 

 

 

Figure 12.   Presented are the displacements for the Love wave solution of the [0 0 𝜓 +
𝜋

6
] cut for, on 

the top, point 
𝜋

6
 and on the bottom point  

𝜋

4
. Red lines trace boundary displacements. 

At the point  
𝜋

6
 the maximum 𝑢3 displacement and Rayleigh type displacement pattern is at the interface 

of the two crystals and so the displacement pattern at the fluid interface is of a shear type in the 𝑥1-𝑥3 
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and 𝑥2-𝑥3 planes. At the point of  
𝜋

4
 the displacement is confined mostly to the layer with the Rayleigh 

pattern at the surface increasing out of plane displacements seen in the 𝑥1-𝑥3 and 𝑥2-𝑥3 planes. The out 

of plane displacements leads to fluid coupling and increases the decay length of the displacement into 

the bulk of the fluid. In comparison the displacement pattern remains consistent throughout the 

[0.763 0.628 𝜓 +
𝜋

6
] cut with variation in attenuation due to changing Rayleigh displacements in the 

𝑥1-𝑥3 plane (see in fig. 13). 

 

 

Figure 13.   Presented are the displacements for the Love wave solution of the [0.763 0.628 𝜓 +
𝜋

6
] cut 

for, on the top, point 
𝜋

6
 and on the bottom point  

𝜋

4
. Red lines trace boundary displacements. 

4. Conclusion 

A cause of leaky behavior of the anisotropic Love wave is by Rayleigh wave type displacements 

inducing out of plane displacement components at the fluid interface. For this reason, in the cases 

shown, the Love wave attenuation by fluid coupling can never be greater than the multi-layer Rayleigh 

waveform. But it has been shown that the wave number and attenuation of these waves can become 

numerically close resulting in similar displacement patterns. It follows that for anisotropic combinations 

these Rayleigh type displacements can have a significant effect on the attenuation of multi-layered Love 

waves. 

The concept of anisotropic compatibility for multi-layered waves has been presented in which the 

wave variation around a crystal cut may be reduced by selection of the anisotropies. For the case of a 

trigonal layer on cubic substrate the changing Rayleigh contributions to the Love wave is the cause of 

wave number and attenuation variation around a cut. In this paper it has been shown that a low variation 

cut for cubic crystals, intrinsic to the cubic shape, exists which takes a similar form to crystals with six 
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fold rotation symmetry. For Love wave propagation in this cut, a lower variation in wave number and 

attenuation has been seen with increased consistently in the displacement form.  
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Irreversibility of mechanical and hydrodynamic instabilities

Carlos D. D́ıaz-Maŕın, Alejandro Jenkins

Abstract: The literature on dynamical systems has, for the most part, con-
sidered self-oscillators (i.e., systems capable of generating and maintaining a
periodic motion at the expense of an external energy source with no corre-
sponding periodicity) either as applications of the concepts of limit cycle and
Hopf bifurcation in the theory of differential equations, or else as instabil-
ity problems in feedback control systems. Here we outline a complementary
approach, based on physical considerations of work extraction and thermody-
namic irreversibility. We illustrate the power of this method with two concrete
examples: the mechanical instability of rotors that spin at super-critical speeds,
and the hydrodynamic Kelvin-Helmholtz instability of the interface between
fluid layers with different tangential velocities. Our treatment clarifies the nec-
essary role of frictional or viscous dissipation (and therefore of irreversibility),
while revealing an underlying unity to the physics of many irreversible pro-
cesses that generate mechanical work and an autonomous temporal structure
(periodic, quasi-periodic, or chaotic) in the presence of an out-of-equilibrium
background.

1. Introduction

A self-oscillator is a physical system that excites and maintains a periodic variation at the

expense of a source of energy lacking any corresponding periodicity. This definition is due

to mathematical physicist A. A. Andronov (1901–1952) and his school, but the same class

of phenomena are referred to by many other names and its scientific study dates back to

the work of mechanical engineer Robert Willis (1800–1875) and mathematical astronomer

Sir George Airy (1801–1892) on the operation of the vocal cords; see [8] and references

therein. Self-oscillators are described by homogeneous equations of motion, distinguishing

them from forced and parametric resonators. The treatment of self-oscillators in the scientific

and engineering literatures has been largely based on the concepts of limit cycles and Hopf

bifurcations in the theory of differential equations, or of instability in the theory of feedback

control systems.

This work is part of an effort to develop and promote a more physical perspective on

self-oscillators, based on considerations of energy, work, and efficiency. This effort is inspired

by the observation made long ago by applied physicist Philippe Le Corbeiller (1891–1980)

that cyclical motors are self-oscillators, so that the study of self-oscillators may benefit from
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the thermodynamic perspective and vice-versa [15,16]. Unfortunately, Le Corbeiller did not

develop this idea very far and it was not taken up by others.

We begin in Sec. 2 by reviewing and generalizing an analysis, due to Shen and Mote [22],

of how a rotating dashpot can transfer some of its mechanical energy into the oscillation of

the elastic disk over which it moves, thus causing the disk to self-oscillate transversely when

the dashpot’s speed of rotation exceeds the oscillation’s phase velocity. This analysis is

instructive because it reveals how the process depends on dissipation within the dashpot.

We point out that a similar analysis applies to a large class of instabilities in mechanical

rotors, including the well known problem of “shaft whirling” in mechanical engineering.

In Sec. 3 we consider the hydrodynamical Kelvin-Helmholtz (KH) instability, by which,

e.g., the action of a steady wind makes waves on the surface of a body of water. We point

out the close analogy between this instability and the mechanical ones considered previously.

We then review the simple argument used by theoretical physicist Y. B. Zel’dovich (1914 –

1987) to deduce, from the same considerations that account for the KH instability, that a

spinning black hole should radiate [1,2,26,27]. This illustrates the power of thermodynamic

reasoning to abstract and generalize across diverse physical phenomena.

In Sec. 4 we discuss how these various phenomena illuminate the physics of what applied

mathematician Jerry Marsden (1942 – 2010) and collaborators called “dissipation-induced

instabilities”; see [13] and references thererin. We shall see that, far from being a paradoxical

curiosity, the fact that dissipative forces may destabilize an equilibrium reflects the elemen-

tary facts that cyclical engines can be powered only by non-conservative forces and that,

according to the second law of thermodynamics, any non-conservative force must be accom-

panied by the generation of entropy (i.e., by dissipation). Thus, the ubiquity of self-oscillators

(from turbines to neurons) reflects the thermodynamic irreversibility of macroscopic physical

interactions. We conclude by connecting this to the observation, stressed in the recent liter-

ature on “finite-time thermodynamics”, that a cyclical engine capable of delivering non-zero

power must operate irreversibly (see [20] and references therein).

2. Rotors

In [22], Shen and Mote studied the possible mechanisms of instability of an elastic disk under

a rotating spring-mass-dashpot system, and found that a viscous dashpot destabilizes the

disk when the dashpot moves faster than the phase velocity of a transverse wave on the free

disk. Here we review their result, considering a general dissipative force of the dashpot on

the disk and then underlining how this analysis can be generalized to other systems.
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2.1. Action of rotating dashpot on elastic disk

Let w(t, r, θ) be the transverse displacement at time t of a mass element of the disk corre-

sponding to polar coordinates (r, θ) on the disk’s equilibrium plane. We work in a frame

of reference in which the disk does not rotate and write wt ≡ ∂w/∂t, wθ ≡ ∂w/∂θ. The

dashpot moves with angular velocity θ̇ ≡ dθ/dt and r = r0 = const. The transverse velocity

of the disk element in contact with the dashpot is ẇ ≡ dw/dt = wt + θ̇wθ. The dashpot

exerts a dissipative force that resists this transverse displacement:

Fdis = − sgn (ẇ)fpos (1)

where fpos is arbitrary but strictly non-negative (Shen and Mote take fpos = c|ẇ| for a

constant c > 0, corresponding to linear damping).

arctan(w  /r  )0θ

θ

R

-Fdis

F t disk surfacedashpot

Figure 1. Free-body diagram for a dashpot in contact with the surface of the elastic disk.

Taking the dashpot to be massless (or, equivalently, requiring that its kinetic energy

remain constant) and neglecting the friction between the disk and the dashpot, the tangential

force Ft required to keep the dashpot in uniform circular motion with θ̇ = Ω = const. is

Ft = −
[
Fdis · wθ

r0

]
θ=Ωt, r=r0

=

[
sgn (ẇ)fposwθ

r0

]
θ=Ωt, r=r0

(2)

(see Fig. 1). The work done by this force over a period τ is

Wt =

∫ τ

0

Ftr0Ωdt = Ω

∫ τ

0

[ sgn (ẇ)fposwθ]θ=Ωt, r=r0
dt (3)

and the energy dissipated in the dashpot is

Wd = −
∫ τ

0

[Fdisẇ]θ=Ωt, r=r0
dt =

∫ τ

0

[ sgn (ẇ)fposẇ]θ=Ωt, r=r0
dt ≥ 0. (4)

The energy absorbed by the oscillation is therefore

∆E = Wt −Wd =

∫ τ

0

[(Ωwθ − ẇ) sgn (ẇ)fpos]θ=Ωt, r=r0
dt

= −
∫ τ

0

[wt sgn (ẇ)fpos]θ=Ωt, r=r0
dt =

∫ τ

0

[wtFdis]θ=Ωt, r=r0
dt.

(5)
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If we consider a traveling wave of the form w = A(r) sin (mθ − ωt) for ω ≥ 0 and define a

parameter σ ≡ mΩ− ω this becomes

∆E =

∫ τ

0

[ωA(r) cos (mθ − ωt) sgn (ẇ)fpos]θ=Ωt, r=r0
dt

= ωA(r0)

∫ τ

0

cos(σt) sgn [A(r0)σ cos(σt)] fpos|θ=Ωt, r=r0
dt

= sgn (σ) · ω|A(r0)|
∫ τ

0

| cos(σt)| fpos|θ=Ωt, r=r0
dt.

(6)

The last integral in Eq. (6) is strictly non-negative. If fpos 6= 0, then sgn (∆E) = sgn (σ).

This means that if the dashpot moves with Ω less than the phase velocity ω/m, then ∆E < 0,

indicating that the dashpot damps the transverse oscillation of the disk. We call this the

sub-critical regime. On the other hand, when the dashpot moves with Ω greater than the

wave’s phase velocity, ∆E > 0, which means that the transverse oscillation is powered by

the dashpot’s motion. We call this the super-critical regime.

One way of understanding the change of sign of ∆E is to note that, according to Eq. (5),

the power delivered to the oscillation is wtFdis, where wt is measured with respect to the

static disk’s equilibrium position. When Ω < ω/m, the force Fdis lags behind the oscillation,

because of dissipation in the dashpot. The corresponding work done on the oscillation

is therefore negative. When Ω > ω/m the oscillation travels backwards with respect the

dashpot, so that Fdis leads the oscillation, making the work on it positive. [3, 22]

This analysis is more generalizable than it might seem at first. For starters, rather than a

massless dashpot maintained at constant angular velocity by an external force Ft, one could

take Wt as coming out of a massive dashpot’s kinetic energy, causing it to decelerate. If the

dashpot were initially moving super-critically (σ > 0), this would power the self-oscillation

until the dashpot’s velocity fell below the critical Ω = ω/m. This is also equivalent to

considering the dashpot to be at rest and endowing the spinning disk with kinetic energy. A

similar result is obtained for the stability of a circular saw subject to an in-plane edge load,

as in a sawmill: see [18] and references therein.

2.2. Shaft whirling

The theoretical analysis of shaft whirling dates back to the work of Kimball in 1920s, in which

he argued that the whirling of a super-critically spinning shaft is an instability induced by

the shaft’s internal friction [10,11]. In Kimball’s model, the stretching or compression of the

material fibers in the shaft is opposed by a dissipative force. When the shaft turns faster

than the natural frequency of the whirling, the force on the fibers injects energy into the

whirling. This destabilizes the system, much like the disk of Sec. 2.1 is destabilized by the

super-critically spinning dashpot.
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Figure 2. Cross-section of a shaft turning at rate ω and whirling at rate α̇. The direction

of the non-conservative force F shown corresponds to the super-critical case ω > α̇.

Consider a cross section of a shaft, centered at S. A given material fiber that runs along

the shaft’s length passes through this cross section at a point f , which turns around S with

angular velocity ω (see Fig. 2). If the shaft is initially perturbed, displacing S away from

the position O that it would occupy if the shaft were straight, then the shaft whirls with

rate α̇ and amplitude OS. The whirling rate α̇ is given by the elastic force on the shaft,

which points from S to O. Being conservative, this restoring force does no net work over a

complete period of the shaft’s motion. This may also be seen from the fact that the force

always points at right angles to the whirl component of S’s velocity.

Following Kimball, we consider an internal friction that opposes the time rate of change

of each fiber’s length. Just like the restoring force acting on S points from the longer to the

shorter elastic fibers, this internal friction gives rise to a force that points from the fibers

being stretched to those being compressed. This force can have a tangential component and

thus do net work on the whirling shaft. If ω = α̇ then individual material fibers maintain

fixed lengths, with the fiber at B being shortest and the fiber at A longest. In this case the

shaft experiences no internal friction and only the elastic force along OS acts on the shaft.

But if ω 6= α̇, then a fiber moving from A to B is being shortened, while a fiber moving from

B to A is being stretched.

If the shaft turns sub-critically (ω < α̇) for positive α̇ and ω, then the fiber at C is under

frictional tension and the fiber at D under frictional compression, and the resulting force F

points against the whirl, damping its amplitude OS. If the sign of α̇ is flipped then so is the

sign of F , so that whirling in either direction is damped. On the other hand, if the shaft

turns super-critically (ω > α̇) the fiber at C is under frictional compression and the fiber at

D is under frictional tension, regardless of the sign of α̇. The force F will therefore inject

energy into a whirl with α̇ > 0, destabilizing the rotating shaft’s straight configuration.
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2.3. Non-conservative positional force

In the super-critical case, the equations of motion for the rectangular coordinates (x, y) of

the shaft’s center of mass at S take the form mẍ+ kx+ py = 0

mÿ + ky − px = 0
(7)

where k is the elastic constant for the bending of the fibers and p is equal to the magnitude

of the tangential force F divided by the radius OS. The terms with p in Eq. (7) corre-

spond, in the language of [13], to a “non-conservative positional force” (NPF). As a vector

F = (−py, px, 0) has non-zero circulation ∇× F = (0, 0, 2p) and is therefore not expressible

as −∇V for any potential V .

Ω

ω0

θ

Figure 3. Conical pendulum moving with amplitude θ and angular velocity ω0 in a bucket

of water that spins at rate Ω. Image adapted from [3].

A simple analogy, originally due to physicist Sir Brian Pippard (1920–2008), helps clarify

the origin of the NPF: Consider the conical pendulum swinging inside a rotating bucket filled

with water, shown in Fig. 3. If the water rotates more slowly than the free pendulum, then

the water’s viscosity damps the pendulum’s motion, causing it to sink towards the vertical

(θ → 0). If the water rotates faster than the free pendulum, the water drags the pendulum

forwards, causing the amplitude θ to increase [3,21]. Only in the latter case can the water’s

effect on the pendulum be described by an NPF. Note that a model in which the NPF is

obtained without reference to the elastic force that determines the critical speed is therefore

inconsistent; cf. [4, 17].

3. Hydrodynamic instabilities

The interface between two layers of fluid with different tangential velocities is unstable

against a traveling transverse perturbation when the difference in the velocities of the layers

exceeds the phase velocity of the perturbation with respect to the fluid. This is known as the

Kelvin-Helmholtz (KH) instability (see, e.g., [25]) and it is the fundamental mechanism by
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which a steady wind makes waves on the surface of a body of water, as illustrated in Fig. 4.

Since the wind has no periodicity corresponding to the water wave, this is a self-oscillation.

Air

Water v = wave speed, seen by the water

V = wind speed seen by the water2π/k

x

Figure 4. Illustration of the hydrodynamic KH instability by which wind can generate

waves on the surface of a body of water. Image adapted from [24].

Neglecting the viscosity of the water, in the linear regime a wave that propagates in the

x direction along the surface of the water and that has wave number k can be expressed as

the real part of

ξ0 = A · ei(kx−ωt), for ω = kv. (8)

If we take into account the air’s viscosity, then when the bulk of the air is a rest (V = 0

in Fig. 4) the water wave ξ is described by an equation of motion that includes a linear

damping term of the form c ·∂ξ/∂t. If the air blows with constant velocity V > 0, we can go

to the air’s rest frame by a Galilean coordinate transformation. The damping term acting

on the free wave ξ = ξ0 transforms as

∂ξ0
∂t
→ ∂ξ0

∂t
+ V

∂ξ0
∂x

= −iωξ0 + V · ikξ0 = −iωξ0
(

1− V

v

)
. (9)

The sign of Eq. (9) flips when V passes the critical value V = v. The wind therefore

anti-damps a water wave with phase velocity v less than the wind speed V .

Much like in the analysis of Sec. 2.1, this reflects that fact that when V < v the oscillation

of the air pressure induced by the wave lags behind the wave, because of the air’s viscosity,

but when V > v the wave travels backwards with respect the air, so that the oscillation of

the air pressure leads the wave. Without dissipation, the phase between the air pressure

and the wave must be either 0 or π, preventing the air from doing any work at all on a full

period of the wave. It is therefore clear that the KH instability requires non-zero dissipation

in the air, just like we saw in Sec. 2 that some energy had to be dissipated in the dashpot for

the self-oscillation of the elastic disk to be excited, and that Kimball’s explanation of shaft

whirling depended on internal friction.

Aeronautical engineer Erik Mollo-Christensen (1923 – 2009) stressed that the KH insta-

bility depends on non-vanishing viscosity in [19], but many leading textbooks do not make

this quite so clear. For instance, Landau and Lifshitz derive an instability for inviscid flow
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because they work in a limit in which the power injected into the wave is vanishing [14].

The same is true of Rayleigh’s inviscid instability argument for rotating Couette flow [25].

Indeed, a simplified account of Rayleigh’s argument (see, e.g., [6]) could lead a novice to

conclude that the fluid circulation in a Taylor cell is driven by centrifugal force, which is

impossible because the centrifugal force is conservative.

The simple argument of Eq. (9) led Zel’dovich to conclude that any body that, when

stationary, damps an incident wave must also, if its surface moves faster than the wave’s phase

velocity, amplify the wave at the expense of the body’s kinetic energy [1, 26, 27]. Moreover,

some of the kinetic energy lost must heat the body, making the process thermodynamically

irreversible. In this way, Zel’dovich argued in 1971 that a spinning black hole should radiate,

a result that motivated the rise of black-hole thermodynamics as an active field of research

in theoretical physics (for an entertaining historical account of Zel’dovich’s argument and its

impact, see ch. 12 in [23]). The process predicted by Zel’dovich is now called “superradiance”;

see [2] and references therein.

4. Dissipation-induced instabilities

Following Krechetnikov and Marsden [13] we may classify the possible terms in the linearized,

homogeneous equation of motion for an n-dimensional system with an equilibrium at q = 0

as:

Mq̈
inertia

+ Cq̇
dissip.

+ Gq̇
gyroscopic

+ Kq
potential

+ Nq
non−cons.

= 0 (10)

where M,C, and K are n × n symmetric matrices, while G and N are anti-symmetric. The

system is trivially unstable when K has negative eigenvalues, which corresponds to perturbing

about a configuration that is not a local minimum of potential energy. Such a system may

be stabilized by G, a phenomenon familiar from the sleeping top. Any non-zero, positive

dissipation, no matter how small, will destabilize it again: a top which is initially sleeping

will always end up falling if it dissipates mechanical energy. This is therefore a “dissipation-

induced instability”.

Self-oscillation is seen either as a negative eigenvalue of C or as N 6= 0. In a phys-

ically realistic description, negative damping results from a positive feedback involving a

non-conservative dynamic not explicitly included in Eq. (10); see [8]. Similarly, we have

seen here that N = 0 requires super-critical motion in a dissipative medium. The laws of

thermodynamics thus reveal something that cannot be deduced from the mathematics of

Eq. (10): that self-oscillation is always irreversible.

Mechanical engineer Hans Ziegler (1910–1985) discovered in 1952 that some configura-

tions of a double pendulum with a follower load could be destabilized by arbitrarily small
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friction at the joints. This “Ziegler paradox” launched a research program on the mathe-

matical characterization of dissipation-induced instabilities; see [12] and references therein.

Ziegler’s result is not so paradoxical in light of the physical approach that we advocate here:

damping is always potentially destabilizing when, as Pippard put it, a moving part “carries

its dissipative mechanisms around with it” [21]; see also [4]. For instance, in Fig. 4 the

energy that excites the waves comes from the wind’s motion. Instability therefore depends

on the air’s non-zero viscosity. The water’s viscosity, on the other hand, always damps the

waves and therefore can only be stabilizing.

4.1. Tidal acceleration and other analogs

This approach reveals interesting analogies. For instance in Fig. 2 the shaft could be replaced

by the Earth and O by the position of the Moon. The viscous damping of the motion of the

Earth’s tidal bulge acts as internal friction. Since

ω =
2π

1 day
> α̇ =

2π

1 month
, (11)

the Earth spins super-critically. The net gravitational force exerted by the Moon on the

tidally deformed Earth therefore has a tangential component along the Earth’s orbital ve-

locity, explaining why the semi-major axis of the Earth-Moon orbit is currently increasing

by about 4 cm/yr, a phenomenon known as “tidal acceleration”. [2, 7]

All of the processes that we have discussed depend on dissipation within the medium

whose kinetic energy powers the self-oscillation. The non-conservative force that drives the

self-oscillation is usually exerted by that same energetic medium. But in tidal acceleration

the energy comes from the Earth’s rotation, while the non-conservative force comes from the

Moon’s gravitational field. This is possible because the Moon’s gravity acts on a spinning

Earth that is being periodically deformed by the combination of tidal and viscous forces.

This gives rise to a tangential component of the Moon’s tidal force, acting with respect to

the Earth’s center of mass as a NPF [7]. Something similar is seen when a child enjoys a

playground swing: the force that drives the swinging is the tension of the chain that holds

up the swing. The child provides the energy by periodically deforming her body in a way

that causes the chain’s tension to have a component along the velocity of the child’s center

of mass. That deformation results from (very complex!) irreversible processes within the

child.

Other dissipation-induced instabilities include sonic booms, Kelvin wakes, and Čerenkov

radiation. One of us has recently argued that the Earth’s Chandler wobble should also be

understood in these terms: as a destabilization of the Earth’s axis of rotation, powered by

the circulation of geophysical fluids and associated with viscous dissipation within them. [9]
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4.2. Towards a physical theory of engines

Thermodynamic theory allows for reversible engines, such as the cycle described by military

engineer Sadi Carnot (1796–1832). Carnot realized that reversibility required the heat flow

between the working substance and the external reservoirs to occur isothermally, making

it infinitely slow. The phenomenological thermodynamics that Clausius, Kelvin and others

built upon Carnot’s work never considers the time dependence of the state variables, giving

it a qualitatively different character to that of a mechanical description. More recent work

on “finite-time thermodynamics” has established that obtaining non-zero power necessarily

reduces the limit efficiency of a heat engine, compared to the zero-power Carnot cycle running

between the same reservoirs. [20]

Conventional thermodynamics says that all of the instabilities that we have considered

can have efficiencies arbitrarily close to 1, since their energy source is mechanical rather than

thermal. We have seen, however, that these processes are necessarily irreversible, since they

must be accompanied by non-zero dissipation in the body that cedes energy. A realistic,

physical description of engines capable of delivering non-zero power should take into account

this distinction between necessary and avoidable dissipation.

These considerations apply not just to self-oscillators with regular limit cycles, but also

to any autonomous mechanical system (i.e., one describable by homogenous differential equa-

tions) that generates a temporal structure —whether periodic, quasi-periodic, or chaotic— as

the result of non-conservative forces. The laws of thermodynamics imply that such systems

must generate entropy; see [5] and references therein.

5. Conclusions

Krechetnikov’s and Marsden’s observation that “ubiquitous dissipation is one of the paramount

mechanisms by which instabilities develop in nature” [13] seems to us both broader and

deeper than the authors may have realized: almost all of what makes our everyday experi-

ence of the physical world interesting depends on irreversibility. We have illustrated this by

considering several mechanical and hydrodynamic instabilities from a different perspective

than the one commonly adopted in the dynamical systems literature. This approach clarifies

the role of dissipation, without entering into the details of the processes behind it. In the

case of the KH instability, for instance, all that we needed was the fact that when the bulk

of the air is at rest above the water the air tends to damp out the waves on the water’s

surface, as one may easily verify experimentally. From this and from some very general

symmetry principles, Zel’dovich arrived at a result that applies to ocean waves just as much

as to quantum fields incident on spinning black holes.
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Nonlinear dynamics and control applied to an aircraft in a 

longitudinal flight considering gusts of wind in flight 

 

 

Guilherme Pacheco dos Santos, Jose Manoel Balthazar, Frederic Conrad Jansen, 
Rodrigo Tumolin Rocha, Airton Nabarrete, Angelo Marcelo Tusset 

Abstract: Modern high-performance aircrafts operate regularly in-flight regimes where 

system’s nonlinearities influence directly into their dynamic response. This paper 

considers the study of a fighter aircraft which operates in high angles of attack of the 

wing. The mathematical modelling and numerical simulations were developed, 

becoming at a system of nonlinear differential equations that represent the dynamics of 

an aircraft in longitudinal flight, considering the effect of wind speed variation due to 

atmospheric turbulence in the dynamic response of the aircraft. The dynamic system 

consists in a two-degrees-of-freedom coordinate for the aircraft and a single-degree-of-

freedom for the variation of wind gusts. To understand the system we performed the   

0-1 test to determine if the system is chaotic or periodic, performed in relation to the 

speed and angle of attack of the aircraft F-8 ”Crusader”. The control is proposed having 

as control parameter the tail deflection angle and designed using the control method of 

State Dependent Riccati Equations (SDRE) with the purpose of stabilizing oscillations 

of angle of attack of the wing, considering critical regions of aircraft behaviour. 

Numerical simulations demonstrated the effectiveness of the proposed control strategy, 

where controller was able to respond quickly to retrieve the aircraft 

1. Introduction  

The analysis of dynamics in aircraft models has been of great relevance due to technological and 

scientific development in recent years. New approaches are proposed in different ways for the 

dynamics, control and stability of aircrafts. As an example, the fighter aircraft which is submitted to 

operate in great angles of attack and at high speeds, which may affect the dynamic response during the 

flight. In these situations, the response can be improved designing a controller based on the use of 

mathematical model that represents the aircraft motion and its dynamic nonlinearities. Therefore, this 

paper aims to analyze the control of the nonlinear dynamics of an aircraft in longitudinal flight at high 

angles of attack (above the stall condition), considering wind gusts as a source of excitation. As a study 

object, it is proposed the analysis of the dynamic behavior of the F-8 ”Crusader” considering the tail 

deflection angle as a control parameter and controlled by the technique of nonlinear feedback of State 

Dependent Riccati Equations (SDRE control).   
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2. Mathematical modeling  

2.1. Nonlinear dynamic model of the F-8 “Crusader” aircraft  

The considered forces and the coordinate system used to represent the aircraft motion are presented in 

Fig. 1. The drag force is disregarded in relation to the other parameters and the moment of inertia is 

taken to be proportional to the mass of the aircraft. 

 

Figure 1. Dynamic aircraft model [4]. 

 The lift force is separated into two components, wing and tail. The equations of motion are written 

in terms of four variables (𝑥 = (𝑢, 𝛼, 𝜃, 𝑞)), where u is the longitudinal flight speed, the angle of attack 

is represented by α, the pitch angle is θ, the aircraft pitch rate is given by q and V is the variation of 

wind speed (virtual wind tunnel) over time.  The basic equations of longitudinal motion are represented 

in the system of equations (1) [4]. 

𝑚(�̇� + 𝑤𝜃)̇ = −𝑚𝑔 sin 𝜃 + 𝐿𝑤 sin 𝛼 + 𝐿𝑡 sin 𝛼𝑡 

𝑚(�̇� − 𝑢𝜃)̇ = 𝑚𝑔 cos 𝜃 + 𝐿𝑤 cos 𝛼 + 𝐿𝑡 cos𝛼𝑡 

𝐼𝑦�̈� = 𝑀𝑤 + 𝑙𝐿𝑤 cos𝛼 − 𝑙𝐿𝑡 cos𝛼𝑡 − 𝑐�̇� 

(1) 

Where:  𝑚= mass of aircraft, 𝑢= velocity of aircraft in 𝑋 direction, 𝑤= velocity of aircraft in  direction, 

𝜃= angular displacement about Y axis, measured clockwise from the horizon as shown in Fig. 1, 

𝐼𝑟= moment of inertia of aircraft about Y axis, 𝐿𝑤= wing lift, 𝐿𝑡= tail lift, 𝛼= wing angle of attack, 

𝛼𝑡= tail angle of attack, 𝑀𝑤 = wing moment, 𝑙= distance between wing aerodynamic center and aircraft 

center of gravity, 𝑙𝑡= distance between tail aerodynamic center and aircraft center of gravity,  

𝑐�̇�= damping moment, 𝐶𝐿= coefficient of wing lift, 𝐶𝐿𝑡
= coefficient of tail lift, �̅�= dynamic pressure, 

𝑆= wing area and 𝑆𝑡= horizontal tail area.  
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The lift forces of the tail and wing are given by 𝐿𝑤 = 𝐶𝐿𝑤
�̅�𝑆 and 𝐿𝑡 = 𝐶𝐿𝑡

�̅�𝑆𝑡, respectively. In 

addition, the wing moment 𝑀𝑤 is a function of 𝛼, and the angle of attack of the tail 𝛼𝑡 is a function of 

𝛼 and 𝛿𝑒. Figure 2 shows the velocity components 𝑢, 𝑣 and 𝑤 along the axes 𝑋, 𝑌 and 𝑍 [10]. 

 

Figure 2. Models of speed components [10]. 

Where: 

𝑤 = 𝑢 tan𝛼 

�̇� = �̇� tan𝛼 + 𝑢�̇� sec2 𝛼 
   (2) 

Thus, rewriting Eq. (1) [10], it has Eq. (3) 

�̇� = −𝑢�̇� tan 𝛼 − 𝑔 sin 𝜃 + (𝐿𝑤/𝑚) sin 𝛼 + (𝐿𝑡/𝑚) sin 𝛼𝑡 

�̇� = �̇� cos2 𝛼 + (
𝑔

𝑢
) cos2 𝛼 cos 𝜃 − (𝐿𝑤/𝑢𝑚) cos3 𝛼 − (𝐿𝑡/𝑢𝑚) cos2 𝛼 cos2 𝛼𝑡 − 

−(�̇�/𝑢) sin 𝛼 cos 𝛼  

�̈� = 𝑀𝑤/𝐼𝑦 + (𝑙𝐿𝑤/𝐼𝑦) cos 𝛼 − (𝑙𝐿𝑡/𝐼𝑦) cos 𝛼𝑡 − (𝑐/𝐼𝑦)�̇� 

   (3) 

Replacing �̇� = −𝑢�̇� tan𝛼 − 𝑔 sin 𝜃 + (𝐿𝑤/𝑚) sin 𝛼 + (𝐿𝑡/𝑚) sin 𝛼𝑡 in Eq. (3), It has Eq. (4) 

[10]. 

�̇� = −𝑢�̇� tan 𝛼 − 𝑔 sin 𝜃 + (𝐿𝑤/𝑚) sin 𝛼 + (𝐿𝑡/𝑚) sin 𝛼𝑡 

�̇� = �̇� sin2 𝛼 + (
𝑔

𝑢
) sin 𝜃 sin 𝛼 cos 𝛼 − (𝐿𝑤/𝑢𝑚) 𝑠𝑖𝑛2 𝛼 cos𝛼 − (

𝐿𝑡

𝑢𝑚
) sin 𝛼 cos 𝛼 𝑠𝑖𝑛 𝛼𝑡 +

       +�̇� cos2 𝛼 + (
𝑔

𝑢
) cos2 𝛼 cos 𝜃 − (𝐿𝑤/𝑢𝑚) cos3 𝛼 − (𝐿𝑡/𝑢𝑚) cos2 𝛼 cos2 𝛼𝑡  

�̈� = 𝑀𝑤/𝐼𝑦 + (𝑙𝐿𝑤/𝐼𝑦) cos 𝛼 − (𝑙𝐿𝑡/𝐼𝑦) cos 𝛼𝑡 − (𝑐/𝐼𝑦)�̇� 

(4)  

Equation (4) represents a model of fourth-order longitudinal flight dynamics, in which the states 

are (𝑢, 𝛼, 𝜃, �̇�). As previously described, the lift force of wing 𝐿𝑤 is a function of 𝛼, and the lift of tail 

𝐿𝑡  is a function of 𝛼 and 𝛿𝑒. Two cubic polynomial functions were proposed by [4] to approximate the 

coefficient of lift of the wing and the tail. These functions are given by [4]: 

𝐿𝑤 = 𝐶𝐿𝑤
�̅�𝑆 = �̅�𝑆(𝐶𝐿𝑤

0 + 𝐶𝐿𝑤

1𝛼 − 𝐶𝐿𝑤

2𝛼3)  (5) 
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𝐿𝑡 = 𝐶𝐿𝑡
�̅�𝑆𝑡 = �̅�𝑆𝑡(𝐶𝐿𝑡

0 + 𝐶𝐿𝑡

1𝛼𝑡 − 𝐶𝐿𝑡

0𝛼𝑡
3 + 𝑎𝑒𝛿𝑒) (6) 

where 𝐶𝐿𝑤

0, 𝐶𝐿𝑤

1, 𝐶𝐿𝑤

2, 𝐶𝐿𝑡

0, 𝐶𝐿𝑡

1 and 𝐶𝐿𝑡

2 are constants and depend individually on the aircraft, 𝛿𝑒 

represents the deflection angle of the horizontal tail measured to the right of the 𝑋 axis and 𝑎𝑒 is the 

linear approximation of the effect of  𝛿𝑒 on 𝐶𝐿𝑡
.  

Since the horizontal tail of the F-8 “Crusader” is within the wing wake, the downwash angle ∈ 

(defined as the angle formed between the direction of the air flow entering the wing and the direction 

of the air flow as it exits the wing) was included in the determination of the angle of attack of the tail. 

Considering a linear approximation of ∈= 𝑎∈𝛼, the tail angle of attack is given by [10]: 

𝛼𝑡 = 𝛼−∈ +𝛿𝑒 = (1 − 𝑎∈)𝛼 + 𝛿𝑒   (7) 

Considering 𝑎∈ = 0.75, it has 𝛼𝑡 = 0.25𝛼 + 𝛿𝑒. As presented by [7], the approximation of the 

wing lift coefficient proposed by [1] is more realistic in stall regions and larger regions of stall than in 

Eq. (5), in this way, the wing lift coefficient is given by [10]: 

𝐿𝑤 = �̅�𝑆(𝐶𝐿𝑤

0 + 𝐶𝐿𝑤

1𝛼 − 𝐶𝐿𝑤

2𝛼3)𝑊 

𝑊 = {
1

[1 + (𝛼/0.41)60]
} 

(8) 

Substituting Eqs. (6), (7) and (8) into Eq. (4),  the longitudinal motion of the aircraft is represented 

by [10]: 

�̇� = −𝑢𝑞 tan𝛼 − 𝑔 sin 𝜃 +
�̅�

𝑚
{𝑆𝑊 sin 𝛼 (𝐶𝐿𝑤

0 + 𝐶𝐿𝑤

1𝛼 − 𝐶𝐿𝑤

2𝛼3) + 𝑆𝑡 sin(0.25𝛼 +

      +𝛿𝑒)[𝐶𝐿𝑡

0 + 𝐶𝐿𝑡

1(0.25𝛼 + 𝛿𝑒) − 𝐶𝐿𝑡

2(0.25𝛼 + 𝛿𝑒)
3 + 𝑎𝑒𝛿𝑒]}  

�̇� = 𝑞 + (
𝑔

𝑢
) cos𝛼 cos(𝛼 − 𝜃) −

�̅�

𝑚𝑢
cos 𝛼 {𝑆𝑊(𝐶𝐿𝑤

0 + 𝐶𝐿𝑤

1𝛼 − 𝐶𝐿𝑤

2𝛼3) −

      −𝑆𝑡 cos(0.75𝛼 + 𝛿𝑒) [𝐶𝐿𝑡

0 + 𝐶𝐿𝑡

1(0.25𝛼 + 𝛿𝑒) − 𝐶𝐿𝑡

2(0.25𝛼 + 𝛿𝑒)
3 + 𝑎𝑒𝛿𝑒]}  

�̇� = 𝑞 

�̇� = 𝑀𝑤/𝐼𝑦 − (𝑐/𝐼𝑦)𝑞 + (�̅�/𝐼𝑦){𝑙𝑆 cos 𝛼 (𝐶𝐿𝑤

0 + 𝐶𝐿𝑤

1𝛼 − 𝐶𝐿𝑤

2𝛼3)𝑊 −

       −𝑙𝑡 𝑆𝑡cos(0.25𝛼 + 𝛿𝑒)[𝐶𝐿𝑡

0 + 𝐶𝐿𝑡

1(0.25𝛼 + 𝛿𝑒) − 𝐶𝐿𝑡

2(0.25𝛼 + 𝛿𝑒)
3 + 𝑎𝑒𝛿𝑒]}  

(9) 

where 

𝑀𝑤 = 𝑙𝑡𝑚𝑔 cos 𝜃 − (𝑙 − 𝑙𝑡)(�̅�𝑆(𝐶𝐿𝑤

0 + 𝐶𝐿𝑤

1𝛼 − 𝐶𝐿𝑤

2𝛼3)𝑊) cos 𝛼 
(10) 

�̅� =
1

2
𝜌𝑉2 (11) 

where 𝜌 = atmospheric density. The data of the F-8 “Crusader” aircraft, considered for further 

numerical simulations, is presented in Table 1 [4]. 
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Table 1. Data of the F-8 “Crusader” [4] 

𝐶𝐿𝑤

0 = 𝐶𝐿𝑡

0 0 

𝐶𝐿𝑤

1 = 𝐶𝐿𝑡

1 4.0 

𝐶𝐿𝑤

2 = 𝐶𝐿𝑡

2 12 

𝑎𝑒 0.1 

𝑆 33.75 𝑚2  

𝑆𝑡 8.41 𝑚2  

𝐶𝑚𝑎.𝑐
 0 

𝑐̅ 3.53 𝑚 

𝐼𝑦 127512 𝐾𝑔𝑚2 

𝑙 0.06 𝑚 

𝑙𝑡 5.01𝑚 

Substituting Eq. (10) and considering the data of Table 1 in the system of Eqs. (9), the final form 

of the equations of motion of the aircraft’s longitudinal motion is given by Eqs. (12) [10]. 

�̇� = −𝑢𝑞 tan𝛼 − 10 sin 𝜃 +
�̅�

𝑚
{33.75𝑊 sin𝛼 (4𝛼 − 12𝛼3) + 8.41 sin(0.25𝛼 +

       +𝛿𝑒)[4(0.25𝛼 + 𝛿𝑒) − 12(0.25𝛼 + 𝛿𝑒)
3 + 0.1𝛿𝑒]}  

�̇� = 𝑞 + (
10

𝑢
) cos𝛼 cos(𝛼 − 𝜃) −

�̅�

𝑚𝑢
cos 𝛼 {33.75𝑊(4𝛼 − 12𝛼3) − 8.41 cos(0.75𝛼 +

       +𝛿𝑒) [4(0.25𝛼 + 𝛿𝑒) − 12(0.25𝛼 + 𝛿𝑒)
3 + 0.1𝛿𝑒]}  

�̇� = 𝑞  

�̇� =
50.1

127512
𝑚 cos𝜃 −

171.1125(4𝛼−12𝛼3)

127512
�̅�𝑊 cos 𝛼 −

50494.752

127512
𝑞 +

�̅�

127512
{2.025(4𝛼 −

       −12𝛼3)𝑊 cos𝛼 − 42.1341 cos(0.25𝛼 + 𝛿𝑒)[4(0.25𝛼 + 𝛿𝑒) − 12(0.25𝛼 + 𝛿𝑒)
3 +

       +0.1𝛿𝑒]}  

(12) 

2.2. Wind gusts model  

To simulate the wind action in a given direction, it is divided into two parts, a floating parcel and an 

average parcel. According to the proposed method, the average parcel is applied statically to the body 

exposed to the wind and the floating portion is divided into series of harmonic components with random 

phase angles. 

 The study is based on the Wind Speed Power Spectral Density [6-12]. For the floating part, it was 

used 𝑛 harmonic components, where it is proposed the excitation of the random part as a superposition 

of 𝑛 harmonic components, according to Eq. (13).  
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𝑆𝑔 =
1

𝑛
∑ 𝐶𝑘 cos(2𝜋𝑓𝑘𝑡)

𝑛

𝑘=1

 (13) 

Being that 𝑛 = 6 and the amplitude 𝐶 and frequency 𝑓 of each of the components are given through 

Table 2 [11]. 

Table 2. Data of the wind [11] 

𝐶 (𝑚) 𝑓 (𝐻𝑧) 

10.0 0.25 

14.0 0.40 

18.0 0.60 

22.0 0.80 

26.0 1.00 

30.0 1.19 

The velocity considering the two parts, fixed and floating, is given by Eq. (14) and the dynamic 

pressure in which is directly induced into the system of Eqs. (12) is given by Eq. (15). 

V(t) = 𝑉0 +𝑆𝑔 
(14) 

�̅� =
1

2
𝜌𝑉(𝑡)2 (15) 

2.3. Numerical Simulations  

The numerical simulations of the nonlinear dynamics of the aircraft considers the model of wind gusts 

as the excitation of the system. The system of Eq. (12) with Eqs. (14) and (15) will be integrated by 

using the 4th order Runge-Kutta method. The parameters to be considered, besides Tabs. 1 and 2, are 

considered 𝑉0 = 277.7 𝑚/𝑠, the initial mass of the aircraft given by 𝑚 =  9773 𝐾𝑔 and atmospheric 

density to 9144 meters of altitude 𝜌 =  0.4938. The initial conditions are 𝑢 = 257.7 𝑚/𝑠, 𝛼 =

0.24 𝑟𝑎𝑑, 𝜃 = 0.23 𝑟𝑎𝑑, 𝑞 = 0 𝑟𝑎𝑑/𝑠 and 𝛿𝑒 = −0.1 𝑟𝑎𝑑 [10].  

 Figures 3 show the time histories of all coordinates of the system that are the velocity of the aircraft 

in Fig. 3a, angle of attack in Fig. 3b, pitch angle in Fig. 3c and rate of pitch in Fig. 3d.  
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 (a)                                                                                     (b) 

 

(c)                                                                                      (d)   

Figure 3. Time histories of (a) aircraft’s speed, (b) angle of attack of the aircraft, (c) aircraft’s pitch 

angle, (d) aircraft’s rate of pitch. 

 

In order to analyse the behaviour of the system, the 0-1 test was performed to determine if the 

system is chaotic or periodic. The 0-1 test for chaos takes as input a time series of measurements and 

returns a single scalar value of either 0 for periodic attractors or 1 for chaotic attractors [3-14]. 

According to the methodology presented in [5], the 0-1 test was applied for the coordinates 𝑢 and 𝛼, 

resulting the values of 0.85 and 0.83 for each variable, respectively, demonstrating that the studied 

system is characterized as chaotic. As chaos is undesired to the aircraft for it may difficult the flight or 

even damage the aircraft, a control design is proposed and discussed in the next section. 

3. Proposed control  

The dynamic system defined by Eq. (12) with a control signal (𝑈) can be parameterized in first order 

equations and written in the state dependent coefficient (SDC) form [8]: 

�̇� = 𝐴(𝑥)𝑥 + 𝐵𝑈 (16) 

  A state feedback rather than output feedback is adopted to enhance the control performance. The 

non-quadratic cost function for the regulator problem is given by [13]: 
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𝐽 =
1

2
∫[𝑥𝑇𝑄(𝑥)𝑥 + 𝑈𝑇𝑅(𝑥)𝑈]𝑑𝑡

∞

𝑡0

  (17) 

where 𝑄(𝑥) is semi-positive-definite matrix and 𝑅(𝑥) positive definite. There are weighting matrices 

on the outputs and control inputs, respectively. For a pointwise linear fashion, the matrices are assumed 

as constant control coefficients. Assuming full state feedback, the control law is given by [9]: 

𝑈 = −𝑅−1(𝑥)𝐵𝑇(𝑥)𝑃(𝑥)𝑥    (18) 

The state dependent Riccati equation (SDRE control) to obtain 𝑃(𝑥), is given by [13]: 

𝐴𝑇(𝑥)𝑃(𝑥) + 𝑃(𝑥)𝐴(𝑥) − 𝑃(𝑥)𝐵(𝑥)𝑅−1(𝑥)𝐵𝑇(𝑥)𝑃(𝑥) + 𝑄(𝑥) =0  (19) 

Equation (16) is controllable if the rank of the matrix 𝑀 is 𝑛, as follows [13]: 

𝑀 = ⌊𝐵  𝐴𝑛𝑥𝑛𝐵 …  𝐴𝑛𝑥𝑛
𝑛 𝐵⌋ (20) 

The SDRE technique to obtain a suboptimal solution for dynamic control problem has the 

following procedure [13]: 

Step 1. Define the state-space model with the state dependent coefficient form as in Eq.(16). 

Step 2. Define 𝑥(0) = 𝑥0, so that the rank of 𝑀 is 𝑛 and choose the coefficients of weight matrices 

𝑄 and 𝑅. 

Step 3. Solve the Riccati Eq. (19) for the state 𝑥(𝑡). 

Step 4. Calculate the input signal from Eq. (18). 

Step 5. Integer the Eq. (16) and update the state of the system 𝑥(𝑡) with this results. 

Step 6. Calculate the rank of Eq. (20), if 𝑟𝑎𝑛𝑘 = 𝑛 go to step 4. If 𝑟𝑎𝑛𝑘 < 𝑛, using the last matrix 

𝐴 controllable obtained, and go step 4. 

3.1.  Deflection angle of the horizontal tail as control parameter   

The deflection angle of the horizontal tail is used as a control actuator to mitigate and recover the 

airplane from different flight situations and maneuvers that request a wing angle of attack higher than 

its stall angle. From the flight dynamics described in Eq. (12), some mathematical manipulations were 

carried out to obtain the state matrices of control, where it was consider: 

tan 𝛼 ≅ 𝛼 +
𝛼3

3
  

sin 𝛼 ≅ 𝛼 −
𝛼3

6
  ,  sin 𝜃 ≅ 𝜃 −

𝜃3

6
  and sin 𝛿𝑒 ≅ 𝛿𝑒 −

𝛿𝑒
3

6
 

cos 𝛼 ≅ 1 −
𝛼2

2
  , cos 𝜃 ≅ 1 −

𝜃2

2
  and  cos 𝛿𝑒 ≅ 1 −

𝛿𝑒
2

2
 

  (21) 
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where the terms 𝛼𝑛 , 𝜃𝑛, 𝛿𝑒
𝑛

 with 𝑛 = 2,3,4, … and 𝛼𝑛𝛿𝑒
𝑚

 with 𝑛,𝑚 = 1,2,3,4,… are eliminated, since 

these terms are small and they can be adopted by this simplification. In this way, it has: 

�̇� = 𝑢𝑞𝛼 − 10𝜃 

�̇� = 𝑞 + (
10

𝑢
)𝛼𝜃 + 8.41

�̅�

𝑚𝑢
𝛼 + 34.481

�̅�

𝑚𝑢
𝛿𝑒 

�̇� = 𝑞 

�̇� =
50.1

127512
𝑚 −

50494.752

127512
𝑞 −

42.1341

127512
�̅�𝛼 −

172.7498

127512
�̅�𝛿𝑒  

 (22) 

where 𝑢 = 𝑥1, 𝛼 = 𝑥2, 𝜃 = 𝑥3 and 𝑞 = 𝑥4, and for the control signal we have 𝛿𝑒 = 𝑈. From Eq. (16) 

and considering Eq. (22) the state matrices of control are given by 

𝐴(𝑥) =

[
 
 
 
 

0 𝑥1𝑥4 −10 0

10/𝑥1
2 8.41�̅�

𝑚𝑥1

10𝑥2

𝑥1
1

0 0 0 1
0 −0.000331�̅� 0 −0.396]

 
 
 
 

; 𝐵 = [

0
34.481

0
−0.001354�̅�

]   (23) 

Defining: 

𝑥∗ = [

𝑥1

0.04
𝑥3

𝑥4

] ; 𝑄 = 0.1 [

1 10 0 0
10 100 0 0
0 0 1 0
0 0 0 1

] and 𝑅 = [1000]   (24) 

where 𝑥∗ represents the desired states, 𝑄 and 𝑅 are the matrices of Eq. (17), used in the calculation of 

the matrix of Riccati Eq. (19).  

4. Results and discussion 

As previously proposed, the angle of attack will be varied with values above the stall angle to verify 

the efficiency of the controller applied in recovering and stabilizing the aircraft during the flight. In this 

way, some parameters are fixed for the simulations, being: 𝑉0 = 277.7 𝑚/𝑠, the initial mass of the 

aircraft given by 𝑚 =  9773 𝐾𝑔, atmospheric density to 9144 meters of altitude 𝜌 = 0.4938 and the 

stall situation occurs in the F-8 “crusader” with an angle of attack of  0.41 𝑟𝑎𝑑 (23,5° 𝑑𝑒𝑔). For a first 

case, the following initial conditions were considered for the system of Eq. (12) that are 𝑢 =

257.7 𝑚/𝑠, 𝛼 =  0.54 𝑟𝑎𝑑, 𝜃 = 0.53 𝑟𝑎𝑑, 𝑞 = 0 𝑟𝑎𝑑/𝑠, and for the case without control 𝛿𝑒 =

−0.1 𝑟𝑎𝑑 and 𝛿𝑒 = 𝑈 for the case with control. Figures 4 and 5 show the time histories of velocity, 

angle of attack, pitch angle and rate of pitch with control (With C. in red) and without the influence of 

the control (Without C. in blue). 
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   (a)                                                                                      (b) 

 

    (c)                                                                                    (d) 

Figure 4. Time histories with control (in blue) and without control (in red) of (a) aircraft’s speed, (b) 

angle of attack of the aircraft, (c) aircraft’s pitch angle, (d) aircraft’s rate of pitch. 

 

     (a)                                                                                     (b) 

 

   (c)                                                                                   (d) 

Figure 5. Time histories with control (in blue) and without control (in red) of (a) aircraft’s speed, (b) 

angle of attack of the aircraft, (c) aircraft’s pitch angle, (d) aircraft’s rate of pitch 
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 In Figure 4b is observed the efficiency of the control in recovering the aircraft of an angle of attack 

of 𝛼 = 0.54 𝑟𝑎𝑑 (30,1° 𝑑𝑒𝑔), above the angle of stall of the aircraft, which is  0.41 𝑟𝑎𝑑 (23,5° 𝑑𝑒𝑔), 

in a time less than 4 seconds, making possible for the aircraft to resume lift and maintain flight balance 

as can be observed in the Figs. 4a, 4c and 4d. For the second case, the aircraft is considered under an 

even more adverse environment for the flight, thus, it is considered the following initial conditions for 

the system of Eq. (12), 𝑢 = 257.7 𝑚/𝑠, 𝛼 = 0.78 𝑟𝑎𝑑, 𝜃 = 0.77 𝑟𝑎𝑑, 𝑞 = 0 𝑟𝑎𝑑/𝑠, for the case 

without control 𝛿𝑒 = −0.1 𝑟𝑎𝑑 and 𝛿𝑒 = 𝑈 for the case with control.In Figure 5b is observed the 

efficiency of the control in recovering the aircraft of an angle of attack of 𝛼 = 0.78 𝑟𝑎𝑑 (44,7° 𝑑𝑒𝑔), 

higher than the angle of stall of the aircraft of  0.41 𝑟𝑎𝑑 (23,5° 𝑑𝑒𝑔), in a time less than 4 seconds, 

making possible for the aircraft to resume lift and maintain flight balance as can be seen in Figs. 5a, 5c 

and 5d. These values of angle of attack were the maximum parameters that the controller was effective, 

values above of those presented in this second case were not effective in controlling the system. 

5. Conclusions 

The results presented in this paper indicated that the designed control can lead to significant 

improvements in aircraft performance. When placed in flight conditions with angle of attack above the 

stall situation and influenced by the model of wind gusts, is was shown that the control was able to 

soften and maintain the flight conditions in equilibrium for an angle of attack up to 90% above the stall 

angle. 

For future a work, there is the objective of modeling and coupling the transversal dynamical 

equations of the aircraft, using as an excitation a wind gust model with two-degrees-of-freedom, and 

thus design the control for the new considered system. 
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Transient dynamics of impacting beams with lost connection

Larysa Dzyubak, Atul Bhaskar

Abstract: The study of transient dynamics of impacting beams with lost connections is
associated with problems of chaotic  vibrations and noise  generation in  bolted and
riveted structures with loose fastening. Analytical solutions, describing the transient
dynamics of two cantilever beams under harmonic excitation with tips separated by
clearance, are obtained. They are presented as a superposition of particular solutions
that satisfy inhomogeneous boundary conditions, and the eigenfunctions series with
time  dependent  coefficients  and  homogeneous  boundary  conditions.  The  switch
conditions between impact and out-of-contact phases are based on expressions for
shear forces and relative position of beam tips. The system of the impacting beams
reveals complex dynamics, including chaotic behaviour. Transient dynamics surfaces,
time  histories  of  beams deflections,  impact  forces,  coefficients  of  restitution,  and
phase planes are presented. Intensive impacts of beam tips are observed in both cases
at zero and non-zero clearance.

1. Introduction 

Problems  related  to  vibro-impact  dynamics  of  structures  are  of  great  interest  in  mechanical  or

mechatronic engineering [1, 2]. The dynamics of two impacting beams with clearance nonlinearity

can be associated with the study of vibrating bolted and riveted structures with loose fastening, noise

generation and chaotic vibrations due to lose connections between structural elements as well as it can

be applied to design of impact dampers employing attached flexible beam/beams. In numerous cases

non-linear  effects  caused  by  clearance  may  lead  to  many  undesirable  effects,  in  particular  to

premature failure of structures. 

2. Mathematical model 

The transient dynamics of two impacting cantilever Euler-Bernoulli beams with tips separated by

clearance  Δ  is  depicted  schematically  in  Fig.  1.  The  tips  of  the  beams impact  when beam 1  is

harmonically excited by a force F(t). l1 and l2 are lengths of the beams, and δ1, δ2 are the initial uplifts

at the free ends. The two beams are not allowed to cross each other at their tips, that is  y1(l1,t)  ≥

y2(l2,t)-Δ always.  After the impact-induced phase,  they must  separate  in opposite  directions.  This

interaction of the two beams is governed by the partial differential equations
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Figure 1.  Impacting beams under harmonic excitation. 

a 1
2 ∂4 y1( x1 , t )

∂ x1
4

+
∂2 y1( x1 , t)

∂ t2
=0 , a 2

2 ∂4 y2( x2 , t)
∂ x2

4
+

∂ 2 y2( x2 , t)
∂ t2

=0 (1)

with different set of boundary conditions for the impact phase and for the out-of-contact phase. For 

the impact phase the boundary conditions are 

y1 (0, t )=0 , y2 (0, t)=0 , 
∂ y1(0, t )

∂ x1

=0 , 
∂ y2 (0, t)

∂ x2

=0 , (2)

M 1 (l1 , t )=E1 I1

∂2 y1(l1 ,t)
∂ x1

2
=0 , M 2(l2 , t )=E2 I 2

∂2 y2(l 2 , t )
∂ x2

2
=0 , (3)

Q1(l1 , t )=E1 I 1

∂3 y1(l 1 , t )
∂ x1

3 = Q2 (l 2 , t)+F (t )=E2 I2

∂ 3 y2 (l 2 , t )
∂ x2

3
+F ( t) , (4)

y1(l 1 , t )= y2 (l2 , t) − ∆ . (5)

Here Ei ,,Ii,,ρi,,Ai, are the Young modulus, area moment of inertia, mass density and cross-section of i-

th beam, a i=√E i I i / ρi Ai ,  i=1,2. Boundary conditions (2), (3) are identical for the impact and out-

of-contact phases.  Conditions (2) correspond to fixed both the position and slope of the cantilever

beams at points x1=0 and x2=0. Since no external bending moments are applied at the beam tips x1=l1

and x2=l2, the bending moments M1(x1,t) and M22(x2,t) at that locations are zero (conditions (3)). The

shearing force Q1(x1,t) at the tip x1=l1   is equal to the sum of the applied force F(t) and the reaction

force Q2(x2,t) at the tip x2=l2   (condition (4)). Condition (5) is the necessary and sufficient condition

for beam tips to be in contact. In the out-of-contact case boundary conditions (4) and (5) are replaced

by boundary conditions 
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(a)

(b)

Figure 2.  Normalized in-contact mode shapes  (a) Y1m of the 1st vibrating cantilever beam, (b) Y2m of

the 2nd vibrating cantilever beam.
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Figure 3.  Normalized out-of-contact mode shapes Y1n, Y2n of the vibrating cantilever beams. 

Q1(l1 , t )=E1 I 1

∂3 y1(l 1 , t )
∂ x1

3
=F ( t ) ,  Q2 (l 2 , t)=E2 I 2

∂3 y2 (l2 , t)
∂ x2

3
=0. (6)

The discretization of the system is based on the eigenvalue problem that gives infinite number of

beam natural frequencies, as well as mode shapes for the cases of impact phase and out-of-contact

phase. 

2.1. Impact phase 

Expressions of transient dynamics (functions y1(x1,t) and y2(x2,t)) are presented as a superposition of

particular  solutions  y1s(x1,t)  and  y2s(x2,t)  that  satisfy  to  inhomogeneous  boundary  conditions,  and

eigenfunctions series with time dependent coefficients and homogeneous boundary conditions: 

y1( x1 , t)=y1s ( x1 , t )+∑
m=1

∞

Y 1 m ( x1) qm ( t ) , y2 (x2 , t )=y2 s (x 2 , t )+∑
m=1

∞

Y 2m ( x2)qm ( t) (7)

Expressions for the particular solutions are obtained in the form: 

y1 s( x1 , t)=1
6

3 E 2 I 2 ∆ −l 2
3 F (t )

E2 I 2 l1
3− E1 I 1 l 2

3 (x1
3 −3 l1 x1

2) , y2 s (x2 , t )=1
6

3 E1 I 1 ∆ −l1
3 F (t )

E2 I 2l 1
3− E 1 I 1l 2

3 (x2
3 −3 l2 x2

2) . (8)

The corresponding natural frequencies of vibration ω1 m=ω2m ,  ω1 m=a 1 k1 m
2 ,  ω2m=a 2 k 2m

2  are

defined from the equation that follows by conditions for the existence of non-trivial solutions 
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(a)                                                                                  (b)

Figure 4.  Beam deflections surfaces depending on time and the lengths: (a) y1(x1,t) for the first beam;

(b) y2(x2,t) for the second beam at A=0.0005, w=40,  l1=0.1,  l2=0.12, δ1= δ2=0.0,

Δ=0.000011, Δt=0.0001, 0<t<0.07. 

E1 I 1 k1 m
3 (1+cosk 1m l1 cosh k1m l1)(cosh k2 ml 2sin k 2 ml2 −cos k 2m l2 sinh k2 ml 2) +

E2 I2 k 2m
3 (1+cos k 2m l2 cosh k 2m l 2)(cosh k1m l1 sin k1 ml1 −cos k1 ml1 sinh k1 m l1)=0. (9)

So, as it follows by the eigenvalue problem, the mode shapes in the impact phase are represented

by the expressions: 

Y 1 m=Am[sin k1m x1 −sinh k 1m x1+
sin k1 ml1+sinh k1 ml1

cos k1 ml1+cosh k1 ml1
(cosh k1 m x1− cosk 1m x1)] ,

Y 2m=Am

E1 I 1 k 1m
3 (1+cos k1 ml1 cosh k1 ml1)

E2 I 2 k2 m
3 (cosk 1m l1+cosh k1m l1)(1+cos k2 ml 2cosh k 2m l2)

×

[(cos k2 ml 2+cosh k2 ml2 )(sin k 2m x2− sinh k2 m x2)+(sin k2 ml 2+sinh k 2m l2)(cosh k 2m x2 −cos k 2m x2 )] .
(10)

The time dependent coefficients are defined as follows 

qm (t )=qm (0 )cos ωm t+ 1
ωm

q̇m (0 )sin ωm t+ 1
ωm

∫
0

t

ψ̈m (τ)sin (t −τ ) d τ . (11)

In Fig. 2 the normalized in-contact mode shapes  Y1m ,  Y2m of the first and the second vibrating

cantilever beams are depicted. 

2.2. Out-of-contact phase

In this case the motions of the beams don't depend on each other. Natural frequencies  ω1 n=a1 k 1n
2 ,
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ω2n=a2 k2 n
2  are defined for both beams from equations: cos (k i n l i )cosh ( k i n li )+1=0 , i=1,2. 

Expressions  for  functions  y1(x1,t)  and  y2(x2,t) are  presented  as  a  superposition  of  particular

solutions y1s(x1,t)= − F (t )(3 l1 x1
2− x1

3) /6 E1 I1  and y2s(x2,t)=0 that satisfy to inhomogeneous boundary

conditions, and eigenfunctions series with time dependent coefficients and homogeneous boundary

conditions: 

y1( x1 , t)=y1s ( x1 , t )+∑
n=1

∞

Y 1 n( x1)q 1n( t ) , y2 (x2 , t )=∑
m=1

∞

Y 2n( x2) q2 n( t ) , (12)

the mode shapes in the out-of-contact phase are represented by the expressions: 

Y 1i=A1i[sin k i n x1−sinh k i n x1+
sin k i n l1+sinh k i n l 1

cosk i n l1+cosh k i n l1
(cosh k i n x1 −cos k i n x1)] , i=1,2. (13)

The time dependent coefficients are defined as follows 

q1 n( t )=q1n (0)cos ω1 nt+
1

ω1n

q̇1 n(0 )sinω1n t+ 1
ω1 n

∫
0

t

ψ̈1 n(τ )sin ( t − τ )d τ , +

q2n (t )=q2 n(0 )cosω2n t+ 1
ω2n

q̇2n (0 )sin ω2n t . (14)

In Fig. 3 the normalized out-of-contact mode shapes Y1n, Y2n of the first and the second vibrating

cantilever beams are depicted. 

2.3. Switching between phases

The  transition  from  impact  phase  to  out-of-contact  phase  and  vice  versa  is  implemented  using

conditions that switch, involving construction of expressions for shear forces and relative position of

beam tips. 

out-of-contact phase → impact phase transition: 

y2 (l2 , t) − y1(l 1 , t )=Δ , d
dt

( y2 (l 2 , t )− y1(l1 , t ))⩾0 (15)

impact phase → out-of-contact phase transition: 

P (t )=0,  
dP ( t )

dt
⩽ 0,  where P (t )=E1 I 1

∂3 y1 (l 1 , t )
∂ x1

3
− F ( t) . (16)

After each transition from one phase to another,  the functions describing the time dependent

coefficients in the eigenfunctions series are updated. This update involves the solution of ordinary

differential equations with initial conditions corresponding to the end of the previous phase. 
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(a)

(b)                                                                          (c)

(d)

Figure 5.  Clearance between beams is equal to zero: (a) Beams deflections  y1(l1,t),  y2(l2,t)-Δ;

(b)Coefficient of restitution CR of impacting beams; (c) Impact-induced force Q; (d) phase

planes at A=0.002, ω=60,  l1=0.1,  l2=0.12, δ1= δ2=0.0, Δ=0.0, Δt=0.00001, 0<t<0.6. 
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(a)

(b)

Figure 6.  Chaotic motion (a) of the 1st and (b) of the 2nd impacting beam; Nearby trajectories y1(l1,t)

and y2(l2,t) diverge exponentially; δ0 is the initial uplift at the free end; A=0.001, ω=50,

l1=0.1,  l2=0.12, δ1=0 and δ1=10-6,  δ2=0.0, Δ=0.000011, Δt=0.00001, 0<t<0.8. 

3. Graphical representation of the analytical solutions obtained 

The  solutions  obtained  were  tested  on  numerous  examples  with  various  set  of  parameters.

Convergence  of  eigenfunction  series  as  well  as  convergence  of  the  solutions  in  time  were

investigated. Terms of eigenfunction series with time dependent coefficients evaluated at the tips in

the case of out-of-contact phase  y1s(l1,t),  Y1n(l1)q1n(t),  Y2n(l2)q2n(t)   (n=1,2,3,4,5) and in the case of

impact phase y1s(l1,t), Y1m(l1)q1m(t), y2s(l2,t), Y2m(l2)q2m(t) (m=1,2,3,4,5) were seen to be fast decreasing.
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Figure 7.  Timebefore impact start as function of (a) frequency and amplitude of external excitation

(ω, F);  (b) clearance and amplitude of external excitation (Δ, F).

The solutions with truncated eigenfunction series at n=4, m=4 and at n=5, m=5 are almost identical. A

necessary convergence of the solutions in time was reached by an appropriate choice of time steps.

So, the time step is chosen correctly if the solutions obtained with this time step and with the doubled

time step are identical. 

Several examples were considered for various set of parameters. Intensive impacts of beam tips

are observed in both cases at zero and non-zero clearance. In Fig. 4 the beam deflections surfaces vs

time and length for the first  beam and for  the second beam are shown. Fig.  5  represents beams

deflections  y1(l1,t),  y2(l2,t)-Δ,  coefficient of restitution of impacting beams and the impact-induced

force at amplitude and frequency of external harmonic excitation  A=0.002 and  ω=60, initial uplifts

δ1=δ2=0.0, zero clearance Δ=0.0, a1=0.7, a2=0.7, time instant is 0≤t≤0.6. Such time instant is chosen

for  convenience  to  observe  the dynamics of  the beams.  During  numerical  experiment  long  term

solutions were constructed for 0≤t≤30 and more. Fig. 6 shows exponential divergence of (a) nearby

trajectories y1(l1,t), (b) nearby trajectories y2(l2,t) with very close initial uplifts δ1=δ2=0.0 and δ1=10-6,

δ2=0.0. It is sure sign of chaotic vibrations of the beams. In Fig. 7 contours describing time before

impact start are plotted in control parameter planes (ω, F) and (Δ, F). Areas with hatch fill correspond

to vibrations without  any impact.  initial  uplifts  δ1=δ2=0.0,  clearance  Δ=0.000011,  a1=0.7,  a2=0.7,

time instant is  0≤t≤0.6. Such time instant is chosen for convenience to observe the dynamics of the

beams. 

4. Conclusions

The analytical solutions, describing the transient dynamics of two impacting beams with clearance

nonlinearity, were obtained in the form of eigenfunctions series with time dependent coefficients.

Several examples were considered for various set of parameters. Intensive impacts of beam tips are
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observed in both cases at zero and non-zero clearance. Transient dynamics surfaces, time histories of

beams deflections,  impact forces,  coefficients of restitution as well  as phase planes and Poincare

sections were presented.  Chaotic behavior of the beams was ascertained on the base of sensitive

dependence of the trajectories of motion on the initial conditions using procedure that similar to one

presented in [3]. Time before impact start level contours were obtained in various control parameter

planes (ω,  F), (Δ,  F) and (ω, Δ). Solutions obtained allow to construct long term vibrations of the

impacting beams. 
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Vibrations of a cantilevered viscoelastic beam of a fractional 

derivative type with a tip mass and subjected to the base motion 

 

 

Jan Freundlich 

Abstract: The objective of the present study is vibration of the Bernoulli-Euler 

cantilevered beam carrying a tip mass subjected to a base motion. The tip mass centre 

of gravity coincide with the point of attachment. The viscolestic properties of the 

beam material are expressed in terms of a fractional Kelvin-Voigt model. The 

Riemann –Liouville fractional derivative of order 0 < α < 1 is used. Exact 

relationships for natural frequencies and mode shapes of the beam are derived. The 

forced-vibration solution of the beam is derived using the mode superposition method. 

Steady-state and transient vibrations analysis are presented. Transient movement of 

the base is expressed by a oscillating function with linearly time-varying frequency. A 

convolution integral of the fractional Green’s function and forcing function is used to 

achieve the beam response. The Green’s function is formulated by two terms. The 

first term describes damped vibrations around the drifting equilibrium position, while 

the second term describes the drift of the equilibrium position. The dynamic responses 

are numerically calculated. A comparison between results obtained using the 

fractional and integer viscoelastic material models is presented. In the analyzed 

system, the influence the term describing the drift of the equilibrium position on the 

beam deflection is relatively low and may be neglected in some cases. Achieved 

results show that an increase in the derivative order causes a decrease in vibration 

amplitudes of the beam. 

1. Introduction 

Cantilever beams with tip mass appear frequently in engineering practice and it can be used as 

simplified models of more complex structures [3, 8, 22, 23]. These elements during their operation 

are often subjected to oscillating load that can lead to undesirable their vibration. Moreover, machines 

often work above their first or subsequent resonance and therefore they must pass through one or 

more critical speeds during starting or stopping them. Therefore, the problem of determining the 

maximum amplitudes and stresses in the system due to the forced vibrations during operating in the 

steady and transient state is very important [7, 21]. This problem has many applications in 

engineering analysis; some of these applications are vibrations that occur in moving cranes, masts or 

high buildings [8, 11, 17, 22, 23]. This issue was studied by many authors for various configurations 

of the analyzed system. However, in many studies, some important topics such as the effect of 

damping on the system dynamics have been omitted. It is well know that the viscoelastic properties of 
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material could have significant effect on dynamic behaviour of the analysed system. For this reason, 

an appropriate viscoelastic material model ought to be used in dynamic analysis. A large number of 

engineering materials exhibit a weak frequency dependence of their damping properties within a 

broad frequency range [1, 5, 7]. This property is difficult to describe using classical viscoelastic 

models which are based on integer order rate laws [6, 15]. In the recent years, fractional derivatives 

have been increasingly used in modelling viscoelastic material properties [12, 15, 20]. Application of 

fractional-order derivatives allows for more accurate modeling viscoelastic material properties within 

a broad frequency range [2, 6].  

2. Problem formulation 

A cantilever beam carrying an element of mass mp and moment of inertia IB at the tip is analysed. The 

mass centre of the  tip element is coincident with the beam end (Fig. 1). The uniform cross-section 

and mass density of the beam are assumed. The equation of motion of the analysed beam is derived 

using Bernoulli-Euler theory, i.e. neglecting rotary inertia and shear deformation. Beam motion is 

assumed to be in the xz plane and the gravitational force is perpendicular to the xz plane, therefore 

does not affect on the motion. The base motion is assumed only along z axis (Fig.1 ). Moreover, 

viscoelastic properties of a beam are described by the fractional Kelvin-Voigt model. This model is 

defined as follows [2, 15] 
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where (m-) is Euler gamma function and 0t   

For many real materials , the fractional derivative order  is commonly assumed to be in the range 

0 <  ≤ 1 [2, 6]  

Using assumptions above, the equation of forced transverse motion of the analysed beam is 

formulated as below 

),(
),(),(),(

2

2

4

4

4

4

txq
t

txw
A

x

txw

dt

d

x

txw
EJ 

















































 (3) 

 

162



 

Figure 1.   Schema of the analysed beam. 

where A is a cross-section area of the beam, J is a moment of inertia of the beam cross-section respect 

the neutral axis, ρ is material mass density of the beam, q(x,t) is external load acting on the beam, 

w(x,t) is transversal displacement of the neutral beam axis (Fig. 1), t is time, x is a longitudinal 

coordinate 

The following  boundary conditions for the cantilever beam are defined: the deflection and slope 

(angle of deflection)  at the clamped end equals zero, thus these boundary conditions at x = 0 can be 

expressed as 

0),0( tw     and   0
),0(






x

tw  (4) 

The boundary conditions at the end of the beam carrying the mass element are derived with the 

help of principles of change of momentum and angular momentum respect  point B (Fig. 1) [8, 13]. 

Thus 

Q
t

tw
m B

p 



2

2 )(   and  ),(
),(

2

2

tlM
t

tl
I bB 







 (5) 

where Q and  Mb are the shear force and bending moment respectively. 

The bending moment can be calculated as bellow (e.g. [10]) 
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Using relationships above, the boundary conditions at x = l are formulated as follows 
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where w(l,t) is transversal displacement of the neutral beam axis at the right beam end (Fig. 1) 

In the case of the base motion, the transverse displacement of the beam can be expressed as a 

sum of the rigid body and relative displacement [21]. In the case of  a displacement of a cantilever 

beam [21] 

),()(),( txwtwtxw rlst   (9) 

 where wst(t) is a base displacement and wrel(x,t) is displacement of the neutral beam axis relative the 

clamped end of the beam.  

Thus calculating appropriate derivatives of the expression Eq. (9), the equation of motion of the 

beam is expressed as 
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with transformed boundary conditions 
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The solution of equations Eq. (10-12) is sought in the form of its eigenfunction series expansion 

[16] i.e. 







1

)()(),(
n

nnrl xWtStxw  (13) 

where Sn(t) are time-dependent generalized coordinates, Wn(x) are the eigenfunctions of the system 

[16]. 

Eigenfunctions are obtained solving Eq. (11) with its right hand side equals 0 (homogenous 

equation) and homogenous boundary conditions. The solution is derived using separation of variables 

method i.e. 
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thus 
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Using well-know mathematical transformations (e.g. [7, 16, 21]) the following equations are 

derived 

0)()( 4  xWkxW IV  (16) 
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 2  

The solution of Eq. (16) has a form [16, 21] 

)()()cos()sin()( kxDchkxCshkxBkxAxW   (18) 

Using boundary conditions for the clamped end of the beam, it is derived that A = -C and B = -D. 

Employing this results and utilizing the boundary conditions for the beam at the end carrying the mass 

element, the system of equations for constant A and B is obtained 
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Above system of equations for constants A and B could be fulfil if the determinant of 

coefficients matrix of Eq. (19) equals zero. Equating the determinant of Eq (19) to zero, after lengthy 

and tedious arithmetical transformations, the characteristic equation of the considered system is 

derived 
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Roots of the equation above correspond to sequent  eigenvalues of the beam. Therefore, the 

eigenfunction can be expressed as 
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Therefore the n-th natural frequency of the analyzed beam n is calculated as in Eq. (17) 
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Indeterminate coefficients An can be calculated with the help of the orthogonality condition..The 

orthogonallity condition is obtained using standard procedure [13][16]. Thus using well-know 

arithmetical transformations of Eq.(16), this condition can be expressed as 
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or the companion orthogonality condition expressed as 
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where mn is the Kronecker delta. 

Calculated eigenvalues (Eq. (20) ) and eigenfunction (Eq. (21)) enables us to derive the forced 

vibration solution. Substituting Eq. (13) into Eq. (10) gives the following expression   
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where ml = A, F(t) is the right hand side of Eq. (10) 

Multiplying both sides of Eq (24) by the mass-normalized eigenfunction Ws(x) and integrating 

over the length of the beam, the relationship below is obtained 

dxtFxWdxxWmxWtS

dxxWxWtSdxxWxWtSEJ

l

s

n

l

nlsn

n

l
IV

nsn

n

l
IV

nsn

 

  































01 0

1 0

)(

1 0

)()(])()()([

])()()([])()()([



 
  (25) 

Arranging and grouping appropriate terms of Eq. (25) and using the orthogonality conditions 

Eqs. (22-23), after some arithmetical transformations, the following expressions is derived 
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Substituting the sought solution (Eq. (13)) into boundary conditions Eqs. (11-12) and multiplying 

both sides of the equations by normalized eigenfunction Ws(x), the expressions for boundary 

condition are as below 
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Since the expressions under the sign of the sum in the Eq. (26) are the same as left sides of the 

transformed expression for boundary conditions Eq. (27), finally  the expression Eq. (26) has the form 
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Assuming zero initial conditions and q(x,t) = 0 each generalized coordinate Sn(t) can be 

calculated as [18] 
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where Gn(t) is the fractional Green’s function corresponding to Eq. (28). This Green’s function 

comprises two terms, namely [14, 20] 
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The first term in expression above, K1n (Eq. 30) represents damped vibrations around the drifting 

equilibrium position, whereas the second term K2n describes the drift of the equilibrium position [14], 

[19]. The term  K1n could be calculated from formula given by Beyer and Kempfle [4][14],  
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The term K2n could be calculated using formula [4, 10] 
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In some systems and time regions, values K2n are considerably small  in comparison with the 

values of K1n [9, 14, 19], therefore can be omitted. 

For the of viscoelastic integer order Kelvin-Voigt material model the governing equation of the 

considered beam is described by equation [7,13, 21] 
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The solution of the equation Eq. (33) can be derived in similar manner as in the case of the 

equation with the fractional derivative. For each nth eigenvalue, the response could be calculated 

using Duhamel integral [7] [13] 
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3. Exemplary calculations and discussion 

The derived formulae above are used to examine effect of order of fractional derivative  on dynamics 

of the analysed system. Moreover, responses of the systems with fractional and integer order damping 

to support motion of the beam with tip element are compared. The obtained expressions Eqs (28-32) 

are used to compute responses of the system with the fractional derivative, whereas the responses of 

the system with the integer derivative are computed using Eqs (33-34). The computations are 

performed with the help of the “Mathematica” package. It is assumed that the beam is not subjected to 

any distributed load (q(x,t) = 0, Fig. 1) and the motion of the beam support is described by equation 

)2/sin()( 2
0 twtwst   (35) 

where w0, is a displacement amplitude,  is an angular acceleration 

The dimensionless dynamic deflection of the beam w/w0 versus the dimensionless time parameter 

 is computed for the point located at the beam end carrying the mass element (Fig. 1). The 

dimensionless time is defined as  = t/1, where 1 is the first natural frequency of the analysed  

beam Eq. (17). The calculations are performed for several values of the order of fractional derivative  

and coefficient  , angular acceleration  = 10 and 20 1/s2
. Calculations are performed for the beam of 

length 0.8 m, mass density 1190 kg/m3, cross-section area 510-4 m2, cross-section moment of inertia 
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1.66710-8 m4, Young’s modulus 3.2103 MPa, mass of a tip body 0.4 kg,  moment of inertia of a tip 

body 0.0002 kgm2. 

The calculated  maximum amplitudes  of the beam responses for several values of the order of 

the fractional derivative  and coefficient  are presented in Tables 1 and 2. The amplitude value 

shown in the tables is calculated for the first and second resonance regions.  

The obtained results have shown that when the order of the fractional derivative is increased, 

vibration amplitudes decrease (Tabs 1-2, Figs 1-2). Moreover, in the case of fractional derivative 

order  =0.25, the computed vibration amplitudes are greater for the second mode of vibration than 

for the first mode (Figs 1). In the case  =0.5 and  = 0.001[s], the maximum amplitude values are 

similar in the first and second region of resonance (Tab. 1 and 2). In the case  = 0.75 and 1.0 

vibration amplitudes not reveal increase in a value in the region corresponding to the second 

resonance (Fig. 2). 

 

Figure 2.   Beam response for  = 20 [1/s2],  = 0.2 [s]. 

Table 1. Maximal vibration amplitudes  = 10 [1/s2] 

 
First mode Second mode 

 = 0.1 [s]  = 0.2 [s]  = 0.4 [s]  = 0.1 [s]  = 0.2 [s]  = 0.4 [s] 

0.25 13.661 13.587 13.454 24.022 20.650 16.335 

0.50 13.501 13.167 12.661 13.386 7.958 4.131 

0.75 12.902 12.171 10.867 3.879 2.113 1.539 

1.00 11.795 10.220 7.846 1.287 1.138 1.136 
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Table 2. Maximal vibration amplitudes  = 20 [1/s2] 

 
First mode Second mode 

 = 0.1 [s]  = 0.2 [s]  = 0.4 [s]  = 0.1 [s]  = 0.2 [s]  = 0.4 [s] 

0.25 9.983 9.956 9.917 17.994 16.501 13.972 

0.50 9.752 9.751 9.508 8.448 8.103 4.815 

0.75 9.584 9.197 8.471 4.434 2.181 1.516 

1.00 8.930 8.010 6.537 1.355 1.142 1.136 

 
 

 

 

Figure 3.   Beam response for  = 20 [1/s2],  = 0.2 [s]. 

4. Conclusions 

In this work, the transient vibration of a viscoelastic cantilever beam made of a material 

described by the fractional derivative Kelvin-Voigt model and carrying a tip mass element for the 

case of base motion excitation is presented. The characteristic equation, modal frequencies, 

eigenfunction and orthogonality condition are achieved. Additionally, the solution for the case of the 

base motion excitation is derived. The solution is employed to calculate the transient beam responses 

to harmonic excitation by movement of the beam base. A linearly time-varying increasing function is 

assumed as the excitation frequency. The achieved results show that a decrease in the derivative order 

causes an increase in vibration amplitudes of the beam. For some values of the order of the fractional 

derivative  and coefficient  the amplitudes appeared in the region near the second resonance are 
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greater than for those obtained for the region of the first resonance. Analogous results were obtained 

for a simply supported beam analyzed in paper [9]. Actual parameters of the fractional Kelvin-Voigt 

model corresponding to the system analysis can be determined by conducting appropriate 

experimental researches. 
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Sensitivity investigations of the lane change maneuver  

with an automatic control system 

 
 

Mirosław Gidlewski, Leszek Jemioł, Dariusz śardecki 

Abstract: The authors’ model of a conceptual control system was presented at several 
papers. The aim of extensive simulation studies was: testing  of the controller 
operations, and evaluation of its sensitivity to changes of the vehicle and road 
parameters. This paper presents unpublished results of the studies. In simulation based 
sensitivity investigations special sensitivity indexes computed with using error signals 
support this analysis. Simulation-based sensitivity analysis provides more reliable 
conclusions on the controller’s performance and show us: what parameters should be 
identified on-line, and what accuracy of measured signals is sufficient. The paper 
presents information on the models, the method used, as well as example results of 
studies. The presented method of automatic control and the method of it’s 
investigations can be an attractive proposition for designers and researchers of active 
steering systems which enhance active safety of vehicles. 

1. Introduction 

Numerous research centres are working on autonomous vehicles. Such automated cars require special 

sophisticated controllers interacting with steering mechanisms and brakes. Note, that mechatronic 

systems directly related to steering mechanisms are very limited, as yet. They apply mainly to support 

the driver’s effort (servo-type systems), and to stabilize the vehicle’s lateral motion (Lane Assist 

Systems). The fully automatic steering of the vehicle’s trajectory concerns rather low speeds (e.g. 

Park Assist Systems), when the vehicle’s dynamics can be neglected. A synthesis of automatic control 

systems for high-speed maneuvering appears to be a difficult scientific and technological challenge. 

In high-speed conditions the car must be treated as a dynamical system functioning with variable 

operating conditions (because of variations of the tire-road friction characteristics, because of 

variations of the vehicle speed, because of variations of the vehicle loading, etc)). 

The lane change automatic control of is a key to automate more complex vehicle maneuvers (e.g. 

avoiding, overtaking etc.). The subject of automation of the lane change was undertaken by many 

researchers (eg. [2], [4], [12], [13], [14]). The scientific papers report problems of reference vehicle 

trajectory calculations, problems of synthesis control algorithms, problems of optimization of steering 

process, etc. In all such papers theoretical studies are supported by simulation investigations. The 

problems of automation of lane change processes are present in several authors’ papers (eg. [6], [7], 
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[8], [9], [10]) too. These papers focus on the lane change control process of the car which is driven in 

difficult operation conditions and scenarios (high speed, sleep road, suddenly appearing obstacle).  

The authors’ model of the conceptual control system (described in p.2) is based on a simple 

reference model of the lane change process. The controller algorithm is tested in extensive simulation 

studies with using, as a virtual object, a very detailed model of the motion dynamics of a medium 

truck. This paper presents unpublished results of the studies which can be treated as sensitivity 

investigations (described in p.3).  

2. Theoretical background  

The car driving on the straight road have to change the lane because of the sudden appearance of an 

obstacle. The lane change process refers to two variables – the displacement Y of the centre of mass 

and the angular position ψ of the car body in relation to the trajectory of the centre of mass. 

According to experiences as well as the control theory of time-optimal systems, the steering wheel 

angle signal δH should have the “bang-bang” form and the control process can be divided into two 

phases - transposition and stabilization (fig.1). 

 
Figure 1. The concept of “bang-bang” type steering and time decomposition of lane change control. 

The lane change controller is composed by a reference signal generator and two regulators acting 

in a switchable structure (fig.2). The generator provides three reference signals δHR(t) (bang-bang type 

waveform signal of the steering system angle), YR(t) and ψR(t) (waveform signals of the linear and 

angular vehicle positions computed for δHR(t) signal) which describe the lane change maneuver 

according to a simple reference model of the vehicle motion. The signals YR(t), ψR(t) are set-point 

signals for two Kalman - type regulators which correct the real steering angle signal δH(t) to minimize 

errors between measured and desired waveforms of the variables. In the first phase of the control 
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process, the transposition system is ON (activated) and the angular stabilization system is OFF 

(deactivated); in the second phase, these connections are reversed. The switching over takes place 

when the centre of vehicle mass reaches the position where the obstacle avoidance is ensured. 

 

Figure 2. Block diagram of the automatic control system. 

The generated signals, and regulators’ algorithms are based on a simple reference model. This 

model is linearized and reduced form of the well known "bicycle model" transformed from the local 

coordinate system (connected with the car body) to the global coordinate system describing the 

vehicle trajectory and its angular position. This is presented with details in authors’ papers [6], [9]. 

Note, that such simplified controller has to steer a real object having more complicated dynamic 

properties than the bicycle model. Therefore very extensive investigations are necessary to confirm 

controller’s algorithms. Such investigations can be done with using a lot of simulation tests when the 

simple controller model steers a very detail model of the virtual car for various model parameters. 

Variation of the parameters enables checking of the controller action also in difficult car - road 

interactions. Simulation-based sensitivity studies provide more reliable conclusions on the 

controller’s performance and show what parameters should be identified on-line, and what accuracies 

of measured signals are sufficient.  

For supporting such simulation based sensitivity analysis of the controller, comparative 

investigations can be supplemented by calculation of special sensitivity indexes [15] (fig. 3). 

 

175



 
 
 
  Figure 3. Schematic diagram of sensitivity analysis. Example index: 

 

 

The sensitivity index can express robustness of the controller for variation of a selected 

parameter. When the analysis concerns multiple parameters, the aggregation (by superposition) of the 

indexes is desirable and possible in many cases (hypothesis). This property can be explained for 

regular models without non-smooth nonlinearities. In such case the well known sensitivity model 

(based on sensitivity variables ξ [3]) is useful.  

When errors between nominal and changed models result from deviation ε between nominal and 

changed values of a some parameter, the sensitivity index WX can be expressed (using Taylor series) 

by an approximation formula, setting (x1(t)-x2(t))
2 ≈ ε2ξ(t)2. For multiple deviations of parameters ε1, 

ε2, …, the sensitivity index WX can be computed as a sum of subtotals for εi, where i = 1, 2,… . 

Note, the proposed method of aggregation seems to be attractive also for analysis of the 

sensitivity index WX when the model is strongly non-linear (even non-smooth) but regular (without 

non-stability and any another peculiar effects like bifurcations and chaos) and its calculation must be 

based on the simulation.  

This sensitivity analysis method is presented on selected representative examples in the paper. 

We look for an answer to the question: if the controller algorithm is robust enough due to 

disturbances (noise and offset) of the measured signals Y(t) and ψ(t) as well as due to errors of the 

reference model parameters.  

3. Simulation investigations  

Repeated simulation tests of the lane change controller have been carried out with using, as a virtual 

object, a very detail model of motion of a modified (by typical mechatronic elements and systems) 

medium truck STAR 1142 treated as 3D multi-body non-linear dynamic system [5] (fig.4). 
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Figure 4. Block diagram visualizing simulation tests of the control system. 

                                      δH - angle of steering system, Y - lateral transposition, ψ - yaw angle. 

The physical model of the vehicle contains 7 masses (car body, 2 axles, 4 wheels) joined by 

nonlinear spring/damper elements. The model has 20 degrees of freedom (6 DOF for the car body, 

2x4=8 DOF for two axles, 2x2=4 DOF for front wheels, 2x1=2 DOF for rear wheels). Wheel-road 

interactions are desribed by Dugoff formulas which ensure description of the vehicle motion for many 

different surfaces (also with a full wheel slip) [1]. The vehicle is going on a straight even road. 

The steering system model takes into consideration geometrical, kinetic as well as dynamical 

properties. In our studies the system has an additional equipment – an electrical servomechanism with 

planetary gears, regulators etc. Its digital controller basing on the simple reference model and signals 

delivered from sensors has to ensure an automatic control for lane-change maneuvers.  

Nonlinear equations of motion have been derived with using Boltzmann-Hamel method of 

modeling non-holonomic systems [11]. They are complemented by algebraic equations of constrains. 

These ODE/ADE equations are resolved in a simulation program written in FORTRAN. Based on the 

main program, a package of computational programs has been prepared. This software is useful for 

sensitivity studies. The programs can handle not only problems with various parameter inaccuracies, 

but also problems with disturbances applied to the measured signals. 

The model requires about 200 parameters (note, that the reference model in the controller 

demands only 7 parameters). Values of parameters were identified on the base of many experiments 

with the real object in static as well as dynamic conditions. Investigations of tires were done on 

a special drum stand and a dynamometer trailer. For identification of unknown parameters the 

simulation program were executed as an virtual object. Note, that in these investigations, a method of 

tuning of the parameters is compatible to the method used for the sensitivity analysis. Thank to many 

investigations the model of the STAR 1142 lorry were verified with success. 

 DISTURBANCES 

MODEL PARAMETERS 
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Simulation tests have been repeated for various inequalities between the nominal and changed 

models. In this paper we present only example results of such investigations. They concerns two 

groups of inaccuracies: 

� Errors in the measurements of the variables (noise plus offset signals) that represent the current 

vehicle’s position on the road . Thus, the signals YD(t) , ψD(t) sent to the controller are  

YD(t) = Y(t) + YNOISE NOISE(t) + YOFFSET ,    ψD(t) = ψ(t) + ψNOISE NOISE(t) + ψOFFSET ,  where:  

YNOISE , ψNOISE  – amplitudes of the noise signals (here YNOISE = 0.2 m, ψNOISE  = 3 deg), 

Noise(t) – standard white noise signal (selected amplitude = 1), 

YOFFSET  , ψOFFSET – constant values (here YOFFSET= ± 0.1 m , ψOFFSET = 0.5 deg ). 

Example graphical interpretation of the measurements of disturbed signals is shown in Fig.5.  

 

        

 
Figure 5. Interpretation of errors in disturbed signals (here for YD(t). 

In the nominal model, no measurement errors is assumed, while they occur in the modified model.  

� Errors in estimations of parameters, like masses, wheel-road friction coefficients, speed, etc. In the 

presented studies only two parameters were changed (total mass of the car M and speed of the car V) 

    M = M0 + ∆M ,     V = V0 + ∆V , where:  

M0 , V0 – nominal values of parameters (here: M0  = 11300 kg ,  V0 = 19.4 m/s (~70 km/h)), 

∆M = aM M0,  ∆V = aV V0 – errors of parameters (in modified model).  Here: aM = ±0.05, aV = ±0.05. 

Example results of investigations are presented below (fig.6, 7, 8). In all these simulations the set 

point steering signal was the same. In all these simulations operation conditions have been rather 

difficult for the car (speed about 70 km/h, wet asphalt road). 

 

 

Figure 6. Set point signal (bang-bang type) of the front wheels turning angle. 
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Figure 7. Results of simulations when measured signals have disturbances (noise and offset). Here all 

model parameters have no errors.  

Notation: Dotted lines for signals from the reference signal generator, 

Solid lines for nominal model (output signals without errors), 

Dashed lines for changed model (output signals with errors). 
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Figure 8. Results of simulations when parameters M and V have errors (±5%). Here measured signals 

have no disturbances. 

Notation: Dotted lines for signals from the reference signal generator, 

Solid lines for nominal model, 

Dashed lines for changed model. 

5. Conclusion 

The paper has delivered information on sensitivity simulation based investigations of an automatic 

vehicle steering system which realizes the lane change maneuver. This simple system has been tested 

with using very complicated model of the track treated as a virtual object of the control. 

The presented simulation results show that the lane change maneuver has been successfully 

carried out, in spite of the measurement disturbances (noise and offset) of the vehicle position signals 

Y(t) (lateral displacement) and Ψ(t) (yaw angle). The results of simulations performed with an 

assumed error level in estimation of the model parameters M (total mass) and V (vehicle speed) also 

led to the similar conclusion. Satisfactory results have been observed when the controller parameters 
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were properly chosen for given nominal values of operating conditions in the reference model, and 

the signals’ offset and noise were not too large. After increasing the measurement offset to a higher 

level (greater then +/- 1 deg) and the noise to a higher amplitude (greater then 3 deg.) one observed 

for selected operating conditions (lightly loaded lorry and very wet road), that the vehicle was losing 

directional stability. At the small offset and the low noise levels in the measurement signals, despite 

wide range changes of operating conditions of the vehicle, automatically operated vehicle was able to 

change lane without losing directional stability. The same conclusion could be formulated due to 

errors of model parameters estimation.  

Values of the sensitivity indexes show that in these investigations their aggregation by 

superposition is possible. Unfortunately this remark concern only selected combinations of 

disturbances and errors. 

Finally, it can be stated that the proposed control system have proven to be enough robust to the 

measurement errors and varying operating conditions when the differences between nominal and 

changed model are not too large. Determination of these areas requires next extensive simulation tests 

for many operating conditions. 

References 

[1] Andrzejewski, R.; Awrejcewicz, J.: Nonlinear Dynamics of Wheeled Vehicle. Springer New 
York, 2003. 

[2] Bevan, G. P.; Gollee, H.; O’Reilly, J: Trajectory generation for road vehicle obstacle avoidance 
using convex optimization. Proceedings of the Institute of Mechanical Engineers Part D – 
Journal of Automobile Engineering, Vol. 224 (4), 2010. 

[3] Frank, P. M.: Introduction to system sensitivity theory. Academic Press, 1978. 

[4] Gao, Y.; Lin, T.; Borrelli, F.; Tseng, E.; Hrovat, D.: Predictive control of autonomous ground 
vehicles with obstacle avoidance on slippery roads. Dynamic Systems and Control Conference, 
2010. 

[5] Gidlewski, M.: Model of a dual axis heavy truck for handling studies in complex road 
situations. 11th European Automotive Congress, Budapest 2007. 

[6] Gidlewski, M.; śardecki, D.: Automatic Control of Steering System During Lane Change. 
Proceedings of ESV’2015 Conference in Gothenburg, Sweden, available on the Internet. 

[7] Gidlewski, M.; Jemioł, L.; śardecki, D.: Simulation investigation of the dynamics of the process 
of sudden obstacle avoiding by a motor vehicle. The Archives of Automotive Engineering, 73 
(3), 2016. 

[8] Gidlewski, M.; śardecki, D.: Investigation of vehicle motion control process due to the 
linearization of the lateral dynamics reference model used in the controller. Mechanics 
Research Communications, 82, 2017. 

[9] Gidlewski, M.; Jankowski, K.; Muszyński, A.; śardecki, D.: Vehicle Lane Change Automation 
with Active Steering – Theoretical Studies and Numerical Investigations. SAE Paper 2017-01-
1555, 2017. 

181



[10] Gidlewski, M.; śardecki, D.: Simulation investigations of lane change process with automatic 
steering system. Proceedings of 25th ESV’2017 Conference in Detroit, USA, available on the 
Internet. 

[11] Jarzębowska, E.: Analytic Mechanics. Oficyna Wydawnicza. Politechniki Warszawskiej 
(Publishing House of the Warsaw University of Technology), Warszawa 2003 (in Polish). 

[12] Moshchuk, N.; Shih-Ken Chen; Zagorski, C.; Chatterjee A.: Path planning for collision 
avoidance maneuver. Proceedings of the ASME 2013 International Mechanical Engineering 
Congress and Exposition IMECE2013, San Diego, California, 2013. 

[13] Park, J. M.; Kim, D. W.; Yoon, Y. S.; Kim, H. J.; Yi, K. S: Obstacle avoidance of autonomous 
vehicles based on model predictive control. Proceedings of the Institute of Mechanical 
Engineers Part D – Journal of Automobile Engineering, Vol. 223, 2009. 

[14] Shiller, Z.; Sundar, S.: Optimal Emergency Maneuvers Of Automated Vehicles. Research 
Reports California Partners for Advanced Transit and Highways (PATH) – UC Berkeley, 1996. 

[15] śardecki, D.: The λ-sensitivity analysis and its application in simulation studies of dynamical 
systems. Archiwum Automatyki i Telemechaniki: 1980, XXV (3), 335–354 (in Polish). 

 

Mirosław Gidlewski, PhD. Eng.: Automotive Industry Institute (PIMOT), Jagiellonska Street 55,  
03-301 Warsaw, University of Technology and Humanities in Radom, Malczewski Street 29, 26-600 
Radom, Poland (m.gidlewski@pimot.eu, miroslaw.gidlewski@uthrad.pl). 

Leszek Jemioł, MSc. Eng.: University of Technology and Humanities in Radom, Malczewski Street 
29, 26-600 Radom, Poland (leszek.jemiol@uthrad.pl). 

Dariusz śardecki, Prof.: Military University of Technology (WAT), Kaliski Street 2, 00-908 Warsaw, 
Automotive Industry Institute (PIMOT), Jagiellonska Street 55, 03-301 Warsaw, Poland 
(d.zardecki4@upcpoczta.pl, dariusz.zardecki@wat.edu.pl). 

182



1 
 

Stability of a rectangular plate under dynamic load generated  

by unhomogeneous magnetic field 

 

 

Piotr Kędzia, Krzysztof Magnucki, Mikołaj Smyczyński, Iwona Wstawska 

Abstract: The subject of the theoretical study is a rectangular plate under dynamic in-plane load 

generated by magnetic field. The plate is made of polyethylene (PE) and on the two opposite edges  

of the plate there are pockets filled with ferrofluid. Both pockets are the same fixed width  

and are placed inside the magnetic field coils systems. These systems are build of Helmholtz  

and Golay coils and generate nonhomogeneous magnetic field. Homogeneity and strength  

of magnetic field depends on the radii of the coils. Magnetic field acts on ferrofluid in the pockets  

and induce load on the two opposite edges of the plate. If the magnetic field is more homogeneous, 

the compression load is induced. In other cases tensile local load occurs (compression load 

dominates). The analytical model of the plate with consideration of nonlinear geometrical relations  

is formulated, inclusive of the kinetic energy, elastic strain energy and the work of the load.  

The equation of motion is derived based on the Hamilton’s principle. The critical load of the plate  

is described for the static load and the equation of motion for dynamical problem is numerically 

solved. The equilibrium paths for the example plate are determined for different configurations  

of the coils systems. 

1. Introduction 

Plates are flat structures whose thickness h is small compared to the other in–plane 

dimensions. They have many applications in engineering fields. Composite materials have 

gained many advantages over their metal counterparts in engineering applications,  

in particular aerospace engineering. On the other hand, plates are quite often subjected  

to in–plane external loads which may cause buckling. Such loadings may occur at different 

times under in–service conditions, necessitating a design approach which is capable  

of taking into account these various loading conditions [1]. The determination  

of the minimal value of critical load corresponding to the certain mode of plate buckling 

requires the conduct of the general solution, without the limitation to only axisymmetric 

mode of buckling [2]. 

The behaviour of plates under compressive loads has been studied for many years. Lateral 

pressure causes out–of–plane displacements in a mode that is one half wave in both directions. These 

types of deflections will decrease the  strength of the plate whenever they coincide with the main 

buckling mode. However, when this is not the case the presence of lateral pressure  

can in fact increase the ultimate strength of the plate [3].  
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Stability problem of rectangular plates was presented by various amount of researchers. Chen  

et al. [4] described stability of parametric vibrations of laminated composite plate subjected  

to arbitrary periodic loads. The in–plane load were supposed to be a combination of periodic biaxial 

and bending stress. Dynamic buckling of isotropic simply supported plates subjected to in–plane load 

was investigated by Petry and Fahlbusch [5]. The dynamic behaviour of the plate was essentially 

influenced by the loading function, the duration of impact and the geometric imperfections. Dynamic 

stability of composite plates subjected to periodic in–plane load was studied by Dey and Singha [6]. 

The formulation included the effects of transverse shear deformation, in–plane and rotary inertia. 

Dynamic instability of composite plates subjected to non–uniform in–plane loads was presented  

by Ramachandra et al. [7]. The static and the dynamic component of the applied periodic in–plane 

loading were assumed to vary according to either parabolic or linear distributions. The analysis  

of  nonlinear vibration of an initially stressed laminated plate was conducted by Chen et al. [8].  

The nonlinear governing equations were derived using a higher–order theory approach. Chen et al. [9] 

also discussed numerical solutions to hybrid laminate plates in a general state of non–uniform initial 

stress based on various plate theories. The governing equations were used to investigate the natural 

frequencies and buckling loads of hybrid plates subjected to initial stresses. The effects of various 

parameters on the vibration frequency and buckling coefficient were examined. Numerical analysis  

of dynamic buckling of rectangular plates subjected to intermediate–velocity impact was carried  

out by Cui et al. [10]. Dynamic buckling and a dynamic yielding critical condition were formulated, 

and the corresponding values of critical dynamic loads were estimated. Dynamic analysis of stability 

of metal foam rectangular plate was performed by Dębowski et al. [11].  Mechanical properties  

of the foam varied continuously through plate of the thickness. Nonlinear hypothesis of deformation 

of plane cross section was formulated. Dynamic buckling of thin–walled composite plates  

with varying widthwise material properties was described by Kubiak [12]. The plate was subjected  

to in–plane pulse loading. The plate was made of orthotropic (fibre composite) material in which  

the principal directions of orthotropy was assumed to be parallel to the plate edges. Wang and Lee 

[13] investigated dynamic stability of ferromagnetic plate under transverse magnetic field  

and in–plane periodic compression. The effects of magnetic damping and excitation frequency  

of the in–plane periodic compression on the regions of stability were studied. Global and local 

buckling of sandwich circular and beam–rectangular plates with metal foam core was studied  

by Jasion et al. [14]. Mathematical model of displacements, which included a shear effect,  

was presented. Static and dynamic stability of an axially compressed five-layer sandwich beam  

was presented by Smyczyński and Magnucka–Blandzi [15]. The mechanical properties were various 

through the thickness of the beam and depended on the material of each layer. The analysis  

of buckling of functional graded polymeric sandwich panel was conducted by Uysal and G  ven [16]. 

Buckling problem in polymer sandwich structures subjected in–plane shear force, in–plane normal 
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compression force, and out–of–plane distributed load according to the two different boundary 

conditions were considered. Homogeneity of magnetic field influence on buckling of three–layer 

polyethylene plate was discussed by Kędzia and Smyczyński [17]. 

The paper is devoted to a rectangular plate under in–plane compression load generated  

by magnetic field (Fig. 1). The dimensions of the plate are a (length) and b (width).  

 

 

Fig. 1. The scheme of the plate and compression load. 

 

There are two pockets on each of the two opposite edges of the plate, for x = 0 and x = a. These 

pockets with porous structure are filled with ferrofluid. Cells in the pockets avoid to flow  

the ferrofluid along the edge. Magnetic field coils are placed near the ferrofluid. The coil system 

consists of two magnetic field coil subsystems. The first one (MC–main coil) generates homogeneous 

magnetic field in the volume of the pockets. The second one is a gradient coil (GC) that generates 

nonhomogeneous magnetic field. This coil is also called Golay coil. These systems are build  

of Helmholtz and Golay coils and they both generate nonhomogeneous magnetic field. Coils  

are presented schematically as loops in Fig. 2a and Golay coil is shown in Fig. 2b.  

 

a) 

 

b) 

 
Fig. 2. (a) Arrangement of coils with respect to plate, (b) Golay coil with arc radius r. 

 

 

Intensity   
 of load is expressed by Kelvin force applied per unit volume of ferrofluid: 
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coil (index 0) and from GC coil (index 1). 

2. Analytical model  

The analytical model of the plate was formulated with the use of classical Kirchoff–Love 

hypothesis. Displacements in the x and y directions were formulated: 
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where  yxw , is the deflection of the plate.  
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Elastic strain energy, with taking into account linear physical  relation – the Hooke’s law, as well  

as nonlinear geometric relations takes the form: 
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where: ,E - material constants, st - thickness of the plate, 
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Kinetic energy of the plate is as follows: 

dxdy
t

w
tT

a b

ssk   













0 0

2

2

1
  , (7) 

where s  – density of the material, t  – time.  

Work of load: 
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where 
o
xN is the intensity of load. 

Equations of motion are based on the Hamilton’s principle: 
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The equation of motion is in the following form: 
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The intensity of load 
o
xN  depends on the radius of Golay coil arcs. The higher values of the radius  

of GC, the more homogeneous gradient of magnetic field appears in the same volume (if the radius  

of GC strives to infinity, we can assume the presence of homogeneous magnetic field in the pockets). 

The change of the radius of saddle coils also influences on the strength of the gradient of the magnetic 
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field (the higher radius of coils, the weaker magnetic field appears in the volume). The shape of the 

gradient magnetic field along y–axis is presented in Fig. 3.  

 
Fig. 3. The load intensity distribution. 

 

Letter G with a number indicates the radius of GC. The base is G10 with the radius of the coil equals 

b/2. G04, G08, G12 and G16 correspond to the radius of 40%, 80%, 120% and 160% of initial radius 

of G10 respectively.    

3. Static and dynamic loads  

Equation of equilibrium of the plate is:  
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We assume a following function: 
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where 
m

a
a 1 , 

n

b
b 1 , nm, – natural numbers.  

Substituting (12) into equation (11), with the use of the Galerkin method, allows to calculate  

the values of critical forces: 
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Coefficient coefcrk _  depends on the GC radius and is presented in Fig. 4. 
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Fig. 4. Coefficient of critical force. 

 

Equation of motion is obtained by substituting function (12) into equation (10) and by using  

the Galerkin method.  
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Equation (14) is solved with the use of the Runge–Kutta method with automatic step control  

for the following data: 

 polyethylene plate  
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32

3

m

kg

mm

N
Emmtmmbba ss    

 ferrofluid and magnetic field (data for gradient G10) 
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For varying load   tNtN
o

x 1 , dynamic equilibrium paths obtained from the calculations,  

are presented in Fig. 5. 
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Fig. 5. Dynamic equilibrium paths. 

 

In case of low values of the GC radius (G04 and G 08), the equilibrium paths, with similar values  

of critical forces, are similar to each other. However, the shape of the load is different. It is affected  

by the presence of partially occurring tensile load for G04. 

Conclusions 

In this paper, the analytical model of rectangular plate with nonlinear geometrical relations  

is presented. On the opposite edges there are pockets filled with ferrofluid placed in magnetic field 

generated by the system of Helmholtz and Golay coils. Magnetic fields affects the ferrofluid  

by inducing the compression force (and locally–tensile load) which is various along pockets.  

 Critical forces are calculated for the corresponding values of load. In general, the smaller 

Golay coils the lower value of  critical load appears, with the exception of the beginning  

of the calculations, when tensile load locally increases the values of critical load. 

  Dynamic equilibrium paths are determined for different values of the radius of Golay coils.  

  The values of critical force increases rapidly for coils with the radius higher than half  

of the width of the plate. For smaller radius of the GC, changes with the values of critical 

force are lower as well. 

  Vibrations in dynamic equilibrium paths starts earlier for higher radius of GC, for lower 

radius paths are overlapping. For gradient coil which generates more homogeneous gradient 

magnetic field, the vibrations has almost the same amplitude. For coils with worse 

homogeneity (Golay coils with lower value of radius) the vibrations are unstable. 
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Application of numerical simulation in thermal cycle acquisition 

errors identification 

 

 

Tomasz Kik, Bernard Wyględacz 

Abstract: In acquisition of highly variable thermal cycles present in welding processes 

errors caused by plethora of physical phenomena impact drastically measured data, 

especially when heat cycles must be measured not on material surface. This mistakes 

cause analysis of recorded thermal cycles often lead to false conclusions. Modern 

non-linear FEM software like SYSWELD, enables accurate thermos-metallurgical 

calculations of highly variable thermal cycles. Aim of this paper is identification of 

errors caused factors like: hole drilled to place thermocouple on set depth, wrong 

contact point and plane of thermocouple, limited contact patch between material and 

condenser welded thermocouple. Additionally, solutions for systematic error 

correction in FEM model will be proposed that could enable comparison between 

measured and calculated thermal cycles. 

1. Introduction 

Weldability is important term in metallic material science. By definition it is: “Metallic material is 

considered to be susceptible to welding to an established extent with given processes and for given 

purposes when welding provides metal integrity by a corresponding technological process for welded 

parts to meet technical requirements as to their own qualities as well as to their influence on a 

structure they form [1]. Thermal cycle acquisition, calculation and analysis is one of most important 

aspects of understanding welding process and underlying problems causing poor weldability [2].  

1.1. Thermal cycle acquisition and errors 

Most widespread method of thermal cycle recording is use of thermocouples and digital acquisition 

methods. To gather most valuable data often surface measurements are not sufficient. To perform 

thermal cycle measurement from quasi-inside of material small hole is drilled and thermocouple is 

placed on the bottom of said hole and secured in place by condenser welding.  The physical 

measurement to digital data result path enables us to divide errors during acquisition into 2 main 

categories: 

• errors on physical property-voltage signal transformation – there are mostly connected to 

faulty placement or fabrication of thermocouples, to small contact patch between spherical 

thermocouple and metal surface, changes in sample properties caused by drilled hole. 
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• digital acquisition errors – there are wildly known and caused by discretization in time and 

value, and non-ideal characteristic of digital measurement circuits.  

Based on prior work of authors much more impacting and much harder to eliminate are errors of the 

first group [2-7]. 

1.2. Welding numerical simulation 

On the present market there is a lot of software solution, which are more or less suitable for numerical 

simulations of welding processes. In the presented works SYSWELD – product of ESI Group was 

used. SYSWELD covers now the complete area of non-linear Finite Element Method (FEM) analyses 

such as non-linear heat conduction, non-linear geometry of large distortions, isotropic and kinematic 

material hardening or metallurgical transformations. Connection of many different phenomena 

present during welding process results in very high precision of simulations results and their 

coherence with real welding results. It is possible to simulate welding with or without filler material 

using heat sources with physical contact (friction stir welding, resistance welding) and without 

contact (electric arc, laser and electron beam). Similarly wide is a range of possible analyses of heat 

treatment. It is possible to analyse for example: tempering, hardening, carburizing, nitriding. Input 

data for calculations are the same as data in the Welding Procedure Specification prepared and also 

based on the typical knowledge and experience of welding engineers and moderate from the FEM 

area. Important is fact, that results of these analyses are not only the temperature distribution fields 

but also metallurgical phases, distortions, stresses and hardness distribution [4,8]. 

To ensure high level of results accuracy and real results compatibility, very important are well 

prepared material databases. In SYSWELD mechanical properties are defined as dependent on the 

temperature and metallurgical phases mixture. Outside of the thermo-mechanical data such as heat 

transfer coefficient, specific heat/enthalpy, density, Young modulus, Poisson’s ratio, Yield strength or 

strengthening important are also metallurgical properties.  SYSWELD takes into consideration 

metallurgical phase changes, austenite transformation kinetic during heating (TTA diagram) and 

ferrite, bainite and martensite transformation during cooling (CCT, TTT diagrams) [3,4]. 

Except the well prepared material database, also very important is a proper definition of heat 

source model. From FEM analysis point of view, a heat source is modelled in SYSWELD by a 

volume density of energy applied to elements Q(x,y,z), which move along the welding trajectory. All 

process parameters are included in definition of heat source: energy, efficiency coefficient, torch 

shape, etc. FORTRAN type function used for description heat source depends on current location of 

and time. It consists on the mathematical description of the energy distribution and the welding 

trajectory.  
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 “Volumetric density of energy” defined by this FORTRAN function on the current point 

depends on the distribution of density around the centre of the source and trajectory. In SYWELD 

except our own heat source definition, we have three predefined sources shapes: 2D Gauss, double 

ellipsoid (also called Goldak’s heat source) and 3D cone [4,8].  

A volume heat source defined by a double ellipsoid is advised to simulate welding processes as a 

MIG and TIG. But thanks to thermal load area shaping it is also possible to model other methods. As 

a standard, this model consists of two different single ellipsoids. Both ellipsoids are described by 

geometrical parameters as: af, ar, a, b and c as it was shown at figure 1.  

By changing these parameters we have the advantages in the greater flexibility in modelling of a 

heat source shape. SYSWELD enable the capability to introduce density energy QR [w/mm3] which is 

divided on Of and Qr values. First of them is a heat energy density in the front half of the ellipsoid 

(maximum source frontal intensity) and second is the rear part (maximum source rear intensity), 

figure 2. Values of the power density energy function QR(x,y,z,t) is described by equations: 

𝑄𝑅 = 𝑄𝑓 ∙ 𝑒
−

𝑥2

𝑎𝑓
2

∙ 𝑒
−

𝑦2

𝑏 
2 ∙ 𝑒

−
𝑧2

𝑐 
2     for the front half of the heat source model,     (1) 

𝑄𝑅 = 𝑄𝑟 ∙ 𝑒
−

𝑥2

𝑎𝑟
2 ∙ 𝑒

−
𝑦2

𝑏 
2 ∙ 𝑒

−
𝑧2

𝑐 
2     for the rear half of the the heat source model.  (2) 

Finally, the total power of this source model is: 


structure

RQP

 (3) 

 

Figure 1.    Definition of a double ellipsoid heat source model in SYSWELD [4] 

Due to the specific of High Power Diode Lasers (HPDL), which have mainly rectangular or 

square beam spot shape, it is not possible to use 3D cone model as usually for lasers is used. Thanks 

to the some possibilities which give us SYSWELD and combined available models with definition of 

places where the heat source model affects the 3D model, we can configure our own method of 
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putting heat into the structure which is very similar to the rectangular beam spot of HDPL lasers,  Fig. 

2 [2].   

 

Figure 2.   View of heat source –heat application area combination for HDPL heat source 

2. Experimental 

                       

Figure 3.   View of experimental stand (on the left side) and thermocouple placement on samples and 3 

types of thermocouple welding to circular channel (on the right) 

For thermal cycle acquisition several rectangular samples were prepared. Samples were cut from 

S355 8 mm thick steel plate. Steel surface was grinded smooth to ensure stable and uniform 

absorption coefficient across all the samples. Heat source used in all tests was high power diode laser 

(HPDL) Rofin DL020, figure 3. Laser welding is characterized by high parameter stability if worked 

surface is uniform. Three beam power levels were used 1200 W, 1600 W and 2000 W. Welding speed 

was 0,5 m/min. Shielding gas was argon 5.0 in purity with flow rate of 18 l/min. All temperature 

‘LOAD’ area – means the area 

where the heat is applied from heat 

source model 

WELDLINE 
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measurements were performed by K type thermocouples (NiCr-NiAl). Thermocouples were placed in 

7 spots around welding path in circular cross section channels 2 mm in diameter 4 mm in depth. 2 

types of faulty placements were tested: welding thermocouple on the edge of the channel, welding 

thermocouple to the side of circular channel in the middle of its depth, as well as, correct placement 

of thermocouple on the bottom of drilled channel. Placement of thermocouples on sample and on 

channels cross-sections, as well as, sample dimensions are presented in figure 3. Voltage data from 

thermocouples was capture by Agilent 34970A capture card. Sampling rate with all 7 channels active 

was 5.8 Hz, and with one channel active sampling rate was 55 Hz. Lower sampling rate was sufficient 

to omit any loss of information. 

FEM model consisting of 56448 3D elements and 63315 nodes was prepared. Specific heat 

source of HDPL was modeled by modified Goldak’s heat source (double ellipsoidal heat source). As 

a result of heat source fitting 3 heat source functions corresponding to 3 welding parameter sets were 

achieved. Surface and cross section distribution of heat sources are visible in figure 4. From several 

calculation methods of SYSWELD software 3D transient thermos-metallurgical calculations, as it 

enables simulation of temperature field in welded workpiece volume during welding. Node collectors 

were placed in ideal thermocouple region point. 

 

Figure 4.   Fitted heat sources on surface and cross-section for (from left) power 1200 W, 1600 W, 

2000 W 
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3. Result and analysis 

Heat cycle results from 7 thermocouples in all placements were recorded and extracted as tables. Heat 

cycles from simulation solution were extracted from points corresponding to ideal thermocouple 

placement. Numeric values were plotted and timing of acquired data was adjusted to simplify data 

analysis. Sample plot of simulation results against data from correctly placed thermocouples from 

sample welded with HDPL power 1600 is shown in figure 5. Simulated heat cycles show much higher 

maximal values as well as higher heating and cooling speeds. It is general tendency across all dataset 

and from authors experience is connected to limited contact area of globular thermocouple and its 

heat inertia. These two properties make thermocouple to act as first order inertial element, which is 

further proved by small delay in peak value timepoint.  

 

Figure 5.   Measured and simulated heat cycles. Data from Simulation and correctly placed 

thermocouples from sample welded with laser power of 1600 W 
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Figure 6.   Thermocouple No. 3 simulated and measured heat cycles across all parameter and variation 

placement 

Additionally, plots from one of the thermocouple placements for all variation of faulty 

placements across 3 parameters sets are shown in figure 6. Thermocouple No. 3 (see figure 4) was 

chosen as one of the closest to welding path, resulting in most distinctive heat cycle. As predicted 

most accurate are results from thermocouples placed correctly. However, with increasing laser power, 

which with constant welding speed increases welding linear energy, the measured temperatures are 

increasingly lower compared to calculated values. This is result of inertial behavior of measuring 

method. This makes heat cycle measured close to welding with this method high error rate. This is 

problematic as heat cycles nearest the path are most important when analyzing welding and working 

out causes of reduced weldability. Incorrect placement of thermocouple in drilled channel results in 

increasing difference between ideal heat cycle and measured one. Proposed resolution for reducing 

this difference is change of measured temperature node placement to actual placement of 

thermocouple. This would be possible after determining real thermocouple placement after 

destructive testing made post heat cycle acquisition. This method can be used when measured data is 

used to scale, correct and verify simulation.  
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After recalculation of simulation with corrected plotted node placement, results were compared 

to measured results. Most accurate were results from thermocouple condenser welded to edge of 

drilled hole. This results present very high convergence with simulation and surprisingly sharply 

reducing inertia of thermocouple (decreased difference between highest temperature and heating and 

cooling speeds. This could be caused by increase of energy concentration and resistance during 

condenser welding of thermocouple to sample resulting in increased contact area. Sample results plots 

of corrected model and measured values is shown in Fig. 7. 

 

Figure 7.   Heat cycle from HPDL power 1200 W and top placement of thermocouples and corrected 

placement of nodes in simulated model 

4. Conclusions 

Presented study proves high impact of faulty measuring element placement on measured heat cycles. 

This is valid problem as non-destructive verification of measuring element placement is not possible 

when drilled hole placement is used. 

Proposed solution increased convergence of simulation results in case of data collection node 

location correction when faulty connected thermocouples where used during heat cycle acquisition. 

This enables use of collected data for scaling, correction and verification of simulation when faulty 

placement of measuring element is detected after measurements were taken in lieu of retaking 

measurements which can be costly and time consuming. 

Another defined high error cause is inertial behavior of measuring element, probably caused by 

to small contact patch between element and sample or to big diameter of spherical thermocouple.  
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Due to described problems, useful and free of these faults are well prepared numerical 

simulations. They give us the possibilities to avoid some technical disturbances and offer very high 

repeatability in analyses, especially when we take into consideration lots of variants. As presented 

results shown, compared to the real measurement tests, FEM analyses offer also high level of 

coherence between calculated and real values. 
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The control of the artillery-rocket set in conditions  
of random interferences 

 

Zbigniew Koruba 

Abstract: On the contemporary battlefield, there is a need for continuous improvement 

of combat capabilities, including speed, target detection, target identification and firing 

capabilities by short range artillery-rocket sets. The challenge is to be able to 

successfully fire such sets in conditions of interference not only from the cannon side 

but also from the moving platform on which the cannon and self-propelling missiles are 

mounted. In addition, the set is a system with variable mass because in a short time 

from a few to dozens to even hundreds of missiles can be fired - so we are dealing with 

a strongly nonlinear system with variable parameters (non-stationary). The paper 

presents a method of controlling such a set under kinematic conditions of the mobile 

base on which the set is mounted and during shooting to the captured air target. Some 

results of numerical simulation tests are presented in graphical form. 

1. Introduction  

In modern Artillery-Rocket Sets (ARSs), it is aimed to capture low-flying, manoeuvring air targets not 

only in all weather conditions, but also during movement of the carrier on the unevenness of the surface 

on which such a set is mounted – both on land and water surface [3, 4, 8]. 

An example of the set discussed in this paper is the Pilica system. It is a very short-range anti-

aircraft system dedicated to the defence of important military and civilian objects, both fixed and 

mobile, from air attacks from up to 5 km. It has an integrated computerized system for detecting, 

identifying and managing targets, which ensures high efficiency with high mobility and low cost of 

exploitation. 

The set is equipped with a stabilized optoelectronic day-night head, which can work independently 

from armament in the scope of observation, detection and target identification. It is not only an element 

of the guidance system, but also a source of information for the entire system, since the data on detected 

and observed objects are exchanged throughout the chain of command. Each set is also equipped with 

a laser radiation warning system.  

The paper analyses the issue of selection of such a stabilization and control system with this type 

of set, so that the search and tracking process can reliably take place at the disadvantageous conditions 

mentioned in the introduction. It is necessary to develop an adequate mathematical model of the set in 

question, because in the systems of automatic self-propelled rocket control PD or PID controllers are 

most commonly used, that fail in cases where a change in the structure or parameters of the set occurs 

(e.g. during ammunition storage firing or damage in combat conditions) [4, 5]. In addition, inevitably 

during the operation of the set, there are both process and measurement noises, so it is necessary to 
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restore condition variables and filter the measurement data. Therefore, the extended Kalman filter was 

used to control the set, along with a modified Jacobian LQR regulator instead of a state matrix [1, 7]. 

As a result of this synthesis, a modified LQG regulator was used.  

2. Mathematical model of the set movement 

The linearized ARS motion equations are represented in the following form [2, 7]: 

ARSARSARSARSARS uBxJx    (1) 

where: 
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while ARSx  – vector of state variables deviation from desired values;  4;3;2;1 xxxxARS x  – vector 

of real variables of ARS state;  *
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* ,,, xxxxxSAR   – vector of ARS state variables at work point, i.e. 

the vector of the desired values of state variables. 

The present in the equation (1) ARSJ matrix is a  Jacobian of the following form: 
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On the other hand, 4321 ,,, gggg  functions in the above relationships are the right-hand sides of the 

non-linear state equations describing the ARS dynamics model [4]: 
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   (6) 

where: 11 x – ARS azimuth angle; 12  x – ARS azimuth angle speed; 23 x – ARS elevation 

angle; 24  x – ARS elevation angle speed; 21,  – coefficients of moments of friction forces acting 

in ARS azimuth and elevation, respectively; dqpnII  11


– variable mass moment of inertia of the 

set with respect to the azimuth axis, depending on the number of cartridges in cases n; 𝐼1 – constant 

mass moment of inertia of the set with respect to azimuth axis; 𝐼2 – constant mass moment of inertia of 

the set with respect to bearing axis; 𝑚 – mass of 2 member; 𝑔 – gravitational acceleration; a, b, c, d, q, 

r,  – parameters of the set described in detail in the paper [4]; 11, zz MM  – moments of external 

disturbances in azimuth and elevation, respectively; 1cM  – moment controlling the deviation of the set 

in azimuth; 2cM  – moment controlling the set tilt in elevation. 
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3. ARS control algorithm with modified LQG method 

Control law ARSu  for ARS will be defined by means of linear-square optimization method [2] 

with the function in the following form: 

 




0

dtI ARSARS
T
ARSARSARS

T
ARSARS uRuxQx  (7) 

Let’s present this law using a formula 

 *
ARSARSARSARS xxKu   (8) 

Where   *
ARSx  – the set (desired) condition variables that determine the location of the 

Line Of Sight (LOS) are determined from the following equations [2]: 

   1sinsincoscos fV
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 (9c) 

where:  ,  – pitch and yaw angles of the line of sight, respectively; LOSR  – distance between the 

ARS and the aerial target; cV  –  velocities of the target; cc  ,  – pitch and yaw angles of the 

target velocity vector, respectively. 

Convergence matrix ARSK  occurring in equation (8) is derived from the following relationship 

ARS
T
ARSARSARS PBRK  1

  (10) 

Matrix ARSP  is a solution to the Riccati algebraic equation 

0QPBRB2PPP  
ARSARS

T
ARSARSARSARSARSARSARS

T
ARS JJ 1

  (11) 

The occurring in equations (10) and (11) ARSARS QR  i weight matrixes reduced to a diagonal form 

are selected experimentally, while the search is starting with values equal to [2]: 
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where: maxix  – maximum scope of changes of i- value of the status variable; maxju  – maximum scope 

of changes of j- control variable value. 

In the case of ARS interference in the form of process noise and measurement noise, we will use 

the extended Kalman filter, which we write in the form of the following differential equations: 

1_1_1__   kARSkARSARSkARSARSkARS wuBxJx   (13) 

kARSkARSARSkARS ___ vxHz    (14) 

where: ARSz  – vector containing measurement of the output of state variables ARS; SARH  – 

measurement matrix; w – process noise vector of zero expected value and known  covariance 

matrix 
FK
ARSQ ; v – measurement noise vector of zero expected value and known  covariance 

Prediction of ARS state in k moment on the basis of the estimate of state and control from the 

previous moment: 

1_11_1_1_
ˆˆ   kARSARSkkARSkARSkkARS uBxJx   (15) 

FK
ARS

T
kARS

FK
kkARSkARS

FK
kkARS QAPAP   1_11_1_1_   (16) 

where: 11_
ˆ

 kkARSx  – assessment of ARS variables a priori (before measurement); 1_
ˆ

kkSARx  – 

assessment of ARS variables a posteriori (after measurement); tkARSkARS   1_1_ JIA  

– ARS state matrix in k-1 in discrete form; t  – discretization step (integration);  

I – unit matrix; 
FK

kkARS 11_ P –  covariance matrix of predictive error before measurement for 

ARS; FK
kkARS 1_ P –  covariance matrix of predictive error after measurement for ARS; 

  T
kARSkARS

FK
ARS E 1_1_  wwQ  – covariance matrix of process noise for ARS. 

Update (i.e. correction) of state estimate and covariance error matrix based on input measurement 

at present: 
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kARS

FK
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where: 
FK
ARSK  – Kalman filter gain matrix for ARS;   








 

T
kARSkARS

FK
ARS E 1_1_ vvR  – covariance 

matrix of measurement noise for ARS; FK
kkARS_P  – covariance matrix of filtration error for 

ARS. 

As a result of the control synthesis we get an LQG regulator in the form of 

 *ˆ ARSARSARSARS xxKu   (20) 

In the case of random interactions on the target tracking system, Jacoban should be created for the 

LOS movement model described by equations (9). It will be as follows: 
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The formulas for the extended Kalman filter for LOS will then be written as: 

1_1__   kLOSkLOSLOSkLOS wxAx   (22) 

kLOSkLOSLOSkLOS ___ vxHz    (23) 

11_1_1_
ˆˆ

  kkLOSkLOSkkLOS xAx   (24) 

FK
LOS

T
kLOS

FK
kkLOSkLOS

FK
kkLOS QAPAP   1_11_1_1_   (25) 

  1

1_1__



  FK
LOS

T
LOS

FK
kkLOSLOS

T
LOS

FK
kkLOS

FK
kLOS RHPHHPK   (26) 

 1__1__
ˆˆˆ

  kk
FK
LOSkLOSkLOSkkLOSkkLOS xHzKxx   (27) 

208



  FK
kkLOS

FK
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where: 11_
ˆ

 kkLOSx  – assessment of LOS state variables a priori (before measurement); 1_
ˆ

kkLOSx  

– assessment of LOS state variables a posteriori (after measurement); 

tkLOSkLOS   1_1_ JIA  – LOS state matrix at k-1 in discrete form; FK
kkLOS 11_ P –  

covariance matrix of predictive error before measurement for LOS; FK
kkLOS 1_ P  –  covariance 

matrix of predictive error after measurement for ARS;   T
kLOSkLOS

FK
LOS E 1_1_  wwQ  – 

covariance matrix of process noise for LOS;   







 

T
kLOSkLOS

FK
LOS E 1_1_ vvR  – 

covariance matrix of measurement noise for LOS;. 

Taking into account the Kalman filtering of target sight lines, the LQG regulator for control of the 

artillery-rocket set in terms of random interferences influence will be as follows: 

 *ˆˆ ARSARSARSARS xxKu   (29) 

where   ˆˆˆˆˆ* ARSx . 

Therefore, the optimal control moments that we will use to control the ARS while tracking and 

shooting to the manoeuvring air target, will take the form of 

 11 ARScM u  (30a) 

 22 ARScM u  (30b) 

 (30a) and (30b) include the following limitations: 

max22max11 ; cccc MMMM   (31) 

where: max1cM  – maximum allowable control moment in azimuth; max2cM  – maximum allowable 

control moment in elevation. 

4. Numerical example and results  

Let’s consider a hypothetical artillery-rocket set that detects and tracks the maneuvering low-flying 

target. The basic parameters of the considered set are taken from [4]. Numerical simulations were 

performed in MATLAB environment with integration step dt= 0.001 [s]. The following initial 

conditions for ARS status variables and their evaluations were adopted:  5.205.100 ARSx , 
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 0000ˆ 0 ARSx . Weight matrixes for optimal controls LQR: 























1.0000

04000000

001.00

00040000

ARSQ ; 









0001.00

00001.0
ARSR .  

he effectiveness of the modified LQR and LQG regulators has been examined by comparing the 

optimum settings of the PID controller described in the paper [4]. 

It was assumed that the ARS state variables measurement matrix is as follows: 























1000

0100

0010

0001

ARSH . The covariance matrix of the ARS process noise– 
T
ARSARSproc

FK
ARS HHQ

2 , 

where 1.0proc  – amplitude of process noise; Covariance matrix of ARS measurement noise  – 

T
ARSARSmes

FK
ARSR HH

2 , where 1.0mes  – measurement noise amplitude; covariance matrix of 

initial conditions; Initial covariance matrix of error of estimation of ARS state variables – 

FK
ARSARS QP  . On the other hand, air targets data have the following values: 

Location of the target relative to the ARS when detected by the observing-tracking head

     m1000;m500;m1000  cococo zyx ; speed of the moving targer –   constsmVc  /100 ; 

target observation initial conditions: – 
222

0 cococoLOS zyxR  ; 
co

co
o

x

y
arctg ; 

0

arcsin
LOS

co
o

R

z


; 0co ; 0co ;  rd/s75.0co  – angular velocity of the target maneuver. It has been assumed 

that the angles of a target flight change according to the law (target maneuver): tcoc   ; tcoc   .  

Taking into consideration the fact that the distance LOSR  is measured with a laser distance meter, 

it is assumed that the target observation system measurement matrix has the form of: 



















100

010

001

LOSH . The initial conditions for the individual state vectors are as follows:  

 ooLOSLOS R 00 x ,  ooLOSLOS R  9.09.08.0ˆ 00 x ,  0000ˆ*
0A SRx . 

The covariance matrix of the LOS process noise – 
T
LOSLOSproc

FK
SLOS HHQ

2 ; the covariance 

matrix of the LOS measurement noise 
T
LOSLOSmes

FK
LOSR HH

2 ; initial covariance matrix of LOS state 

variables estimation error – 
FK
LOSLOS QP  . 
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Interferences were introduced in form of three shots simulated as rectangular pulses in the form 

of:       0132310122210112111 ,,, MttMttMttM zzzzzzs  , 

      0232310222210212112 ,,, MttMttMttM zzzzzzs  , 

where  stz 311  ,  stz 02.312  ,  stz 22.321  ,  stz 24.322  ,  stz 44.331  ,  stz 46.332   – 

moments of firing individual shots; ]Nm[100001 M , ]Nm[1200002 M  – moments of forces acting 

from the shot in azimuth and elevation, respectively;  ...  – rectangular stroke function in the time 

interval   3,2,1,; 21 itt zizi .  

It was assumed that the base on which the set is mounted is affected by both azimuth and elevation 

in the form of the following moments:  

   12/9.0sin8.01  tMb ,    12/5.0sin5.12  tMb . 

Fig. 1–14 present the results of the conducted simulation tests. Trajectories during the interference 

moments from the base and the three shot fired are shown in fig. 1 and 2. Figures 3-10 compare the 

performance of the modified LQR controller (right-hand graphs) with respect to the regulator with 

optimally selected PID settings (left-hand graphs). Figures 11-14 illustrate the effectiveness of the 

modified LQG regulator with simultaneous interference from the base, interference during firing three 

shots and noises in ARS and LOS, both process and measurement. The results clearly demonstrate that 

the modified LQR regulators work better with respect to the optimal PID controller in case of 

interference. This is particularly evident in Figures 5 and 6. On the other hand, in the case of random 

effects, the LQR regulator is also insufficient to ensure the accuracy of LOS tracking (see Fig. 8 and 

10). In this case, the most effective in action is the modified LQG regulator. This is shown in fig.11-

14. 

  

Figure 1. Moments interfering as a function of 

time affecting on ARS from the base side 

Figure 2. Moments interfering as a function of 

time when firing 3 shots affecting on ARS 

211



  

Figure 3. Angular displacements real and desired 

in azimuth and elevation with interference – PID 

control 

Figure 4. Angular displacements real and 

desired in azimuth and elevation with 

interference – LQR control 

  

Figure 5. Trajectory real and desired of ARS with 

interference – PID control 

Figure 6. Trajectory real and desired of ARS 

with interference – LQR control 

  

Figure 7. Angular displacements real and desired 

in azimuth and elevation with random 

interference – PID control 

Figure 8. Angular displacements real and 

desired in azimuth and elevation with random 

interference – LQR control 
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Figure 9. Trajectory real and desired ARS with 

random interference – PID control 

Figure 10. Trajectory real and desired ARS with 

random interference – LQR control 

 

 

  

Figure 11. Angular displacements noised and 

estimated in azimuth and elevation –  LQG 

control 

Figure 12. Angular displacements noised and 

estimated in azimuth and elevation – LQG 

control 

  

Figure 13. Noised and estimated trajectories 

ARS – LQG control 

Figure 14. Noised and estimated trajectories ARS 

– LQG control 
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5. Conclusions 

The algorithm presented in this paper allows for precise control of ARS system in case of interference. 

The example shown in this article shows that ARS tracking of the manoeuvring air target using the 

Jacobian in closed control loop is more effective than using classical PID or LQR control. As the 

preliminary results show, improving the precision of the ARS control by around 10% can be crucial in 

reaching the target in such artillery-rocket systems.  

As a result, the algorithm allows for such control of the set so that it is possible to minimize the 

impact of kinematic effects on the side of moving carrier (off-road vehicle or ship) and random external 

interferences. This increases its effectiveness and mobility and allows it to attack air targets during 

movement of the base on uneven surfaces. In the case of a land vehicle, the shooting can take place 

without the necessity to stop it.  

Theoretical considerations and simulation studies have shown that, in conditions of ARS 

interference, it is preferable to use Jacobins in both extended Kalman filtering and optimum LQR 

control. In this way, the effectiveness of the modified LQG regulator has been demonstrated. In further 

research, the effectiveness of this regulator should be tested in field conditions when firing an artillery-

rocket set to a low-flying maneuvering air target. 
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Non-linear dynamics of flexibly suspended spring pendulum 

embedded in gravity and electric fields 

 

 

Angelika Kosińska, Dariusz Grzelczyk, Jan Awrejcewicz 

Abstract: In this paper we study non-linear behavior of vertically and flexibly 

suspended spring pendulum embedded in both gravity and electric fields. Due to 

strong non-linearity of the analyzed three-degree-of-freedom mechanical system, 

some interesting non-linear behaviors are observed and discussed. The motion of the 

system for different parameters is considered by employing standard numerical 

methods dedicated for non-linear systems, including both qualitative and quantitative 

methods as well as own original animations of the system dynamics, created in 

Mathematica software. The investigated energy transition between fixed points and 

other non-linear behaviors of the considered system can be potentially applied to other 

similar systems such as, for instance, real electro-mechanical systems. 

1. Introduction 

Dynamics of a nonlinear dynamical systems belongs to the important area of an interest of numerous 

investigators. In those systems the steady-state motion is often observed and therefore this regime of 

motion is usually investigated. On the other hand, in dynamical systems with stable and unstable 

fixed points it may happen that the unsteady or transient behavior should also be taken into account. 

In many situations, in the non-steady vibrations intensive energy exchange between the coupled 

elements of the analyzed system and either external source, or environment, can be detected. In 

systems with many degrees of freedom also energy exchange between parts of the structure or 

between modes may often occur. For instance, the aforementioned phenomena are widely illustrated 

and discussed in references [1-4]. 

Motivated by above cited and other references, in this paper the dynamics of vertically and 

flexibly suspended spring pendulum embedded in both gravity and electric fields is studied. On the 

contrary to the previous papers, in this article, the influence of the presence of additional 

electric/electromagnetic forces acting on the spring pendulum is analyzed. The proposed mechanical 

system serves as a very good example of a study of non-linear phenomena. The motion analysis for 

different cases is carried out by employing standard numerical methods dedicated for nonlinear 

systems, including both qualitative and quantitative methods, as well as original animations of the 

system dynamics created in Mathematica. Main goal of this paper is calculation all stable and 

unstable fixed points of the system and investigations of its dynamics. To detect some interesting 
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results (periodic, quasi-periodic and chaotic orbits, or different scenarios of transition from regular to 

chaotic motion, etc.), in the future the behavior of the analyzed system will be monitored via 

bifurcation diagrams, Lyapunov exponents as well as power spectra densities. 

2. Model of the considered system 

Figure 1 shows the model of the considered planar system embedded in the gravity field of Earth 

with coefficient 
2m/s 81.9g . The system is characterized by the following parameters: masses M  

and m , stiffness coefficients k  and 1k , damping coefficients c  and 1c , as well as lengths 0l  and 

0L . The mass M  is additionally excited by harmonic excitation tF cos0 . Moreover, the influence 

of the presence of additional electric/electromagnetic force )(tQ  acting on the spring pendulum is 

taken into account. The motion of considered 3-degree-of-freedom system is governed by the angle 

)(t  and linear displacements )(ty  and )(tr . Equations of motion of the system have been 

obtained by the Newton-Euler method, and Free Body Diagrams of the system are shown in Fig. 2. 

 

Figure 1.   Model of vertically and flexibly suspended spring pendulum embedded in both gravity and 

electric fields. 
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Figure 2.   Free Body Diagrams of the considered mechanical planar system. 

Equations of motion of the considered system have the following form: 

,0)()()(  tRtPtxM x
  (1) 

,cos)()()()( 0 tFtyctkytPMgtyM y    (2) 

),()()(1 tPtQtxm xx   (3) 

),()()(1 tQtPmgtym yy   (4) 

where: 

),(sin))(()( 01 ttrltx   ),(cos))(()()( 01 ttrltyty   ),(sin))()(()( 11 ttrctrktPx   

)(cos))()(()( 11 ttrctrktPy  , )(tR  is reaction force, and )(tQx , )(tQy  are components of 

force )(tQ . Additional interaction )(tQ  acting on the point mass m  in the following form: 

r

r
Q

2
)(

r
t


 , (5) 

with proportionality coefficient   and distance r . The proposed force )(tQ  can have both 

electrostatic or electromagnetic nature. After transformation this force can be estimated in the 

following way: 

  ,
))()((

)(
,

))()((

)(
)(),()(

5.1225.122

T

yx

y

yx

xT
yx

trtr

tr

trtr

tr
tQtQt



















Q  (6) 

where )()( 1 txtrx   and )()( 10 tyLtry  . 

217



3. Computational Methods 

Equations of motion of the considered system written in the dimensional form have been solved 

numerically by the Runge-Kutta method implemented in Mathematica. Moreover, to illustrate and 

understand the obtained results the appropriate animation of the analyzed system has been carried out, 

also in Mathematica (see Fig. 3). In numerical simulations, the following initial parameters are fixed: 

kg 1M , kg 2.0m , N/m 100k , s/mN 10 c , N/m 101 k , s/mN 1.01 c , m 2.00 l , 

m 0.10 L , 2mN 1.1  , and zero initial conditions are used. The obtained numerical solutions of 

the equations of motion presented in the dimensional form are directly applied for animation created 

in Mathematica. However, in our further global numerical analysis the non-dimensional equations 

will be used. Moreover, our future investigations (not reported here) will be aimed on getting an 

approximate asymptotic solution of the non-steady state motion of the considered system using the 

multiple time scale method [1,3]. 

     

Figure 3.   Frame of animation of the analyzed mechanical system presented with help of Mathematica 

software (the lines represent spring-damper elements). 

4. Numerical results 

In our numerical investigations, first all stable and unstable fixed points of the considered system 

(without harmonic excitation) were calculated. For 0  the system possesses the following two 

fixed points: 

(1): 
k

gmM
y

)( 
 , 

1k

mg
r  , 0 , 

(2): 
k

gmM
y

)( 
 , 

1k

mg
r  ,   . 
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For initial values presented in Section 3, the system has six fixed points, which, in general, can be 

obtained numerically. Configurations of the system for the mentioned fixed points (for initial 

parameters presented in Section 3 are depicted in Figs. 4 and 5. 

   

                                                                     stable                                                         unstable 

Figure 4.   System configurations and fixed points for 0 . 

 

 

 

stable 

101017.0y

0558351.0r

02114.1  

 

 

 

stable 

101017.0y

0558351.0r

02114.1  

 

 

 

unstable 

0964826.0y

0161736.0r

0  

 

 

 

unstable 

106845.0y

0874455.0r

   

 

unstable 

19599.0y

978897.0r

0  

 

unstable 

227102.0y

29002.1r

   

Figure 5.   System configurations and fixed points for 2mN 1.1  . 

In the first case (Fig. 4) we have classical simple and inverted gravity pendulum (a stable equilibrium 

position for the simple pendulum and unstable equilibrium position for the inverted pendulum). In the 

cases of configurations of the system presented in Fig. 5, both simple or inverted pendulum in vertical 

position are located in unstable positions. Between these unstable fixed points there are also fixed 

stable points. 

In our numerical analysis we obtained some chosen time histories of angles )(t  and trajectories 

of the point mass m . We detected different scenarios of transition of the system from initial 

conditions to stable fixed points. For instance, point mass m  moves from initial conditions to a near 

first unstable point (simple hanging pendulums placed in vertical positions), and finally reaching the 
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first or the second stable position. In other cases, spring pendulum moves from initial conditions, and 

oscillate near all stable and unstable fixed points, being finally attracted by one of the stable position. 

The considered system is sensitive on the parameter   responsible for additional force acting on the 

spring pendulum. Even a small change of these parameters push the considered pendulum to move 

from the initial conditions to the different fixed points. 

Movements of the considered spring pendulum can be regular or irregular, depending on the 

system parameters. Therefore, the periodic and non-periodic solutions of the considered system have 

been globally detected using bifurcation diagrams. For instance, in Figs. 6-8 we presented bifurcation 

diagrams with frequency   of harmonic excitation as a control parameter. 

                          y 

 

Figure 6.   Bifurcation diagram of the system: y  vs. frequency   as the control parameter. 

 

Figure 7.   Bifurcation diagram of the system: r  vs. frequency   as the control parameter. 
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Figure 8.   Bifurcation diagram of the system:   vs. frequency   as the control parameter. 

5. Conclusions 

In this paper dynamics of flexibly suspended spring pendulum embedded in gravity and electric 

fields is investigated. First, stable and unstable fixed points of the system are calculated analytically 

and numerically. Next, dynamical behaviors near fixed points are presented and discussed. Due to 

mathematical complexity the considered system is investigated numerically with a help of the 

Mathematical software. Numerical calculations are performed for certain set of parameters and initial 

conditions. Therefore, a few nonlinear phenomena occurring for a narrow range of the parameters 

may be not detected. In should be emphasized that analytical approach allows to obtain the solution as 

a function of some chosen parameters which gives the opportunity to discuss the results for full 

spectrum of the system parameters. Our further research will be focused on analytical and/or 

numerical analysis of the considered system in the non-dimensional form, including resonance and 

synchronization effects, different scenarios of transition from regular to chaotic motion, bifurcation 

diagrams, Lyapunov exponents, power spectra densities, etc. 
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Sliding control of a gyroscopic scanning and tracking system mounted on 

a moveable base 

 

 

Izabela Krzysztofik 

Abstract: The basic tasks of the self-propelled anti-aircraft missile set are performed 

by the weapon module. An important element of the weapon module equipment is the 

system for searching and tracking the target. Its purpose is to determine the location of 

the line of sight (LOS). Target detecting and tracking systems are subject to 

disturbances caused by vehicle movements on uneven ground. In this paper, the LOS 

stabiliser and controller is a gyroscopic system and high precision of operation is 

required of it. Therefore, the control system and parameters of the controller itself 

must be carefully selected. A sliding controller has been designed and implemented in 

a gyroscopic scanning and tracking system mounted on a combat vehicle. Simulations 

of dynamics of a controlled gyroscopic system were performed in Matlab/Simulink 

environment. The selected research results are presented in graphical form. 

1. Introduction 

Contemporary battlefields make increased demands on anti-aircraft defense systems. There is a need 

to increase effectiveness and mobility of missile sets. Hence, military equipment used by the army 

includes self-propelled missile sets, i.e. combat vehicles with remote-controlled weapons modules 

mounted on the chassis. Self-propelled missile sets provide the automation of searching and tracking 

of air targets and reliability in all weather conditions. They allow for changing the current position 

very quickly. The compact size of the set allows air transport and discharge into the target area. The 

basic tasks of a self-propelled anti-aircraft missile set are performed by the weapon module. An 

important element of the weapon module equipment is the system for searching and tracking the 

target. This system has a stabilised base, independent of the ground angular movements, on which 

a television camera and / or an infrared camera and a coordinating device for finding and tracking the 

target are mounted. Greater precision in operation of observation and tracking systems allows for 

effective combat operations [1,2].  

This paper presents a scanning-tracking system in which the control and stabilisation element of 

the line of sight is the gyroscopic system described in detail in the study [3]. The principle of 

operation of a gyroscopic system mounted on a combat vehicle is as follows: during target searching, 

the axis of the system scans the airspace over the preset track where the target is likely to stay so as to 

capture the infrared radiation emitted by the target. When the target is detected, the gyroscopic system 
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starts automatically target tracking. Then the axis of the system covers with the line of sight. The use 

of the gyroscopic system increases the efficiency and mobility of a self -propelled missile set. 

It has been assumed that the centre of the mass of the gyroscopic system covers with the centre 

of gravity and the inertia of the frames is omitted. 

The mathematical model of the motion of the gyroscopic system is as follows: 

bbBzBxgkBzggoCykgk UJnJJJ  
2221

 (1) 

 

ccBxBygkByggoByBzgk
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where: 

,  – tilt and yaw angles of the axis of the gyroscopic system in space; 

 sincos
1 nnCx qp  ; 

 cossin
1 nnCy qp  ; 

nCz r
1

; 

 sincos 112 CzCxBx  ; 

  12 CyBy ; 

 cossin 112 CzCxBz  ; 

1
sincos1 CynnCx qp   ; 

1
cossin1 CxnnCy qp   ; 

nCz r
1

; 

nnn rqp ,,  – components of angular velocity of the combat vehicle (carrier); 

gkgo JJ ,  – adequately longitudinal and transverse moment of inertia of the gyroscopic system; 

gn  – speed of rotations of the gyroscopic system; 

cb  ,  – coefficients of friction in the suspension bearings; 

cb UU ,  – moments of control forces impacting on the frames of the gyroscopic system. 

2. Sliding control of a gyroscopic scanning and tracking system 

The gyroscopic system is affected by interferences from the combat vehicle board. An important task 

is optimal suppression of transient processes that occur when the vehicle hits a ground obstacle. When 

searching for a target, the gyroscopic system axis should make programmed movements and, upon 
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detection of the target, tracking movements. It is recommended to carefully select the control system 

and the parameters of the controller itself [4,5]. 

We determine the control moments from the dependence: 













ks
s

cb

wo
p

cb
cb

ttttU

ttttU
U

for    )(

for    )(

,

,
,  (3) 

where: 

p
c

p
b UU ,  – programmed control moments; 

s
b

s
b UU ,  – tracking control moments; 

ot  –  moment of starting space scanning; 

wt  –  moment the target is detected; 

st  – moment of starting the target tracking; 

kt  – moment of a self-guidance process completion. 

A sliding mode controller is designed to control the gyroscopic system both during scanning and 

tracking [6-8]. 

We define the following sliding surfaces: 

   zbzbs    (4) 

   zczcs    (5) 

where: 

cb  ,  – positive constants. 

In order to reduce the chattering phenomenon, the sliding control was proposed in the form of [9] 

beq
bb

b
bb U

s

s
U 





  (6) 
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c
cc U
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s
U 





  (7) 

where: 

ceqbeq UU ,  – equivalent controls; 

cb  ,  – sliding gains. 
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We determine the equivalent controls from the dependence: 

0bs  and 0cs  (8) 

While scanning the space, the axis of the gyroscopic system marks in the space strictly defined 

lines, while during target tracking, the preset angles of the axis position are determined from the LOS 

motion equations. 

The general diagram of sliding mode controller is shown in Figure 1. 

 

Figure 1.   A schematic diagram of SMC 

3. Results of numerical research 

Simulation studies were conducted in Matlab / Simulink with an integration step: 00001.0dt  [10]. 

The results of the research are shown in Figures 2-13. The following parameters of the gyroscopic 

system were adopted: 

24kgm105 goJ ; 
24kgm105.2 gkJ ; rad/s 500gn ; Nms01.0 cb  . 

The kinematic inputs affecting gyroscopic system on the vehicle side were taken in harmonic form: 

 tpp nnon sin ,  tqq nnon cos ;  trr nnon sin  

where: 

rad/s 5.2 nonono rqp , rad/s 10n . 

Figures 2-5 show the results of the simulation when gyroscopic system axis makes programmed 

movements in a n-leaf rosette, according to the following: 

     tttz  12 cossin   (9) 

     tttz  12 sinsin   (10) 

where: 

rad75.0 , rad/s25.11  , rad/s292  . 
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Figure 2.   Tilt angle of gyroscopic system axis  and 

LOS 

Figure 3.   Yaw angle of gyroscopic system axis 

and LOS 

  

Figure 4.   Tracks of gyroscopic system axis and 

LOS 

Figure 5.   Control error 

 

Figures 6-9 show the results of the simulation when gyroscopic system axis performs programmed 

movements in the developing Archimedean spiral, according to the following: 

   ttbtz   sin  (11) 

   ttbtz   cos  (12) 

where: 

rad1.0b , rad/s25 . 
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Figure 6.   Tilt angle of gyroscopic system axis  

and LOS 

Figure 7.   Yaw angle of gyroscopic system axis 

and LOS 

  

Figure 8.   Tracks of gyroscopic system axis and 

LOS 

Figure 9.   Control error 

 

Figures 10-13 show the results of the simulation when gyroscopic system axis performs programmed 

movements in a modified n-leaf rosette, according to the following: 

          ttttatz  1222 cos5sin04.03sin2.0sin   (13) 

          ttttatz  1222 sin5sin04.03sin2.0sin   (14) 

where:  

rad1.0a , rad/s151  , rad/s502  . 
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Figure 10.   Tilt angle of gyroscopic system axis  

and LOS 

Figure 11.   Yaw angle of gyroscopic system axis 

and LOS 

  

Figure 12.   Tracks of gyroscopic system axis and 

LOS 

Figure 13.   Control error 

4. Conclusions 

The study presents the analysis of the dynamics of the gyroscopic scanning and tracking system 

during vehicle motions. The results confirm that the designed sliding controller works correctly. It 

allows for quick target tracking in space. The target detection time is from 2.21 s when the gyroscopic 

system axis makes programmed movements in a rosette and up to 2.27 s in case when the gyroscopic 

system axis makes programmed movements in a spiral.  

The sliding controller also ensures stable keeping the detected target in the field of view of the 

optical system. Deviations of the gyroscopic system axis from a predetermined position during the 

impact of kinematic inputs from the combat vehicle are minimal. The proposed control system allows 

for detecting and tracking a moving air target during missile set motions.  
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Moreover, the sliding controller is characterized by simple structure and can be used for strongly 

nonlinear systems such as gyroscopic system. 
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Modelling of rigid body dynamics with spatial frictional contacts 

 

 

Grzegorz Kudra, Michał Szewc, Michał Ludwicki, Krzysztof Witkowski, Jan 
Awrejcewicz 

Abstract: The work focuses on a special class of reduced models of resultant friction 

forces coupled with rolling resistance for finite size of contact area and their 

applications in modelling and effective numerical simulations of spatial rigid body 

dynamics. The contact models are based on the integral expressions assuming fully 

developed sliding and Coulomb’s friction law at each element of a finite contact zone. 

The integral models are then approximated by special functions, more effective in 

numerical simulations. The contact models are applied in different configurations of a 

spatial pendulum with Cardan joints, equipped with a special movable obstacle situated 

below the pendulum and limiting the space of admissible positions of the system. The 

models are tested numerically during investigations of bifurcation dynamics of the 

pendulum as well as a special experimental rig is prepared for their experimental 

validation. 

1. Introduction 

In many fields of science like mechanical engineering, mechatronics, robotics or control theory there 

are systems which consists of pendulums or multi-pendulums. They often play a significant role in 

system dynamics and may lead to interesting bifurcation phenomena. Analyzing the systems with 

pendulums, one can encounter models with spatial pendulums with a leading example, which is a single 

spherical pendulum and its different configurations [1,2]. The other more complex system, which is a 

spatial multi-dimensional pendulum is much less frequent object of interest and scientific analysis 

concerning pure non-linear dynamics [3]. The reason for the lack of works in this area may be the 

complexity of the system and its analysis. 

Another important part of the analysis of a mechanical system is the friction and impact 

investigation. Both above mentioned components of the system play a significant role in changing 

bifurcation dynamics. Therefore, their investigation and developing new methods of analysis should be 

one of the most important steps in mechanical system study. On the other hand, new developed methods 

should lead to fast and reliable numerical simulations of the analyzed mechanical system. For this 

reason it is necessary to validate the numerical results with the real object measurements. In this case, 

not only the friction forces distribution is important, but modelling of impact in 3D space as well. 
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However, the analysis of full contact problem may result in high computational cost and a need to use 

such methods as finite element method. Therefore, the simplified or reduced models may be introduced. 

An example of such approach is presented in the paper of Contensou [4], where one can find an 

integral model of friction force for fully developed sliding on a circular contact area. Another example 

may be found in the work of group of researches, who developed special group of approximations of 

the integral model friction [5], which allows to avoid integration over the contact area. Special 

approximations were presented for different shapes of the contact, not only the circular one [6]. An 

exemplary usage of the introduce approximations was presented in the numerical simulations of 

wobblestone, billiard ball and full ellipsoid of revolution [7-9].  

This paper presents the mechanical system consisting of the double spatial pendulum with a 

spherical end of the second pendulum’s limb, which can be in contact with a movable obstacle. This 

work is the collection of elements of the previous works [3, 6-10] with the continuation by new 

experimental rig development and further analysis of the system of double spatial pendulum with 

obstacle. The friction force is modelled in the similar way as presented in works [6-9], while Hertz 

stiffness with special model of damping [11] is used for normal force modelling. 

Section 2 of this paper presents the model of the pendulum and the special laboratory stand for the 

results verification. In section 3 the numerical analysis of the system is presented. The summary and 

conclusions are drawn in section 4. 

2. Mathematical model 

The analyzed mechanical system is the double spatial pendulum with a solid ball at the end of second 

limb. The ball can be in contact with a rotating obstacle. The physical model and its application in an 

experimental rig is presented in Fig. 1. The center O1 of the global coordinate system O1xyz is situated 

at the geometric center of the first massless Cardan-Hook joint. The joint connects the first element 

(body 1 of mass m1) of the pendulum with the body 0. The body 0 is connected to the DC motor, which 

generates the rotational motion of the body 0, with angular position represented by angle ψ1. Since the 

next coordinate system O1x1y1z1 is fixed with respect to the body 1, the angular position of the first limb 

of pendulum may be represented by the following sequence of rotations: by angle ψ1 about axis z1, by 

angle θ1 about axis x1 and by angle φ1 about axis y1. It is assumed that for each rotation angle equal to 

zero, the two coordinate systems O1x1y1z1 and O1xyz overlap each other.  

The second element (limb 2 with mass m2) of the pendulum is connected to the first one by the 

identical massless Cardan-Hook joint. The centre O2 of the joint lies on the axis O1z1 and its position is 

defined by the parameter  L1= O1O2. The similar sequence of rotations is used to describe angular 

position of the second limb: by angle θ2 about axis y2 and by angle φ2 about axis z2 of the body 2 – fixed 

coordinate system O2x2y2z2, with the centre at the point O2. It is assumed that the coordinate system 
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O2x2y2z2 has the parallel axes to the corresponding ones of the coordinate system O1x1y1z1 for θ2 and φ2 

equal to 0. 

 

 

Figure 1.   The double spatial pendulum with movable obstacle – model and experimental rig. 

The ball at the end of second limb of pendulum, which can contact the movable obstacle 3, has a 

radius Rb and is centered at the point O3 lying on the axis O2z2. The position of the center of the ball is 

described by the parameter L2= O2O3. The assumption has been made, that the mass centres of both 

links of pendulum (C1 and C2) lie on the corresponding axes O1z1 or O2z2. Parameters e1= O1C1 and e2= 

O2C2 define positions of the mass centres. Additionally, the coordinate systems O1x1y1z1 and O2x2y2z2 

are the principal axes of inertia of the corresponding bodies. Finally their mass distribution are defined 

by six parameters Ixi, Iyi and Izi (i=1,2), which describes the principal central moments of inertia of the 

corresponding bodies with respect to the axes parallel to the corresponding axes Oixi, Oiyi or Oizi. The 

last body in the mechanical system analysed is the rotating disk 3. Its rotation about the axis z of the 

global coordinate system is defined by the velocity ωd. Moreover, the disk can change its horizontal 

position, which is described by the parameter z0 - the coordinate of any point of the disk’s surface along 

the axis z. 

Based on the physical model described above, the experimental rig was made, which is presented 

in Fig. 1. It consists of exactly the same elements as presented in the physical model - body 0, limbs 1 

and 2 and movable obstacle 3. To provide the rotational movement of the body 0 the highly dynamic 
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DC servo drive with integrated 4Q servo controller is used. It is equipped with incremental encoder 

with a resolution of 1024 pulses per revolution. To measure the movement of the pendulum limbs, there 

are two separate internal measurement units, which combine a 3-axis gyroscope and a 3-axis 

accelerometer on each board. Sensors are communicating with the processor by I2C bus and all wirings 

are made through the slip ring. The transmission between its stator and rotor takes place via sliding 

contacts, which allows the data to be transferred to the processor.  

Mathematical model of the system is based on the work [10] and is expressed using the Lagrange’s 

formalism 

i
i i i

d T T V
Q

dt
θθ θ θ

 ∂ ∂ ∂
− + = 

∂ ∂ ∂ ɺ
,     

i
i i i

d T T V
Q

dt
ϕϕ ϕ ϕ

 ∂ ∂ ∂
− + = 

∂ ∂ ∂ ɺ
,     i=1, 2 (1) 

where angles iθ  and iϕ  ( 1,2)i =  are chosen as generalized co-ordinates and T denotes kinetic energy, 

V – is potential energy of gravity forces, 
i

Qθ  and 
i

Qϕ  ( 1,2)i =  –  the corresponding generalized forces. 

It is assumed that the pendulum is driven by the angular velocity of the body 0 defined by the following 

function of time 

( ) ( )0 cost q tω ω= + Ω . (2) 

The generalized forces are divided into the parts 
ic

Qξ  ( , ; 1,2)iξ θ ϕ= =  representing the contact 

forces and 
ib

Qξ  representing damping in the joints: 

i ic ibQ Q Qξ ξ ξ= − . (3) 

Resistance in the joints is modelled in the following way 

2 2i

i
b b

i b

Q Mξ
ξ

ξ ε
=

+

ɺ

ɺ

,    , , 1,2iξ θ ϕ= =  (4) 

where bM  is magnitude of the resistance torque common for all the joints and bε is parameter, which 

initially was assumed to be small and played a role of regularization of non-smooth sign function. But 

during different experiments performed by the authors, it occurred that the function (4) with higher 

values of bε  can lead to better modelling of resistance in rolling bearings working in similar dynamical 

systems. 

The generalized contact forces 
ic

Qξ  are related to the reaction c = +F N T  of the obstacle acting 

on the ball in following way 
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( ) 2

i

A
c

i

Qξ ξ

∂
= + ⋅

∂

r
N T ,    , , 1,2iξ θ ϕ= =  (5) 

where vector 
2Ar  indicates the position in the co-ordinate system O1xyz of the point A2 being the body’s 

2 fixed point taking temporarily the position of the circular contact zone center, while N and T are 

normal and tangent components of the reaction, respectively. 

Normal component of the impact force is modelled based on the Hertzian contact stiffness and 

damping [11]  

N=N n  (6) 

where 

( )3/2
1 for h 0 and 1 0

0 for h 0 or 1 0

h k bh bh
N

bh

 − ≤ − ≥
= 

> − <

ɺ ɺ

ɺ

 (7) 

where n is unit vector normal to the obstacle, h is distance between the ball and the surface of the disk, 

k is stiffness and b is damping coefficient of the contact.  

For the contact of a ball of radius Rb with an elastic semi-space one gets based on the Hertz’s theory 

1 2

1 2

4

1 1
3

bR
k

E E

ν ν
=

 − −
+ 

 

, (8) 

where ν1 and ν2 are Poisson’s coefficients, while E1 and E2 are Young’s modulus of the materials of the 

contacting bodies. 

Friction force T is modelled based on assumption of fully developed sliding and Coulomb friction 

model valid at each point of the circular contact area with circularly symmetric contact pressure 

distribution. The corresponding integral model is approximated using special function of the following 

form [6-9] 

2 2 2 2 2

s

s T r s

N

b a

µ
ε

= −
+ +

v
T

v ω

, (9) 

where μ is friction coefficient, vs and ωs are translational and angular sliding relative velocities at the 

center of the contact, ar – radius of the contact calculated based on the Hertz theory and depending on 

the current normal loading of the contact, bT – parameter depending on the contact stress distribution 

and ε – the parameter introduced in order to regularize function (9) and avoid singularity for vanishing 

relative motion of the contacting bodies. 
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3. Numerical simulations 

The following values of the parameters were obtained based on materials and geometric shapes of the 

corresponding parts of the real pendulum being under preparation: m1=4.59 kg, m2 = 2.41 kg, Ix1 = Iy1 = 

0.0315 kg·m2, Iz1 = 0.0078 kg·m2, Ix2 = 0.0084 kg·m2, Iy2 = 0.0055 kg·m2, Iz2 = 0.0038 kg·m2, L1 = 0.228 

m, L2 = 0.175 m, e1 = 0.122 m, e2 = 0.0586 m, Rb = 0.025 m. Additionally the following set of parameters 

is assumed to be constant during the subsequent numerical simulations as well: g = 9.81 m/s2, Mb = 

0.04 N·m, εb = 0.4, ν1 = ν2= 0.3, E1 = 2·109 N/m2, E2 =0.1·109 N/m2, b = 0.5 m-1s, 0 425mmz = − , µ = 

0.2, 0 rad/sdω = , 0 0 rad/sω = , 5 rad/sq = , 5 rad/sΩ =  and ε =10-3 m/s (except the cases where one 

of them is chosen as bifurcation parameter). 

Figure 2 presents bifurcation diagrams with angular frequency of the obstacle dω  playing a role 

of control parameter. Bifurcation diagrams are made for two cases: with the parameter 0.681Tb = (a) 

corresponding to circular contact with Hertzian stress distribution and with 0Tb =  (b), i.e. for the case 

of a point contact and no relation between friction force and rotational relative motion of the contacting 

surfaces.  

a)  

b)  

Figure 2.   Bifurcation diagrams of the system with angular frequency of the obstacle dω  as a 

control parameter, for 0.681Tb =  (a) and 0Tb =  (b) 
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Results of further analysis of the influence of the model (9) on the system dynamics is presented 

in Fig. 3, on bifurcation diagram, where as a control parameter is chosen coefficient Tb . One can 

observe a significant role in bifurcation dynamics of the pendulum played by the contact pressure 

distribution. Next pair of bifurcation diagrams is exhibited in Fig. 4, where the friction coefficient µ is 

chosen as a bifurcation parameter. Fig. 5 and Fig. 6 exhibits bifurcation diagrams with position of the 

obstacle 0z  varying quasi-statically from -428 mm to -417 mm. Note that for 

0 0 1 2 427 mmbz z L L R∗≤ = − − − = − the obstacle is below the range of the pendulum and for the 

assumed parameters the system tends to the stable fixed point with θ1=φ1= θ2=φ2=0. For 0 0z z∗=  one 

observe collision of this equilibrium position with the limiter of motion. Further increase of height of 

the obstacle leads to complex bifurcation dynamics. Fig. 5 is the bifurcation diagram for 0.681Tb =  

and Fig. 6 is the bifurcation diagram for 0Tb = . 

 

 

Figure 3.   Bifurcation diagram of the system with the coefficient Tb  of the contact model  as a 

control parameter 
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a)  

b)  

Figure 4.   Bifurcation diagrams of the system with friction coefficient µ  as a control parameter, 

for 0.681Tb =  (a) and 0Tb =  (b) 

 

Figure 5.   Bifurcation diagram of the system with obstacle position 0z  as a control parameter, for 

0.681Tb = . 
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a)  

Figure 6.   Bifurcation diagram of the system with obstacle position 0z  as a control parameter, for 

0Tb =  

4. Conclusions 

In this paper, the dynamic analysis of the double spatial pendulum is presented. It consists of two limbs 

connected with the Cardan-Hook joints. At the end of the second limb there is a spherical end, which 

comes in contact with the moveable obstacle. The friction force between contacting bodies is modelled 

based on the previous works and experience of the authors and uses the special approximation model. 

The bifurcation dynamics analysis, presented in this paper, shows the differences in model's behavior, 

while using the special model developed by the authors and in the case of point contact and no relation 

between friction force and rotational relative motion of contacting bodies. 

 The bifurcation diagrams analysis shows that the contact pressure distribution has a significant 

influence on the bifurcation dynamics of the system, which proves the necessity of developing advanced 

models of contact forces. On the other hand, this paper presents the experimental rig, which is made to 

verify the results obtained by the authors during the dynamics analysis. The results found out to be 

promising and convincing enough to make the experimental verification, which is currently being 

developed by the authors. 
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Remote synchronization and multistability in a star-like network of
oscillators

Juliana Lacerda, Celso Freitas, Elbert Macau

Abstract: In the phenomenon of remote synchronization, oscillators that are not
directly connected synchronize. In this work, we investigate this phenomenon
for a system of Stuart-Landau oscillators interconnected in a network with a
star-like structure in which all oscillators have different natural frequencies,
being that the peripheral nodes have close frequencies and the central nodes
frequency is detuned against them. We numerically find a regime of remote
synchronization, where the peripheral nodes synchronize and the hub continues
at its own dynamics. In this regime, the nodes exhibit a quasi-periodic motion
in their phase space. By changing the initial conditions of the system, we
were able to find that the peripheral nodes lose their synchronization with
each other for some of these conditions, causing remote synchronization to
disappear, which characterize a multistability behavior. The behavior of the
system is studied extensively for initial conditions that give and do not give
rise to remote synchronization for a fixed value of the coupling strength.

1. Introduction

Synchronization between a system’s unities is an universal behavior that appears in many

natural and artificial systems [3]. One of the most iconic examples of this area are the

rare species of fireflies that are capable of synchronizing their light emission [5, 23]. Similar

phenomena of multi-agent systems can also be found in areas such as biology [1, 13, 26, 27],

physics [7, 18] and social systems [16,21].

Synchronization can be defined as the “adjustment between rhythms of objects that

oscillate due to the presence of weak interaction between them” [20]. Formally, one can

say that synchronization is a process in which a certain number of dynamical subsystems,

not necessarily identical, are coupled or are conducted by a common force and manage to

coordinate some dynamic property. The most adopted mathematical models employed in

the literature in this context are: coupled periodic oscillators [24] and networks of coupled

chaotic oscillators [4].

In this work, our focus is on the phenomenon of remote synchronization, which occurs

when two or more subsystems, that are not directly coupled, synchronize while the ones

between them do not. This type of synchronization has already been observed in networks
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of non-linear electronic oscillators [2] and has been taken into consideration in the study

of climate [6, 14, 15] and the brain [17]. We will perform this study by using the Stuart-

Landau oscillator [19] model in star like networks which are the main building blocks of

several communication systems [2,8]. Remote synchronization in star-like networks where the

oscillators are modeled by the Stuart-Landau equation was studied by [2], where the influence

between the difference of the natural frequency of the hub and of the peripheral nodes was

analyzed. This phenomenon was also studied by [9, 10], which studies the emergence of

remote synchronization in complex networks.

We investigate the role of the initial conditions in the system’s remote synchronization,

which leads us to the phenomena of multistability. The paper is organized as follows: Section

2 presents the Stuart-Landau equations that are used to model our system, in Section 3 the

regime of remote synchronization for fixed values of initial conditions is studied and then we

show how the initial conditions influence the synchronization of the system. Conclusions are

presented in Section 4.

2. Model

In our study of remote synchronization, the dynamics of each active element of the network

is given by the Stuart-Landau equation, that allows oscillators to experience amplitude

variations, which has been shown to play an important role in the emergence of remote

synchronization [2, 9]. The Stuart-Landau equation, for a single oscillator is given by

u̇ = (α+ iω − |u|2)u, (1)

where u represents the position of an oscillator on the complex plane, ω is the natural

frequency of the oscillator and α the Hopf bifurcation parameter [12]. Considering a network

of N non-identical oscillators with a common coupling parameter through all communication

channels are the same of all nodes, the dynamics of the system will be described by

u̇n = (α+ iωn − |un|2)un +
k

dn

N−1∑
m=0

gnm(um − un), (2)

where n = 0, . . . , N −1, k is the coupling constant, ωn is the natural frequency and dn is the

degree of node n, (gnm) is the adjacency matrix of the coupling graph, that is, gnm will have

value 1 if nodes n and m are connected and 0 otherwise. The coupling graphs considered

in this work are simple and connected. The phase of the oscillators θn(t) is given by the

argument of the complex number un. The real equivalent of Eq. (2), with u = x + iy, is

given by
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ẋn = xn(α− xn2 − yn2)− wnyn +
k

dn

N−1∑
m=0

gnm(xm − xn) (3)

ẏn = yn(α− xn2 − yn2)− wnxn +
k

dn

N−1∑
m=0

gnm(ym − yn) (4)

In this paper, Eqs. 3 and 4 will always be used to analyze the system. We will say that

a pair of oscillators is synchronized when the difference between their phases converges to a

constant value and therefore, they move as a “single phase oscillator”. This regime is known

in the literature as phase locking [20]. In order to measure the emergence of this kind of

synchronization, we will make use of the partial synchronization index r ∈ [0, 1] [11]:

rnm =

∣∣∣∣∣ lim
∆t→∞

1

∆t

∫ tr+∆t

tr

ei[θn(t)−θm(t)]

∣∣∣∣∣, (5)

where n and m are the index of oscillators n and m, t is time, θ{n,m}(t) is the phase of

oscillator n and m and tr is a time of reference after the transient. The equation above can

also be written as:

rnm = | < ei[θn(t)−θm(t)] >t |, (6)

where < . >t denotes the average over time. This index is close to one when oscillators n and

m are synchronized, i.e., are in phase locking. In order to characterize remote synchronization

in star networks, we will make use of the indices defined by Ref. [2], rdirect and rindirect.

To quantify the coherence of the hub with the rest of the network we use the index called

rdirect ∈ [0, 1] and to measure the coherence of the peripheral nodes we use rindirect ∈ [0, 1],

which are defined as follows:

rdirect =
1

N − 1

N−1∑
n=1

r0n, (7)

rindirect =
2

(N − 1)(N − 2)

N−1∑
n=1,m>n

rnm, (8)

where rnm is the partial synchronization index, Eq. 6, and N is the number of nodes. Here

the hub is represented by the number 0. When rdirect has a value close to 1, the hub and the

peripheral nodes are moving as a rigid body and they are said to be synchronized. If this

value is low, the hub is not synchronized with the rest of the network. When rindirect has

a value close to one, the peripheral nodes are said to be synchronized. If both rdirect and

rindirect are close to 1, there is global synchronization. In this paper, we will characterize

remote synchronization when rindirect > 0.97 and rindirect < 0.6.
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3. Remote Synchronization in Star Networks

The focus of this work will be on star networks like the one in Fig.1. We will fix a set of

initial conditions and natural frequencies to show the emergence of remote synchronization,

then the initial conditions will be varied to see how they affect the synchronization of the

system and how this leads to the phenomenon of multistability.

Figure 1. Star network composed of N = 11 nodes. The hub is blue and the peripheral

nodes are gray.

3.1. Fixed values of initial conditions and natural frequencies

Considering first a network composed of N = 11 nodes, the initial conditions will be fixed

as

(x0, . . . , x(N−1)) = (−0.03672411, 0.38024460, 0.27386404, 0.23925263,

0.05347882,−0.22111217, 0.46526363,−0.47368003, 0.17426283,

−0.31198457, 0.27797903),

(y0, . . . , y(N−1)) = (−0.38243125,−0.31546865, 0.48294293,−0.29909983,

0.39475024,−0.38066357, 0.32721335, 0.37426591,−0.48784350,

−0.37711057, 0.24857760), (9)

where N = 11, x0 and y0 are the hub’s initial conditions. The natural frequencies of the

nodes will be fixed as

(ω0, . . . , ω(N−1)) = (2.5000, 1.0158, 1.0060, 1.0170, 1.0065, 1.0067, 1.0323,

1.0185, 1.0390, 1.0076, 1.0186), (10)

where ω0 = 2.5 is the hub’s natural frequency and N = 11. Let us define ∆ω = ω0− < ωn >

as the difference between the natural frequency of the hub and the mean frequency of the

peripheral nodes. By choosing those natural frequencies we have ∆ω ∼= 1.5 and for this value

of ∆ω there is remote synchronization for a relatively large interval of coupling values [2].
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We then perform numerical integration of Eqs. 3 and 4 for different values of the coupling

constant k ∈ [0, 1] . The results can be seen in Fig. 2(a), where the indices rdirect and

rindirect are functions of the coupling k. Note that rindirect reaches its maximum value

before rdirect does. So, in the region 0.425 . k . 0.75 there is remote synchronization. For

k & 0.75, rdirect reaches one, meaning that global synchronization has been achieved by the

system.

3.2. Influence of initial conditions on the synchronization of the system

Now, the initial conditions of the system will be varied, keeping the natural frequencies

of the nodes fixed and still given by Eq. 10 to see how this affects synchronization. The

initial conditions will be generated randomly following a uniform distribution over (-0.5,0.5).

For each value of the coupling, 20 initial conditions are generated and the mean and the

standard deviation (which is close to zero for most values of k) of rdirect and rindirect are

calculated. This result is presented in Fig. 2(b). One can note that the system reaches

remote synchronization at k ∼= 0.425, just like when the initial conditions were fixed, and

that at 0.55 . k . 0.65 the system loses this synchronization for some values of the initial

conditions, retaking remote synchronization for all sets of initial conditions when k & 0.65.

(a) Fixed initial conditions (b) Random sets of initial conditions

Figure 2. rdirect (red) and rindirect (blue) as a function of the coupling k for a fixed set

of natural frequencies, Eq. 10, applied to the star network of Fig. 1, and (a) a fixed set of

initial conditions given by Eq. 9, (b) random initial conditions. For each value of k, 20 sets

of random initial conditions were generated.

In order to better visualize the set of initial conditions that give and do not give rise to

remote synchronization, the number of nodes will be reduced to three. Fixing the natural

frequencies as (ω0, ω1, ω2) = (2.5000, 1.0158, 1.0060) (note that ∆ω is kept very close to 1.5),

like before, the system given by Eqs. 3 and 4 is integrated for 20 different initial conditions,
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resulting in Fig. 3(a). We can still see that around k = 0.6, the peripheral nodes lose their

synchronization, just like our 11 node star.

Now, fixing k = 0.6, the system given by Eqs. 3 and 4 will be integrated several times

with random initial conditions with uniform distribution between (-0.5,0.5) and analise the

mean values of rdirect and rindirect. After this procedure, we are left with two groups of

initial conditions for each of the three oscillators, one group has all the initial conditions

(xi, yi) that gives rise to remote synchronization and one that gives not. To better visualize

it, the initial phase of these oscillators will be plotted and marked as red if the set (xi, yi)

leads to remote synchronization and as blue if it does not. The outcome can be seen in Fig.

3(b), where the multistability is clearly shown since there are some initial conditions yielding

remote synchronization (red) or others not (blue).

(a) Random sets of initial conditions (b) Initial phase of each oscilator

Figure 3. (a) rdirect (red) and rindirect (blue) as a function of the coupling k, for fixed

natural frequencies and random initial conditions in star network of 3 nodes. (b) Initial

phase of each oscillator, given by θn = tan−1xn
yn

, calculated using the set of initial conditions

that give (red) and do not give (blue) rise to remote synchronization at k = 0.6.

3.2.1. Two different sets of initial conditions

In order to better understand the behavior of the system for coupling values close to k = 0.6,

the natural frequencies will be kept fixed (given by Eq. 10). Returning to the star network

of N = 11 nodes, two sets of initial conditions will be fixed, one that gives rise to remote

synchronization, given by Eq. 9, which will be called System 1, and one set that gives not,
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which will be called System 2 and will be given by

(x0, . . . , x(N−1)) = (0.18310904,−0.38851311, 0.23313545,−0.25566342,

0.41649033, 0.16081773,−0.41299378, 0.22859424,−0.27097222,

0.36025168, 0.39478912),

(y0, . . . , y(N−1)) = (−0.02144717, 0.21144214, 0.36246123, 0.46202932,

−0.47923800,−0.01556482, 0.25587219, 0.12446036,−0.42247640,

−0.16294013, 0.18085761), (11)

where N = 11, x0 and y0 are the hub’s initial conditions.

As seen in Fig. 2(a), we already showed that System 1 presents remote synchronization

at k = 0.6 Fig. 4 reveals that System 2 reaches remote synchronization at k ∼= 0.425, just

like System 1, but this regime is lost when 0.575 . k . 0.65, and regained when k & 0.65,

reaching global synchronization, like System 1, at k ∼= 0.75. One can note that the single

fact that the system starts oscillating with different initial conditions seems to be enough for

the system to lose the state of remote synchronization for intermediate values of k. When

we pass this region where multistability takes place, the peripheral nodes synchronize again

for all sets of initial conditions.

Figure 4. rdirect (red) and rindirect (blue) as a function of the coupling k for a fixed set of

initial conditions (Eq. 11) and natural frequencies (Eq. 10).

In order to better understand the difference in the behavior of both systems, lets consider

some new synchronization quantifiers. In Fig. 5(a) and 5(b) we have the instantaneous

frequencies θ̇ of Systems 1 and 2 respectively as a function of time for a coupling fixed at

k = 0.6. The data regarding the hub is plotted in red and the one regarding the peripheral
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nodes is plotted in blue. One can clearly notice the difference in the behavior of both systems.

For System 1, the instantaneous frequency of the peripheral nodes are very similar to each

other, on the other hand, for System 2 , each oscillator has a different behavior.

In Figs. 5(c) and 5(d) there are the phase space of the hub (in red) and of two peripheral

nodes (all pheriperal nodes behave in the same way, the ones labeled as n = 1, 2 were chosen)

and their respective Poincaré sections, also at k = 0.6. The Poincaré section was built from

the local maxima of the x coordinate of each hub cycle, that is, every time the hub reaches its

local maxima xhub, we plot (xhub, yhub),(xp1 , yp1) and (xp2 , yp2), where p1 and p2 represent

the first two peripheral nodes respectively. Both the phase spaces and the Poincaré sections

were plotted using 200 unities of time. Observing the phase spaces in Figs. 5(c) and 5(d),

there is numerical evidence of dense trajectories that seem to move through the surface of

a torus, indicating that those oscillators are moving in a quasi-periodic trajectory [25]. To

be sure there is such dynamical behavior, we need to analyze their Poincaré sections. If

an oscillator exhibits a periodic movement, it is expected that its Poincaré section will be

composed of a single point, for if we plot its x and y coordinates every time its coordinate

x reaches a local maxima, this pair of coordinates will always be the same, result in only

one point. If, on the other hand, an oscillators presents a quasi-periodic motion, the values

of the x local maxima vary and never repeat, so the points that form its Poincaré section

spread through their phase space [22].

It can be clearly seen in Figs. 5(c) and 5(d) that, for both systems, the peripheral nodes

present a dense Poincaré section, indicating that they are in fact in a quasi-periodic motion

and that in System 1, all oscillators present this quasi-periodic behavior, including the hub.

As for System 2, the hub has a periodic movement, for its trajectory in the phase space is

a limit cycle and its Poincaré section is composed of a single point. So, when the system is

in the regime of remote synchronization, all nodes move in a quasi-periodic trajectory and

when this synchronization is lost due to the initial conditions, the hub starts oscillating in a

periodic motion while the peripheral nodes remain in the quasi-periodic movement.

4. Conclusions

In this paper, the phenomenon of remote synchronization in a star-like network composed

of Stuart-Landau oscillators was studied. In the regime of remote synchronization, only the

peripheral nodes are synchronized and it was shown that in this regime, all the oscillators

exhibit a quasi-periodic behavior. When different sets of initial conditions were used, we

could notice that the peripheral nodes lose their synchronization for some of these sets of

initial conditions, indicating that this system presents a multistability behavior.
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(a) System 1 (b) System 2

(c) System 1 (d) System 2

Figure 5. (a)-(b) Instantaneous frequency θ̇ of Systems 1 and 2 respectively (hub in red

and peripheral nodes in blue) and their (c)-(d) phase spaces and Poincaré sections at k = 0.6

for 200 unities of time.
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Geometrically exact beam equations in the adaptive
DCA-framework

Jeremy Laflin, Kurt Anderson

Abstract: This work examines the suitability of two popular methods of model-
ing bodies that undergo large deformation for use in the adaptive DCA frame-
work where the system contains a mixed set of other bodies that are modeled
using different model types, such as rigid-bodies that use a Newton-Euler for-
mulation or flexible-bodies that use a Floating Frame of Reference (FFR).
This work shows that the ANCF is not immediately suitable for this purpose
and that the GEBF will be suitable after some modest manipulations. Then
the geometrically exact equations-of-motion are derived for beam-type bodies
that can be used in the DCA-framework, using the Geometrically Exact Beam
Formulation (GEBF) to describe the deformations of a beam-type body.

1. Introduction

Simulation of the full nonlinear dynamic response of articulated multibody systems is an

important instrument used by scientists and engineers to gain understanding about the be-

havior of complex systems which may be reasonably modeled as a collection of interconnected

bodies. The information provided by these simulations can be used to make better informed

decisions about design, control, or other aspects of such systems, provided the simulation can

predict the system’s behavior and internal state to a sufficient level of accuracy in a timely

fashion. Providing accurate information in a timely manner is essential in cases where the

system-of-interest’s behavior cannot be studied directly. For traditional mechanical systems,

this may be due to a high cost of building, instrumenting, or testing a prototype.

Simulating complex dynamic systems consists of three main tasks: (1) Determination of

the external forces acting on the system; (2) Formation of the equations-of-motion and their

subsequent solution for the state variable derivatives; and (3) Temporal integration of the

state variable derivatives. For articulated multibody systems, there has been a great deal

of research that has produced a variety of efficient methods to perform the formation and

solution of the equations-of-motion. Of these, the Divide-and-Conquer Algorithm (DCA),

first used by Featherstone in a multibody context [6,7], provides several of advantages for use

in large-scale nonlinear coupled multibody dynamic systems. In addition to computational

efficiency, these advantages include: a straight-forward coarse-grain parallel implementation,

253



easy accommodation of changes in the number of degrees-of-freedom of the system, and

a structure that allows any method to be used to generate the equations-of-motion for a

particular body or sub-domain.

There has been significant progress associated with modeling and simulating dynamic

systems in an adaptive manner [5,12,15,21–23,25], which ideally considers only those degrees-

of-freedom that are deemed important, there are still opportunities for further computational

savings. Ideally, an adaptive simulation of complex systems should self-identify and utilize

different model types which are best suited to the nature of the local behavior of each

subdomain. As such, a complex system may ultimately be comprised of rigid-bodies (no

deformation), flexible-bodies (small deformation), and highly-flexible bodies (large deforma-

tions). A decrease in computation labor may be achieved by adjusting the definition of the

computational model to best match the needs of the associated subdomain, which results in

fewer degrees-of-freedom without appreciable loss in the accuracy of predicting the system’s

behavior.

In some cases flexible-bodies may accurately reproduce the aggregate behavior of many

rigid-bodies with significantly fewer degrees-of-freedom. Similarly, highly-flexible bodies can

be constructed from a number of flexible-bodies which all undergo small displacements,

resulting in still fewer degrees-of-freedom. With intelligent internal metrics guiding adaptive

adjustments in local model resolution and type, such adjustments could be located anywhere

in the system. Therefore, an automatic method to form and solve the equations-of-motion

for a system comprised of a mixture of these body/model types must seamlessly perform

these operations with bodies (subdomain models) of any type. Then, aggregating various

bodies into a psuedo-body (subdomain) of a new type is a matter of monitoring various

degrees-of-freedom, making a determination of which degrees-of-freedom to add or remove,

and changing the resolution of the model to reflect the desired change. The decision to

add or remove various degrees-of-freedom may be based on a variety of indicators including,

but not limited to, statistics collected from the degrees-of-freedom, physics-based metrics,

or knowledge-based metrics. A statistical-based approach that removes “lazy” degrees-of-

freedom that have a low standard deviation from their average position has already been

shown to more accurately predict the overall motion of the system than traditional model

reduction methods used in molecular dynamics simulations with a comparable amount of

computational effort by Poursina et al. [21].

This notion of changes in the number, location of, or type of degrees-of-freedom when

using the DCA is the essence of the “adaptive-DCA-framework”. Due to the advantages of

this framework for both electro-mechanical and biological systems, it is a promising platform

on which to make improvements. Before examining the modifications needed to extend
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the capabilities of this framework to include changes in model definition the basic DCA is

presented.

There have been a number of modifications to the original DCA method [13, 14, 17–20]

since it was first applied to multibody systems. The basic method is briefly summarized

herein using the notation of Mukherjee and Anderson [16]. The DCA consists of two recursive

processes (kernels): assembly and disassembly which are diagrammed in Fig. 1.

Assembly

Figure 1. The two key DCA kernel operations

These kernels both require that the motion allowed by the kinematic joint is mapped

into a matrix containing the unit vectors of allowed motion (P), and a matrix containing the

unit vectors of restricted motion (D). The assembly process is performed first and assumes

that the equations-of-motion for all points coincident with the connecting kinematic joints

for all bodies are able to be expressed in a specific form, which will be discussed later, and

that the kinematics have been determined. This algorithm can work for any number of

kinematic connections to any body but is easily explained using a chain topography where

each body has two connections to other bodies. These points are commonly referred to as

“handles” and for a chain-type system, there are two for each body.

The assembly process uses the four equations-of-motion written at each of the two “han-

dles” for a pair connected by a joint (parent bodies) to write two equations-of-motion for

the outboard “handles” of the pair of bodies being assembled. These equations are not func-

tions of the constraint forces and accelerations acting at the connecting joint. They are only

functions of the constraint forces and accelerations at the outboard joints and the combined

inverse inertial properties of the two bodies. Now the two parent bodies may be effectively

treated as a single (child) body at the next level of recursion.

This approach is possible because the relative motion between the parent bodies can be

captured by an equation that describes the modes of motion [24] permitted by the joint, which

are known. This process is then repeated recursively until there are only two equations-of-
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motion for the entire system, as shown in Fig. 2, which are only a function of the constraint

Figure 2. Divide-and-Conquer Algorithm (DCA) for multibody dynamics

forces and accelerations acting at the boundary joints, the combined inverse inertial prop-

erties of the entire system, and any applied or body forces. The assembly kernel is applied

recursively to pairs of adjacent bodies until there is only one assembly left in the system.

At this stage the equations-of-motion can be solved since all constraint forces have been

eliminated from the equations-of-motion of the final assembly (combined problem), except

the constraint forces acting at the boundary joints, which are effectively known. The dis-

assembly kernel is then applied recursively re-introducing and determining the constraint

force acting between these pairs and the acceleration of the “handles”. The constraint force

and the acceleration of the points on the bodies coincident with the joint are determined

as a function of the constraint forces and accelerations determined at the previous level of

recursion. Solving the equations-of-motion for the final assembly is possible knowing the

conditions of these boundary joints.

In the disassembly phase, the assemblies are split back into their constituent bodies,

which for all levels of recursion except the last one are other assemblies. This process basically

propagates information from the solution of the two equations-of-motion of an assembly

(child) to the four equations-of-motion of the constituent (parent) bodies. The accelerations

and constraint forces determined for the assembly are the solution to the outboard equations-

of-motion for each constituent body. Therefore, all that needs to be determined is the

constraint force acting at, and the acceleration of, the connecting joint. Both of these

quantities are able to be determined from the known information. This process occurs

recursively until all constraint forces and accelerations are known for all bodies in the system.

Both of these recursive processes are most efficiently implemented in a hierarchical tree

structure.
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For this recursive process to work, every body of the system including those fictitious

bodies resulting from assembly, it must be possible to write the equations-of-motion as

~Ak
1 = ζk

11
~F k

1c + ζk
12
~F k

2c + ζk
13 , (1)

~Ak
2 = ζk

21
~F k

1c + ζk
22
~F k

2c + ζk
23 , (2)

and

~Ak+1
1 = ζk+1

11
~F k+1

1c + ζk+1
12

~F k+1
2c + ζk+1

13 , (3)

~Ak+1
2 = ζk+1

21
~F k+1

1c + ζk+1
22

~F k+1
2c + ζk+1

23 . (4)

~Ak
i , and ~F k

i , are the spatial acceleration of, and force on, handle i respectively and are

defined as

~Ak
i =

~αk

~aki

 (5)

and

~F k
ic =

~τki
~fk
i

 . (6)

The rotational acceleration of Bodyk is ~αk, ~aki is the translational acceleration of the reference

point Hk
i , and ~τki and ~fk

i are the constraint torques and forces acting at Hk
i , respectively. The

ζk
ij (i, j = 1, 2) terms are the spatial matrix representations of the inverse inertial properties

at the handles, while ζk
i3 (i = 1, 2) contains applied forces acting on the body and other

velocity dependent terms.

The bodies, Bodyk and Bodyk+1, are connected by a kinematic joint j and therefore are

subject to the kinematic constraint

Pj ~̇u = ~Ak+1
1 − ~Ak

2 − Ṗ
j
~u. (7)

Here, ~u is the vector of generalized speeds and the P matrix is a property of the kinematic

joint whose columns define the unit vectors that are aligned with the directions of motion

permitted by the kinematic joint. Similarly, the D matrix is that whose columns define the

directions of motion that are restricted by the joint. For example, if the number of degrees-

of-freedom allowed by the joint is m and the number of degrees-of-freedom restricted by the

joint is m, then the (6 ×m) matrix P and the (6 ×m) matrix D for a revolute (pin) joint

are

P =
[
1 0 0 0 0 0

]T
(8)
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and

D =



0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


. (9)

The set of equations for two connected bodies, Eqs. (1 - 4), are redundant since the trans-

lational acceleration of the connecting point is included in the equations-of-motion for each

body. This redundancy can be eliminated by exploiting the fact that the constraint forces

are equal and opposite, i.e, ~F k
2c = −~F k+1

1c , and that the kinematics of the connecting joint are

specified. Specifically, Eq. (7) describes the relative acceleration between connecting bodies

using the generalized acceleration ~̇u along known directions defined by the connecting joint

partial velocity (mode of motion) Pj . The equations-of-motion for the assembled fictitious

pseudo-body Bodyk:k+1, at Hk
1 and Hk+1

2 can be expressed as

~Ak
1 = ζk:k+1

11
~F k

1c + ζk:k+1
12

~F k+1
2c + ζk:k+1

13 (10)

and

~Ak+1
2 = ζk:k+1

21
~F k

1c + ζk:k+1
22

~F k+1
2c + ζk:k+1

23 (11)

by algebraically eliminating the constraint forces at the connecting joint from Eq. (1) and

Eq. (4). The resulting equations, Eq. (10) and Eq. (11), are of the same form as the equations-

of-motion for the handles of any generic body.

In the above equations, ζk:k+1
ij represents the inertial quantities of the fictitious pseudo-

body resulting from the assembly of Bodyk and Bodyk+1. For the derivation of the inverse

inertial terms and the details of the assembly process, the reader is referred to the work of

Featherstone [6] or Mukherjee and Anderson [16]. This assembly process is then repeated

recursively, until only a single assembled pseudo-body remains (root body), as shown in

Fig. 2. This is possible because the form of the equations-of-motion for the handles of an

assembled-body is indistinguishable in form from the form of the equations-of-motion for the

handles of a generic body. The assembly process yields the equations-of-motion associated

with the two boundary handles

~A1
1 = ζ1:n

11
~F 1:n

1c + ζ1:n
12

~F 1:n
2c + ζ1:n

13 (12)

and

~An
2 = ζ1:n

21
~F 1:n

1c + ζ1:n
22

~F 1:n
2c + ζ1:n

23 , (13)
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which are written in terms of only the spatial inverse inertial quantities of all bodies in

the system and the constraint forces acting at the two handles of the root body (boundary

handles).

The spatial accelerations of, and constraint forces acting at, H1
1 and Hn

2 can now be

determined using the known boundary conditions. After determining these quantities, the

disassembly process begins, in which all unknown spatial accelerations of the handles and

constraint forces acting at all connecting joints are determined. This recursive process de-

termines the constraint forces acting at a joint in terms of the constraint forces acting at the

handles of the assembly, and the inertial properties of the assembled body, as

~F k+1
1c = W ζk

21
~F k

1c −W ζk+1
12

~F k+1
2c + Y . (14)

The terms W and Y are terms containing inverse inertial properties from the assembly of

the two bodies, see Featherstone [6], or Mukherjee and Anderson [16] for derivation of these

terms. Once this constraint force acting at a joint is determined, the spatial accelerations of

the handles that are connected by this joint can be determined using Eq. (10) and Eq. (11).

This allows the computation of the generalized acceleration (~̇u) at the joint using Eq. (7).

2. Kinematic requirements for adaptive changes in body-definition

If the DCA is to be used to seamlessly form and solve the equations-of-motion for a mixed

system, it is crucial that the equations-of-motion of an assembled-body are indistinguishable

from those of a “leaf” or component-body from the perspective of executing the recursive

kernels, which depend on the form and makeup of Eqs. (1 - 4). This poses a challenge for

allowing adaptive changes in model definition due to the variety of generalized coordinates

used in various models of flexiblity. If the generalized coordinates are not compatible, Eq. (7)

cannot be satisfied and the assembly kernel cannot be executed because the inverse inertial

matrices ζk
ij (i, j = 1, 2) and ζk

i3 (i = 1, 2) of bodies of different type will have different

meaning. Therefore, the algebraic operations constituent to the assembly kernel that produce

Eq. (10) and Eq. (11) from Eqs. (1 - 4) are not longer valid.

A variety of methods already meet these requirements, such as the FFR formulation

using modal coordinates and associated admissible shape functions, which has been cast for

use in the DCA framework by Mukherjee and Anderson [17], or the FFR formulation using

interpolating splines, which has been formulated in the DCA framework by Khan et al. [11].

This is because for these small deformation formulations use the method of superposition

which allow the generalized coordinates associated with modeling the deformation to be de-

coupled from the rigid-body generalized coordinates. However, if the body undergoes large

deformations, these methods require an undesirably large amount of sub-structuring. There-
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fore, two popular methods of modeling bodies undergoing large deformations are examined

for use in the adaptive DCA framework with systems who’s constituent bodies are modeled

with different formulations.

3. Suitability of GEBF for use in an adaptive DCA-based framework

The method introduced by Simo [27–29], which is referred to as the Geometrically Exact

Beam Formulation (GEBF) when implemented for beam elements, is another option to

model large deformations of bodies in multibody systems. This method defines the position

vector of a point on the deformed-body as the sum of a reference line displacement vector

and the rotation of a vector defining the point in the rigid cross-section, as shown in Fig. 3.

Therefore, this method does incorporate rotational coordinates into the equations-of-motion

of the cross-section, which is promising for use in DCA with bodies of other definition.

~∆

n̂1

n̂3

n̂2

Reference
Configuration

Deformed
Configuration

O

P

P
′

Q

~rOP

~rP
′Q

Figure 3. Geometric Description of the Deformation

Another advantage of the method that Bauchau et al. [4] demonstrates is that the GEBF

more accurately predicts the behavior of beam elements than the ANCF in predicting various

displacements, rotations, and strains. This is attributed to the kinematic description of the

beam element by ANCF, which uses a second derivative of displacement to give the curvature,

instead of a first derivate which is used by GEBF. The error introduced by using higher order

derivatives in the displacement-strain relationship is well documented in texts detailing the

fundamentals of finite element analysis [8]. Furthermore, Bauchau et al. [2] predict that

modeling the behavior of two-dimensional and three-dimensional objects using plate and

shell elements, respectively, based on the ANCF, will suffer the same loss of accuracy because

they will also use a second derivative of displacement to determine the curvature.
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With these advantages, geometrically-exact methods are an attractive means of modeling

the large deformation of highly-flexible bodies. Therefore, the equations-of-motion are ex-

amined for use in the adaptive DCA framework. The equations-of-motion of a beam-element

are given by Bauchau [1] as

~̇g = −˜̇u ~h+
(
x̃

′
0 + ũ

′)
~n+ ~m

′
+ ~τ (15)

and

~̇h = ~n
′

+ ~f . (16)

These equations give the temporal rate of change of rotational (~̇g) and translational (~̇h)

momentum, respectively. The rate of change of momentum quantities are functions of the

body forces (~n) and moments (~m), applied forces (~f) and moments (~τ). The displacements

are (~u) and the (~x0) is the vector that locates the nodes in the reference configuration. The

prime symbol ( ′ ) denotes a derivative with respect to the coordinate along the beam’s axis.

The tilde accent ( ˜ ) indicates that the quantity is a skew symmetric matrix of the vector

quantities that performs the cross product operation. In this form, the equations-of-motion

for a body are not compatible with the DCA for use in the assembly or disassembly sweep.

However, it is reasonable that Eq. (15) and (16) can be modified or re-derived to produce a

set of equations that can be used in the key operations of the DCA because the generalized

coordinates required for use in the adaptive DCA framework are time-derivatives of those

used in this formulation.

4. Deriving the GEBF equations-of-motion for use in the adaptive DCA

Although the equations-of-motion for a GEBF-element are widely available in the litera-

ture, they are cast in terms of momentum. Since the DCA requires a kinematic relationship

for acceleration to be formed between for adjacent bodies at the kinematic joint, this sec-

tion derives the kinematics and kinetics of the element. Then the equations-of-motion are

algebraically manipulated into the form of Eq. (1) and Eq. (2) for use in the DCA.

4.1. Kinematics

Figure 3 shows a generic point located in the deformed configuration of a GEBF beam

element with respect to the reference configuration. In this derivation, the cross-section

remains rigid and therefore the point does not move relative to the centroid of the cross-

section. The large-deformation of a flexible body is decomposed into the deformation of

the neutral axis of the body and the rotation of the cross-section of the beam at any point

along the neutral axis. The motion of the centroid in the reference configuration (P ) to its
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location in the deformed configuration (P
′
) defines the deformation vector of the node at

the coordinate along the beam’s centerline corresponding with the cross-section.

If the warp of the beam’s cross-section is neglected, the position of any point (~rQ) on

a flexible beam may be described by the sum of the vectors locating the centroid of a rigid

cross-section
(
~rOP

)
in the undeformed configuration, the deformation vector of the centroid(

~rPP ′
= ~∆

)
, and the location of the point in the cross-section

(
~rP

′Q
)

. The resulting vector

is expressed in the Newtonian frame as{
~rQ
}

N
=
{
~rOP

}
N

+
{
~rPP ′}

N︸ ︷︷ ︸
~∆

+ NCB
{
~rP

′Q
}

B
. (17)

The subscript on the vector ({}) indicates the basis with which the vector is expressed.

Since the position vector locating the point in the rigid cross-section is easily expressed in the

reference frame of the rigid cross-section, the rotation tensor (NCB) transforms the vector

from the cross-section basis (B) to the Newtonian basis (N). It is through this term that

the rotational coordinates enter the equations-of-motion.

Taking the derivative of ~rQ gives the velocity of the generic point as{
N~vQ

}
N

=
d

dt

{
~rOP

}
N︸ ︷︷ ︸

~0

+
d

dt

{
~rPP ′}

N︸ ︷︷ ︸
~̇∆

+
d

dt

(
NCB

){
~rP

′Q
}

B

+ NCB d

dt

{
~rP

′Q
}

B︸ ︷︷ ︸
~0

. (18)

The velocity expression can be simplified since some of the derivatives with respect to time

are zero, such as the location of the centroid of the cross-section in the reference frame

with respect to the origin. Also, because the point is not moving in the cross-section, the

derivative of that vector with respect to time is zero. The remaining quantities are the

velocity of the deformation ( ~̇∆) and the time rate of change of the rotation tensor ( ˙NCB).

Thus, the velocity of an arbitrary point ‘Q’ of the beam in ‘N ’ is{
N~vQ

}
N

=
{
~̇∆
}

N
+ ˙NCB

{
~rP

′Q
}

B
. (19)

The rotation (direction cosine) tensor temporal derivative ( ˙NCB) can be converted into

the skew-symmetric matrix that defines the angular velocity (ω̃) of the reference frame

corresponding to the beam cross-section. This matrix performs the cross-product operation

with the following vector (ω̃ ~r = ~ω×~r). This is done by post multiplying the rotation tensor’s
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time derivative by the identity matrix (U) as,{
N~vQ

}
N

=
d

dt

{
~rQ
}

N
(20)

=
{
~̇∆
}

N
+ ˙NCB U

{
~rP

′Q
}

B
(21)

=
{
~̇∆
}

N
+ ˙NCB

(
NCB

)T
︸ ︷︷ ︸

N ω̃B

NCB
{
~rP

′Q
}

B︸ ︷︷ ︸
{~rP ′Q}

N

, (22)

yielding{
N~vQ

}
N

=
{
~̇∆
}

N
+ N ω̃B

{
~rP

′Q
}

N
. (23)

The acceleration of a generic point is obtained by differentiating the expression for

velocity as{
N~aQ

}
N

=
d

dt

{
~̇∆
}

N
+

d

dt

(
N ω̃B

){
~rP

′Q
}

N
+ N ω̃B d

dt

{
~rP

′Q
}

N︸ ︷︷ ︸
N ω̃B{~rP ′Q}

N

. (24)

The kinematic derivative is used to differentiate the vector locating the point in the cross-

section because it is now expressed in the Newtonian basis. The acceleration of the generic

point expressed with respect to the origin expressed in the Newtonian basis is now{
N~aQ

}
N

=
{
~̈∆
}

N
+ N α̃B

{
~rP

′Q
}

N
+ N ω̃B N ω̃B

{
~rP

′Q
}

N
. (25)

To develop the equations-of-motion for the GEBF-element the kinematics are needed for

a generic point at any cross-section along the beam’s length. To produce the kinematics as

a function of the coordinate along the beam’s length (s) the deformation of the beam’s axis

at any point is interpolated from the deformations of the axis at the nodes. Additionally,

the rotation of the cross-section at any point along the beam’s axis is interpolated from the

rotation of the cross-section at the nodes. Therefore, the velocity and acceleration of any

point on a cross-section at any location along the beam’s axis are{
N~vQ (s)

}
N

= ~̇∆ (s) + N ω̃X (s)
{
~rP

′Q (s)
}

N
(26)

and {
N~aQ (s)

}
N

= ~̈∆ (s) + N α̃X (s)
{
~rP

′Q (s)
}

N
+ N ω̃X (s) N ω̃X (s)

{
~rP

′Q (s)
}

N
. (27)

Note that{
~rP

′Q (s)
}

N
= NCX (s)

{
~rP

′Q
}

B
, (28)

where NCX is the interpolated rotation matrix as a function of the beam’s axis coordinate.

Interpolation of the angular quantities is not straight-forward, as discussed previously, and a

variety of techniques can be used to determine the interpolated rotational quantities. These

methods are presented in detail by Bauchau [1–3].
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4.2. Kinetics of a two-node beam-element

Instead of attempting to manipulate Eq. (15) and Eq. (16) into a form in terms of rotational

and translational acceleration, the equations-of-motion for each node of a two-node GEBF-

element are developed using a generalized version of Jourdain’s principle [9], which has been

popularized by Kane [10] and Schiehlen [26]. The equations-of-motion for the rth degree-of-

freedom can be written as

~F ∗r = ~Fr , (29)

modifying slightly the equations-of-motion given in Kane and Levinson [10]. These equations

are not derived herein, but can be expanded to a form that is more useful. For a system

of N particles using r generalized coordinates (qi=1...r) the equations-of-motion for the rth

degree-of-freedom is expanded as

N∑
i=1

~vir ·m~ai =

N∑
i=1

~vir · ~Ri (30)

and
N∑
i=1

∂ ~vi

∂ ur
·m~ai =

N∑
i=1

~vir · ~Ri , (31)

where ~Ri is the resultant force vector acting on particle i. The generalized speeds (ur) can

be any invertible combination of the time derivatives of the generalized coordinates (q̇r), but

are commonly chosen to be ur = q̇r. The “partial velocities” (~vir) of particle i [10] form the

modes of motion [24] for the particle. Effectively these form the basis vectors for the velocity

space of the ith particle.

To develop the equations-of-motion for a GEBF-element, the equations-of-motion for a

generic point as a function of the coordinate along the beam’s neutral axis are written using

the above method, then the equations are integrated over the volume of the element as

ρ

∫
V

∂ ~vQ (s)

∂ur
· ~aQ (s) dV = ρ

∫
V

∂ ~vQ (s)

∂ur
· ~f (s) dV +

∂ ~vi

∂ur
· ~Ri . (32)

In this version of the equations-of-motion, ~f is the body force vector and ~R is the resultant of

the point load force vectors acting at handle i and ∂ ~vi

∂ur
are the partial velocities at the handle

i. The equations-of-motion for a finite number of degrees-of-freedom can be represented in

matrix notation, after discretization of the beam and Eq. (32), as

M
{
~̇u
}

=
{

~RHS
}
. (33)
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Careful selection of the generalized speeds will produce a matrix equation that can be parti-

tioned to produce the equations-of-motion of the handles, which are chosen to coincide with

the nodes of the element. This produces the equations of the element as,

M 11 M 12

M 21 M 22




N~α1

~a1


1N~α2

~a2


2

 =

M 11 M 12

M 21 M 22

A1

A2

 =

γ11

γ12

 ~F1c +

γ21

γ22

 ~F2c +

~γ13

~γ23

 ,

(34)

where the Mij terms are mass-matrix sub-matrices resulting from the shown partitioning

(6x6 in the full 3D case). Equation (34) can be algebraically decomposed into an equation-

of-motion for each boundary node in the element in terms of only the constraint forces at

the boundaries as

A1 = ζ11
~F1c + ζ12

~F2c + ~ζ13 (35)

and

A2 = ζ21
~F1c + ζ22

~F2c + ~ζ23. (36)

Now the equations-of-motion for a GEBF-element given by Eq. (35) and Eq. (36), are in

a form which facilitates use with the DCA. The ζij terms are the inverse inertial properties

and result from the algebraic manipulations required to produce Eq. (35) and Eq. (36).

Due to the choice of generalized speeds, the kinematic relationship of a rigid-body (k)

and a GEBF-body or element (k + 1) connected at a kinematic joint is expressed as

Arigid
2 =

~αk

~ak2

 = AGEBF
1 =

~αk+1

~ak+1
2

+ Ṗ
j
~u+ Pj ~̇u , (37)

where Pj is the space of admissible motions permitted by the connecting joint. From this

equation, it can be seen that the coordinates used for rigid-body and the highly-flexible

body are compatible. This is because, as can be seen in the preceding derivation, the

rotational coordinates used for a GEBF-element cross-section are fundamentally the same

as the rotational coordinates associated with the rigid-bodies. This allows the assembly and

disassembly operations to be used without differentiation of the body type.

5. Conclusions

This work presents a method of modeling large deformation of beam-type bodies that is now

compatible with the adaptive DCA framework. Additionally, this method can and will be
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repeated to model other types of bodies that may be better represented as plates or shells.

Automatic changes in body-type are now possible across all possible degrees of flexibility.

This will allow adaptive simulations to further reduce the number of degrees-of-freedom

while maintaining adequate accuracy predicting the overall motion of the system. These

adaptive techniques are particularly attractive to the application of molecular dynamics

where predicting the model type of much of the system is impossible a priori, when a fully

atomistic simulation is impractical. For mechanical systems, the nature of the body is

typically known. However, these adaptive capabilities can be used to simulate the mechanism

through failure because the time and mode of failure is often not anticipated. Furthermore,

the work developed herein allow a seamless coexistence of bodies of all degrees of flexibility

(modeled with the appropriate formulation) in a multibody simulation.
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Passive control of a linear structure via nonlinear oscillators in

series

Claude-Henri Lamarque, Alireza Ture Savadkoohi, Simon Charlemagne

Abstract: A multi-degree-of-freedom system consisting of a linear main struc-
ture coupled to a chain of light nonlinear oscillators is investigated. We aim
to develop tools to study mitigation of the vibratory energy of the main sys-
tem, which is subjected to narrow-band harmonic solicitation, thanks to the
nonlinear chain. A continuum approximation for the chain combined with a
multiple time scales method is used to apprehend the complex dynamics of the
overall system. At fast time scale, the discrete system of equations is trans-
formed into a partial differential equation in time and space with boundary
conditions. Fixed points solutions of this equation define the Slow Invariant
Manifold (SIM), which gathers all possible asymptotic behaviors of the sys-
tem. At slow time scale, equilibrium and singular points are detected around
the SIM. The former describe periodic regimes and the latter are hints of
strongly modulated responses, during which the system faces singularities and
repeated bifurcations. Finally, these predictions are confronted with numerical
simulations in order to validate this analytical approach. A good agreement is
found.

1. Introduction

The use of additional nonlinear devices has shown its efficiency in terms of passive control of

primary structures [8]. Indeed, essential nonlinearity enable secondary systems like Nonlinear

Energy Sinks [2–4] to enter in resonance with any frequency, allowing a broadband control.

Some works have also considered three degree-of-freedom (dof) vibration absorbers, showing

their capacity to perform a multi-modal control of impulse-loaded systems [7,10,11].

In this paper, we aim to detail an analytical methodology for studying nonlinear chains

of light oscillators coupled to a primary structure under harmonic excitation, in which the

chain is to be examined with a continuous approximation. The paper is organized as follows:

studied model along with analytical tools used to treat system equations are presented in

Sect. 2. Multi-time scales behaviors of the system are then investigated in Sect. 3 while

Sect. 4 confronts analytical predictions with numerical results. Conclusions are given in

Sect. 5.
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2. Presentation of the model

The system considered is described in Fig. 1. It consists of a linear oscillator (LO) with

the mass M , stiffness K and damping C, subjected to external solicitation F (t). A chain of

nonlinear oscillators of equal mass for each particle as m = ǫM is coupled to the LO. Linear

connection in the chain is performed through springs of stiffness B̃ and viscous damping Γ

while local nonlinearities Ṽ are present.

We rescale the parameters as follows:
K

M
= ω

2
0 ,
B̃

M
= ǫB,

Ṽ (z)

M
= ǫDz

3,
C

M
= ǫc,

Γ

M
= ǫγ,

M m

F(t)

K

C

m m m

v

1 u2 uL uL+1u

B
~

B
~

B
~

V
~

V
~

V
~

V
~

Γ Γ Γ

Figure 1. (L+ 2) dof system consisting of a forced linear structure coupled to (L+ 1) light

nonlinear oscillators (m = ǫM , 0 < ǫ ≪ 1).

F (t)

M
= ǫf sin(ωt) and ω2 = ω2

0(1 + σǫ). Hence, governing equations read:























































v̈ + ǫcv̇ + ω2
0v + ǫγ(v̇ − u̇1) + ǫB(v − u1) = ǫf sin(ωt)

ü1 + γ(−v̇ + 2u̇1 − u̇2) +B(−v + 2u1 − u2) +Du3
1 = 0

...

üj + γ(−u̇j−1 + 2u̇j − u̇j+1) +B(−uj−1 + 2uj − uj+1) +Du3
j = 0 , j = 2, . . . , L

...

üL+1 + γ(u̇L+1 − u̇L) +B(uL+1 − uL) +Du3
L+1 = 0

(1)

where v and uj , j ∈ [|0, L+ 1|], stand for the displacements of the LO and the oscillators of

the chain, respectively.

While the chain is long enough, i.e. L ≫ 1, we can consider the chain as a continuum

medium and replace the discrete variables uj by a continuous function of a space variable x

measured in number of oscillators:

uj(t) = u(x = j − 1, t), j = 1, . . . , L+ 1

x ∈ [0, L]
(2)
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L describes now the length of the chain. Introduction of this space variable enables to make

Taylor expansions as follows:

uj±1 ≈ u(j, t)± ∂u

∂x
(j, t) +

1

2!

∂2u

∂x2
(j, t) + . . .± 1

n!

∂nu

∂xn
(j, t) (3)

Complex variables of Manevitch [5] are introduced (i =
√
−1):



















ψ(t)eiωt =
∂v(t)

∂t
+ iωv(t)

ϕ(x, t)eiωt =
∂u(x, t)

∂t
+ iωu(x, t)

(4)

The mass ratio ǫ is used to derive a multiple time scale method introducing fast (τ0 = t)

and slow (τk = ǫkt k = 1, 2, . . .) time scales [6].

Finally, we use a Galerkin technique via keeping only the first harmonic, by imposing:

S =
ω

2π

∫ 2π
ω

0

s(τ1, τ2, . . .)e
−iωτ0dτ0 (5)

In further developments, ψ and ϕ are assumed to be independent of τ0. This will be either

confirmed during the multiple scale developments or assumed through consideration of an

asymptotic state when τ0 → ∞.

3. Multiple time scale behaviors

3.1. Fast time scale τ0

To investigate the system behavior at fast time scale, we derive system equations at the

order ǫ0. The first equation relative to the LO gives
∂ψ

∂τ0
= 0. Thus, ψ does not depend

on the fast time scale. Searching for fixed points of the remaining equations, i.e. φ such as

lim
τ0→+∞

∂φ(x)

∂τ0
= 0, we obtain (dependence on time is omitted):



















































iω0

2
φ(0) +

1

2

(

γ − iB

ω0

)(

−ψ + φ(0)− ∂φ

∂x
(0)

)

− iD|φ(0)|2φ(0) = 0

iω0

2
φ(x)− 1

2

(

γ − iB

ω0

)

∂2φ

∂x2
(x)− iD|φ(x)|2φ(x) = 0 x ∈]0, L[

iω0

2
φ(L) +

1

2

(

γ − iB

ω0

)

∂φ

∂x
(L)− iD|φ(L)|2φ(L) = 0

(6)

where D =
3D

8ω3
0

. This defines the Slow Invariant Manifold (SIM) which shelters all asymp-

totic behaviors of the system. It takes the form of a boundary value problem where the first
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and third equations are the left and right boundary conditions of the chain. System (6) is

now to be solved by searching solutions of the form ψ = N1e
iδ1 and φ(x) = N(x)eiδ(x). Let

us point out that, although N(x) should be a real positive function, calculations can lead

to negative solutions. Hence, absolute value of the obtained expression of N(x) has to be

considered, which forces us to add π to the phase δ(x) at points where N(x) is negative.

Setting γ = 0 or, equivalently, considering that the damping is of order ǫ2, the ordinary dif-

ferential equation can be split in real and imaginary parts and integrated into the following

system:























(

∂N

∂x
(x)

)2

= − Θ

N(x)2
− ω2

0

B
N(x)2 +

Dω0

B
N(x)4 + C1

∂δ

∂x
(x) =

Θ

N(x)2

(7)

where C1 and Θ are constants of integration. The second equation of Eq. (7) shows that

δ should face a sudden jump each time N changes its sign, which is consistent with the

previous remark. Injecting Eq. (7) into the right boundary condition, one is first able to

derive a polynomial expression in N(L) that can be solved into closed-form expressions of

N(L) as function of C1. Moreover, we obtain that Θ = 0. Therefore, δ(x) is piece-wise

constant.

First equation of Eq. (7) can now be rewritten:

dx = ± dN
√

−ω
2
0

B
N

2 +
Dω0

B
N

4 + C1

(8)

For given values of C1 and N(x), Eq. (8) can be integrated analytically (for other cases,

numerical integration is required):

N(x) =
√
X1 sn

(
√

C1

X1
(x−C2),

X1

X2

)

with C2 = L−
√

X1

C1
F

(

arcsin

(

N(L)√
X1

)

,
X1

X2

)

(9)

where sn(X, k2) is a Jacobian elliptic function and F(X, k2) is the incomplete elliptic integral

of the first kind. It should be reminded that N(L) is determined through the right boundary

condition. We are now able to inject this expression of N(x) into the left boundary condition

to determine ψ. This procedure enables to plot a projection of the SIM in the N1 −N(L)

plane as shown in Fig. 2 where the solid line denotes branches obtained from analytical

integration of Eq. (8) and the dashed line branches obtained from numerical integration.
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Figure 2. L = 35, ω0 = 1, B = 120 and D = 2 - Example of SIM: solid line denotes branches

obtained from analytical integration of Eq. (8) and the dashed line branches obtained from

numerical integration

3.2. Slow time scale τ1

In this section, equilibrium and singular points are detected around the SIM. They predict

periodic regimes and Strongly Modulated Responses [9], respectively.

The equation relative to the LO around the SIM derived at the ǫ1 order reads:

∂ψ

∂τ1
+

1

2

(

cψ + iσω0 − iB

ω0

)

ψ +
iB

ω0
φ(0) =

f

2i
(10)

Left boundary condition of the SIM gives:

ψ = Fl(N0)e
iδ0

Fl(N0) = −Nx(0) +

(

1− ω2
0

B
+ 2D̃N2

0

)

N0

(11)

Injecting Eq. (11) into Eq. (10), we obtain:






















∂N0

∂τ1
=
f1(N0, δ0)

g(N0)

∂δ0

∂τ1
=
f2(N0, δ0)

g(N0)

(12)

where














































f1(N0, δ0) = −Fl(N0)

2
[cFl(N0) + f sin(δ0)]

f2(N0, δ0) =
1

2

∂Fl(N0)

∂N0

[(

B

ω0
− σω0

)

Fl(N0)− B

ω0
N0 − f cos(δ0)

]

g(N0) = Fl(N0)
∂Fl(N0)

∂N0

(13)
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Equilibrium points verify f1 = f2 = 0 and g 6= 0 while singular points verify f1 = f2 = g = 0.

4. Numerical results

Analytical predictions obtained from the method described in Sects. 2 and 3 are compared in

this section to numerical results. A Runge-Kutta scheme (ode45 function of Matlab) is used

to solve system (1), with following options: time step is 0.1 and relative and absolute error

tolerance set to 10−12. We will suppose that all oscillators are at rest initially. Moreover,

in order to compare analytical and numerical results, we compute the discrete numerical

equivalent of ϕ(x, t) as follows:

ϕj+1(t) = (u̇j(t) + iωuj(t)) e
−iωt = Nj+1(t)e

iδj+1(t) j = 0, . . . , L+ 1 (14)

As a first example, let us consider the system described by L = 45, ǫ = 0.001, ω0 = 1,

B = 200, D = 2, c = 0.5, f = 0.4 and σ = 0. In numerical simulations, damping has

been set to γ = 2. The system has one stable equilibrium point and one singular point

(see Fig. 3). As a consequence, its behavior should be quickly attracted by the SIM and

stabilize around the equilibrium point or face SMR. Figs. 4(a)-(b) show that the system

reaches a periodic regime. However, despite a good qualitative agreement between analytical

predictions and numerical results, Figs. 4(b)-(c) exhibit a quantitative difference, which is

due to the continuous approximation. Indeed, predictions made by an analytical discrete

approach using the exact same hypotheses [1] fit numerical simulations (see Fig. 4(c)).

In the second example, we use following new parameters: L = 35, ǫ = 0.001, ω0 = 1,

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

|N
1|

|N(L)|

(a)

2.64 2.66 2.68 2.7 2.72

−0.363

−0.3625

−0.362

−0.3615

−0.361

−0.3605

−0.36

−0.3595

δ
0

N
0

(b)

Figure 3. L = 45, ǫ = 0.001, ω0 = 1, B = 200, D = 2, c = 0.5, f = 0.4 and σ = 0 - (a) SIM

of the system (black line) with equilibrium and singular points (blue point and black cross,

respectively) (b) Phase portrait around the equilibrium point.
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Figure 4. L = 45, ǫ = 0.001, ω0 = 1, B = 200, D = 2, c = 0.5, f = 0.4 and σ = 0 - (a) SIM of

the system (dashed red line) with corresponding numerical results (blue line) (b) N1 versus

time obtained from numerical results (blue line) and amplitude predicted on the equilibrium

point (red dotted line) (c) Comparison of amplitudes predicted by analytical results on the

equilibrium point from continuous (red dotted line) and discrete approach (black crosses)

and numerical results during the steady-state regime (blue circles).

B = 120, D = 2, c = 0.5, f = 3.5 and σ = 7. Damping has been set to γ = 10. As shown

in Fig. 5, the system has three equilibrium points. Points no. 1 and 2 are unstable while

point no. 3 is stable (see phase portraits in Figs. 5(b)-(d)). Figure 6 shows that the system

faces SMR, making repeated cycles around the SIM and showing properties of intense energy

exchange between the LO and the chain.
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Figure 5. L = 35, ǫ = 0.001, ω0 = 1, B = 120, D = 2, c = 0.5, f = 3.5 and σ = 7 - (a) SIM

of the system (black line) with equilibrium and singular points (blue points and black cross,

respectively) (b)-(d) Phase portraits around equilibrium points no. 1, 2 and 3, respectively.

5. Conclusions

A system consisting of a linear system coupled to a chain of oscillators with on-site nonlinear

potentials is studied. A continuous approximation is used to describe the dynamics of the

chain. At fast time scale, the slow invariant manifold of the system, taking the form of a

boundary value problem, is computed. Equilibrium and singular points are detected around

this manifold at slow time scale. They predict periodic regimes and strongly modulated

responses of the system, respectively. A good accordance between numerical simulations

and analytical results is found. Thus, the method described in this work appears as a strong

tool to design nonlinear chains for purposes of passive control.
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Figure 6. L = 35, ǫ = 0.001, ω0 = 1, B = 120, D = 2, c = 0.5, f = 3.5 and σ = 7 - (a) SIM of

the system (dashed red line) with corresponding numerical results (blue line) (b) N1 versus

time obtained from numerical results (c) N37 versus time obtained from numerical results.
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The influence of anti-roll bar in the dynamics of a full-car control 

 

 

Wagner Barth Lenz, Angelo Marcelo Tusset, Rodrigo Tumolin Rocha, Frederic 
Conrad Janzen, Adriano Kossoski, Jose Manoel Balthazar, Airton Nabarrete 

Abstract: This paper presents the control strategy of a nonlinear full-car model using 

magnetorheological (MR) damper. The control strategy is used in two-step design. 

First, the LQR control is design and formulated in order to control the nonlinear 

suspension. The nonlinear suspension is composed by the anti-roll bar, nonlinear 

springs and dampers. The second one is defined by Lugre model which calculates the 

value of the voltage to have the same force as the control requested. To study the impact 

of the anti-roll bar, numerical simulations were carried out with and without the anti-

roll bar. The results showed that the efficiency of the control did not decreased by the 

addition of the anti-roll bar, however the control need less interaction with the 

suspension, then less power was used to control the motion. 

1. Introduction 

Nowadays, the improvement of ride quality and comfort of passengers in a car have been strongly 

studied due to vibrations of a vehicle body may harm the passengers due to high amplitude and 

frequency induced into passengers’ body. Therefore, such vibrations should be reduced. 

In recent years, many researchers have kept their attention to design control techniques of vehicle 

suspension systems aiming to reduce the vibrations [1-3]. There are three types of vibration control 

methods proposed and implemented successfully in the literature, which are passive, active and semi-

active control methods aiming to control suspension systems [4]. However, the most common 

mathematical models that represent such vehicle systems are usually based on models that do not 

consider the anti-roll bar related to the vehicle vertical dynamics. On the other hand, the main studies 

of these anti-roll bars are linked to fatigue and vehicle dynamics in curves.  

The anti-roll bar was introduced to reduce the motion on bending. Such motion is not particularly 

problematic, however in sinuous road and in constant excitation the roll moment can make the vehicle 

overturn. In addition, in big trucks and vehicles with elevate CM (center of mass), this kind of motion 

can be more problematic. Introducing the anti-roll bar to the dynamics of a car soften the springs, with 

that, the load can be shared with the bar. Consequently, the ride comfort is improved due to the impact 

on the lower sprung mass. 
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Therefore, this work proposes the analysis of the introduction of an anti-roll bar in a full-car model 

with nonlinear suspension and with a semi-active control by a MR damper which will be controlled by 

a signal obtained by the LQR control. The analysis of the influence of the addition of the anti-roll bar, 

the torsional rigidity and semi-active control in the vehicle dynamics is carried out with the goal to 

increase comfort and safety of passengers. 

MR dampers are widely used in the modern industry and are capable to generate a force enough 

for a fast response in many applications [5,6]. The magnetic properties allow its use as a damper 

controlled by an electric current [7].  Moreover, these devices offer highly reliable operations and their 

performance is relatively insensible to temperature fluctuations or impurities in the fluid [8]. 

The MR damper can be used in the suppression of undesired oscillations, which can be controlled 

through the electrical current or voltage, which changes the viscosity of the fluid's internal damper. The 

damping force will depend on the speed of the piston of the damper and the density of internal fluid.  

The feedback of state variables can provide information about the behavior of the controlled system 

over time by means of sensors, and the optimal intensity of force being applied by the MR damper. In 

this work, a mathematical model proposed by [9] to transform the values of control force into electric 

current signal will be considered.  

2. Mathematical Model 

In this section, a full-car model will be discussed and the modelling of its equations of motion will be 

developed considering the anti-roll bar to transfer energy between the roll and wheels. 

The nonlinear full-car model, illustrated in Fig. 1, is of a seven-degrees-of-freedom rigid body with 

mass m. The heave, pitch and roll motions of the sprung mass are considered. The four unsprung masses 

(front-left, front-right, rear-left and rear-right) are connected to each corner of the rigid body and by an 

anti-roll bar, whose bar is modelled as a torsional spring. The suspensions between the sprung mass 

and unsprung masses are modelled as nonlinear springs and nonlinear dampers elements, while the tires 

are modelled as linear springs. 
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Figure 1.   Nonlinear full-car model considering an anti-roll bar and MR dampers 

The road, in generic terms 

𝑋𝑟𝑜𝑎𝑑 = 𝑎𝑚𝑝 ∗ 𝑠𝑖𝑛𝑔(sin(2𝜋𝑓𝑡)) (1) 

For each road if time is less than 10 seconds 

𝑋𝑓𝑟 = 𝑎𝑚𝑝 ∗ 𝑠𝑖𝑛𝑔(sin(2𝜋𝑓𝑡)) (2) 

𝑋𝑓𝑙 = 𝑎𝑚𝑝 ∗ 𝑠𝑖𝑛𝑔(sin(2𝜋𝑓𝑡 + 𝛽)) (3) 

𝑋𝑟𝑟 = 𝑎𝑚𝑝 ∗ 𝑠𝑖𝑛𝑔(sin(2𝜋𝑓𝑡 + 𝛼)) (4) 

𝑋𝑟𝑙 = 𝑎𝑚𝑝 ∗ 𝑠𝑖𝑛𝑔(sin(2𝜋𝑓𝑡 + 𝛽 + 𝛼)) (5) 

The tire was modelled as a linear spring: 

𝐹𝑡𝑖𝑟𝑒 = 𝐾𝑝𝑛(𝑋𝑈𝑁 − 𝑋𝑟𝑜𝑎𝑑) (6) 

where, Xun is the mass of the unsprung mass and Xroad is the matching road profile. The spring of the 

suspension was modelled as [10]: 

𝐹𝑠𝑓𝑙 = 𝐾𝑓𝑙(∆𝑋𝑓𝑙) + 𝐾𝑓𝑛𝑙(∆𝑋𝑓𝑙)
3
 (7) 

𝐹𝑠𝑓𝑟 = 𝐾𝑓𝑟(∆𝑋𝑓𝑟) + 𝐾𝑓𝑛𝑙(∆𝑋𝑓𝑟)
3
 (8) 

𝐹𝑠𝑟𝑙 = 𝐾𝑟𝑙(∆𝑋𝑟𝑙) + 𝐾𝑟𝑛𝑙(∆𝑋𝑟𝑙)
3 (9) 

𝐹𝑠𝑟𝑟 = 𝐾𝑟𝑟(∆𝑋𝑟𝑟) + 𝐾𝑟𝑛𝑙(∆𝑋𝑟𝑟)
3 (10) 

The damper was modelled according to the following equations [10]: 
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𝐹𝑑𝑓𝑙 = 𝑐1(∆𝑋𝑓𝑙
̇ ) − 𝑐2|∆𝑋𝑓𝑙

̇ | + 𝑐3 ∗ 𝑠𝑖𝑔𝑛(∆𝑋𝑓𝑙
̇ )√|∆𝑋𝑓𝑙|

̇2

 (11) 

𝐹𝑑𝑓𝑟 = 𝑐1(∆𝑋𝑓𝑟
̇ ) − 𝑐2|∆𝑋𝑓𝑟

̇ | + 𝑐3 ∗ 𝑠𝑖𝑔𝑛(∆𝑋𝑓𝑟
̇ )√|∆𝑋𝑓𝑟

̇ |
2

 (12) 

𝐹𝑑𝑟𝑙 = 𝑐1(∆𝑋𝑟𝑙
̇ ) − 𝑐2|∆𝑋𝑟𝑙

̇ | + 𝑐3 ∗ 𝑠𝑖𝑔𝑛(∆𝑋𝑟𝑙
̇ )√|∆𝑋𝑟𝑙

̇ |
2

 (13) 

𝐹𝑑𝑟𝑟 = 𝑐1(∆𝑋𝑟𝑟
̇ ) − 𝑐2|∆𝑋𝑟𝑟

̇ | + 𝑐3 ∗ 𝑠𝑖𝑔𝑛(∆𝑋𝑟𝑟
̇ )√|∆𝑋𝑟𝑟

̇ |
2

 (14) 

where the relative speeds and relative displacements can be calculated by using the following equations, 

where roll α, pitch β. 

∆𝑋𝑓𝑙 =
𝑠

2
sin(𝑋∝) − 𝑎 sin(𝑋𝛽) + 𝑋𝑐𝑔 − 𝑋𝑓𝑙  (15) 

∆𝑋𝑓𝑟 = −
𝑠

2
sin(𝑋∝) − 𝑎 sin(𝑋𝛽) + 𝑋𝑐𝑔 − 𝑋𝑓𝑟 (16) 

∆𝑋𝑟𝑙 =
𝑠

2
sin(𝑋∝) + 𝑏 sin(𝑋𝛽) + 𝑋𝑐𝑔 − 𝑋𝑟𝑙 (17) 

∆𝑋𝑟𝑟 = −
𝑠

2
sin(𝑋∝) + 𝑏 sin(𝑋𝛽) + 𝑋𝑐𝑔 − 𝑋𝑟𝑟 (18) 

∆𝑋𝑓𝑙
̇ =

𝑠

2
�̇�∝cos(𝑋∝) − �̇�𝛽𝑎 cos(𝑋𝛽) + �̇�𝑐𝑔 − �̇�𝑓𝑙  (19) 

∆𝑋𝑓𝑟
̇ = −

𝑠

2
�̇�∝cos(𝑋∝) − �̇�𝛽𝑎 cos(𝑋𝛽) + �̇�𝑐𝑔 − �̇�𝑓𝑟 (20) 

∆𝑋𝑟𝑙
̇ =

𝑠

2
�̇�∝ cos(𝑋∝) + �̇�𝛽𝑏 cos(𝑋𝛽) + �̇�𝑐𝑔 − �̇�𝑟𝑙 (21) 

∆𝑋𝑟𝑟
̇ = −

𝑠

2
�̇�∝cos(𝑋∝) + �̇�𝛽𝑏 cos(𝑋𝛽) + �̇�𝑐𝑔 − �̇�𝑟𝑟 (22) 

The anti-roll bar is modelled as 

𝑀𝑎𝑟 = 𝑘𝑡(𝑋𝑐𝑔 − (
𝑋𝑓𝑟−𝑋𝑓𝑙

𝑠
)) (23) 

However, to better express the stiffness of the anti-roll bar, it will be compared to the stiffness of 

the spring, as denote by Eq. (26). 

𝜎 =
𝑘𝑡

𝑠𝐾𝑓𝑙
 (26) 

In consequence, the anti-roll bar can be modelled as: 

𝑀𝑎𝑟 = 𝜎𝑠𝐾𝑓𝑙(𝑋𝑐𝑔 − (
𝑋𝑓𝑟−𝑋𝑓𝑙

𝑠
)) (25) 
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Applying the newton’s second law in all the bodies, the dynamics of the car can be described as: 

𝑚𝑥𝑔�̈�𝑥𝑔 = −(𝐹𝑑𝑓𝑙 + 𝐹𝑑𝑓𝑟 + 𝐹𝑑𝑟𝑙 + 𝐹𝑑𝑟𝑟 + 𝐹𝑠𝑓𝑙 + 𝐹𝑠𝑓𝑟 + 𝐹𝑠𝑟𝑙 + 𝐹𝑠𝑟𝑟) (26) 

𝐼∝�̈�∝ = (
𝑠𝑐𝑜𝑠(𝑋∝)

2
)(−𝐹𝑑𝑓𝑙 + 𝐹𝑑𝑓𝑟 − 𝐹𝑑𝑟𝑙 + 𝐹𝑑𝑟𝑟 − 𝐹𝑠𝑓𝑙 + 𝐹𝑠𝑓𝑟 − 𝐹𝑠𝑟𝑙 + 𝐹𝑠𝑟𝑟) + 𝑀𝑎𝑟 (27) 

𝐼𝛽�̈�𝛽 = (
𝑎𝑐𝑜𝑠(𝑋𝛽)

2
) (𝐹𝑑𝑓𝑙 + 𝐹𝑑𝑓𝑟 + 𝐹𝑠𝑓𝑙 + 𝐹𝑠𝑓𝑟) − (

𝑏𝑐𝑜𝑠(𝑋𝛽)

2
)(+𝐹𝑠𝑟𝑙 + 𝐹𝑠𝑟𝑟 + 𝐹𝑑𝑟𝑙 + 𝐹𝑑𝑟𝑟) (28) 

𝑚𝑓𝑙�̈�𝑓𝑙 = +(𝐹𝑑𝑓𝑙 + 𝐹𝑠𝑓𝑙 − 𝐹𝑡𝑓𝑙) +
𝑀𝑎𝑟

𝑠
 (29) 

𝑚𝑓𝑟�̈�𝑓𝑟 = +(𝐹𝑑𝑓𝑟 + 𝐹𝑠𝑓𝑟 − 𝐹𝑡𝑓𝑟) −
𝑀𝑎𝑟

𝑠
 (30) 

𝑚𝑟𝑙�̈�𝑟𝑙 = +(𝐹𝑑𝑟𝑙 + 𝐹𝑠𝑟𝑙 − 𝐹𝑡𝑟𝑙) (31) 

𝑚𝑟𝑟�̈�𝑟𝑟 = +(𝐹𝑑𝑟𝑟 + 𝐹𝑠𝑟𝑟 − 𝐹𝑡𝑟𝑟) (32) 

3. Numerical Simulations and Control Design 

The numerical simulations were performed using the fourth order Runge-Kutta method considering the 

parameters of the following Tab. 1, that were adapted from [10-12]. 

Table 1. Parameters’ value 

Variable Value Variable Value Variable Value 

𝑐1 700 𝑚𝑟 59kg 𝐼𝛽 2160kgm2 

𝑐2 200 𝑚𝑓 59kg 𝑠 3m 

𝑐3 400 𝐼∝ 460kgm2 𝑎 1.4m 

𝑎𝑚𝑝 0.08m 𝑠𝐾𝑓𝑙  245000N 𝑏 1.7m 

𝑓 9.69Hz 𝑚𝑠 1500kg 𝐾𝑓𝑙  23500 

𝐾𝑝𝑛 190000N/m 𝐾𝑟𝑙 23800 𝐾𝑓𝑛𝑙  2350000 

∝ 180 𝐾𝑟𝑛𝑙 2380000 𝛽 180 

 

For the controller, the whole dynamics was rewrite according with the following system 

�̇� = 𝐴𝑥 + 𝐴𝑛𝑙 + 𝐵𝑢 (33) 

where A is the linear part of the car, Anl is the nonlinear matrix, B is a matrix of the control force using 

MR dampers, and u is the conversion of the force required to the MR dampers to achieve such result at 

such instant. Matrix B is given by Eq. (34), and matrices A and Anl will not be showed due to space. 
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𝐵 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 0 0 0
−1/𝑚𝑐𝑔 −1/𝑚𝑐𝑔 −1/𝑚𝑐𝑔 −1/𝑚𝑐𝑔

0 0 0 0

−𝑠
𝑐𝑜𝑠(𝑥3)

2𝐼𝛼
𝑠

𝑐𝑜𝑠(𝑥3)

2𝐼𝛼
−𝑠

𝑐𝑜𝑠(𝑥3)

2𝐼𝛼
𝑠

𝑐𝑜𝑠(𝑥3)

2𝐼𝛼

0 0 0 0

𝑎
𝑐𝑜𝑠(𝑥5)

𝐼𝛽
𝑎

𝑐𝑜𝑠(𝑥5)

𝐼𝛽
−𝑏

𝑐𝑜𝑠(𝑥5)

𝐼𝛽
−𝑏

𝑐𝑜𝑠(𝑥5)

𝐼𝛽

0 0 0 0
1

𝑚𝑓
0 0 0

0 0 0 0

0
1

𝑚𝑓
0 0

0 0 0 0

0 0
1

𝑚𝑟
0

0 0 0 0

0 0 0
1

𝑚𝑟 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (34) 

Due to dependency of the magnetization of the fluid, which is the damper nonlinearity that is 

temporal, and the speed. The predicted force can be determined by 

𝐹𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = −𝐾𝑋 (35) 

The damping force control can be obtained through the LQR control, given by: 

u = −𝑅−1𝐵𝑇𝑃𝑋 (36) 

where Q and R are positive definite matrices, the matrix P is obtained solving the Riccati equation given 

by: 

PA + 𝐴𝑇𝑃 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 + 𝑄 = 0   (37) 

so that the feedback of the force output (36) is able to minimize the performance index J as following: 

𝐽 =
1

2
∫ (𝑋𝑇𝑄𝑋 + 𝑢𝑇𝑄𝑢)

∞

𝑡0
𝑑𝑡 (38) 

Therefore, the minimization of the functional (38) implies the minimization of the states X, and the 

force (u) applied by the MR damper. The control signal u is determined using the matrices A and B, and 

the positives definite matrices Q  and R are defined as follows: 𝑄14𝑋14 and 𝑅4𝑋4, diagonal matrices 

with (𝑞1,1 = 0.1; 𝑞2,2 = 108;  𝑞3,3 = 0.1; 𝑞4,4 = 108; 𝑞5,5 = 0.1; 𝑞6,6 = 0.1; 𝑞7,7 = 0.1; 𝑞8,8 = 0.1 ; 

𝑞9,9 = 0.1; 𝑞10,10 = 0.1; 𝑞11,11 = 0.1; 𝑞12,12 = 0.1; 𝑞13,13 = 0.1; 𝑞14,14 = 0.1), and (𝑟1,1 = 0.1; 𝑟2,2 =

0.1;  𝑟3,3 = 0.1; 𝑟4,4 = 0.1). 

Using the current status of the MR damper and setting the parameters for maximum speed velocity 

and voltage, it is possible to establish the desired next voltage to be applied by an interactive process.  

284



Considering the predicted force on a regression model for the MR damper, it is possible to know 

the electric current needed to have the required force of the controller on each MR damper. This 

mechanism is needed because of the controller may demand a force that the damper cannot dissipate 

due to physical limitations, such as high speeds or force on the opposite direction of the MR damper so 

that it can provide resistance. 

A nonlinear friction mechanism of the MR damper causes a hysteretic effect and many researches 

have been devoted to consider this nonlinear behavior in the mathematical model. An alternative is the 

LuGre friction model [13] which was originally developed to describe the nonlinear friction phenomena 

[14].  

The friction mechanism is a phenomenon in which two surfaces make contact at a number of 

asperities at microscopic level. In the modified LuGre friction model [14] this mechanism is expressed 

by the average behavior of the bristles. In [13,15], another MR damper model based on the LuGre 

model is described as: 

𝐹 = 𝜎𝑎𝑍 + 𝜎0𝑍𝑈 − 𝜎0𝜎1𝐴0|�̇�|𝑍 + (𝜎1 + 𝜎2)�̇� + 𝜎𝑏�̇�𝑈 (39) 

�̇� = �̇� − 𝜎0𝐴0|�̇�|𝑍 (40) 

Table 2. Parameters of LuGre model to Eqs. (39) and (40) [13] 

𝜎0 6x105N/(m.V) 𝜎1 1.8x103 N.s/m 

𝜎𝑏 9.0x102N.s/(m.V) 𝐴0 2.5x10-3V/N 

𝜎2 0 N.s/m 𝜎𝑎 5.5x105N/m 

 

The voltage V required to the force of the MR damper can be numerically determined to coincide 

with the desired control force u obtained from the control strategy [16]. 

Figures 2 show the behavior of the vehicle for the system without semi-active control and without 

anti-roll bar, with anti-roll bar with σ = 50% and without semi-active, and with anti-roll bar with σ = 

50% and semi-active control of the MR damper. 
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      (a)                                                                           (b) 

  
      (c)                                                                           (d) 

 
      (e)                                                                           (f) 

 
      (g)                                                                           (h) 

Figure 2.   Vehicle system with anti-roll bar and semi-active control, with 𝜎 = 50%: (a) Roll α , (b) pitch 

β (c) displacement of the center of mass (X𝑥𝑔), (d) acceleration of the center of mass (�̈�𝑥𝑔), 

(e) wheel axis displacement (front-right), (f) wheel axis displacement (front-left), (g) wheel 

axis displacement (rear-right), (h) wheel axis displacement (rear-left) 
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      (a)                                                                           (b) 

  
      (c)                                                                           (d) 

 
      (e)                                                                           (f) 

 
      (g)                                                                           (h) 

Figure 3.   Vehicle system with antiroll bar and semi-active control, with 𝜎 = 100%: (a) Roll α , (b) pitch 

β (c) displacement of the center of mass (X𝑥𝑔), (d) acceleration of the center of mass (�̈�𝑥𝑔), 

(e) wheel axis displacement (front-right), (f) wheel axis displacement (front-left), (g) wheel 

axis displacement (rear-right), (h) wheel axis displacement (rear-left) 
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Figures 3 show the behavior of the vehicle for the system without semi-active control and without 

anti-roll bar, with anti-roll bar with σ = 100% and without semi-active, and with anti-roll bar with σ = 

100% and semi-active control of the MR damper. 

The preliminary results showed that the anti-roll bar has relevance and good results in averaging 

the motion. However, to amplify the displacement it is needed that β be near 180º. In this kind of 

motions, the control is required to support establish the motion 𝜎 = 50%. Table 3 shows the RMS 

variation for the cases presented in Figs. 2 and 3. 

 

Table 3. Acceleration of the center of mass (Ẍxg) in RMS 

Simulation RMS 

No control, σ = 0% 22.41 

No control, σ = 50% 36.93 

No control, σ = 100% 9.56 

Control, σ = 0% 6.80 

Control, σ = 50% 33.47 

Control, σ = 100% 9.47 

 

Table 3 shows that the addition of the anti-roll bar provided a significant reduction in the 

acceleration levels of the vehicle (�̈�𝑥𝑔), contributing to more comfort to the passengers. In addition, the 

semi-active control acts more effectively at low levels of stiffness of the anti-roll bar (σ = 50% or σ = 

0%) and that its contribution reduces the stiffness of the anti-roll bar (σ = 100%). 

4. Conclusions 

As predicted, the comfort performance is better with σ = 100% than with σ = 50% or σ = 0%. The use 

of control makes the comfort improve, although the time for the displacement of the CG, roll and pitch 

settle quickly with the controller. 

The use of the anti-roll bar supports the system to avoid the resonance area, and provide a 

displacement of the tire more stable and reliable. In addition, the use of controller in all simulations 

showed a reduction on time and an improvement on comfort level, however, with the anti-roll bar, the 

comfort levels became worse near σ = 50%. 
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Dynamical response of a bistable system with clearance

Grzegorz Litak, Piotr Wolszczak, Krystian Łygas

Abstract:We study the dynamics of an elastic inverted pendulum with an hori-
zontal excitation and imperfect clamping. Complex nonlinear responses of the
system appear due to the existence of double potential wells and impacts. The
simulation results are analysed by means of phase portraits and Fourier spectra.
The results show clearly that increasing the distance between the amplitude
limiters can lead to increase in bending amplitude up to the bifurcation po-
int. Beyond this point the large pendulum amplitude response is destabilized.
We claim that an inverted pendulum with imperfect clamping of mechanical
resonator can be used in frequency broadband energy harvesting.

1. Introduction

Energy harvesting from ambient mechanical vibration is a concept to apply ambient sources

to power small devices [7, 10, 11, 16]. For example, sensors, monitoring system, or small size

electronic devices can be designed to work directly on harvested energy, or indirectly powered

by designed batteries with an option for energy charging from energy harvesting [10]. Early

results were obtained by using a simple cantilever beams with piezoelectric, electrostatic, or

electromagnetic couplings [2] working in a linear limit.

Figure 1. Schema of the multibody system arrangements including the moving harmoni-

cally frame, planar inverted pendulum and amplitude limiters. The pendulum has a hollow

cylindrical shape which ends with a tip mass. Its geometrical and material properties are

given in Tab. 1.
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(a)

(b)

(c)

(d)

Figure 2. Imposed harmonic motion of the frame x0 and calculated results of the angular

pendulum position α0 and the deflection of the elastic pendulum shape by the chord reduction

∆Lc, respectively, for the assumed excitation frequency f =2.76Hz and for various distance

between amplitude limiters: (a) - 10mm, (b) - 12mm, (c) - 14mm, (d) - 16mm. The initial

condition were fixed in the same way for all calculations. The beam starting position was on

one of the limiters with zero relative velocity with respect to the frame.292



In such simplified linear cases, the mono frequency excitation is engaged leading to

resonance-based energy harvesting [2, 8]. Consequently, the energy harvesting device must

be adjusted to the ambient energy sources and frequency available.

Recently, to obtain a broad frequency response, application of nonlinear phenomena

were suggested [4]. Our model is following this direction proposing a nonlinear mechanical

resonator which can be coupled to a piezoelectric transducer.

2. Multibody model and simulation results

Our model (Fig. 1) is based on a vertical flexible beam with a tip mas excited horizontally

(see [6]). However, instead of the usual clamping we consider the hinged connection with

additional clearance. Such a system posses two potential wells useful for a frequency bro-

adband response [4]. Additional nonlinear effects are related to impacts into the amplitude

limiters. Flexible nonlinear beam systems have been already discussed in the collection of

papers [12, 15, 17]. Among them, Tang and Ren [15] and Xu and Yu [17] invented a con-

trol algorithm to stabilize the pendulum in the upright position. In the other report by

Semenov et al. [12] the authors discussed of a concept of elastic inverted pendulum with

the vertical excitation. In their treatment pendulum was also exposed on backlash in the

hysteretic switching coupling. Continuing this subject, Semenov at al. [13,14] considered the

horizontal excitation with a similar hysteretic coupling between the excitation frame and the

inverted pendulum. It is worth to note that their model is close to our concept. However

we implemented the clearance between amplitude limiters as well as the contact between

amplitude limiters and the pendulum in different ways. The purpose of our analysis is to

study capability of the system with a double well potential and impacts to convert energy.

T =
N∑
i=1

∆mi(vi + vi−1)2

8
+
∑
i=1

∆Iiα̇i2

2
+
Mv2N

2
, (1)

V =
N∑
i=1

∆mig
(yi + yi−1)

2
+
N∑
i=1

k(αi − αi−1)2

2
+MgyN , (2)

where g = 9.81m/s2 is the gravity acceleration, M is a tip mass attached to the end node

of beam element No. N , vi = [xi, yi] are vectors denoting local connecting node velocities,

α are angles between the neighbour short beam elements. All the elements have the same

shape and sizes. Note that α0 is the bearing angle and the assumed v0 = ẋ0 of harmonic

motion in the horizontal direction:

x0 = A sin(ωt), y0 = 0, (3)
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where A is the amplitude while ω is the corresponding frequency of kinematic excitation.

Furthermore, ∆mi = ∆m is mass of a short beam element while ∆Ii = ∆I is the moment

of inertia for defined elements. Finally, k is the local spring coefficient.

The Lagrangian of the beam without further constraints (limiters) has the following

form:

L(q1, ..., qi, ..., qN , q̇1, ..., q̇i, ..., q̇N , t) = T (q1, ..., qi, ..., qN , q̇1, ..., q̇i, ..., q̇N , t)

−V (q1, ..., qi, ..., qN , q̇1, ..., q̇i, ..., q̇N , t), (4)

where the generalized coordinates this multistage inverted pendulum qi ∈ {α1, ..., αn} and

their corresponding velocities q̇i ∈ {α̇1, ..., α̇n}. Consequently, the general equation of motions

for such a kinetically forced inverted pendulum can be written as:

d

dt

(
∂L

∂q̇j

)
− ∂L

∂qj
= Qj +Qimpn . (5)

The generalized forces Qj appearing in the above equation are defined

Qj = −β(α̇j − α̇j−1)− β(α̇j − α̇j+1), (6)

while the additional generalized force Qimpn is caused by an inelastic contact to one of ampli-

tude limiters with local contact elasticity and damping properties (see Tab. 1 for parameter

values and Figs. 1 and 2a for view). They are attached to the beam elements and cause the

whole beam to bounce on the amplitude limiters.

The calculations of the dynamical response of the introduced pendulum-impact model

were performed by using Maltab-Simulink and Simscape Multibody with Flexible Beam and

Contact Forces libraries. The results of simulations for chosen three values of the frequency

(f =2.67Hz) are presented in Figs. 2-3. In Fig. 2 We show the displacements of frame, holder

angle, and the deflection of the elastic pendulum, together with their short time Fourier

spectra. Note that increasing the distance between the pendulum amplitude limiters lead

to the larger angular amplitude oscillations of the pendulum and consequently to larger

bending. The fist simulation (Fig. 2a) was done for the limiters’ distance of δ0l =10mm.

Note that the beam has D =6mm width and Therefore the clearance was very small. In

such situation we obtained periodic solution including small variation of the rotation angle

α and consequently a small influence of impacts in the beam length reduction (caused by its

bending). For larger limiters’ distance the range of rotation angle, α0, variations and also

the level of bending increased. This trend is valid for the distance of 12mm and 14mm (see
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Table 1. Material and geometrical properties of beam structure.

length of the beam L =375mm

material density ρ =7850 kg/m3

modulus of elasticity 2×1011 Pa

shear modulus 77 GPa

damping constant 0.35

diameters of beam correction d =3.5mm, and

(hollow cylinder shape) D = 6mm

tip mas 11.95g

beam mas 55.25g

contact stiffness 104 N/m

contact damping 102 N/m

stopper height with respect to the

pendulum rotation axis 18mm

(a) (b)

(c) (d)

Figure 3. Phase plane results: the chord reduction ∆Lc versus angular displacement of

pendulum for various distance between amplitude limiters. (a) - 10mm, (b) - 12mm, (c) -

14mm, (d) - 16mm
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Table 2. Variance of angular rotation α0 and bending parameter ∆Lc for various distance

between the amplitude δl limiters.

δl var(∆Lc) var(α0)

[mm] [mm2] [deg2]

10 0.00001 0.0684

12 0.0240 11.9377

14 0.2122 40.4633

16 0.0033 47.5054

Fig. 2b,c). Then the solution of larger amplitude is destabilized. Instead of periodic solutions

(Fig. 2a-c), the chaotic solutions (fig. 2d) appears. This is confirmed by the corresponding

Fourier transform where in place of singular peaks (see Fig. 2a-c on the right side) of the

flat and continues distribution of frequencies are visible. Unfortunately, these figures are not

very clear because of only short time series were available in the calculations. Note also

that in our model the main sources of deflection are impacts. This is better visible in Fig.

3 where we ploted the phase portraits angular rotation versus bending. Here also one can

easily distinguish the periodic solutions (Fig. 2a-c) represented by the closed lines on the

phase portrait and the non-periodic solution where the multiple passes with different paths

are visible. Finally, we summarize the results in a quantitative way Tab. 2. Here, we show

the variations of the pudendum angular displacement var(α) and the bending parameter

var(∆Lc).

3. Conclusions

The obtained results show that the system of elastic inverted pendulum with amplitude

limiters has a nonlinear features of double well oscillator with impacts. In particular we

observed the evolution of the system response with the change of the distance between

amplitude bumpers. For the fixed excitation frequency and the corresponding amplitude,

enlarging the limiters distance lead initially to better performance in the angular rotation and

pendulum bending on the bumpers. However this trend was stopped by the disappearance

of the regular large amplitude solution. In other words the larger distance between the

limiters produces the higher potential barrier between the minima which were defined at the

pendulum positions at the limiters. By reaching this condition the large amplitude solution

related to the passing potential barrier was destabilized. Instead a non-periodic (presumably

chaotic solution appeared as a nonlinear mixture of the and larger amplitude double well and

single potential well oscillations [3,5,9]. Finally, we advocate the application of the proposed

mechanical system as a resonator in a frequency broadband energy harvester. Here, the
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beam deflection response is formed in a sequence of peaks depending on impacts in the

chosen system geometry and dynamical conditions. Such peaks will produce an electrical

impulses [1] on the system once it is adapted to energy harvesting.
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Thermal buckling of triangular plates

Olga Mazur, Atul Bhaskar

Abstract: Buckling and dynamics of plates of simple geometries have been
widely investigated in the past. For complex geometrical shapes, mathemat-
ical formulation is complicated and an analytical treatment frequently infea-
sible. One has to resort to the use of numerical methods, which are often
time-consuming and computationally expensive. Here we propose a scaling to
estimate the critical temperature in the thermal buckling problems of isotropic
triangular plates within a uniform temperature field. Ritz-method in conjunc-
tion with R-function theory is used for calculations that are performed for
plates of fixed area but changing shape. The plate is assumed to be simply
supported, clamped, or to satisfy mixed boundary conditions. The influence
of shape on buckling is studied to explore optimal design of triangular plates
with the buckling temperature as the objective function. Critical buckling
temperature for triangular plates of varying shape is obtained. Results show
that the most unstable triangular plate for thermal loading, is one with equal
sides. Clamping of the boundary increases critical buckling temperature, mak-
ing plate less susceptible to buckling upon temperature rise.

1. Introduction

Plates are widely used within modern engineering constructions They are often subjected to

elevated temperature environment, influence of which can lead to structural instability even

without the application of any mechanical load. The instability of plates due to temperature

rise has been previously studied by many researchers [6,13]. Extensive reviews of the results

obtained for thermal buckling are presented in the works of Thornton [21] and Tauchert

[20]. In Murphy [13], results of theoretical as well as experimental research for clamped

isotropic plates are presented. Xiao and Chen [22] studied thermal buckling of elastic-

plastic plates. In [4, 14], circular isotropic and orthotropic plates under special heating are

investigated. It should be noted that practically all recent studies are focused on the research

of multilayer plates, functionally graded material plates, thermo-mechanical loading plates

or another features [7, 19]. However, in the literature, results for plates with complex shape

(not rectangular or circular) are sparse. In [1], thermal bucking of circular and rectangular

orthotropic plates with rounded angles is analyzed. In publication [15], the optimization

under thermal buckling of skew plates is considered. Thermal buckling of plates with holes
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is considered in [3]. In [5] analytical solution for equilateral triangular plates on elastic

foundations is presented.

From the literature review, it is observed, that thermal buckling of plates with arbitrary

triangular shape is not considered previously. Of particular interest is the question of the

rule of shape design to achieve maximum critical temperatures. It should be noted that

the use of numerical methods, which are mostly applied for plates with complex shape, is

time-consuming and computationally expensive. Here we present a general methodology

to obtain the critical buckling temperature of triangular plate. We also propose a special

scaling procedure relating the shape and the critical temperature which can be useful for

evaluating this parameter at engineering designing. Results are obtained using the R-function

method (RFM) [16]. The main idea of this method is analytical description of geometrical

information of the plate planform. Taking geometrical data into account in an analytical

way allows us to construct basis functions for variational methods which satisfy boundary

conditions. The method has been previously applied for many plate and shell problems

[8–11, 16]. Related to considered task buckling of loaded in plane plates are investigated in

publications Rvachev and Kurpa [9, 17]. In [17] it is presented results of buckling load for

equilateral triangular shape plate. Influence of temperature on objects with nonclassical form

is investigated with RFM in [18]. The thermoelasticity problem for objects with complex

form such as aircraft engine blade is studied.

2. Method of solution

Let us consider isotropic triangular plate with constant thickness h. The plate has one

edge aligned to y-axis, the other two inclined at angles β and γ to y-axis as shown on Fig. 1

Suppose that the plate is in a uniform temperature field with constant difference T .The plate

y

x

Figure 1. Triangular shape of the plate.

bending mechanics is described in the framework of Kirchhoff-Love hypothesis. Strains in
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the plate have the following form

εx =
∂u

∂x
, εy =

∂v

∂y
, γxy =

∂u

∂y
+
∂v

∂x
, (1)

where u, v and w represent the in-plane and out of plane displacements in the plate respec-

tively. Stresses including temperature effect given by

σx =
E

1− ν2
[εx + νεy − (1 + ν)αT ] ,

σy =
E

1− ν2
[εy + νεx − (1 + ν)αT ] ,

τxy = Gγxy.

(2)

Here E is the Young modules, ν is the Poissons ratio, G is the shear modulus, α is the

coefficient of thermal expansion.

The governing equation for buckling problem is given by

D∇4w =
∂2w

∂x2
Nx + 2

∂2w

∂x∂y
Nxy +

∂2w

∂y2
Ny. (3)

In (3) Nx, Ny, Nxy are internal in-plane forces per unit edge length of the plate

Nx =
Eh

1− ν2

[
∂u

∂x
+ ν

∂v

∂y
− (1 + ν)αT

]
,

Ny =
Eh

1− ν2

[
∂v

∂y
+ ν

∂u

∂x
− (1 + ν)αT

]
,

Nxy =
1

2

Eh

1 + ν

(
∂u

∂y
+
∂v

∂x

)
,

(4)

where D = Eh3/12(1− ν2) is bending stiffness.

The boundary conditions for deflection w are considered of four types:

simply supported w = 0,Mn = 0.;

clamped w = 0, ∂w
∂n

= 0;

mixed boundary conditions (MBC1): two sides of triangular are clamped ∂Ω1 one side

is simply supported ∂Ω2

w = 0,Mn = 0.(x, y) ∈ ∂Ω1

w = 0,Mn = 0.(x, y) ∈ ∂Ω2;
(5)

mixed boundary conditions (MBC2): one side of triangular is clamped ∂Ω1 two side are

simply supported ∂Ω2

w = 0,Mn = 0.(x, y) ∈ ∂Ω1

w = 0,Mn = 0.(x, y) ∈ ∂Ω2.
(6)
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As it is shown in [2] , in-plane internal forces should satisfy

NT = Nx = Ny = −EhTα
1− ν

,Nxy = 0 (7)

The bending energy of the plate is given by

I1 =
D

2

∫ ∫ [(
∂2w

∂x2
+
∂2w

∂y2

)2

− 2(1− ν)
∂2w

∂x2
∂2w

∂y2
−

(
∂2w

∂x∂y

)2
]
dΩ. (8)

The potential energy of plate under action of temperature field is negative of the work done

by external forces when edges move inwards

I2 = −NT

2

∫ ∫ [(
∂w

∂x

)2

+

(
∂w

∂y

)2
]
dΩ. (9)

The variational statement of problem considered is reduced to minimization of the functional

[12]

I =
D

2

∫ ∫ [(
∂2w

∂x2
+
∂2w

∂y2

)2

− 2(1− ν)
∂2w

∂x2
∂2w

∂y2
−

(
∂2w

∂x∂y

)2
]
dΩ+

NT

2

∫ ∫ [(
∂w

∂x

)2

+

(
∂w

∂y

)2
]
dΩ.

(10)

which is carried out on system of basis functions which satisfy boundary conditions in domain

considered.

3. R-functions method.

The novelty of proposed method lies in the use of R-function theory for construction of basis

functions for this class of problems. The main idea of applying of RFM is describing of

geometrical information analytically. The first step is to construct of the logical predicate of

considered domain. For triangular shapes, we have

Ω = Ω1 ∧ Ω2 ∧ Ω3. (11)

Here ∧ is logical conjunction, Ω1,Ω2,Ω3 are predicates of subdomains:

Ω1 = {ω1 = x ≥ 0} (12)

is semi-plane right-hand straight line x = 0 ;

Ω2 = {ω2 = − cos(β)x+ sin(β)y ≥ 0} (13)
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is semi-plane above straight line y = cot(β)x

Ω3 = {ω3 = − cos(γ)x− sin(γ)y + sin(γ)a ≥ 0} (14)

is semi-plane under straight line y = − cot(γ)x+ a.

According to RFM, we need to replace logical operation by corresponded R-functions

[16], [17] to obtain the equation of the boundary:

ω = ω1 ∧0 ω2 ∧0 ω3. (15)

In Eq. (15) ∧0 means function of the system of R-functions:

x ∨0 y = x+ y +
√
x2 + y2, x ∧0 y = x+ y −

√
x2 + y2, x̄ = −x. (16)

For boundary conditions considered we use following structures of solutions. If the plate is

simply supported :

w = ωP, (17)

if the plate is clamped we have,

w = ω2P, (18)

and for mixed boundary conditions Eq. (5),(6), we get

w = ωω1P, (19)

where ω1 is analytical expression of the clamped part. In formulas Eq. (17)-(19) P is un-

determined component, which is expressed as decomposition of complete system functions

{φi} as

P =

n∑
i=1

ciφi. (20)

For complete system functions {φi}, power polynomials, trigonometrical polynomials, Cheby-

chev polynomials or splines can be used . We use the following system of power polynomials:

1, x, y, x2, xy, y2, ... (21)

It should be noted that structure of solution Eq. (17),(19) satisfy just geometric boundary

conditions. One can find the structure of solutions that satisfy all boundary conditions
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in [9, 16, 17], but they have complex form. For the considered problem the used structure

are adequate.

For simply supported plate, using the structure of solution Eq. (17) system of basis

functions has the form

w1 = ω,w2 = ωx,w3 = ωy,w4 = ωx2, w5 = ωxy,w6 = ωy2, ... (22)

After substituting the above into the functional Eq. (10), we carry out the minimization of

the functional in Eq. (10) as per the Ritz method which leads to an algebraic eigenvalue

problem. Elements of the matrices within the generalized eigenvalue problem involving two

matrices are integrals over the domain. For clamped plate, basis functions

w1 = ω2, w2 = ω2x,w3 = ω2y, w4 = ω2x2, w5 = ω2xy,w6 = ω2y2, ... (23)

are used.

4. Results and discussion

The formulation presented above was computationally implemented. Illustrative examples,

the role of plate shape and a related optimization problem are presented next.

4.1. Triangular plate with various boundary conditions

We assume that plate has unit area. For triangular shape we use RFM as described in section

2 Mechanical and properties are taken as follows:

E = 73× 109 Pa, ν = 0.3, b/a = 1, h/a = 0.01. (24)

Coefficient of thermal expansion is α = 2×10−6/◦C. Calculations are performed for thickness

ratio h/a = 0.01.

First we present results obtained for right and equilateral triangle, Fig. 2. The shape

y

x

y

x

Figure 2. Right and equilateral triangular shapes

of the triangular plate, in general, is not symmetrical, so we use complete system of power
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polynomials Eq. (21). Integration is performed over whole domain. Results are presented

for 21 basic functions, which corresponds to 7th power of polynomials.

Table 1. Critical buckling temperature(in ◦C) for isotropic equilateral and right triangular

plate

Shape equilateral right

Simply supported 72.204 85.899

Clamped 206.003 250.659

MBC1 103.916 1 127.767
2 108.040
3 136.121

MBC2 145.83 4 159.863
5 197.232
6 173.246

1 greater side, 2 smaller side, 3hypotenuse 4 two sides, 5 greater side and
hypotenuse, 6smaller side and hypotenuse are clamped

Results presented, it can be concluded that clamping of the part of the domain increases

buckling temperature, thus the more stable to temperature action is clamped over all domain

plate. Also it should be noted that buckling temperature for equilateral triangular plate

with all types of boundary conditions is less. Thereby the right triangular is more stable to

temperature action.

4.2. The effect of plate shape on buckling temperature

In the following section let us consider influence of shape o the triangular plate on buckling

temperature. We change angles β and γ in interval 10◦ to 160◦ to study the effect of the plate

shape on Tcr. In Fig. 3 The critical buckling temperature Tcr for various values of angles are

shown for two types of boundary conditions simply supported and clamped plate. In both

cases, we obtain surface of the same type with only minimum at the point, corresponding to

β = γ = 60◦ which corresponds to equilateral triangular shape. This is also demonstrated

by the figure Fig. 4 and 5. Level curves of buckling temperature depending on angles β and

γ in interval 10◦..160◦ are presented in equilateral triangle with unit side using barycentric

coordinates, Fig. 4. This figure shows maximum at the center, what means that equilateral

triangular has lowest critical temperature. On Fig. 5 buckling temperature for changing angle

β with fixed angle γ = 30◦, 60◦, 90◦ for simply supported and clamped plate (cross-section

of surface on Fig. 5) are presented.

It is clear that the minimum of the buckling temperature occurs for equilateral triangles.
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Figure 3. Influence of shape of the plate on buckling temperature (in ◦C) for simply

supported and clamped triangular plate

Figure 4. Level curves of buckling temperature for simply supported triangular plate in

barycentric coordinates

For fixed γ = 30◦ minimum achieves for triangle with angles 30◦, 75◦, 75◦, for fixed γ = 90◦

minimum is for triangle with angles 90◦, 45◦, 45◦.

4.3. Scaling of buckling temperature

The results presented in section 4.2 are obtained using the variational-structural method

RFM require complex mathematical calculations, that obviously consumes a lot of computer

resources. At the same time, the finite element method which is often used for this type

of research also consumes a lot of computational time. Complexity arises if it is necessary

to vary the shape as it is done in considered problem of finding optimal shape of triangular

plate with a fixed area from the point of view of the influence of the temperature field.

In the following, we propose a simple approach to find the scaled value of the critical

temperature, which will easily allow to predict its approximate value.

Let us introduce a scale for the deflection of the plate as

w ∼ A. (25)
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Figure 5. Influence of shape of the plate on buckling temperature (in ◦C) for two types of

boundary conditions

The differential operators scale according to

∂

∂x
∼ 1

L1
,
∂

∂y
∼ 1

L2
,
∂2

∂x2
∼ 1

L2
1

,
∂2

∂y2
∼ 1

L2
2

. (26)

Then we introduce L1 and L2 as characteristic lengths

L1 = (I1)
1
4 , L2 = (I2)

1
4 , (27)

where I1, I2 denoted principal second moments of area of the triangular plate. Thus critical

temperature can be scaled as

Tcr ∼

Eh3

12(1−ν2)

∫ ∫ [(
∂2w
∂x2 + ∂2w

∂y2

)2

]dΩ

Ehα
1−ν

∫ ∫ [(
∂w
∂x

)2
+

(
∂w
∂y

)2
]
dΩ

∼ h2(1 + ν)

α

(
1

L2
1

+
1

L2
2

)
. (28)

The expression on the right side of equation Eq. (28) enables us with a scaling argument:

h2(1 + ν)

α

(
1

L2
1

+
1

L2
2

)
. (29)
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Figure 6. Dependence between critical buckling temperature (in ◦C) and scaling expression

In Fig. 6, values of this expression is plotted against the numerically calculated values of the

critical temperature for triangular plates of various shapes. Results are obtained for plate

parameters Eq. (24), h/a = 0.01 and unit area.

There is approximate linear correlation between suggested scaling expression and nu-

merically calculated critical bucking temperature for both conditions. The inclination for

the clamped plate is steeper as accepted.

5. Conclusions

In this paper, a method to predict the thermal buckling behavior of the triangular plates

is presented. A scaling argument proposed here provides an estimate of the critical buck-

ling temperature approximately, avoiding detailed calculations for triangular plates of all

shapes. This may be useful at early stages of design search and optimization where approx-

imate calculations are often adequate. Also the use R-function method is novel for the class

of problems considered here. The application of RFM allows analytical description of the

boundaries of the domain exactly, followed by a variational minimization, to determine the

critical buckling temperature. Parametric studies, enabled by R-functions method combined

with a variational approach, are carried out. The study also demonstrates that the small-

est value of critical temperature corresponds to equilateral triangles with simply supported

edges.
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Off-road 4-wheel drive vehicle dynamics and control 

Tomasz Mirosław, Jan Szlagowski, Adam Zawadzki, Zbigniew Żebrowski 

Abstract: In this paper the dynamic model of 4 wheel drive off-road autonomous vehicle 

or wheeled mobile robots is presented. This model was developed from tractor dynamic 

model which was verified in real field tests. The way of building universal model is 

proposed and used for simulation of various electric drive configurations as: 2 axles-1 

motor, 2 axles -2 motors and 4 wheels 4 motor. The simulation results are discussed. 

The various properties of vehicle driven in various ways are presented and explained 

based on this model rules. The model was built in Matlab/Simulink software. The 

simulation results are compared with real tests of physical model behavior. In the 

conclusion the comparison of various drive properties and skills are presented, and 

recommendations are suggested. 

1. Introduction 

Off road vehicle is one of the most important domains in human economy similarly to hard road 

transport. Currently the off-road riding became the sport and significant part of automotive business. 

Some  clients are looking for off-road looking vehicle for normal use. Of course some of users living 

in the suburbs with unpaved roads really need the off-road vehicle. But we also have to remember about 

great part of economy like agriculture, foresting etc. In this domain the off-road vehicles are the 

platform for machineries or they are the transport mean for workers or emergency services [1, 2, 3, 4]. 

The most common solution 4x4 drive vehicle with ICE hasn’t exhausted the possibilities of 

development but a new concept of hybrid or electric vehicles appeared. 

When we are thinking about hybrid solution we should underline that the off-road vehicles are 

dominated by ICE-Hydraulic hybrids. Many solution of  construction machinery have individual 

hydraulic motors “in wheels” which are supplied with oil pumped by pump propelled by ICE [5].   

But this solution isn’t popular in small machinery or off-road cars.  

Going together with hard road automotive solution SUV class we are looking for universal 

solution. Other branch which is currently developed very spectacularly are the full electric vehicles. 

Currently the average range of electric vehicles is about 100km – it is enough for everyday use e.g. 

journey to work, to school with children, for shopping etc. If we would like to take into account the off-

road travel the expected range decreases. The terrain obstacles like hills, sand etc. cause that ICE 

vehicles are lower efficient than on the road. Coming down the hill ICE cannot harvest energy, if it 

slips on the sand it can’t distribute the energy in optimised way to wheels [6, 7]. Working on electric 4 

wheel drive with separate driven front and rear axles Authors noticed unusual skill of this solution. 
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When we use 4x4 drive vehicle with one engine the drive for two axes is delivered only up to speed 

of about 40km/h or even less. For higher speeds this solution can cause some danger. But on the over 

hand the 4x4 wheel drive has the best traction on the bends. The rear axle drive is over-steered; with 

front – under-steered, but the both axle driven vehicle is just -steered. In traditional solution we can’t 

do it. The traditional solution 4x4 is less efficient during acceleration or braking. We can improve some 

skills by blocking differentials mechanisms but we lose the possibilities of direction control. The energy 

flows between wheels via ground with one engine generate some interesting but danger phenomena of 

circulating power as well. 

 

Figure 1.   The concept of SUV project IEVS & PoLevs companies. Result of Free Moby Eu Project. 

 

Electric drive especially with electric torque motors which can be built-in the wheel gives new 

possibilities. We can control energy flow to each wheel and adjust its rotation speed to its load, surface 

under is to optimize the efficiency and direction control. 

Separately driven wheels are truly 4x4 driven vehicles without limit of speed, with fully electrically 

controlled speed, traction, acceleration and braking. All functions like ABS and ESP can be provided 

by electronic controlled electric motors. 

The only disadvantages of this solution are the price and weight and inertia of direct driven wheels. 

From technical point of view, we can produce “high-speed” electric motor with the same power much 

smaller and lighter than the same power low-speed/torque motor. So the amount of materials (specially 

rare-earth) are lower and motors are cheaper. The rate weight to power is not the linear function, that 
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means that for producing motor of 50KW we need much less materials that to produce 2 motors of 

25KW. The possibilities of energy sharing is the great advantages which cannot be available for truly 

4x4 driven car even the fantastic skill of torque overload electric motors (3-5 time for short time). 

Based on those thesis the concept of two axle drive 4x4 off road vehicle Mini SUV (presented in 

figure 1) was tested and designed. This vehicle is dedicated for famers, vets, etc. In this paper some 

piece of analyses is presented. 

2. The concept of 4-wheel SUV 

The concept of a vehicle based on 2 identical driving axles for front and rear with identical electric 

powertrain, suspension and separated supplying batteries was analysed. The difference concerns only 

the steering of wheel while making a turn. The turn of rear wheels can be blocked for road and off road 

riding, but for better maneuverability the turn can be switch on, and rear wheel would turn in  opposite 

direction to the front wheel. The structure of vehicle is presented in fig. 2. 

  

Figure 2.   The 4-wheel drive concept according to Free Moby project 

 

This driving system consists of batteries with electronic battery management systems, motor 

controller, motor, two speed gear box and axle with lockable differential and axles with wheels. Both 

motor controllers are driven by central processing unit which monitors rotation speed and torques of 

both axles and angle of steering wheel and acceleration and brake pedals.  

The vehicle has the suspension with adjustable length and stiffness. To evaluate the traction feature 

the computer model was built.  

3. The principia and analyses for vehicle modelling 

In vehicle modelling the following assumptions were made [20, 21, 22, 23, 24, 26]: 

 The body (cage) of the vehicle can be treated as a rigid body suspended on four springs 

with dampers on the wheels. 

 The vehicle body rotates around 3 axels changing the loads of the wheels 

 The dynamic radius of wheels is constant 
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 The propelling forces are produced by friction of tires on the road and gravity (the till of 

road is taken account) 

 The steering forces are produced by changing of motor supplying voltage and front 

wheel turning. 

 The resistance of wheel rolling depends on ground which change its feature and 

characteristics under wheel load.  

 The wheel can slip, rotate, or stick to the surface. 

 The tire and ground are modelled in a simplified way as general phenomena is isometric. 

The construction specific features of tire are omitted. 

4. The concept of 4x4 drive vehicle –ground model  

The model consists of 3 main parts, the vehicle body, tire and ground. 

 

The vehicle can be treated as a rigid body. The forces generated under the tire act on the centre 

causing vehicle acceleration in two dimensions. Each “wheel force” can be split out into force laying 

on the line connecting tire with mass centre Fr and orthogonal Fn. The Fn forces generate rotation 

torque around vertical axes of vehicle (figure 3).  But if we have four wheels and each generate Fr some 

torques coming from those forces can compensate each other. The compensated torques give the forces 

back to the system and they should be summed geometrically like forces Fr and act on mass centre.[21] 
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Figure 3.   Forces acting for the vehicle 
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We can see that the sum of forces depends on a wheel dislocation and forces under wheel. When 

dislocation is symmetric and forces are equal the resultant force acts forward, in other cases can act in 

various directions.  

According to this analyses, sharing the propelling force among axles we can affect the vehicle's 

movement direction.  

A pneumatic tire is the crucial element in the cooperation of a vehicle with a road. Most of 

commonly used models are based on empirical experiments and observations, often without theoretical 

rules. The simplest model of propelling force generation is occurring between a tire and a pavement 

described with eq.1  and this force depends on slip s [8,9,10,11,12,13,14,15,16].  

𝐹(𝑠) = 𝑁 • µ(𝑠) (1)  

where: F – propelling force, 

 N – load (weight of a vehicle), 

 µ(s) – friction coefficient depending on slip 

Slip does not have any physical representation – it is not possible to measure it and is defined as a 

result of a mathematical operation: 

𝑠 = 1 −
𝑉

𝑉𝑡
  (2) 

where: V – real velocity of a vehicle, 

           Vt – theoretical velocity (peripheral speed of wheel) 

Thus range of the slip for the wheel changes, as said earlier, in the ranges -∞ < s < 0 for braking 

and 

 0 < s < 1 for propelling. 

 

Figure 4.   Diagram of the wheel’s slip as a function of the propelling force coefficient [25] 
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One of the most common wheel models was developed by Hanse. This model is called “the magic 

formula”. It is written in form: 

𝐹(𝑠) = 𝑑 • 𝑠𝑖𝑛{𝑐 •𝑎𝑟𝑐𝑡𝑎𝑛[𝑏 • (1 − 𝑒) • 𝑘 + 𝑒 • 𝑎𝑟𝑐𝑡𝑎𝑛(𝑏 • 𝑘)]}· (3)  

Where:  F(s) is the propelling force that depends on s (slip),  

 b, c, d and e that represent fitting parameters. 

In the paper Miroslaw T Zebrowski Z “The Vehicle Tire Model Based on Energy Flow [27] the 

multi-layer model of wheel cooperation with ground were presented. The vehicle propelling force is a 

result of tyre friction on the road surface. This friction force can be modelled with Columbus model. 

This force is flowing to the vehicle through deformed by this force tyre. The Colobus model is applied 

for forces lower than critical – attrition force, which above the force is approximately constant. 

So, one of the main part of this model is road surface. When we are talking about off road vehicles 

we have to consider such surfaces like: sand, mud which are movable, deformable and compactable 

[17, 18, 19].  

For cooperation of wheel with ground the cellular model was developed.  

The ground was divided into cubes (figure 5). These cubes of constant mass are replaced, deformed 

and compacted under pressure of wheel. The wheel acts on cube with vertical load and horizontal force 

of friction of rotating wheel. The deformed or moved cube reacts with others neighbouring cubes 

deforming them or by friction forces (figure 5).  
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Figure 5.   Concept of cellular ground model 
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Figure 6.   Ground reaction model for wheel load and movement. 

According to this analyses, sharing the propelling force among axles we can affect the vehicle's 

movement direction.  

Based on above assumption computer model was built in MATLAB/SIMULIK software. 

5. Model description 

The general model is presented in figure 7. It consists of a wheel – ground model (green blocks), 

electric motors (cyan blocks) control unit (yellow block), vehicle kinetics (blue block) external forces 

(orange block) responsible for gravity, wind and air speed resistance. 

 

Figure 7.   General view of vehicle model in Matlab/Simulink 
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Figure 8.   The schema of model a) multi-layer model of wheel ground system b) model of cell (cubic) 

of ground. 
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The most interesting part of the model is the wheel –ground. It is presented in figure 8 and 9. 

In “wheel and suspension” model we have the block of wheel parameters and dimensions where 

it's dimension, location in reference to mass centre and friction parameter are declared. 

Block of force and torque calculation where force and torques values presented in global reference 

system are recalculated to the reference system joined with vehicle and wheels. It is necessary because 

the direction of speed and force can be different especially when car rotates. 

The crucial block is the wheel-ground block presented in figure 8a. In this model system of power 

transmission from wheel to ground is presented as the layers which the forces are passing through. The 

layer of ground is modelled with cellular model. The displacement caused by wheel load or pressure of 

neighbouring cell effects in cell displacement, or increasing internal pressure which acts in all direction. 

The pressure together with external forces causes the cell deformation. When this pressure is too high 

(overcome the critical value) the ground is transformed to next stage (is compacted) and change its 

properties represented by coefficients or flexibility and internal damping.  

The model was tested for several combinations of drive structures and control algorithms. It was 

tested as the one axle front and rear drive, two axle drives with different rotation speed depending on 

the ground. The vehicle was moving on sandy surface and climbing top and down the hill of sand. 

Tested scenarios are presented in figure 9.  

 

6. The result discussion 

For terrain the more effective one axle dive is the front wheel drive especially on soft surface, 

because the front wheel works as the compactor of ground. IF front wheels are pushed, they can lift up 

the ground barrier and the resistance of vehicle movement is bigger. In the worst case it can cause the 

digging in the front axle. 

For tow axle drive we can change the movement resistance by differing the wheel rotation speeds. 

For very soft ground the higher speed of front wheel improve the traction, but in some cases it can 

destroy the ground and work in opposite way. 
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Figure 9.   e visualization tested scenarios a) front wheel drive b) rear wheels drive, c) tow axle drive 

with the same speed d) two axle drive with different speed. e) ride up the sandy hill, the 

schema of model f) ride down the sandy hill.  

7. Conclusion 

The presented concept of 4-wheel drive electric SUV developed under Plus MOBY EU project 

proposed FEVS and POLEVS seems to be quite attractive solution for off road transport. 

The separate driving system gives new possibilities of traction control of various surfaces. 

The separated drive make easier realization of ABS and ESP functions. 

The disadvantage of proposed modeling is the computational time. Presented model of a whole 

vehicle can’t work in real time on a car-embedded computer.  

After additional tests the model will be optimized for real time application. Probably the real 

measurement data coming from real vehicle (not calculated in model) will allow to speed up regulator 

calculation.  
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Fg=kxx 

a) 
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Nonlinear analysis of rotors with rigid coupling misalignment 

 
 

Airton Nabarrete, Vinicius Yoshida de Melo, José Manoel Balthazar, Angelo 
Marcelo Tusset 

Abstract: Most rotating machinery consists of a driver coupled to a driven system 
through mechanical couplings. In these, angular and parallel misalignments of shafts 
are common with more or less degree due to system assembly or maintenance 
proceedings. Several mechanical couplings can be present in a long shaft-line and the 
misalignment between connected shafts causes vibration to the holy assembly. In the 
literature, theoretical and experimental analyses were published in order to 
demonstrate the stability and misalignment effects on a rotor system. In this work, the 
misalignment of a rigid coupling is analyzed and highlighted to give the diagnostic 
information. The bifurcation analysis of the problem considers the nonlinear damping 
and stiffness of the journal bearings. The finite element model of the shaft-line 
considers the Timoshenko beam theory. The nonlinear behavior of the journal 
bearings is analyzed as function of the periodical change of the bearing load after 
adding a significant level of coupling misalignment. Nonlinear oil-film forces and 
their Jacobians are calculated simultaneously. The analysis of the unstable periodic 
orbit and the period-doubling orbit is performed for the center of the rotor at the 
bearing station.  

1. Introduction 

Misalignment is a common disturbance source of vibrations in rotor systems. The misalignment of the 

machinery shafts generates reaction forces and moments that affect the behavior of the journal 

bearings. A total modeling of the motor and the driver shaft, flexible coupling and the rotor was 

performed by Xu & Marangoni [1] using the method of component mode synthesis. Two rotor 

segments with angular misalignment were considered by Al-Hussain [2], where a flexible coupling 

was used to connect both rotor segments having each one mounted on two hydrodynamic bearings. 

Sekhar & Prabhu considered standard parallel and angular misalignments at the coupling locations [3] 

and a higher order finite element model was introduced to evaluate the force and moment due to 

misalignment. They showed the presence of the second order harmonic in response by performing a 

linear finite element analysis. Penacchi et al. studied the ratios between higher order harmonic 

components and synchronous vibrations and observed that superharmonic components are the most 

remarkable nonlinear effects caused by coupling misalignment in rotors [4].  
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 Many literatures reported the typical nonlinear vibration phenomena caused by oil

instability, such as the occurrence of rotor lateral self

instability that arises from the presence of nonlinear fluid

system, high-level vibration and potential d

the nonlinear behavior with 

al. considered the nonlinear model proposed by Capone to analyze the nonlinear dynamic behavior of 

bearings, taking into account the oil

behavior of a flexible rotor supported by two fluid

whirl and whip instabilities in rotor

The nonlinearity of the bearing

bearing. Although nonlinear oil film for

are global due to the general coupling of all system. 

rotor system can be obtained by implicit or explicit numerical methods, as well as, the 

bifurcation type of periodic responses of the system. 

system which incorporates a misaligned coupling element is presented. It is assumed that both the 

angular and parallel misalignments are pres

2. Modeling of the rotor

2.1. The finite element model of the r

In rotor systems, the shafts can be modeled as a continuous beam with distributed mass, stiffness and 

damping. In this work, the shaft i

vibrations can appear. The Timoshenko beam theory is used to formulate the finite element model of 

the shaft. It includes the effect of inertia for the beam section rotation and the shear defo

 The rotor-bearing system is composed by two 

coupling and is supported by oil

system, the FE model of the rotor

Therefore, axial and torsional

   

Figure 1.   Timoshenko finite element description

reported the typical nonlinear vibration phenomena caused by oil

he occurrence of rotor lateral self-excited vibrations like whirl, whip and 

arises from the presence of nonlinear fluid and contribute to unstable operation of the 

level vibration and potential damage of the rotating machinery [5]. Adiletta et al. studied 

the nonlinear behavior with the chaotic motions of a rigid rotor in short journal bearings

nonlinear model proposed by Capone to analyze the nonlinear dynamic behavior of 

bearings, taking into account the oil-whip phenomenon [7]. Wang et al. analyzed the bifurcation 

behavior of a flexible rotor supported by two fluid-film journal bearing [8]. De Castro et al. studied 

whirl and whip instabilities in rotor-bearing system considering a nonlinear force model 

The nonlinearity of the bearing-rigid rotor system arises from the oil film forces acting on the 

bearing. Although nonlinear oil film forces act locally, at any single point, on the rotor, their effects 

are global due to the general coupling of all system. Nonlinear dynamic behaviors of a large flexible 

rotor system can be obtained by implicit or explicit numerical methods, as well as, the 

bifurcation type of periodic responses of the system. In this paper, the model of a continuous rotor 

system which incorporates a misaligned coupling element is presented. It is assumed that both the 

angular and parallel misalignments are present in the coupling location. 

Modeling of the rotor-bearing system 

The finite element model of the rotor with coupling  

In rotor systems, the shafts can be modeled as a continuous beam with distributed mass, stiffness and 

damping. In this work, the shaft is considered to turn in different rotational speed

vibrations can appear. The Timoshenko beam theory is used to formulate the finite element model of 

the shaft. It includes the effect of inertia for the beam section rotation and the shear defo

bearing system is composed by two or more rotor segments connected by a rigid 

is supported by oil-lubricated bearings. In order to study the rotor-bearing

system, the FE model of the rotor is formulated considering only the flexural deformations. 

al deformations are neglected.  

 

Timoshenko finite element description for the orthogonal plane y-

reported the typical nonlinear vibration phenomena caused by oil-film 

excited vibrations like whirl, whip and 

to unstable operation of the 

. Adiletta et al. studied 

the chaotic motions of a rigid rotor in short journal bearings [6]. Jing et 

nonlinear model proposed by Capone to analyze the nonlinear dynamic behavior of 

. Wang et al. analyzed the bifurcation 

e Castro et al. studied 

 [9].  

rigid rotor system arises from the oil film forces acting on the 

ces act locally, at any single point, on the rotor, their effects 

dynamic behaviors of a large flexible 

rotor system can be obtained by implicit or explicit numerical methods, as well as, the stability and 

In this paper, the model of a continuous rotor 

system which incorporates a misaligned coupling element is presented. It is assumed that both the 

In rotor systems, the shafts can be modeled as a continuous beam with distributed mass, stiffness and 

speeds and lateral 

vibrations can appear. The Timoshenko beam theory is used to formulate the finite element model of 

the shaft. It includes the effect of inertia for the beam section rotation and the shear deformation.  

rotor segments connected by a rigid 

bearing-coupling 

only the flexural deformations. 

-z. 
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In the FE model, each node has four degrees of freedom, or two degrees of freedom for each 

orthogonal plane, as depicted in the Fig. 1. The general displacement vector eq  is then expressed as  

1 1 1 1 2 2 2 2
e

y x y xx y x yq q q qé ù= ê úë ûq  (1) 

where the superscript e  stands for element number.  

The coupling connecting two shaft segments is modeled as a lumped mass element which is 

superimposed upon the corresponding shaft node. Both, mass and polar moments of inertia of the 

coupling are considered. In this work it was considered the addition of the effect of the gyroscopic 

moment to the FE model. Also the nonlinear oil-film forces, the forces and bending moments caused 

by the rigid coupling misalignment and the rotor weight are considered in the FE model. Then, 

dynamic equations of the rotor-bearing-coupling system are written as  

( ) b coupl+ + + = + +Mq G C q K F Wq F ϕ  (2) 

where , ,M K C  and G  are the mass, stiffness, damping and gyroscopic finite element matrices, 

considering the Timoshenko beam elements and couplings. q  denotes the global displacement 

vector. ϕ  represents the operational speed of the rotor. bF , couplF  and W  are respectively, the 

nonlinear oil-film force vector, the excitation force vector due to misalignment of the rigid coupling, 

and the vector related to the shaft weight in y direction.  

2.2. Nonlinear forces of hydrodynamic bearing 

The required nonlinear oil-film forces shall be calculated as an iterative process when the nonlinear 

dynamic responses of the system are solved. The accuracy of nonlinear oil-film forces and their 

derivatives affects not only the convergence of the dynamic numerical solutions, but also the analysis 

of stability and bifurcation.  

 A short journal-bearing scheme is considered. The calculation of the nonlinear hydrodynamic 

forces of the cylindrical journal bearing is performed by solving the simplified Reynolds equation 

described as 

2
3 2

ϕ τ
R p h hh
L z z

∂ ∂ ∂ ∂    = +   ∂ ∂ ∂ ∂   
 (3) 

where p  is the oil film pressure, h  is the oil film thickness, ϕ  is the circumferential angle, z  is the 

axial coordinate of calculation, tτ ϕ=   is the dimensionless time. The necessary bearing parameters 

are radial clearance C , bearing length L , bearing radius R  and oil viscosity m .  
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 Considering the finite element method to solve Eq. 3, the distribution of pressures of the oil-film 

field around the journal of the bearing is calculated. It is necessary to consider the imposed variational 

inequalities for nonlinear problems like elastic contact, fluid lubrication, etc. For fluid lubrication of 

the finite length journal bearing with the Reynolds boundary, the solution must satisfy certain 

restricted requirements in the solution domain. In this work, if negative values are calculated for the 

pressure distribution of the oil film (cavitation) in the iterative process, a restriction of null values (no 

cavitation) is applied. 

 The circumferential surface is meshed by finite elements and for each node the pressure kp  is 

calculated. Considering the n  interpolation functions kL , the pressure p of the oil-film is  

 
1

n

k k
k

p p L
=

=∑  (4) 

 The vector of nonlinear bearing forces bF  has two orthogonal components, considering the plane 

x-y of the journal section, as follows  

( )
( )

( )

( )

T
1

T

1

, , , sin( ), , ,
, , , , , , cos( )

ϕ

ϕ

n

k k
bx x k

b nby y
k k

k

p up x y x y dF f x y x y
F f x y x y p x y x y d p v

=Ω

Ω
=

 
  Ω       
   = = = − = =              Ω        
 

∑∫∫
∫∫ ∑

U p
F

V p

 
 

 
 

 (5) 

where, considering L  as the vector of n  interpolation functions,  

sin( ) , cos( )d dϕ ϕ
Ω Ω

= − Ω = − Ω∫∫ ∫∫U L V L  (6) 

 The Jacobians of oil film forces ( ), , ,xf x y x y   and ( ), , ,yf x y x y   with respect to the journal 

displacements ,x y  and velocities ,x y   are calculated firstly, and the computational cost spent on the 

Jacobians is much less than those spent on the oil film forces themselves. The vector of the nonlinear 

bearing forces bF  of the journal located at the respective ith rotor node is evaluated as 

( )
( )

T T T T

T T T T

, , ,
, , ,

ii

yi yi

i i

xi

x i i i i

y i i i i

xi

f x y x y

xx

y y
x y x y

f x y x y
x y x y

θ θ

θ θ

  ∂ ∂ ∂ ∂           ∂ ∂ ∂ ∂      = +          ∂ ∂ ∂ ∂           ∂ ∂ ∂ ∂      

p p p pU 0 U 0 U 0 U 0

p p p pV 0 V 0 V 0 V 0

    









 



 (7) 
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3. Modeling of rigid coupling misalignment 

The term angular misalignment is easily understood in the literature, although the term offset is not 

always clear and correct as used [4]. Related to the misalignment concept, offset does not represent 

the distance between two parallel shafts not coaxial, which could be understood as fixed in the space. 

Offset occurs when there is a wrong static alignment between the two rotors to be coupled, many 

times due to the flanges that are wrongly machined and have wrong distributed bolt holes. In this 

case, when both flanges are mounted a radial rotating misalignment is imposed. As a consequence, it 

is necessary to take into account the effect of rigid coupling misalignment on the static centerline and 

consider that the reaction forces of the bearing are changing owing to the rotation of the shaft, or in 

other words, to the orientation of the misalignment with respect to the phase reference.   

 In the finite element model of the connected shafts, the mounted coupling flanges are represented 

in the connection node between both shaft segments. Looking for imperfections in this coupling one 

possible representation of an imperfect machining causing angular and radial misalignments is drafted 

schematically in Fig. 2(a) and a wrong mounting of the coupling flanges in Fig. 2(b).  

 

    

(a)                                                (b) 

Figure 2.   (a) Draft with angular and radial measurements of the flange faces considering the same 

plane of reference; (b) Correspondent wrong mounting for the coupling.  

The front draft views represented in Fig. 2(a) and Fig.2(b) are too much simplified and cannot 

give the idea of all possibilities for the imperfect machining or the wrong mounting of the flanges. 

The machining of one flange of the coupling is not necessarily executed together with the other one. 

Then it is possible to have bolt holes machined in any axial angle when comparing one flange to the 

other. Therefore, not only the magnitudes of these misalignments have to be considered, but also the 

possibility of a relative angle between the maximum radial misalignment direction and the direction 

of maximum aD . Considering the fact that the shaft is rotating with a rotational speed, a relative 

phase with respect to the phase reference is recommended for the formulation of each misalignment.  
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Then radial and angular misalignments are conveniently formulated to impose the generalized 

displacements couplDq , which are function of the angular position tθ ϕ=   of the shaft as follows  

( ) ( )

1 0
0

0
0 1

ri
i t

coupl coupl i

r ei
t e

i e α

φ
ϕ

φ
θ ϕ

α

 
  ∆  ∆ = ∆ =    ∆   
  

q q   (8) 

 The imposed generalized displacements cause static reactions ( )θR  on the bearings that can be 

calculated by the static equilibrium of the free-body composed by shaft segments and coupling as 

( ) ( )( ) ( )coupl couplθ θ θ= + ∆ + = + +R K q q W Kq F W  (9) 

where ( )coupl θF  is the equivalent force vector due to the coupling misalignment. For the free-body 

shaft-coupling, the weight force is  

{ }T0 0 0 0 0 0g g= − −W M   (10) 

The static reactions are then calculated considering the partitioning of the stiffness matrix and re-

ordering the degrees of freedoms of the nodes and grouping the free and the constrained ones as 

( )
( )

ffff fc couplf

ccf cc c

θ
θ

             = + +        
               

qK K FW0
R qK K W 0

 (11) 

where ( )
ccoupl θ =F 0 , because the coupling is not in the same position of bearings. 

Firstly by Eq. 11 the static free displacements of the rotor shall be solved as function of its 

angular position θ . Then the reactions on the bearings are calculated. Due to the presence of the 

coupling misalignment, these bearing reactions have generally both x and y components which are 1x 

periodical. 

4. Dynamical behavior of the rotor-bearing-coupling system 

The dynamic model of the rotor-bearing-coupling system at the operating speed is performed 

including the dynamic characteristics of the rotor shaft, the nonlinear hydrodynamic forces acting on 

the journals at the bearing positions bF , the static weight of the system W  and the equivalent forces 

due to the coupling misalignments couplF . Finally the equations of motion are rewritten as  

( ) ( ),b ext coupl+ + + = +- =Mq G C q Kq q FqF F W  ϕ  (12) 
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 The dynamic response is calculated considering the nonlinear equations of motion. At any time 

t  the accelerations may be solved in terms of the displacements, velocities, and the applied forces. 

Given values for accelerations, velocities, displacements and applied forces at time it , if it is possible 

to extrapolate the velocities and displacements forward in time by a time step t∆  to time 

1i it t t+ = + ∆ , then the acceleration q  for the time 1it +  can be computed by manipulating Eq. 12.  

 Typically, responses of the highest vibration modes of a numerical model are physically 

meaningless, insignificantly small, but potentially lightly damped. However, the shortest natural 

period governs the stability of numerical integration methods. The explicit numerical integration 

methods can artificially add numerical damping to suppress instabilities with the higher vibration 

mode responses while the implicit numerical methods can be unconditionally stable.  

 The Newmark method is used in this work for solving the nonlinear equations numerically. This 

implicit method is quite popular for the numerical integration of linear equations of motion in 

structural dynamics [10]. However the nonlinear behavior of the system brings some known 

difficulties for implicit methods. Note that since differentiation amplifies high frequencies of the 

dynamic model, changes in q  and q  from it  to 1it +  will be much smoother than the corresponding 

changes in q . It is not sufficient to consider the equilibrium for each time step of calculation, but the 

differential equilibrium of the system in the form 

( )i i
l t

i
n

i
ex

iD + + D =+ D DD -M q G C q K q f F ϕ  (13) 

where the finite difference relationships are 
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  Also, the incremental acceleration and velocity are evaluated as 

2

1 1 1
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q q q q
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 The substitution of Eq. 15 into Eq. 13, then re-grouping terms and solving for the increment in 

displacements, it follows  
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The incremental displacement iDq  is then obtained from Eq. 16 as follows  

( )1 1ˆ ˆ ˆ ˆ ˆi i i i i i
nl ext

- -D = + + D + D =q K C q M q f f K f   (17) 
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The dynamic system described in Eq. 2 has a local nonlinearity due to the not negligible 

nonlinear bearing force increment i
nlDf . This fact is observed by the dependence of îf on the 

incremental displacement iDq and the incremental velocity iDq , as described in Eq. 14. The 

common Newmark method cannot obtain the response of the system at time 1it +  directly, but is 

possible to improve it. The prediction value for the next step can be taken as the initial value and then 

a correcting process is done by the Newton–Raphson method. Here, the Newton-Raphson algorithm 

is an efficient method to solve the Eq. 17, calculating the incremental displacement. The iterative 

algorithm proceeds as follows 

1. The initial value for iDq  is denoted 0
iDq  and is arbitrarily set to zero. The corresponding 

value for îf is 

( )0
ˆ ˆ ˆi i i i i

extD = D + +f q f C q M q   (19) 

2. The Newton-Raphson recurrence relation is simply 

( )1
1

ˆ ˆi i i
n n

-
+D = Dq K f q  (20) 

where 
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q q q q    (22) 

3. Eq. 20 is iterated upon until the incremental displacement iDq  converges, or

1
i i
n n e+D - D <q q , with e  representing the tolerance for the convergence. 

The convergence of this form of the Newton-Raphson method depends on the local smoothness 

of ( ),i i
bF q q . Convergence can be improved, for a particular time step, by making tD  smaller.   

After obtaining the solution for iDq , the displacements and velocities are updated with  

1

1 1 1
2

i i i

i i i it
t

g g g
b b b

+

+

= + D
æ ö æ ö÷ ÷ç ç÷ ÷= - + D - + Dç ç÷ ÷ç ç÷ ÷ç ç Dè ø è ø

q q q

q q q q  
 (23) 

The accelerations are updated with the Eq. 2 as 

( ) ( )1 1 1 1 1 11 ,i i i i i i
b ext

+ + + +- + += + -é ù+ -ê úë û
q M G CF q q KqF q  ϕ  (24) 

It is important to note that K̂  is positive definite and does not depend on iDq . The matrices K̂  

and M  shall be inverted or factorized only once at the beginning of the simulation. The equilibrium 

of the nonlinear system is obtained by iteration with the Newton–Raphson method where the 

prediction value of the next step is taken as the initial values, and then the correcting process is 

implemented. The proposed method can improve the iteration convergence. The parameters b  and 

g  of this improved Newmark method were considered in accordance to the linear acceleration 

method ( )1 6, 1 2b g= = . With these Newmark parameters the numerical solution is 

unconditionally stable, as described by Chopra [11].    

5. Numerical results 

Nonlinear dynamic behaviors of the bearing-rotor system are analyzed by using the above methods. 

The rotor showed in Fig. 3 is composed by a flexible shaft, for which the density of mass is 7800 

kg/m3, the Young’s elastic modulus is 206.7 GPa, the Poisson ratio is 0.3, the proportional damping to 

stiffness value is 25x10-5, the shaft length is 1.16 m and the shaft diameter is 0.02 m.  
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Figure 3.  

 

All the four cylindrical 

diameter is 23 mm. In each one it is included a 

is 6x10-4 m. The dynamic viscosity of oil film

5.1. Effect of radial and angular 

Different combinations of radial and angular misalignment conditions of the rigid coupling have been 

analyzed.  One simulation of the dynamic response of the 

at the operating speed of 955 rpm, as depicted in Fig

the journal near the first bearing, 

 (a)

Figure 4.   Radial (a) and angular (b) 

5.2. Nonlinear analysis 

The nonlinear behavior is better demonstrated with a bifurcation analysis as depicted in Fig

bifurcation diagram was obtained with the variation of the intensity of the radial misalignment 

considering the operating speed of 4775 rpm. 

orbits for the shaft region near the first bearing

an unstable periodic orbit of the centre of the shaft happens with 

6(a). With 4r mµ∆ =  a period

orbit of the centre of the rotor at the bearing station is depicted in

Figure 3.   Two segments of rotors with a rigid coupling.  

All the four cylindrical bearings have the same dimensions. The width is 14 mm and the internal 

diameter is 23 mm. In each one it is included a 360° pad. The clearance between journal 

dynamic viscosity of oil film is 55x10-3 Pa.s.   

and angular misalignment 

Different combinations of radial and angular misalignment conditions of the rigid coupling have been 

One simulation of the dynamic response of the rotor-bearing-coupling system is performed 

at the operating speed of 955 rpm, as depicted in Fig. 4. Fig. 4(a) and Fig. 4(b), represent

the journal near the first bearing, considering radial and angular misalignments, respectively. 

(b)

(a) and angular (b) misalignment in bearing #1 with phase 0º, for ϕ  = 100 rad/s

 of the radial misalignment 

better demonstrated with a bifurcation analysis as depicted in Fig

bifurcation diagram was obtained with the variation of the intensity of the radial misalignment 

considering the operating speed of 4775 rpm. In this diagram, one can observe different steady

near the first bearing. From the bifurcation analysis it is possible to see that 

an unstable periodic orbit of the centre of the shaft happens with 3r mµ∆ = , as demonstrated in Fig

a period-doubling orbit is formed as depicted in Fig. 6(b). The quasi

orbit of the centre of the rotor at the bearing station is depicted in Fig. 6(c), considering the radial 

  

have the same dimensions. The width is 14 mm and the internal 

journal and bearing 

Different combinations of radial and angular misalignment conditions of the rigid coupling have been 

coupling system is performed 

represent the orbits of 

respectively.   

 

ϕ = 100 rad/s.  

better demonstrated with a bifurcation analysis as depicted in Fig. 5. The 

bifurcation diagram was obtained with the variation of the intensity of the radial misalignment 

different steady-state 

From the bifurcation analysis it is possible to see that 

, as demonstrated in Fig. 

The quasi-periodic 

, considering the radial 
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misalignment as 10r mµ∆ = . By increasing the radial misalignment with 12r mµ∆ ≥ , the 

bifurcation occurs again, i.e. the quasi-periodic solution turns to periodic solution.     

   

Figure 5.   Bifurcation diagram for radial misalignment considering ϕ  = 500 rad/s.  

 

   (a)                                               (b)                                                (c) 

Figure 6.   Phase diagrams for ϕ  = 500 rad/s: (a) 3r mµ∆ = ; (b) 4r mµ∆ = ; (c) 10r mµ∆ = . 

6. Conclusions 

It is necessary to take into account the effect of rigid coupling misalignment on the reaction forces of 

the bearings, considering that these forces are changing owing to the rotation of the shaft, i.e. to the 

orientation of the misalignment with respect to the phase reference. In this work, the nonlinear 

responses of a rotor system due to the radial and angular misalignments in the rigid coupling were 

performed by an improved Newmark method, with a local iteration using the Newton–Raphson 

method. The proposed method is considered as unconditionally stable and had the iteration executed 

only on the degrees of freedom related to the nonlinear forces acting on the bearings. The nonlinear 

steady-state shaft orbits were obtained for different intensities of radial and angular misalignments 

and the bifurcation analysis was used to identify the complex nonlinear behaviors such as periodic, 

period-doubling and quasi-periodic.   
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Analysis of vibration effects on edge-chipping occurrence 

during rotary ultrasonics drilling 

 
 

Milan Naď, Lenka Kolíková, Ladislav Rolník, Rastislav Ďuriš 

Abstract: Rotary ultrasonic drilling (RUD) is considered as a hybrid process  
combining grinding process using diamond tool that simultaneously performs axial 
vibrations with frequency at the ultrasound level. The application of this method hole 
drilling is mainly in machining of high-strength or brittle materials - alloys, 
composites and ceramics in industrial and medical applications. During the hole 
drilling, the hole bottom thickness is changing and consequently as a plate structure is 
subjected to transition through the resonance states. This resonant state can be 
considered as one of the important effects that leads to occure the "edgechipping" 
phenomenon. Although intensive research in this application area is still ongoing, the 
impact of ultrasonic vibrations as well as the influence of the shape of the contact 
surface of  drilling tool on this phenomenon is still insufficiently analyzed. The effects 
different contact surfaces of drilling tools on the stress-strain states and prediction of 
“edge-chipping” phenomenon occuring during RUD are analyzed in this paper. 

1. Introduction 

Advanced materials such as ceramics, composites and other materials with supetior properties are 

increasingly used in industries such as aerospace, automotive, electronics but they are also used in 

medical applications. Mechanical properties of such materials are characterized by specific properties 

such as high hardness, excellent wear resistance and brittleness. However, these properties usually 

cause difficulties and complications in machining and obtaining the desired shapes and dimensions of 

the products from these materials. As mentioned, these materials are hardly machinable by 

conventional machining processes. For these reasons, it is very important to develop efficient 

machining processes  that will ensure the quality of the machining process and the energy and cost 

efficiency of machining. 

One of the advanced processes used for drilling holes into the above mentioned materials is 

rotary ultrasonic drilling (RUD). The RUD process is characterized by sufficiently high removal rate 

while cutting pressures remain low with relatively low surface damage and strength degradation [1]. 

Process of rotary ultrasonic drilling is shown in Fig. 1. Rotating drilling tool has metal-bonded 

diamond abrasives on active surface. During drilling proces, tool is ultrasonically vibrating in axial 
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direction and fed towards the workpieceat the constant feedrate or a constant force. The coolant is 

pumped through the core of drilling tool into the cutting zone and chips are washed away. 

a)         

 

b) 

Figure 1.   RUD process (a - principle, b - diamond particle). 

Significant attention is paid to the processess and problems arising in the rotary ultrasonic 

machining from both the theoretical and experimental points of view. One of the important problem 

that has to be solved in the RUD process is the formation of undesirable phenomenon called edge-

chipping. When the drilling tool is finishing the hole drilling, the bottom edge of the hole is degraded 

by breaking the edge (see Fig. 2). 

 

Figure 2.   Typical cases of edge-chipping formation [4]. 

In this paper the finite-element model for the final-element analysis of the RUD process is 

developed to investigate the impact of ultrasonic vibration and shape parameters of the drilling tools 

on the edge-chipping phenomenon formation. The maximum equivalent von Mises stresses are 

analyzed in critical zones of the drilled hole. The dependence of equivalent stresses on the edge radii 

of drilling tool and on the change in the bottom thickness of drilling hole is investigated. 
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2. Formulation of the cutting force for RUD process 

Rotary ultrasonic drilling might be considered as a combination of ultrasonic machining process and 

grinding process. It is a complex proces with a large number of input variables. The basic input 

parameters influencing the rotary ultrasonic drilling process, i.e., the input parameters for creating a 

model describing the RUD process are divided into different categories (see Fig. 3). 

 

Figure 3.   Input parameters of RUD process [3]. 

When analyzing the RUD process, the value of cutting force is important to determine. As can be 

seen from the RUD input data (see Fig. 3), the cutting force depends on a large number of parameters. 

To determine the value of cutting force, the significant attention is paid [2], [3] from a theoretical and 

experimental point of view. The general equation [3] for determining the dependence between cutting 

force and input parameters has the following form: 
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where w is the maximum penetration depth, Na is the number of abrasive particles on abrasive 

surface,  is the semi-angle between two oposite edges of abrasive diamond particle (see Fig. 1b) and 

Hv if the Vicker´s hardness. 

It is assumed that abrasive particles are uniformly distributed on abrasive surface of the drilling 

tool. The number of active abrasive particles on the face of drilling tool can be determined by: 
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where )( 2
1

2
20 rrA  is the area of contact sufrace of drilling tool face, Ca is concentration of 

abrasive and Sa is size of abrasive (see Fig. 1b) 

3. Assumption for edge-chipping initiation 

There is assumed, that the edge-chipping phenomenon will be initiated in a brittle fracture mode when 

the maximum stress will be satisfy the failure criterion. The equivalent stress of von Mises failure 

criterion can be used to determination of initiation process edge-chipping phenomenon. With the von 

Mises stress criterion, tge edge-chipping is assumed to initiate when the von Mises equivalent stresses 

reach the tensile strength of the workpiece material. The generally, the von Mises equivalent stress is 

defined by the folowing equation: 

2

)()()( 2
31

2
32

2
21

,


 Miseeq , (3) 

where σ1, σ2 and σ3 are the stresses in principle directions. 

4. Finite element model of RUD process 

The finite element analysis of RUD process is used to the prediction of edge-chipping phenomenon. 

The numerical simulation of drilling proces using the RUD process was realized on finite element 

model (see Fig. 4). Pre tvorbu finite element model were used 3D finite elements. 

 

Figure 4.   FE model of RUD process simulation (quarter of the model). 
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The boundary conditions were specified so that the bottom of the workpiece is supported on the 

area determined by dimension b (see Fig. 4), where all degrees of freedom were removed. The 

workpiece was also fixed on the workpiece's cylindrical surface, where all degrees of freedom were 

also removed. The drilling load in the RUD simulation process is determined as a pressure load on the 

bottom of the drilled hole. The magnitude of the excitation pressure amplitude is determined based on 

the results obtained from theoretical knowledge and experimental measurements [2], [3] and it is 

considered to be 15.0 MPa. 

Table 1. Parameters of RUD process 

Parameter Value 

radius of workpiece R0 [mm] 8.0 

thickness of workpiece h0 [mm] 9.0 

inner radius of drilled hole r1 [mm] 3.5 

outer radius of drilled hole r2 [mm] 4.0 

bottom thickness  h [mm] 0.0 ÷ 9.0 

radius on inner edge of drilling tool rz1 [mm] 0.05 

radius on outer edge of drilling tool rz2 [mm] 0.05 ÷ 0.15 

width of the support of workpiece b [mm] 3.0 

Young modulus of workpiece material   E [GPa] 300.0 

Poisson number of workpiece material  [-] 0.21 

density of workpiece material  [kg.m-3] 3720.0 

pressure on bottom of drilled hole p [MPa] 15.0 

5. Numerical analysis and results 

During the RUD process, the changes in the workpiece structure occurs. These changes cause a 

modification mass and stiffness distribution in workpiece. As a result of this process, the changes in 

the workpiece modal properties occur, i.e. natural frequency and mode shapes are changing. When 

increasing the depth of drilled hole, the vibration of workpiece has a significant shape as shown in 

Fig. 5a. From the results obtained, it is evident that with the increasing depth of drilling (decreasing 

the bottom thickness of drilled hole), the influence of the support width of b on natural frequency of 

workpiece decreases (see Fig. 5b) and becomes insignificant. For bottom thickness h = 0.5 mm, the 

change of natural frequency is very small in the relation to changing the support width. Dependency 

of natural frequency on various values of edge radii rz1 and rz2 is also insignificant (see Fig. 6). 

From the point of view of edge-chipping phenomenon formation, it is important to analyze the 

stress-strain state, which is created in the workpiece during the RUD process. This state is caused by 

an ultrasound excitation with 20 kHz excitation frequency. The concentration of extreme stresses 

during the RUD process occurs at those locations of workpiece where the edges of drilling tool are in 

contact with workpiece. Some results for demonstrating the distribution of stress fields during the 
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drilling process are shown in Fig. 6. With a decrease in the thickness of the bottom of drilled hole 

there is a significant growth in the value of equivalent von Mises stresses. 

 
 

a) b) 

  

c) 

Figure 5.   The changes in modal properties of workpiece during the  RUD process. 

a) significant mode shape; b) dependency of significant mode shape frequency on parameter b for 

various thickness of drilled hole bottom h; c) dependencies of natural 

frequency on various values of edge radii rz1 and rz2 

In a further process of analysis RUD process the effect of edge radii of drilling tool on the values 

and distribution of equivalent stress has been studied. To illustrate the distribution of equivalent 

stresses on the edge arcs of a drilled hole (arcs between the bottom and the cylindrical surface), the 

structure of  node configuration of the finite element model (see Fig. 7) is used. For performing 

stress-strain analyzes, it was assumed that the radius on the inner arc to the bottom of drilled hole is 

rz1 = 0.05 mm and this will not change. The radius on the outer arc to the bottom of the drilled hole 

will vary from 0.05 to 0.3 mm.. 
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a) 

 

h = 1.0 mm 

b) 

 

h = 0.5 mm 

c) 

 

h = 0.3 mm 
 

Figure 6.   Ekvivalent stress distribution for rz1 = rz2 = 0.05 mm for various bottom thickness h. 
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Figure 7.   Configuration of nodes on the workpiece finite element model. 

The distribution of equivalent stresses along the length of the inner arc is shown in Fig. 8. From 

these dependencies it is obvious that the change of radius on the outer arc affects the value and 

distribution of stresses on the inner arc. The increasing the radius of the outer arc causes the reduction 

in the value of the ekvivalent stresses on the inner arc. A similar situation arises also on the outside 

arc (see Fig. 9). Enlarging the value of the outer radius of curvature a significant decline in the value 

of equivalent stress along thelength of the outer arc occurs. 

 

 

Figure 8.   Distribution of equivalent stresses on inner arc (radius rz1). 
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Figure 9.   Distribution of equivalent stresses on outer arc (radius rz2). 

6. Conclusions 

The investigation and analysis of the influence of RUD process parameters on the occurrence of 

edge-chipping phenomenon are presented in this paper. A possible solutions for the geometrical 

treatments of the active surfaces of drilling tool leading to the reduction of the peak stresses in 

workpiece result from the analysis results. 
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The main knowledge and conclusions are: 

 As the drilled depth increases, the maximum values of equivalent von Mises stress are growing. 

 The critical zones in which stress peaks appear are located in the zone between the bottom surface 

and the cylindrical surfaces of the drilled hole. The largest voltage peaks are in the outer radius 

zone. This fact confirms the assumption based on the practical findings that the initiation of 

cracks leading to edge-chipping begins at these locations. 

 With the increasing radius rz2 of the outer curvature between the bottom surface and the surface of 

drilled hole, the stress peaks in this zone are significantly decreasing. When changing the radius 

of curvature from 0.05 mm to 0.3 mm, they drop by almost 50%. 

The results which follow from this study have indicate a practical way leading to reduction stress 

peaks and elimination of the formation of edge-chipping phenomenon in rotary ultrasonic drilling. 
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Formulation of the initial boundery velue problems in the theory of
multilayer thermoelastic thin bodies in moments (part I)

Mikhail U. Nikabadze, Tamar Moseshvili, Armine R. Ulukhanian, Ketevan Tskhakaia,
Nodar Mardaleishvili

Abstract: In the paper the new parametrization of a multilayer thin domain
is applied. In contrast with classic approaches, several base surfaces and an
analytic method with application of orthogonal polynomial systems are used.
Geometric characteristics typical for the proposed parametrizations are con-
sidered. The new parametrization in the case of a one-layered thin body is
described in detail in [5–10]. Various representations of the equations of mo-
tion, the heat influx, the constitutive relations of physical and heat content
are given for the new body domain parametrization. The definition of the kth
order moment of a certain quantity with respect to an orthonormal polynomial
systems is given. The expressions of moments of first- and second-order partial
derivatives of a certain tensor field are obtained and this is also done for some
important expressions required for constructing different variants of the theory
of thin body. Various variants of the equations of motion in moments with
respect to orthogonal polynomial systems are also obtained. The interlayer
conditions are written down under various connections of adjacent layers of a
multilayer body. Formulation of the initial boundery velue problems in the
theory of multilayer thermoelastic thin bodies in moments are given.

1. Parametrization of a multilayer thin domain of the three-dimensional Eu-

clidean space with several base surfaces

Consider a multilayer thin domain of the Euclidean space consisting of not more than count-

ably many layers. We perform the parametrization of this domain in the same way as in [1,2].

Let the layers be enumerated in the ascending order, i.e., for example, if α ≥ 2 is the serial

number of a certain layer, then the serial number of the previous layer is α−1 and the serial

number of the next layer is α + 1. Each layer has two frontal surfaces. The frontal surface

of the layer α, which lies to the side of the previous layer α − 1, is called the interior base

surface and denoted by
(−)

S
α

, whereas the frontal surface of the layer α, which lies to the side

of the next layer α+ 1, is called the exterior base surface and denoted by
(+)

S
α

.

If the multilayer structure consists of K layers, then
(−)

S
1

(
(+)

S
1

) and
(−)

S
K

(
(+)

S
K

) are the interior

and exterior surfaces of the first and last layers, respectively. In this case,
(−)

S
1

and
(+)

S
K

are

also called the interior and exterior surfaces of the multilayer structure.
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We assume that the frontal surfaces of each layer are regular surfaces and its lateral

surface is a ruled surface in the case where the layer is bounded and unclosed.

Note that the analytic method with the use of the Legendre polynomial system in con-

structing the one-layer thin body theory [11–39] and multilayer thin body theory [40–49]

was also applied by other authors. In this direction the author had published the pa-

pers [1–8, 50–59] and others with the application of Legendre and Chebyshev polynomial

systems. These expansions can be successfully used in constructing any thin body theory.

Despite this, the classic theories constructed by this method are far to be complete, and the

more so, the micropolar theories and theories of other rheology are.

1.1. Vector parametric equation of the layer α and the system of vector para-

metric equations of a multilayer thin domain

The radius-vector of an arbitrary point M
α

of the layer α has the form

r
α
(x1, x2, x3) =

(−)

r
α

(x1, x2) + x3h
α

(x1, x2) = (1− x3)
(−)

r
α

(x1, x2) + x3(+)

r
α

(x1, x2) (1)

for all α ∈ N and ∀x3 ∈ [0, 1], where the vector relations

(−)

r
α

=
(−)

r
α

(x1, x2),
(+)

r
α

=
(+)

r
α

(x1, x2), α ∈ N, (2)

are the vector equations of the base surfaces
(−)

S
α

and
(+)

S
α

, respectively, x1, x2 are curvilinear

(or Gaussian) coordinates on the interior base surface
(−)

S
α

, and N is the set of natural numbers.

The vector h
α

(x1, x2) =
(+)

r
α

(x1, x2) −
(−)

r
α

(x1, x2), which topologically maps the interior base

surface
(−)

S
α

onto the exterior base surface
(+)

S
α

, in general, is not orthogonal to the base surfaces,

and, moreover, the endpoint of each h
α

(x1, x2) is the initial point of h
α+1

(x1, x2), ∀α, i.e., the

following relation holds:

(+)

r
α+δ

(x1, x2)=
(−)

r
α

(x1, x2)+
α+δ∑
ν=α

h
ν

=
(+)

r
α

(x1, x2) +
α+δ∑
ν=α+1

h
ν

=
(−)

r
α

(x1, x2)

+
α+δ∑
ν=α

[
(+)

r
ν

(x1, x2)−
(−)

r
ν

(x1, x2)
]

=
(+)

r
α

(x1, x2)+
α+δ∑
ν=α+1

[
(+)

r
ν

(x1, x2)−
(−)

r
ν

(x1, x2)
]
, ∀α, δ.

(3)

Let a multilayer domain1 consist of K layers. Then introducing the notation

1We use the usual rules of tensor calculus [9,10,60–63]. We mainly preserve the notation
and conventions of the previous works. Under symbols, we write indices denoting the serial
numbers of layers . The Greek indices under symbols assume their values according to
circumstances, and capital and small Latin indices assume the values 1, 2 and 1, 2, 3,
respectively. A record of the form (I: 24) means a reference to formula (24) from the first
part of the paper, and (II: 26) means a reference to formula (26) from the second part of the
work.
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h =

K∑
ν=1

h
ν

=

K∑
ν=1

[
(+)

r
ν

(x1, x2)−
(−)

r
ν

(x1, x2)
]
, (4)

we have

(+)

r
K

(x1, x2) =
(−)

r
1

(x1, x2) + h(x1, x2) =
(−)

r
1

(x1, x2) +

K∑
ν=1

[
(+)

r
ν

(x1, x2)−
(−)

r
ν

(x1, x2)
]
. (5)

Note that Eq. (1) is the vector parametric equation of the layer α for a fixed α, and when α

varies in the corresponding range and conditions (3) hold, the system of vector parametric

equations of the multilayer thin domain considered. It is easy to see that (1) for any x1, x2

and x3 = 0 defines the interior base surface
(−)

S
α

, and for any x1, x2 and x3 = 1, it defines

the exterior lateral surface

α
(+)

S , whereas for any x1, x2 and x3 = const,where x3 ∈ (0, 1), it

defines the equidistance surface for the base surfaces
(−)

S
α

and
(+)

S
α

, which is denoted by S
α
.

1.2. Two-dimensional families of bases and the families of parametrizations of

the surface of the layer α generated by them

For the derivatives of relations (1) and (2) in xP at the points
(?)

M
α
∈

(?)

S
α

, ? ∈ {−, ∅,+} ∀α,

let us introduce the notation

r
αP
≡ ∂P r

α
≡ ∂

P
r
α
/∂xP , r

α
?
P
≡ ∂

P

(?)

r
α
≡ ∂

(?)

r
α
/∂xP , ? ∈ {−,+}, ∀α. (6)

The pair of vectors r
α
?
1

r
α
?
2
, ? ∈ {−, ∅,+} ∀α defined at the points

(?)

M
α
∈

(?)

S
α

, ? ∈ {−, ∅,+},

∀α obviously compose two-dimensional covariant surface bases, and
(?)

M
α

r
α
?
1

r
α
?
2
, ? ∈ {−, ∅,+}

∀α are two-dimensional covariant surface frames, which, in turn, generate the corresponding

parametrizations of the surfaces considered. As is known [60–63] (see also [9,10]), according

to these frames (bases), we can construct the corresponding contravariant frames
(?)

M
α

r
α

?
1 r
α

?
2

(bases r
α

?
1 r
α

?
2), ? ∈ {−, ∅,+}, ∀α. Naturally, the covariant and contravariant bases generate

the geometric characteristics inherit for them. Defining the frames (bases) at each point of

the surfaces
(?)

S
α

, ? ∈ {−, ∅,+}, ∀α, we obtain the corresponding families of frames (bases),

which, in turn, generate the corresponding parametrizations.

1.3. Three-dimensional families of bases and the families of parametrization of

the domain of the layer α generated by them

Taking into account the expression of the radius-vector r
α

(1) in the first relation in (6) and

introducing the notation h
αP
≡ ∂h/∂xP ≡ ∂

P
h
α

, we obtain

r
αP

= r
α
−
P

+ x3h
αP

= (1− x3)r
α
−
P

+ x3r
α

+
P
, ∀α. (7)
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Now, differentiating (1) in x3, we have

r
α3 ≡ ∂3 r

α
≡ ∂r

α
/∂x3 = h

α
(x1, x2), ∀x3 ∈ [0, 1], ∀α. (8)

According to (8), we assume that

r
α
−
3
≡ r
α3 ≡ r

α
+
3
≡ ∂3 r

α
= h

α
(x1, x2), ∀x3 ∈ [0, 1], ∀α. (9)

Relation (9) allows us to define the spatial covariant bases r
α
?
p
, ? ∈ {−, +}, ∀α at the points

(?)

M
α
∈

(?)

S
α

, ? ∈ {−, +}, ∀α, respectively. Therefore, the third basis vector of the spatial

covariant bases at the points
(?)

M
α
∈

(?)

S
α

, ? ∈ {−, ∅, +}, for each layer α is the same vector

h
α

(x1, x2). In view of (9), we can join relations (7)and (8) and represent them as

r
α
p = r

α
−
p

+ x3h
α
p = (1− x3)

(−)

r
α

−
p

+ x3(+)

r
α

+
p
, ∀α. (10)

The triples of vectors r
α
?
1

r
α
?
2

r
α
?
3
, ? ∈ {−, ∅,+}, ∀α defined at the points

(?)

M
α
∈

(?)

S
α

, ? ∈

{−, ∅,+}, ∀α obviously compose three-dimensional covariant spatial bases, and
(?)

M
α

r
α
?
1

r
α
?
2

r
α
?
3
,

? ∈ {−, ∅, +}, ∀α compose three-dimensional spatial covariant frames, which, in turn,

generate the corresponding parametrizations. As is known [9, 10, 60–62], according to these

frames(bases), we can construct the corresponding contravariant frames
(?)

M
α

r
α

?
1r
α

?
2r
α

?
3 (bases

r
α

?
1r
α

?
2r
α

?
3), ? ∈ {−, ∅, +}, ∀α. Indeed, by their definition [9, 10,60–62], we have

r
α

k̃ =
1

2

(∼)

C
α

k̃p̃q̃r
αp̃
× r
αq̃
, ∼ ∈ {−, ∅,+}, ∀α, (11)

where
(∼)

C
α

k̃p̃q̃ = (r
α

k̃ × r
α

p̃) · r
α

q̃, ∼ ∈ {−, ∅,+}, ∀α, are contravariant components of the

discriminant tensors [60] of the layer α at the points
(?)

M
α
∈

(?)

S
α

, ? ∈ {−, ∅,+}, ∀α. It is easy

to see that (10) is shortly represented in the form

r
α
p = g

α

?
q
p
r
α
?
q

= g
α
p
?
q
r
α

?
q, ? ∈ {−, +}, ∀α, (12)

where we have introduced the notation

g
αp̆q̃

= r
αp̆
· r
α
q̃, g

α

q̃

p̆
= r
αp̆
· r
α

q̃, ` ∈ {−, ∅,+}, ∼ ∈ {−,+}, ∀α. (13)

in view of (10) and (13), for g
α
pq̃

and g
α

q̃
p

, we have

g
α
pq̆

= (1− x3)g
α
−
pq̆

+ x3g
α
+
pq̆
, g

α

q̆
p

= (1− x3)g
α

q̆
−
p

+ x3g
α

q̆
+
p
, ` ∈ {−, +}, ∀α. (14)
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Also, it is easy to obtain the expressions for g
α
pq

. Indeed, by (12) and (14), we have

g
α
pq

= r
α
p ·r
α
q = (1−x3)2g

α
−
p
−
q

+x3(1−x3)(g
α
−
p
+
q

+g
α
+
p
−
q
)+(x3)2g

α
+
p
+
q
, ? ∈ {−,+}, ∀α. (15)

Let us find the expressions for
√
g
α

= (r
α1 × r

α2) · r
α3. By the first relation in (12), we obtain

√
g
α

=
1

2
εIJ(r

αI
× r
αJ

) · r
α3 =

√
(∼)
g
α

det(g
α

q̃
p

) =

√
(∼)
g
α

det(g
α

Q̃

P
), ∼ ∈ {−,+}, ∀α, (16)

where εIJ , ε
KL

are the Levi-Civita symbols and√
(∼)
g
α

= (r
α1̃
× r
α2̃

) · r
α3̃
, ∼ ∈ {−,+},

√
(−)
g
α

=
√
g
α

∣∣∣
x3=0

,

√
(+)
g
α

=
√
g
α

∣∣∣
x3=1

, ∀α.

In turn, from (16), we have

(∼)

ϑ
α
≡
√
g
α

(∼)
g
α

−1 =
1

2
εIJε

KL
g
α

K̃

I
g
α

L̃

J
= det(g

α

Q̃

P
), ∼ ∈ {−,+}, ∀α. (17)

Note that analogously to (16), in a more general case, we have√
(∼)
g
α

=
1

2

√
(`)
g
α
εIJε

KL
g
α

K̆

Ĩ
g
α

L̆

J̃
=

√
(`)
g
α

det(g
α

Q̆

P̃
), ∼, ` ∈ {−, ∅,+}, ∀α. (18)

It is easy to see from this that

(`∼)

ϑ
α
≡
√

(∼)
g
α

(`)
g
α

−1 =
1

2
εIJε

KL
g
α

K̆
Ĩ g
α

L̆
J̃ = det(g

α

Q̆

P̃
) = det(g

α

q̆

p̃
), `, ∼ ∈ {−, ∅,+}, ∀α. (19)

It is seen that for ∼ = ∅, ` ∈ {−,+}, from (18) we obtain (16), and from (19), we obtain

(17). It is easy to verify that by (19), we have

(`∼)

ϑ
α

=
(∼`)

ϑ
α

−1, `, ∼ ∈ {−,+}, ∀α;
(≈)

ϑ
α

= 1, ∼ ∈ {−,+}, ∀α. (20)

Using (19), we can write relations (17) in the following more detailed form:

(−)

ϑ
α

=

√
g
α

(−)
g
α

−1 = (1− x3)2
(=)

ϑ
α

+ x3(1− x3)g
α

−
I
+
I

+ (x3)2
(∓)

ϑ
α
,

(+)

ϑ
α

=

√
g
α

(+)
g
α

−1 = (1− x3)2
(±)

ϑ
α

+ x3(1− x3)g
α

+
I
−
I

+ (x3)2

(+
+
)
ϑ
α
, ∀α.

(21)

It is easy to express r
α

k, ∀α, through the vectors r
αm̃

or r
α

m̃, ∼ ∈ {−,+}, ∀α. Indeed, taking

into account the first relation of (12) from (11) for ∼ = ∅, we obtain

r
α

k =
1

2

(∼)

ϑ
α

−1εkpqε
lmn

g
α

m̃
p g
α

ñ
q r
α

l̃, ∼ ∈ {−,+}, ∀α, (22)
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where εkpq, ε
lmn

are the Levi-Civita symbols. By (22),we introduce the notation

g
α

k
l̃ =

1

2

(∼)

ϑ
α

−1εkpqε
lmn

g
α

m̃
p g
α

ñ
q , g

α

kl̃ =
1

2

(∼)

ϑ
α

−1εkpqεsmng
α

m̃
p g
α

ñ
q g
α

s̃l̃, ∼ ∈ {−,+}, ∀α. (23)

Using this notation, we represent relation (22) in the desired form

r
α

p = g
α

p

q̃
r
α

q̃ = g
α

pq̃r
αq̃
, ∼ ∈ {−,+}, ∀α. (24)

It is easy to see that from the first relation in (23), we have

g
α

K

K̃
=

(∼)

ϑ
α

−1g
α

Ĩ

I
, ⇒ g

α

K̆

K̃
=

(∼`)

ϑ
α

−1g
α

Ĩ

Ĭ
=

(`∼)

ϑ
α
g
α

Ĩ

Ĭ
, ∼ ∈ {−,+}, ∀α. (25)

Note that in writing the second relation in (25), (19) and (20) were taken into account. Also,

let us consider the following objects (matrices):

g
αβ

· q̃
p̆ ·

= r
αp̆
· r
β

q̃, `, ∼ ∈ {−, ∅,+}, ∀α, β, (26)

and the objects obtained from (26) by alternating the indices. We calculate that the number

of such objects is equal to 36. It is easy to see that for α = β (26) contains (13), (15) and

(23). Indeed, from (26), we have

g
α

q̃

p̆
= g
αα

· q̃
p̆ ·

= r
αp̆
· r
α

q̃, `, ∼ ∈ {−, ∅,+}, ∀α, (27)

and alternating the indices, we obviously obtain the objects considered above and also g
α

pq =

r
α

p · r
α

q, ∀α, i.e., in this case, the number of the introduced quantities is equal to 36. It is easy

to see that by (26) and (27), the connections between the families of bases are represented

in the form

r
αp̃

= g
α

n̆

p̃
r
αn̆

= g
αβ

· n̆
p̃ · r

βn̆
, `, ∼ ∈ {−, ∅,+}, ∀α, β, (28)

which remains valid under index alternation. By (28), it we show that the relation holds

g
αβ

· q̆
p̃ ·

= g
αδ

· ?n
p̃ · g

ββ

· q̆
?
n ·
, `, ∼, ? ∈ {−, ∅,+}, ∀α, β, δ. (29)

Differentiating (3)–(5) in xI and taking into account (28), we obtain

r
α+β

+
I

= r
α
−
I

+

α+β∑
ν=α

[
g
ν

−
k
+
I
− g
ν

−
k
−
I

]
r
ν
−
k

= r
α
+
I

+

α+β∑
ν=α+1

[
g
ν

−
k
+
I
− g
ν

−
k
−
I

]
r
ν
−
k
,

∂
I
h(x1, x2) =

N∑
ν=1

∂
I
h
ν
(x1, x2) =

N∑
ν=1

[
g
ν

−
k
+
I

(x1, x2)− g
ν

−
k
−
I
(x1, x2)

]
r
ν
−
k

(x1, x2),

r
N

+
I
(x1, x2) = r

1
−
I
(x1, x2) +

N∑
ν=1

[
g
ν

−
k
+
I

(x1, x2)− g
ν

−
k
−
I
(x1, x2)

]
r
ν
−
k

(x1, x2).

(30)
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Naturally, all spatial covariant and contravariant bases constructed above have geometric

characteristics specific for the parametrizations generated by them. Defining the spatial

frames (bases) at each point of the surfaces
(?)

S
α

, ? ∈ {−, ∅, +}, ∀α, we obtain the cor-

responding families of spatial frames (bases), which, in turn generate the corresponding

families of parametrizations. Once more, we note that the structure of
(∼)

S
α

(∼)
g
α

-families frames

(bases), ∼ ∈ {−, ∅,+}, ∀α, is such that the third basis vectors r
α3̃

= h
α

(x1, x2), ∼ ∈ {−, ∅,+},

∀α are not perpendicular to the corresponding base surface
(∼)

S
α

, ∼ ∈ {−, ∅,+}, ∀α in general.

However, in a particular case, they can be perpendicular, and in a more particular case, they

can be unit normal vectors to the surfaces
(∼)

S
α

, ∼ ∈ {−, ∅,+}, ∀α, which are denoted by
(∼)
n
α

,

∼ ∈ {−, ∅,+}, ∀α, respectively.

The corresponding relations for a one-layered thin body under a new parametrization,

as well as for other parametrizations considered in the works, are valid for each layer.

It is seen from the material presented above that in the parametrization of a multilayer

domain considered for each layer, and all the corresponding relations for a one-layered thin

body under a new parametrization in [5–10], as well as for other parametrizations considered

in [5–7,11,60], are hold under the condition that the root letters of quantities entering these

relations must be equipped with the bottom index, which denote the number of the layer

considered. In this connection, we do not consider the problems on the parametrization

of a multilayer domain in detail. In what follows, if necessary, we write the necessary

formulas from the corresponding relations of the works mentioned in this paragraph by the

above method (equipping the root letters of quantities with the bottom index of the layer

considered), and obtain some relations, which do not enter the above works.

1.4. Representation of the unit tensor of the second rank

It is easy to find this representation. Indeed, starting from the usual representation of this

tensor [9, 10,61,62], by (28) and (29), we obtain the relation [1–5]

E˜ = E
α̃

= g
α

n̆

p̃
r
α

p̃r
αn̆

= E
β̃

= g
β

n̆

p̃
r
β

p̃r
βn̆

= g
αβ

· n̆
p̃ · rα

p̃r
βn̆
, ∼, ` ∈ {−, ∅,+}, ∀α, β, (31)

which remains valid under index alternating. As is seen from (31), the quantities (26) and

(27) introduced above represent the components of the unit tensor of the second rank (UTSR)

for a multilayer thin domain of the three-dimensional Euclidean space. Now let us introduce

the following definitions.

Definition 1.1 The parametrization considered above, which is characterized by assigning

the radius-vector of an arbitrary point of any layer α in the form (1) and by the fulfillment

of relation (3), is called the new parametrization of a multilayer thin domain.
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Definition 1.2 The components g
αβ

· n̆
p̃ · , for p̃ ∈ {−p, p, +

p}, n̆ ∈ {−n, n, +
n}, ∀α 6= β, and also

the components g
α

· n̆
p̃ · , ∀α, for ∼ 6=`, where ∼,` ∈ {+, ∅,−}, and the images obtained from

them by index alternating are called the components of the unit second-rank tensor translation

under the new parametrization of a multilayer thin domain.

Definition 1.3 The components g
αβ

· ·
p̃q̃

, g
αβ

· q̃
p̃ ·

, g
αβ

p̃q̃
· · for ∼ = − (∼ = +), ∀α, β, and the

components of the translation g
αβ

· ·
p̃q̆

, g
αβ

· q̆
p̃ ·

, for ∼ = +,` = − (∼ = −,` = +), ∀α, β, are

called the basic components of the second-rank unit tensor under the new parametrization of

a multilayer thin domain if as as base surface, the inner (exterior) base surface of layers are

taken.

It is easy to find the expressions for g
αβ

pq
via basic translation components. Indeed, by (14),

(26) and (29), we have

g
αβ

pq
= g
α

m̆
p g
β

ñ
q g
αβ

m̆ñ
= (1− x3)2 g

αβ
−
p
−
q

+ x3(1− x3)
(
g
αβ

−
p
+
q

+ g
αβ

+
p
−
q

)
+ (x3)2 g

αβ
+
p
+
q
, (32)

where ∼, ` ∈ {−,+}, ∀α, β. Whence, for α = β, we obtain (15).
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Formulation of the initial boundery velue problems in the theory of
multilayer thermoelastic thin bodies in moments (part II)

Mikhail U. Nikabadze, Tamar Moseshvili, Armine R. Ulukhanian, Ketevan Tskhakaia,
Nodar Mardaleishvili

Abstract: Various representations of the equations of motion, the heat influx,
the constitutive relations of physical and heat content are given for the new
body domain parametrization. The definition of the kth order moment of a
certain quantity with respect to an orthonormal polynomial systems is given.
The expressions of moments of first- and second-order partial derivatives of
a certain tensor field are obtained and this is also done for some important
expressions required for constructing different variants of the thin body theory.

1. Representation of equations of motion and heat influx and constitutive rela-

tions of physical and heat contents of micropolar theory of multilayer elastic

thin bodies with one small size

In what follows, for brevity, we present certain representations of equations of motion and

constitutive relations in the case of a one-layer thin body, and then we show how one can

obtain the desired relations using the rule presented above and write certain relations.

1.1. Representation of equations of motion and constitutive relations of physical

and heat contents of the micropolar theory of one-layertic thin bodies with

one small size

The new parametrization of a one-layer thin domain [1–6] is performed by the relation,

which is obtained from (I: 1) under the absence of index α under the symbols. To obtain the

representations of equations of motion and constitutive relations, we need the representations

of the gradient and the divergence under the parametrization considered. Let us obtain the

representations of these operators. Omitting the index α, from (I: 12) and (I: 24), we find

rp = g
−
m
p r−

m
= g

p
+
m

r
+
m, rp = gp−

m
r
−
m = gp

+
m

r
+
m, (1)

and also from (I:1.23), we have

gP−
M

=
(−)

ϑ −1AP
−
M
,

(−)

ϑ = det(g
−
J

I
), g3−

M
= −g

−
3

P
gP−
M
, g

−
3

P
= x3g

−
3
+
P
,

g
−
3
+
P

= h−1∂
P
h, h = |h|, AP

−
M
≡ g

−
P
−
M

+ x3aP+
M
, aP+

M
≡ (g

−
I
+
I
− 1)g

−
P
−
M
− g

−
P
+
M
.

(2)
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Moreover, note that the following relations hold [1–6]:

gP−
M

=

∞∑
s=0

A
(s)

−
P
+
M

(x3)s, A
(s)

−
P
+
M

= (g
−
P
−
N1

− g
−
P
+
N1

) · . . . · (g
−
Ns−1

−
M

− g
−
Ns−1

+
M

), A
(0)

−
P
+
M

= g
−
P
−
M
. (3)

By the first and third relations in (2) and the second relation in (1), we find that

rP = gP−
M

r
−
M , r3 = g3−

M
r
−
M + r

−
3 = r

−
3 − g

−
3

P
rP = r

−
3 − g

−
3

P
gP−
M

r
−
M . (4)

The gradient operator can be applied to any tensor. Therefore, denoting a certain tensor

quantity by F(x′, x3), by the definition of the gradient [7–9] and by (4), we have [1–4]

gradF = ∇F = rp∂pF = rP ∂
P
F + r3∂3F = r

−
MgP−

M
(∂

P
− g

−
3

P
∂3)F + r

−
3∂3F.

Whence, introducing the differential operator

Np = ∂p − g
−
3
p ∂3, N = rpNp = rPN

P
= r

−
MgP−

M
N

P
, N3 = 0, (5)

we obtain the desired representation of the gradient in the form

gradF = ∇F = NF + r
−
3∂3F = rPN

P
F + r

−
3∂3F = r

−
MgP−

M
N

P
F + r

−
3∂3F. (6)

The divergence operator is applied to a tensor whose rank is no less than 1. Applying this

operator, e.g. to a second-rank tensor P˜ , by the third relation in (2) and (5), we obtain

div P˜ = ∇ ·P˜ = gP−
M
N

P
P
−
M + ∂3P

−
3 (P

−
m = r

−
m ·P˜). (7)

Note that (7) can also be easily obtained from (6) if in this relation we replace the sign of

tensor product, which is omitted, with the sign of inner product.

1.1.1. Representations of equations of motion

As is known [10–13], at very small displacements and rotations and gradients of displacements

and rotations three-dimensional equations of motion of micropolar deformable rigid bodies

are represented in the form

∇ ·P˜ + ρF = ρ∂2
t u, ∇ ·µµµ˜ + C

'

2
⊗P˜ + ρm = J˜ · ∂2

tϕϕϕ. (8)

Here P˜ and µµµ˜ are tensors of stresses and couple stresses, C
'

is the discriminant tensor (third-

rank tensor) [7], u is the vector of displacements, ϕϕϕ is the vector of (inner) rotation, ρ is

the material density, F is the mass force density, m is the mass moment density, and
2
⊗ is
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the inner 2-product (for example, C
'

2
⊗ P˜ = riCijkP

jk). The definition of inner r-product

and the problems related to it are considered in [1–7,14]. Proceeding analogously to [15], for

the equations of the classical deformable rigid body mechanics (DRBM) under the classical

parametrization of thin body domain, in the case considered, from (8), we find the following

form of representation of equations of micropolar DRMB:

(
1/

√
(−)
g
)
∂P (

√
(−)
g

(−)

ϑ PP ) + ∂3(
(−)

ϑ P3) + ρ
(−)

ϑ F = ρ
(−)

ϑ ∂2
t u,(

1/

√
(−)
g
)
∂P (

√
(−)
g

(−)

ϑ µµµP ) + ∂3(
(−)

ϑ µµµ3) + C
'

2
⊗ (

(−)

ϑ P˜) + ρ
(−)

ϑ m =
(−)

ϑ J˜ · ∂2
tϕϕϕ,

(−)
g = det(g−

m
−
n

), g−
m
−
n

= r−
m
· r−

n
.

(9)

It is easy to see that by (7), Eqs. (8) can be rewritten in the form

gP−
M
N

P
P
−
M + ∂3P

−
3 + ρF = ρ∂2

t u, gP−
M
N

P
µµµ
−
M + ∂3µµµ

−
3 + C

'

2
⊗P˜ + ρm = J˜ · ∂2

tϕϕϕ. (10)

Note that the following relations hold:

gP−
M
N

P
P
−
M = gP−

m
N

P
P
−
m = N

P
(gP−

m
P
−
m) = N

P
(gP−

M
P
−
M ) = N

P
PP ;

using them, we can represent Eqs. (10) in the form

N
P

PP + ∂3P
−
3 + ρF = ρ∂2

t u, N
P
µµµP + ∂3µµµ

−
3 + C

'

2
⊗P˜ + ρm = J˜ · ∂2

tϕϕϕ,

N
P

(gP−
M

P
−
M )+∂3P

−
3 +ρF=ρ∂2

t u, N
P

(gP−
M
µµµ
−
M )+∂3µµµ

−
3 +C
'

2
⊗P˜+ρm=J˜ · ∂2

tϕϕϕ.

(11)

Multiplying each relation in (10) by
(−)

ϑ , with the help of the first relation in (2), we have

AP
−
M
N

P
P
−
M +

(−)

ϑ ∂3P
−
3 + ρ

(−)

ϑ F = ρ
(−)

ϑ ∂2
t u,

AP
−
M
N

P
µµµ
−
M +

(−)

ϑ ∂3µµµ
−
3 + C

'

2
⊗ (

(−)

ϑ P˜) + ρ
(−)

ϑ m =
(−)

ϑ J˜ · ∂2
tϕϕϕ.

(12)

Note that (9) – (12) are different forms of representation of the equations of micropolar

DRBM (8) for the parametrization of thin body domain considered. They are called the

different forms of the equations of micropolar deformable rigid thin body mechanic (DRTBM)

under the new parametrization of thin body domain. Taking into account the first relation

in (3), we can write Eqs. (10) in the form

∞∑
s=0

A
−
P
+
M

(x3)sN
P

P
−
M + ∂3P

−
3 + ρF = ρ∂2

t u,

∞∑
s=0

A
−
P
+
M

(x3)sN
P
µµµ
−
M + ∂3µµµ

−
3 + C

'

2
⊗P˜ + ρm = J˜ · ∂2

tϕϕϕ.
(13)
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It is seen that Eqs. (13) contain infinitely many summands. Therefore, they cannot be

used in practice. Naturally, we need to consider approximate equations with finitely many

summands. In this connection, let us introduce the following definition.

Definition 1.1 The equations, which are obtained from (10) if, in the expansion of gP−
M

(see the first formula in (3)), we preserve first s + 1 terms, are called the equations of

approximation of order s.

Obviously, the equation of approximation of order s are represented in the form

g
(s)

P
−
M
N

P
P
−
M + ∂3P

−
3 + ρF = ρ∂2

t u, g
(s)

P
−
M
N

P
µµµ
−
M + ∂3µµµ

−
3 + C

'

2
⊗P˜ + ρm = J˜ · ∂2

tϕϕϕ, (14)

g
(s)

P
−
M

=

s∑
m=0

A
−
P
+
M

(x3)m. (15)

From (14) for s = 0, we obtain the equations of zero approximation, for s = 1 the equations

of first approximation, etc.

1.1.2. Representation of the equation of heat influx in micropolar DRTBM

In the general case, the heat influx equation in micropolar DRBM has the form [16]

−∇ · q + ρq − T d

dt
(a˜ 2
⊗P˜ + d˜ 2

⊗µµµ˜) +W ∗ = ρcp∂tT, (16)

where q is the vector of exterior heat influx, q is the mass heat influx, T is the temperature,

a˜, d˜ are the tensors of heat extension, P˜ 6= P˜T is the stress tensor, µµµ˜ 6= µµµ˜T is the couple

stress tensor, W ∗ is the scattering function, ρ is the medium density, and cp is the heat

capacity under a constant pressure. If we consider the physically linear medium, then the

nonlinearity in (16) is in the third summand of the left-hand side. A similar situation holds

in a particular variant of this equation, which is obtained from (16) for d˜ = 0 (see [17]).

In the latter case, since both heat capacities cp and cv (the heat capacity under a constant

volume) cannot be constant simultaneously (independent of the temperature), very often,

one assumes that in this summand, the temperature T is replaced with the temperature

T0 = const. Taking into account this assumption, we see that the desired representation of

the heat influx equation has the following form analogous to (10):

−gP−
M
N

P
q
−
M − ∂3q

−
3 + ρq − T0

d

dt
(a˜ 2
⊗P˜ + d˜ 2

⊗µµµ˜) +W ∗ = ρcp∂tT. (17)

If necessary, it is easy to write the relations analogous to (9) and (12). Therefore, for brevity,

we do not dwell on this. Note that by (17), analogously to (14), the heat influx equation of

approximation of order s is represented in the form

− g
(s)

P
−
M
N

P
q
−
M − ∂3q

−
3 + ρq − T0

d

dt
(a˜ 2
⊗P˜ + d˜ 2

⊗µµµ˜) +W ∗ = ρcp∂tT. (18)
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1.1.3. Representations of constitutive relations of physical and heat content

In linear micropolar elasticity theory, the constitutive relations of physical content under non-

isothermal processes can be represented in the following form by the generalized Duhamel–

Neumann principle [16,17]:

P˜ = A˜̃ 2
⊗ (γγγ˜− a˜ϑ) + B˜̃ 2

⊗ (κκκ˜ − d˜ϑ), µµµ˜ = C˜̃ 2
⊗ (γγγ˜− a˜ϑ) + D˜̃ 2

⊗ (κκκ˜ − d˜ϑ), (19)

where γγγ˜ = ∇u−C
'
·ϕϕϕ is the deformation tensor in micropolar theory (see [12]), κκκ˜ = ∇ϕϕϕ is

the bend-torsion tensor, A˜̃ , B˜̃ , D˜̃ (C˜̃ = B˜̃T ) are material tensors of the fourth rank, and ϑ

is the temperature overfall. By the expression for γγγ˜, we can write (19) in the form

P˜ = A˜̃ 2
⊗∇u+B˜̃ 2

⊗∇ϕϕϕ−A˜̃ 2
⊗C
'
·ϕϕϕ−b˜ϑ, µµµ˜ = C˜̃ 2

⊗∇u+D˜̃ 2
⊗∇ϕϕϕ−C˜̃ 2

⊗C
'
·ϕϕϕ−βββ˜ϑ, (20)

b˜ = A˜̃ 2
⊗ a˜+ B˜̃ 2

⊗ d˜, βββ˜ = C˜̃ 2
⊗ a˜+ D˜̃ 2

⊗ d˜,
which are called the tensors of thermomechanical properties. Note that a particular case

of law (20) was considered in [12, 13], and more general relations were presented in [16, 18].

Now it is easy to find the desired representations of the Hooke law (20) under the new

parametrization of thin body domain. Indeed, taking into account the representation of the

gradient operator (6), after simple transformations, from (20), we have

P˜ = A˜̃ 2
⊗ (gP−

M
r
−
MN

P
u + r

−
3∂3u) + B˜̃ 2

⊗ (gP−
M

r
−
MN

P
ϕϕϕ+ r

−
3∂3ϕϕϕ)−A˜̃ 2

⊗C
'
·ϕϕϕ− b˜ϑ,

µµµ˜ = C˜̃ 2
⊗ (gP−

M
r
−
MN

P
u + r

−
3∂3u) + D˜̃ 2

⊗ (gP−
M

r
−
MN

P
ϕϕϕ+ r

−
3∂3ϕϕϕ)−C˜̃ 2

⊗C
'
·ϕϕϕ− βββ˜ϑ.

(21)

Taking into account the first relation in (3), it is easy to note that relations (21) contain

infinitely many summands. Therefore, they cannot be used in such a form. In applications,

one uses approximate constitutive relations (CR), i.e., the relations represented by finitely

many summands. In this connection, we introduce the following definition.

Definition 1.2 The relations obtained from (21) under the condition that in the expansion

of gP−
M

(see the first formula in (3)), first s+1 are preserved are called the CR of approximation

of order s.

It is easy to see that analogously to Eqs. (14) and (18), CR of approximation of order s are

represented in the form

P˜ (s) =A˜̃ 2
⊗ ( g

(s)

P
−
M

r
−
MN

P
u+r

−
3∂3u)+B˜̃ 2

⊗ ( g
(s)

P
−
M

r
−
MN

P
ϕϕϕ+r

−
3∂3ϕϕϕ)−A˜̃ 2

⊗C
'
·ϕϕϕ−b˜ϑ,

µµµ˜(s) =C˜̃ 2
⊗ ( g

(s)

P
−
M

r
−
MN

P
u+r

−
3∂3u) + D˜̃ 2

⊗ ( g
(s)

P
−
M

r
−
MN

P
ϕϕϕ+r

−
3∂3ϕϕϕ)−C˜̃ 2

⊗C
'
·ϕϕϕ−βββ˜ϑ.

(22)
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Definition 1.3 The relations obtained from (22) for s = 0 are called CR of zero approxi-

mation, and for s = 1, they are called CR of the first approximation.

It is easy to see that CR of zero approximation have the form

P˜ (0) = A˜̃ 2
⊗ (r

−
MN

P
u + r

−
3∂3u) + B˜̃ 2

⊗ (r
−
MN

P
ϕϕϕ+ r

−
3∂3ϕϕϕ)−A˜̃ 2

⊗C
'
·ϕϕϕ− b˜ϑ,

µµµ˜(0) = C˜̃ 2
⊗ (r

−
MN

P
u + r

−
3∂3u) + D˜̃ 2

⊗ (r
−
MN

P
ϕϕϕ+ r

−
3∂3ϕϕϕ)−C˜̃ 2

⊗C
'
·ϕϕϕ− βββ˜ϑ.

Note that if we consider a body without center of symmetry [12,13], then A˜̃ = 0, B˜̃ = 0, and

in this case, the CR presented above simplify. Let us find the corresponding representation

for the Fourier heat conduction law (which defines the relations of heat content) under the

new parametrization of the thin body domain.Since the Fourier heat conduction law [13,17]

has the form q = −Λ˜ ·∇T , where the second-rank positive-definite tensor ΛΛΛ˜ is called the

heat conduction tensor, by (6), the Fourier heat conduction law of zero approximation and

approximation of order s is represented in the form

q(0) = −ΛΛΛ
−
MN

P
T −ΛΛΛ

−
3∂3T, q(s) = −ΛΛΛ

−
M g

(s)

P
−
M
N

P
T −ΛΛΛ

−
3∂3T, ΛΛΛ

−
m = ΛΛΛ˜ · r−m. (23)

2. To micropolar theory with respect to system of orthonormal Chebyshev poly-

nomials of second kind

To construct the micropolar theory with respect to a certain system of orthogonal polyno-

mials (Legendre, Chebyshev, etc.), we need recursive relations for these polynomials. For

example, for the shifted Chebyshev polynomials, the main recursive relations on the orthog-

onality closed interval [0,1] are represented in the following form [1–4,19,20]:

4tU∗n(t)=U∗n−1(t)+2U∗n(t)+U∗n+1(t), 2tU∗
′

n (t)=2nU∗n(t)+U∗
′

n−1(t)+U∗
′

n (t), n ≥ 1,

U∗
′

n (t) = 4nU∗n−1(t) + U∗
′

n−2(t), n ≥ 2, 0 ≤ t ≤ 1.
(24)

Note that formulas (24) are obtained in the same way as analogous formulas for Legendre

polynomials on the orthogonality closed interval [-1,1], e.g, in [21] (see also [22]). Using the

main recursive relations (24), it is easy to obtain the following relations, which are necessary

for constructing thin body theories [1–4,19,20]:

22stsU∗n(t) =

2s∑
p=0

Cp
2sU

∗
n−s+p(t), s, n ∈ N0; (25)

22stsU∗m(t)U∗n(t) =

m∑
p=0

2s∑
q=0

Cq
2sU

∗
n−m−s+2p+q(t), n,m, s ∈ N0; (26)
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U∗
′

n (t) = 4

[(n−1)/2]∑
k=0

(n− 2k)U∗n−(2k+1)(t) = 4

[(n−1)/2]∑
k=0

(2k + 1 + a)U∗2k+a(t), n ≥ 1; (27)

22stsU∗
′

n (t) = 4

[(n−1)/2]∑
k=0

(2k + 1 + a)U∗2k+a−s+p, n ≥ 1, s ≥ 0; (28)

U∗
′′

n (t) == 22

[(n−2)/2]∑
k=0

(2k + 2− a)[(n+ 1)2 − (2k + 2− a)2]U∗2k+1−a(t), n ≥ 2; (29)

22stsU∗
′′

n (t)=24
[(n−2)/2]∑

k=0

2s∑
p=0

(k+1)(n−k)[n−(2k+1)]Cp
2sU

∗
n−(s+2k+2)+p

=22
[(n−2)/2]∑

k=0

(2k+2−a)[(n+1)2−(2k+2−a)2]Cp
2sU

∗
2k+1−a−s+p, n ≥ 2, s ≥ 0.

(30)

Here, a = n − 1 − 2
[
(n− 1)/2

]
, [x] is the integral part of x, and Cn

m are the binomial

coefficients. It should be noted that all relations (25) – (30),which also hold for the system

of orthonormal Chebyshev polynomials of the second kind {Û∗k}∞k=0, except for (26), can be

proved by induction. For a system of orthonormal polynomials (26) is presented in the form

22stsÛ∗m(t)Û∗n(t) = Û∗0

m∑
p=0

2s∑
q=0

Cq
2sÛ

∗
n−m−s+2p+q(t), n,m, s ∈ N0. (31)

Note that extending the definition of system of Chebyshev polynomials of the second kind

to the set of negative numbers, we obtain the relation U∗−n = −U∗n−2, n ∈ N0, under which

(25) – (30) were obtained.

Let us consider a certain tensor field F(x1, x2, x3), which depends on the coordinates

x1, x2, x3 of the thin body domain under its new parametrization. For brevity, instead of

F(x1, x2, x3), we write F(x′, x3), where x′ = (x1, x2), x3 ∈ [0, 1]. Moreover, we assume that

the tensor fields considered are sufficiently smooth. For example, F(x′, x3) ∈ Cm(V ∪ ∂V ),

m ≥ 1; V is the domain occupied by the thin body considered and ∂V is its boundary. Then

the tensor field F(x′, x3) can be expanded in a series with respect to the system of shifted

Chebyshev polynomials of the second kind {Û∗k}∞k=0 with respect to the coordinate x3 ∈ [0, 1]

for each fixed point x′ ∈
(−)

S [21]. This expansion is represented in the form

F(x′, x3) =

∞∑
k=0

(k)

F (x′)Û∗k(x3), x′ ∈
(−)

S , x3 ∈ [0, 1], (32)

where
(k)

F (x′) is called the coefficient with number k in the expansion of F(x′, x3) in the series

with respect to the polynomial system {Û∗k}∞k=0.

Definition 2.1 The moment of the kth order of a certain tensor field F(x′, x3) with respect

to the polynomial system {Û∗k}∞k=0, which is denoted by
(k)

M(F), is the integral

(k)

M(F) =

1∫
0

F(x′, x3)Û∗k(x3)h∗(x3)dx3, k ∈ N0. (33)

363



It is easy to prove that the following assertions hold:

Assertion 2.1 For any tensor fields F(x′, x3) and G(x′, x3) and any functions α(x′) and

β(x′), the following relation holds:

(k)

M[α(x′)F + β(x′)G] = α(x′)
(k)

M(F) + β(x′)
(k)

M(G), k ∈ N0. (34)

This implies that the moment operator is a linear operator.

Assertion 2.2 The kth-order moment of a tensor field F(x′, x3) with respect to the polyno-

mial system {Û∗k}∞k=0 is equal to the coefficient with number k in the expansion of F(x′, x3)

with respect to x3 in this polynomial system, i.e.,

(k)

M(F) =

1∫
0

F(x′, x3)Û∗k(x3)h∗(x3)dx3 =
(k)

F (x′), k ∈ N0. (35)

Assertion (34) follows from (33), whereas (35) is proved by using (32), (33) and the orthonor-

mality of the system {Û∗k}∞k=0. It is easy to prove that the relations hold

(k)

M(∂iF) =

∂I
(k)

F (x′), i = I,
(k)

F ′(x′), i = 3,

(k)

M(∂i∂jF) =


∂I∂J

(k)

F (x′), i = I, j = J,

∂I
(k)

F ′(x′), i = I, j = 3,
(k)

F ′′(x′), i = j = 3,

(36)

where we have introduced the following notation:

(k)

F ′(x′) = 2(k + 1)

[
N∑

p=k

(
1− (−1)k+p

)(p)
F (x′) +

(+)

F ′(x′)− (−1)k
(−)

F ′(x′)

]
,

(k)

F ′′(x′) = 2(k+1)

[
N∑

p=k

(p−k)(k+p+2)
(
1+(−1)k+p

)(p)
F (x′)+

(+)

F ′′+(−1)k
(−)

F ′′
]
,

(37)

(+)

F ′(x′) =
∞∑

p=N+1

(p)

F (x′),
(+)

F ′′(x′) =
∞∑

p=N+1

(p− k)(k + p+ 2)
(p)

F (x′),

(−)

F ′(x′) =
∞∑

p=N+1

(−1)p
(p)

F (x′),
(−)

F ′′(x′) =
∞∑

p=N+1

(−1)p(p− k)(k + p+ 2)
(p)

F (x′).
(38)

Note that the first relation in (37) can be taken as the definition of the ”prime” operator,

and the second can be obtained by applying the ”prime” operator to
(k)

F two times. The

following relations are generalizations of (36):

(k)

M[PN (x3)∂p
i ∂

q
jF] =


∂p
I ∂

q
J

(k)

M
[
PN (x3)F

]
, i = I, j = J,

∂I
{(k)

M
[
PN (x3)F

]}(q)
, i = I, j = 3,{(k)

M
[
PN (x3)F

]}(p+q)
, i = j = 3.

(39)

364



where PN (x3) is a polynomial of degree N , k, N , p, q ∈ N0, and
{(k)

M
[
PN (x3)F

]}(m)
, m ∈ N0,

means that the ”prime” operator is applied m times. To prove first lines of (36) and (39),

we use Definition (33). The second and third lines of (36) are proved by using (27) and (29),

respectively, and the second and third lines of (39) are proved by induction. Using (25) and

the last relation in (39), we can prove the relations

(n)

M
[
(x3)sF

]
=

2s∑
p=0

2−2sCp
2s

(n−s+p)

F ,
(n)

M
[
(x3)s∂m

3 F
]
=

2s∑
p=0

2−2sCp
2s

(n−s+p)

F (m), n, s, m∈N0. (40)

It can be seen that the first relation (40) is obtaind from the second for m = 0. Let us

represent (40) for m = 1 in another form. Using easy transformations, the first relation in

(37) and first two relations in (38), from the second relation (40) for m = 1, we obtain

(k)

M ′[(x3)s+1F
]

=
(k)

M
[
(x3)s+1∂3F

]
=

2s+2∑
p=0

2−2(s+1)Cp
2s+2

(p−v)

F ′

=
2s+2∑
p=0

N∑
q=l−1

l 2−2(s+1)Cp
2s+2

[
1− (−1)l+q

](q)
F + a(s,k)

(+)

F ′,

v = s+ 1− k, l = k − s+ p, s ≥ 0, k ≥ 0.

(41)

where we have introduced the notation a(s,k) = 2−(2s+1)
2s+2∑
p=0

(k − s+ p)Cp
2s+2, s ≥ 0, k ≥ 0.

Let us find the expression for
(k)

M( g
(s)

P
−
M

N
P
F). By (5) and (34), we obtain

(k)

M( g
(s)

P
−
M

N
P
F) =

(k)

M( g
(s)

P
−
M
∂
P
F)− g

−
3
+
P

(k)

M(x3 g
(s)

P
−
M
∂3F). (42)

Furthermore, by (15), (34), (39) and the first relation (40), we find that

(k)

M( g
(s)

P
−
M
∂
P
F) =

s∑
m=0

2m∑
n=0

2−2mCn
2m

A
(m)

−
P
+
M
∂
P

(k−m+n)

F , k, s ∈ N0 (43)

Whence, for s = 0 and s = 1, we obtain

(k)

M( g
(0)

P
−
M
∂
P
F)=∂

M

(k)

F ,
(k)

M( g
(1)

P
−
M
∂
P
F)=∂

P

(k)

F +
1

4
A
−
P
+
M
∂
M

(
(k−1)

F +2
(k)

F +
(k+1)

F ), k ≥ 0. (44)

Here, we have introduced the notation A
−
P
+
M
≡ A

(1)

−
P
+
M

= g
−
P
−
M
− g

−
P
+
M
. Moreover, we assume that

(m)

F = 0 if m < 0. On what follows, we assume that this condition holds. Analogously, by

(15), (34), (39) and (41), we have

(k)

M(x3 g
(s)

P
−
M
∂3F) =

s∑
m=0

2m+2∑
n=0

2−2(m+1)Cn
2m+2 A

(m)

−
P
+
M

(n−v)

F ′(x′)

=
s∑

m=0

2m+2∑
n=0

N∑
q=l−1

2−2(m+1)Cn
2m+2l A

(m)

−
P
+
M

[
1+(−1)l+q

](q)
F (x′)+

( s∑
m=0

a(m,k) A
(m)

−
P
+
M

)(+)

F ′,

v = m+ 1− k, l ≡ k −m+ n, N ≥ s+ k + 1, k ≥ 0, s ≥ 0.

(45)
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Whence, for s = 0 and s = 1, we find that

(k)

M(x3 g
(0)

P
−
M
∂3F) = g

−
P
−
M

(k)

M′(x3F) =
1

4
g
−
P
−
M

(
(k−1)

F ′ + 2
(k)

F ′ +
(k+1)

F ′)

= g
−
P
−
M

[
k

(k)

F + 2(k + 1)
( N∑
p=k

(p)

F −
(k)

F +
(+)

F ′
)]
, k ≥ 0,

(46)

(k)

M(x3 g
(1)

P
−
M
∂3F) =

(k)

M
[(
g
−
P
−
M
x3 +A

−
P
+
M

(x3)2
)
∂3F
]

= g
−
P
−
M

(k)

M′(x3F) +A
−
P
+
M

(k)

M′[(x3)2F]

= g
−
P
−
M

[
k

(k)

F + 2(k + 1)
( N∑
p=k

(p)

F −
(k)

F +
(+)

F ′
)]

+
1

4
A
−
P
+
M

[
(k − 1)

(k−1)

F

−4(k + 2)
(k)

F − (k + 3)
(k+1)

F + 8(k + 1)
( N∑
p=k

(p)

F +
(+)

F ′
)]
, k ≥ 0.

(47)

Taking into account (43) and (45), from (42) we obtain the desired relation in the form

(k)

M( g
(r)

P
−
M
NPF) =

r∑
s=0

A
(s)

−
P
+
M

{
∇P

(k)

M[(x3)sF]− g
−
3
+
P

(k)

M′[(x3)s+1F]
}

=
r∑

s=0

2s∑
p=0

2−2sA
(s)

−
P
+
M
Cp

2s∇P
(p−u)

F − g
−
3
+
P

r∑
s=0

2s+2∑
p=0

2−2(s+1)A
(s)

−
P
+
M
Cp

2s+2

(p−v)

F ′,

u = s− k, v = u+ 1,

(48)

where the expression for
(p−v)

F ′ is given by the first formula (37) for k = p− v.

From (48) for s = 0 and s = 1 by (44), (46) and (47) we find that

(k)

M( g
(0)

J
−
I
N

J
F) =

(k)

M(N
I
F) = ∇

I

(k)

F − g
−
3
+
I

[
k

(k)

F +2(k + 1)
( N∑
p=k

(p)

F −
(k)

F +
(+)

F ′
)]
, k ≥ 0, (49)

(k)

M( g
(1)

J
−
I
N

J
F) =

(k)

M[(g
−
J
−
I

+ x3A
−
J
+
I

)N
J
F] = ∇

I

(k)

F +
1

4
A
−
J
+
I
∇

J

((k−1)

F + 2
(k)

F +
(k+1)

F
)

−g
−
3
+
J

{
g
−
J
−
I

[
k

(k)

F + 2(k + 1)
( N∑
p=k

(p)

F −
(k)

F +
(+)

F ′
)]

+
1

4
A
−
J
+
I

[
(k − 1)

(k−1)

F − 4(k + 2)
(k)

F

−(k + 3)
(k+1)

F + 8(k + 1)
( N∑
p=k

(p)

F +
(+)

F ′
)]}

, k ≥ 0.

(50)

Therefore, we have deduced the main relation in the form (48); using this relation from

the equations of motion (14), the heat influx equation (18), CR of physical content (22),

and CR of heat content (23) (second formula) of approximation of order r, we obtain the

corresponding relations in moments; in turn by using the above rule, from them, we obtain

the corresponding relations for multilayer thin bodies. Analogously, we obtain the boundary

conditions of physical and heat contents in moments. Formulas (49) and (50) are applied

in deducing the above relations from the corresponding relations of zero and first approxi-

mations. Formulas analogous to (49) and (50) certainly hold for the Legendre polynomial

system. The relation for Legendre polynomial system analogous to (48) is very cumbersome,

and so we do not write it.
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Formulation of the initial boundery velue problems in the theory of
multilayer thermoelastic thin bodies in moments (part III)

Mikhail U. Nikabadze, Tamar Moseshvili, Armine R. Ulukhanian, Ketevan Tskhakaia,
Nodar Mardaleishvili

Abstract: Various variants of the equations of motion in moments with respect
to orthogonal polynomial systems are obtained. The interlayer conditions are
written down under various connections of adjacent layers of a multilayer body.
Formulation of the initial boundary value problems in the theory of multilayer
thermoelastic thin bodies in moments are given.

Note that the analytic method with the use of the Legendre polynomial system
in constructing the one-layer thin body theory and multilayer thin body theory
can be successfully used in constructing any thin body theory. Despite this,
the classic theories constructed by this method are far to be complete, and the
more so, the micropolar theories and theories of other rheology are.

1. Systems of equations of motion in moments for multilayer thin bodies with

one small size

1.1. Systems of equations of motion in moments of contravariant components of

stress tensors and couple stresses with respect with respect to Chebyshev

polynomial systems for multilayer thin bodies with one small size

We restrict ourselves to obtaining the systems of equations of motion of approximations

(0, N) and (1, N) in moments. Using the rule presented above, by analogous systems of

equations from [1, 2], we represent the desired systems of equations in the form{
∇
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{
P ⇒ µµµ

}
+C

≃
α

2
⊗

(k)

P
α̃

+ ρ
α

(k)

m
α

= J
α̃
· ∂2

t

(k)

φφφ
α
, k = 0, N, α = 0,K.

Here the notation
{
P ⇒ µµµ

}
means that the expression in brackets is obtained from the

expression in brackets of the previous relation if the letter P is replaced with µµµ; the notation

is also used later. Note that Eqs. (1) and (2) are also obtained by using formulas (II: 25)

and (II: 27).

1.2. Systems of equations of motion in moments of contravariant components

of stress tensors and couple stresses with respect to Legendre polynomial

systems for multilayer thin bodies with one small size

Let us write systems of equations of motion of approximations (0, N) and (1, N) in moments

taking into account only boundary conditions of physical content on frontal surface, since the

systems of equations without boundary conditions on frontal surfaces, which can be obtained

by using the corresponding systems of equations from [1, 2], have the form analogous to (1)

and (2). It is easy to prove that analogously to the system of equations for a one-layer

classical elastic body [3], the desired systems of equations have the form (see also [1, 2]){
∇
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(4)

Note that Eqs. (3) and (4) are deduced by using formulas for Legendre polynomials that

are analogous to (II: 25) and (II: 27). Also, note that
(+)

P
α

(
(+)

µµµ
α
) and

(−)

P
α+1

(
(−)

µµµ
α+1

) (α = 1,K − 1)

are stress vectors (couple-stresses) of interaction between the layers α and α+ 1, which act

on the surfaces
(+)

S
α

and
(−)

S
α+1

, respectively, and
(+)

P
1

(
(+)

µµµ
1
) and

(−)

P
K

(
(−)

µµµ
K
) are given stress vectors

(couple-stresses) on the frontal surfaces
(+)

S
1

and
(−)

S
K
, respectively. The systems of equations of
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heat influx of approximations (0, N) and (1, N), and also CR of heat content for multilayer

thin bodies are obtained in full analogy with (1)–(4). Therefore, for brevity, we do not dwell

on them. To understand the article we refer [1, 2, 4], where for the theories of one-layer thin

body with one small size and two small sizes, and also for theory of multilayer constructions

with the use of the Legendre and Chebyshev polynomial systems, many analogous problems

are presented in detail. In particular, using the deduced recursive relations for the Legendre

and Chebyshev polynomial systems, these works obtained the moments of derivatives of

the first and second order of a scalar function, tensors of the first and second ranks and

their components, and also some differential operators of these quantities. These works

obtained constitutive relations of physical and heat contents, equations of motion and heat

influx, boundary conditions of various kind in moments with respect to the Legendre and

Chebyshev polynomial systems, and also initial conditions of kinematic and heat contents.

Moreover, the constitutive relations were obtained for an inhomogeneous material. These

works presented the statements of related and non-related dynamical problems in moments

of approximation (r,N) of micropolar thermomechanics of a deformable rigid thin body and

also the statement of non-stationary temperature problem in moments of approximation

(r,N), where r and N are arbitrary nonnegative integers. All relations for one-layer thin

body presented in this paragraph are automatically transferred to the case of multilayer thin

body theory by using the rule presented above.

1.3. Systems of equations in moments of the displacement vector with respect

to Legendre and Chebyshev polynomial systems for multilayer thin bodies

with one small size

Let us write systems of equations of zero and first approximation in moments for the dis-

placement vector. The system of equations of zero approximation in moments with respect

to Legendre and Chebyshev polynomials has the form
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(5)

Taking into account the formulas for moments of the kth order of first and second derivatives

of a vector(vector components, a scalar function) with respect to these polynomial systems

[1, 2], from (5), we obtain the desired systems of equations of zero approximation in moments.

For brevity, we do not write them. Analogously to (5), the system of equations of the first

approximation is represented in the form
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where we have introduced the following notation:
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Taking into account the expressions for the kth-order moments entering (6) and using the

corresponding formulas for Legendre and Chebyshev polynomial systems [1, 2] from (6), we

obtain various representations of the equations of of first approximation of the displacement

vector in moments with respect to these polynomial systems. It is easy to deduce the

equations of motion of first approximation in moments for the displacement vector with

respect to the systems of Chebyshev polynomials of the first kind. For brevity, we do not

write the equations in moments mentioned in this paragraph.

Note that to close systems (1)–(4), we need to add to them the system of equations of

heat influx, CR, boundary and initial conditions of physical and heat contents in moments

of the corresponding approximations, and also inter-layer contact conditions depending on

the connections of neighboring surfaces. Hence to close systems (5) and (6), we need to add

to them all relations of the previous proposition, except for CR in the case of first boundary-

value problem where kinematic boundary conditions are given on the whole surface. Of

course, it is easy to write all missed relations and formulate the statement of problems

analogous to those presented in [1, 2, 4, 5, 6] (CR; see also above) for one-layer domains,

except for inter-layer contact conditions, by using the rule presented above. Otherwise, we

need to repeat almost all presented in [1, 2, 4] being applied to multilayer thin body theory.

Owing to this, we do not dwell on them and consider inter-layer contact conditions below.

2. Inter-Layer Contact Conditions

In studying strained-deformed states of multilayer constructions and composite media, as

a rule, one assumes that component layers (elements, phases) work jointly, without sliding.

Obviously, such a model does not cover the variety of connection methods used in technology

and does not take into account the existence of interphase defects, which manifest themselves

in non-perfect connection of phases in contact. Defects of such a type often are undoubt

because of peculiarities of technological character (see [7, 8, 9]). Therefore, the deformation

of multilayer thin bodies can be without violation or with violation of complete layer contact
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owing to their separation in normal or tangential direction. Between the layers, there can

arise contact domain and contact-free domain. Moreover, the boundaries of these domains

can vary in the deformation process, the layer can slide with respect to each other, the sliding

can be with friction,etc. All these phenomena can essentially influence on the mechanical

behavior of a thin body, its strained-deformed state. Of course, the account of these phe-

nomena is necessary in studying strained-deformed state of multilayer bodies. In contrast

to other parametrization, the use of frontal surfaces as base surfaces in parametrization of

multilayer thin body domain allows one to easily take into account these phenomena. In

consideration the phenomena occurring on frontal surfaces, the main problem is the problem

of modelling the interface. In this direction,there exist two approaches. The first approach

is physical, which take into account thin adhesion layers via generalized weld condition of

elements being in contact. For the first time, such an approach was proposed for heat con-

duction problems in [10]. Later on, it was generalized to mechanical problems [11]. The

second approach is phenological; it is based on the assumption that a priori, the exist dis-

continuity zones of displacements. To study these problems, we assume that a multilayer

thin construction consists of K layers. Denote by
(+)

S
α

and
(−)

S
α

(α = 1,K) the exterior and

inner surfaces of the layer α (α = 1,K), respectively and consider several cases of mutual

relation of neighboring surfaces
(+)

S
α

(−)

S
α+1

(α = 1,K − 1), which are important in practice.

2.1. Weld conditions (complete ideal contact conditions)

In this case the forces and moments of interaction between the layers α and α + 1 (α =

1,K − 1) are unknown. These forces and moments certainly are equal and have opposite

directions. Therefore, there additionally arise six unknown functions. However, in the case

considered, we have six additional conditions, which express the continuity of displacement

vectors and the rotation of welded surface points. In other words, displacement vectors

and rotation vectors of contacted surfaces are equal. Denoting the forces and moments of

interaction of the contacted surfaces
(+)

S
α

and
(−)

S
α+1

(α = 1,K − 1) by
(+)

P
α
,

(+)

µµµ
α

and
(−)

P
α+1

,
(−)

µµµ
α+1

(α = 1,K − 1), respectively, and the displacement and rotation vectors of points of these

surfaces by
(+)
u
α
,

(+)

φφφ
α

and
(−)
u

α+1
,

(−)

φφφ
α+1

(α = 1,K − 1), we can represent the complete contact

conditions in micropolar theory of multilayer thin bodies in the form

(+)

P
α

= −
(−)

P
α+1

,
(+)

µµµ
α

= −
(−)

µµµ
α+1

,
(+)
u
α

=
(−)
u

α+1
,

(+)

φφφ
α

=
(−)

φφφ
α+1

, α = 1,K − 1. (7)

Neglecting the characteristics of micropolar theory (the second and fourth relations) in (7),

we obtain the ideal contact conditions for the classical theory (the first and third relations).
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2.2. Conditions under relative displacement of contacted layer surfaces

As above, in the process of deformation of a multilayer construction, relative displacements

of points of the surfaces
(+)

S
α

and
(−)

S
α+1

withe the same Gaussian coordinates (x1, x2) are possible.

Let us consider various variants. First, we note that there exist bounded limit intensities of

coupling forces of the layers α and α+ 1 (α = 1,K − 1) in normal and tangential direction.

Denote the normal and tangent components of the limit force of action of the layer α on the

layer α+ 1 by

(−)

P
α+1

∗
(n) =

(−)

P
α+1

∗
(n)(x

1, x2)
(−)

n
α+1

,
(−)

P
α+1

∗
(s) =

(−)

P
α+1

∗
(s)(x

1, x2,
(−)

s
α+1

)
(−)

s
α+1

, α = 1,K − 1,

respectively. Here, certainly,
(−)

n
α+1

and
(−)

s
α+1

are unit exterior normal and tangent vectors to

the surface
(−)

S
α+1

. Note that we take into account the possibility of dependence of the limit

tangent force preventing the mutual sliding of layers of the direction in the tangent plane

(anisotropy of the limit tangent force).

2.3. Conditions under relative displacement of points of ideal

(smooth) contacted layer surfaces

In this case, a free slipping of layers with respect to each other can take place in the process

of deformation of a multilayer thin body. The parametrization retains valid all the relations

of the theory of thin bodies in the case considered here, only the required and given functions

are changed. Obviously, if the layers are united, then the following equalities hold:

(+)

r
α
(x1, x2)=

(
◦
+)

r
α
(x1, x2)+

(+)

u
α
(x1, x2),

(−)

r
α
(x1, x2)=

(
◦
−)

r
α
(x1, x2)+

(−)

u
α
(x1, x2), α=1,K,

(
◦
+)

r
α
(x1, x2)=

(
◦
−)

r
α+1

(x1, x2),
(+)

r
α
(x1, x2)=

(−)

r
α+1

(x1, x2), (
(+)

u
α
=

(−)

u
α+1

), α = 1,K − 1.

(8)

where
(+)

r
α

(
(
◦
+)

r
α
) and

(−)

r
α

(
(
◦
−)

r
α
) are the radius-vectors of the surfaces

(+)

S
α

(
(
◦
+)

S
α
) and

(−)

S
α

(
(
◦
−)

S
α
),

respectively, in the deformed (non-deformed) state of the multilayer thin body. It is not

difficult to see that in this case (under a slipping of absolutely smooth contacted surfaces)

we have the following relations instead of (8):

(+)

r
α
(x1, x2)=

(
◦
+)

r
α
(x1, x2)+

(+)

u
α
(x1, x2),

(−)

r
α
(x1, x2)=

(
◦
−)

r
α
(x1, x2)+

(−)

u
α
(x1, x2), α=1,K,

(
◦
+)

r
α
(x1, x2)=

(
◦
−)

r
α+1

(x1, x2),
(+)

r
α
(x1, x2) ̸=

(−)

r
α+1

(x1, x2),
(+)

u
α
(x1, x2) ̸=

(−)

u
α+1

(x1, x2),

v
α
(x1, x2)=

(−)
u

α+1
(x1, x2)−

(+)
u
α
(x1, x2), α=1,K − 1.

(9)
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Obviously, v
α
(x1, x2) is the vector of the relative displacement of the corresponding points of

the contacted surfaces
(+)

S
α

and
(−)

S
α

(α = 1,K − 1), being an unknown in the considered case.

The absence of the friction between the layers allows us to write the additional relations

(−)
u

α+1
(n) =

(+)
u
α

(n) (v
α
(n) = 0),

(+)

P
α

(s) = 0,
(−)

P
α+1

(s) = 0,
(+)

P
α

(n) = −
(−)

P
α+1

(n),

α = 1,K − 1, x′ ∈
(+)

S
α

0 ⊂
(+)

S
α
,

(10)

where
(+)

P
α

(s) (
(−)

P
α+1

(s)) and
(+)

P
α

(n) (
(−)

P
α+1

(n)) are the tangent and normal components of the stress

vector (the interaction force intensity)
(+)

P
α

(
(−)

P
α+1

), i.e.,
(+)

P
α
=

(+)

P
α

(s)+
(+)

P
α

(n),
(−)

P
α+1

=
(−)

P
α+1

(s)+
(−)

P
α+1

(n),,

α = 1,K − 1. It is not difficult to see that (10) implies the relations

(−)
u

α+1
(n)=

(+)
u
α

(n), v
α
(n) = 0),

(−)

n
α+1

·
(−)

P˜α+1
( u
α+1

, ϑ
α+1

)·
(−)

s
α+1

= 0,
(+)

n
α
·
(+)

P
α̃
(u
α
, ϑ
α
)·

(+)

s
α
=0,

(+)

n
α

·
(+)

P
α̃
(u
α
, ϑ
α
) ·

(+)

n
α
=

(+)

n
α

·
(−)

P˜α+1
( u
α+1

, ϑ
α+1

) ·
(+)

n
α
, α = 1,K − 1, x′ ∈

(+)

S
α

0 ⊂
(+)

S
α
.

(11)

Here the notation
(∼)

P
α̃
(u
α
, ϑ
α
), ∼ ∈ {−,+} means the dependence of

(∼)

P
α̃

on u
α

and ϑ
α
, and

(−)

P
α̃

= P
α̃
|x3=0,

(+)

P
α̃

= P
α̃
|x3=1. The corresponding relations are obtained from the first equality

of (II: 21) with A˜̃̃α = 0, φφφ
α

= 0. In the case considered here, relations (11) close the system

of equations of the classic theory of multilayer thin bodies. In the case of the micropolar

theory of multilayer thin bodies equalities (11) should be replaced by the following ones:

(−)
u

α+1
(n) =

(+)
u
α

(n),
(−)
φ

α+1
(n) =

(+)
φ
α

(n),
(−)

n
α+1

·
(−)

P˜α+1
( u
α+1

, φφφ
α+1

, ϑ
α+1

) ·
(−)

s
α+1

= 0,

(+)

n
α

·
(+)

P
α̃
(u
α
,φφφ
α
, ϑ
α
) ·

(+)

s
α

= 0,
(+)

n
α

·
(+)

P
α̃
(u
α
,φφφ
α
, ϑ
α
) ·

(+)

n
α

=
(+)

n
α

·
(−)

P˜α+1
( u
α+1

, φφφ
α+1

, ϑ
α
) ·

(+)

n
α
,

(−)

n
α+1

·
(−)

µµµ˜α+1

( φφφ
α+1

) ·
(−)

n
α+1

= 0,
(+)

n
α

·
(+)

µµµ
α̃

(φφφ
α
) ·

(+)

n
α

= 0,

(+)

n
α

·
(+)

µµµ
α̃

(φφφ
α
) ·

(+)

s
α

=
(+)

n
α

·
(−)

µµµ˜α+1

( φφφ
α+1

) ·
(+)

s
α
, α = 1,K − 1, x′ ∈

(+)

S
α

0 ⊂
(+)

S
α
.

(12)

In this case, along with the vector of relative displacement, the vector of relative rotation

ψψψ
α

=
(−)

φφφ
α+1

−
(+)

φφφ
α

of the corresponding points of the contacted surfaces is introduced into

consideration;
(−)
φ

α+1
(n) and

(+)
φ
α

(n) are the normal components of the vectors
(−)

φφφ
α+1

and
(+)

φφφ
α
,

respectively. Note that relations (12) are written subject to the fact that each layer has a

center of symmetry, i.e. the tensors A˜̃̃α = 0 and B˜̃̃α = 0 in (II: 21) for all α. If this is not

the case, then these relations should be replaced by other ones depending on the considered
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governing relations. For example, if relations (II: 21) are considered as governing ones for a

material having no center of symmetry, then instead of (12) we have

(−)
u

α+1
(n) =

(+)
u
α

(n),
(−)
φ

α+1
(n) =

(+)
φ
α

(n),
(−)

n
α+1

·
(−)

P˜α+1
( u
α+1

, φφφ
α+1

, ϑ
α+1

) ·
(−)

s
α+1

= 0,

(+)

n
α

·
(+)

P
α̃
(u
α
,φφφ
α
, ϑ
α
) ·

(+)

s
α

= 0,
(+)

n
α

·
(+)

P
α̃
(u
α
,φφφ
α
, ϑ
α
) ·

(+)

n
α

=
(+)

n
α

·
(−)

P˜α+1
( u
α+1

, φφφ
α+1

, ϑ
α
) ·

(+)

n
α
,

(−)

n
α+1

·
(−)

µµµ˜α+1

( φφφ
α+1

, u
α+1

, ϑ
α+1

)·
(−)

n
α+1

= 0,
(+)

n
α

·
(+)

µµµ
α̃

(φφφ
α
,u
α
, ϑ
α
)·

(+)

n
α

= 0,

(+)

n
α

·
(+)

µµµ
α̃

(φφφ
α
,u
α
, ϑ
α
) ·

(+)

s
α

=
(+)

n
α

·
(−)

µµµ˜α+1

( φφφ
α+1

, u
α+1

, ϑ
α
) ·

(+)

s
α
, α=1,K−1, x′∈

(+)

S
α

0⊂
(+)

S
α
.

(13)

Note also that the contact conditions should be supplied with the conditions of heat con-

tent on the contacted surfaces, which is not difficult. Therefore, in order to shorten the

presentation, we do not consider them here.

2.4. Conditions under relative displacement of points of uneven contacted sur-

faces of layers

In the case considered here, the slipping with the friction of layers with respect to each

other can take place in the process of deformation of the multilayer thin body. The relative

slipping does not occur until the magnitude of the tangent component of the interaction force
(+)

P
α

(s) (
(−)

P
α+1

(s)) (force of friction) between the contacted surfaces reaches its limit (maximal

possible) value
∣∣(+)

P
α

∗∣∣ (∣∣ (−)

P
α+1

∗∣∣), therefore, v
α
(x1, x2) = 0, α = 1,K − 1. When the force of

friction reaches its limit value, the slipping begins, and the relations presented above should

be replaced by other ones. First of all, note that for the case of the classic theory of multilayer

thin bodies instead of (11) we have

(−)
u

α+1
(n) =

(+)
u
α

(n),
(−)

n
α+1

·
(−)

P˜α+1
( u
α+1

, ϑ
α+1

) ·
(−)

s
α+1

=
(−)

P
α+1

∗
(s),

(+)

n
α

·
(+)

P
α̃
(u
α
, ϑ
α
) ·

(+)

s
α

=
(+)

P
α

∗
(s),

(+)

n
α

·
(+)

P
α̃
(u
α
, ϑ
α
) ·

(+)

n
α

=
(+)

n
α

·
(−)

P˜α+1
( u
α+1

, ϑ
α+1

) ·
(+)

n
α
, α = 1,K − 1, x′ ∈

(+)

S
α

0 ⊂
(+)

S
α
,

(14)

and in the case of the micropolar theory of multilayer thin bodies whose layers do not have

a center of symmetry, we assume the following relations instead of (13):

(−)
u

α+1
(n) =

(+)
u
α

(n),
(−)
φ

α+1
(n) =

(+)
φ
α

(n),
(−)

n
α+1

·
(−)

P˜α+1
( u
α+1

, φφφ
α+1

, ϑ
α+1

) ·
(−)

s
α+1

=
(−)

P
α+1

∗
(s),

(+)

n
α

·
(+)

P
α̃
(u
α
,φφφ
α
, ϑ
α
) ·

(+)

s
α
=

(+)

P
α

∗
(s),

(+)

n
α

·
(+)

P
α̃
(u
α
,φφφ
α
, ϑ
α
) ·

(+)

n
α
=

(+)

n
α

·
(−)

P˜α+1
( u
α+1

, φφφ
α+1

, ϑ
α+1

)·
(+)

n
α
,

(−)

n
α+1

·
(−)

µµµ˜α+1

( φφφ
α+1

, u
α+1

, ϑ
α+1

)·
(−)

n
α+1

=
(−)
µ

α+1

∗
(n),

(+)

n
α

·
(+)

µµµ
α̃

(φφφ
α
,u
α
, ϑ
α
) ·

(+)

n
α
=

(+)
µ
α

∗
(n),

(+)

n
α

·
(+)

µµµ
α̃

(φφφ
α
,u
α
, ϑ
α
) ·

(+)

s
α
=

(+)

n
α
·
(−)

µµµ˜α+1

( φφφ
α+1

,u
α
, ϑ
α+1

)·
(+)

s
α
, α=1,K − 1, x′∈

(+)

S
α

0⊂
(+)

S
α
.

(15)
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Here, naturally,
(+)
µ
α

∗
(n) =

(+)

µµµ
α

∗ ·
(+)

n
α
,

(−)
µ

α+1

∗
(n) =

(−)

µµµ
α+1

∗ ·
(+)

n
α+1

, where
(+)

µµµ
α

∗ (
(−)

µµµ
α+1

∗) is the intensity

of the limit momentum. Therefore,
(+)

P
α

∗
(s),

(−)

P
α+1

∗
(s),

(+)
µ
α

∗
(n) and

(−)
µ

α+1

∗
(n) are unknown values in

relations (14) and (15) determined from some a priori dependencies, conditions of slipping

with friction, which, generally speaking, must depend on geometric and physical-mechanical

properties of contacted bodies. In the classic case we may suppose the relations hold

L(x1, x2,vs, v̇s, [T ],P
(l)∗, . . . ) = 0, (16)

where vs and v̇s are the tangent components of the vectors of the relative displacement

and relative velocity, [T ] is the temperature jump, P(l)∗ is the limit stress vector on a plane

element with the normal l, the ellipsis denotes the dependence on some other parameters.

Based on (16), we can accept that the generalized model of Coulomb friction is valid:

P∗
(s) = f˜(x1, x2, [T ],P∗

(n)) · v̇s, (17)

which takes into account the anisotropy of the friction. Here P∗
(s) and P∗

(n) are the limit tan-

gent and normal components of the stress vectorP(l)∗. The second rank tensor f˜(x1, x2, [T ],P∗
(n))

is called the tensor of friction coefficients. Obviously, in the isotropic case we have f˜ = fE˜ ,
where E˜ is the unit second rank tensor. Representing (17) for contacted surfaces of a multi-

layer thin body, we obtain the missing required relations. Based on similar arguments in the

case of the micropolar theory, we can assert that the following a priori relations are valid:

L(x1, x2,vs, v̇s,ψψψn, ψ̇̇ψ̇ψn, [T ],P
(l)∗, . . . ) = 0,

M(x1, x2,vs, v̇s,ψψψn, ψ̇̇ψ̇ψn, [T ],µµµ
(l)∗, . . . ) = 0,

(18)

where ψψψn and ψ̇̇ψ̇ψn are the normal components of the vectors of the relative internal rotation

and relative internal rotation velocity of adjacent layers, µµµ(l)∗ is the limit vector of the couple

stress on a plane element with the normal l, the other parameters are the same as in (16).

Based on (18) and similar to (17), for the micropolar theory we can assume that the following

relations are valid:

P∗
(s) = f˜(x1, x2, [T ],P∗

(n)) · v̇s + h˜(x1, x2, [T ],P∗
(n)) · ψ̇ψψn,

µµµ∗
(n) = g˜(x1, x2, [T ],µµµ∗

(s)) · ψ̇ψψn + l˜(x1, x2, [T ],µµµ∗
(s)) · v̇s,

(19)

that take into account the anisotropy of the friction. Here f˜, h˜, g˜ and l˜ are the second rank

tensors called the tensors of friction coefficients. Therefore, in the case of an isotropic friction

we have f˜ = fE˜ , h˜ = hE˜ , g˜ = gE˜ and l˜= lE˜ , where E˜ is the unit second rank tensor. It

should be noted here that the coefficients of friction are determined by experiments and are
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given in tables. The author knows little in this direction for the micropolar theory, but for

the classic theory these coefficients can be obtained, e.g., from [12, 13, 14]. Representing (19)

for the contacted surfaces of a multilayer thin body, we get the missing required relations in

the case of the micropolar theory.

2.5. Conditions under a partial exfoliation of contacted surfaces of layers

For the classic theory of multilayer thin bodies in this case we have the conditions

v
α
(x1, x2) =

(−)

u
α+1

(x1, x2)−
(+)

u
α
(x1, x2) ̸= 0,

(+)

P
α
(x1, x2) = 0,

(−)

P
α+1

(x1, x2) = 0,

(x1, x2) ⊂
(+)

S
α

0 ⊂
(+)

S
α
, α = 1,K − 1,

(20)

and for the micropolar theory of multilayer thin bodies we get the conditions

v
α
(x1, x2) =

(−)

u
α+1

(x1, x2)−
(+)

u
α
(x1, x2) ̸= 0,

(+)

P
α
(x1, x2) = 0,

(−)

P
α+1

(x1, x2) = 0,

ψψψ
α
(x1, x2) =

(−)

φφφ
α+1

(x1, x2)−
(+)

φφφ
α
(x1, x2) ̸= 0,

(+)

µµµ
α
(x1, x2) = 0,

(−)

µµµ
α+1

(x1, x2) = 0,

(x1, x2) ⊂
(+)

S
α

0 ⊂
(+)

S
α
, α = 1,K − 1.

(21)

Note that if
(+)

S
α

0 =
(+)

S
α
, then we have a complete exfoliation of contacted layers. Other

conditions posed on deformed and force states of exterior surfaces of multilayer thin bodies

are also possible: a contact with rigid or elastic bodies, a forced displacement of points, etc.

Note also that based on [5, 15] and quite similarly to this paper, one can construct micropolar

theories of multilayer thin bodies with two small sizes and those of plane domains with one

small size, respectively (it remains to write down the corresponding relations). We do not

pay attention to this in the present paper.

In conclusion we note that the other important direction is the study of eigenvalue

problems for the tensor and tensor-block matrix of any even rank, since the constitutive

relations for most classical and micropolar media of different rheology (here, of course, also

include porous and multilayer textile media) are written using a tensor and tensor-block

matrix of even rank, respectively. Several questions concerning these problems, as well as

tensor calculus, have been studied in some detail in [16, 19, 18, 20, 17]. A very important

direction is also the investigation of internal structures of differential tensors-operators and

tensor-block matrix operators of even rank. This is due to the fact that such operators are

operators of systems of equations of motion and static boundary conditions with respect to

kinematic characteristics (displacement, rotation, velocity, angular velocity) for most clas-

sical and micropolar mediums. The study of these problems promotes the decomposition
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of initial-boundary value problems in the case of linear theories. Some questions about the

decomposition of initial-boundary value problems can be found in [1, 2, 21].
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A piecewise-smooth control of dengue

Gerard Olivar-Tost, Luis E. López, Anibal Muñoz

Abstract: The following research focuses on mathematical modeling of the
transmission and control of Dengue fever using systems of nonlinear ordinary
differential equations. Initially, a mathematical model is formulated to repre-
sent the transfer of the disease to the human population considering breeding
grounds where mosquito proliferates, the phases of evolution of the mosquito,
and the human population. The model comprises a nonlinear system of nine
differential equations where each equation represents the variation of a single
subpopulation. Based on the original model, a system of twelve differential
equations is formulated representing the dynamic transmission and constant
control of the disease. In this model, biological control is applied using the
Wolbachia bacteria, which inhibits the transfer of the virus from an infected
mosquito to humans. Finally, a new model with biological control is developed
from the original two-dimensional model. We consider a constant control and
derive a piecewise smooth dynamical system, in which a non-smooth local bi-
furcation of codimension-1 that determines the collision of equilibrium points
on the discontinuity boundary. This bifurcation occurs when the parameter R0,
which represents the Basic Reproduction Number of Dengue fever, is varied.

1. Introduction

Dengue is a viral disease transmitted to humans through the mosquito bite of the Aedes

family, especially the species A. Aegypti. The virus transmitted has five serotypes DEN1,

DEN2, DEN3, DEN4, and DEN5 and so far no vaccine provides temporary or total immunity

against all virus serotypes. Due to this situation, the only alternative to deal with the disease

is the application of control to the transmitting mosquito [6].

Three types of controls are distinguished: mechanical control or preventive control,

chemical control (larvicides and insecticides) and biological control. The latter one uses

living beings as predators of the mosquito and helps to reduce the transmission of the virus.

For the model, biological control is taken into account by the use of the Wolbachia bacterium,

which infects the mosquito in the immature state (egg) and helps to decrease the probability

of transmitting the virus to the human population [7, 14].

The proposed model arises from the two-dimensional model presented in [10], which

is formulated from a system of ordinary nonlinear differential equations of dimension nine,

which is divided into three decoupled subsystems. The first one represents the spatial growth
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of the hatcheries. The second one represents the population growth of the Aedes aegypti

mosquito taking into account its evolutionary phases, and the third one represents the trans-

mission of the virus in the human population. This last system is normalized to obtain the

two-dimensional system ṗ = µ(1− p)−R0(θ + µ)pq

q̇ = R0(θ + µ)pq − (θ + µ)q
(1)

where p and q represent the proportion of healthy and infected individuals, respectively

(variables), and R0, θ, µ the model parameters. The model proposed in this article is a non-

smooth system of dimension two, which is obtained from the system (1) by adding a constant

control u that decreases the proportion of infected people. By varying the parameter R0,

keeping fixed µ and θ, we obtain a non-smooth local bifurcation of codimension 1.

2. The model

By incorporating a constant control u ∈ [0, 1] into the system (1), which represents the

effectiveness to reduce the proportion of infected persons using the bacterium Wolbachia as

a biological control, the control system is obtained. ṗ = µ(1− p)−R0(θ + µ)pq

q̇ = R0(θ + µ)pq − (θ + µ)q − u
(2)

The system (2) is defined in the region of biological interaction

Ω =
{
w = (p, q)T : p ≥ 0, q ≥ 0, p+ q ≤ 1

}
with initial conditions w0 = (p0, q0)T .

The equilibrium points of (2) are defined by the following equations:

µR0p
2 − (µ+ µR0 − uR0) p+ µ = 0 and q =

µ(1− p)− u
θ + µ

(3)

Thus the existence of equilibrium points is related to the following condition:

(µ+ µR0 − uR0)2 ≥ 4µ2R0

Thus, system (2) will have two equilibrium points at most,

(p11, q11) and (p12, q12) (4)

which satisfy the equations defined in (3).
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2.1. Non-smooth system

Now, we define the region q = ζ en Ω. We will consider a control u, such that: If q > ζ, u 6= 0, u ∈ (0, 1]

If q < ζ, u = 0

Thus, surface q = ζ divides the vector field (2) into two zones:

f (1)(w) =

 µ(1− p)−R0(θ + µ)pq

R0(θ + µ)pq − (θ + µ)q

 with q < ζ

and

f (2)(w) =

 µ(1− p)−R0(θ + µ)pq

R0(θ + µ)pq − (θ + µ)q − u

 with q > ζ

Now, let H : R2 → R be a continuously differentiable function defined as:

H(w) = q − ζ

which has a gradient Hw(w) = (0, 1) (non-zero). Then we define the following regions:

S1 =
{
w ∈ R2 : H(w) < 0

}
=
{
w ∈ R2 : q < ζ

}
S2 =

{
w ∈ R2 : H(w) > 0

}
=
{
w ∈ R2 : q > ζ

}
Σ =

{
w ∈ R2 : H(w) = 0

}
=
{
w ∈ R2 : q = ζ

}
Thus we have a non-smooth system which can be written as:

ẇ =

 f (1)(w), w ∈ S1

f (2)(w), w ∈ S2

(5)

2.2. Standard and Sliding solutions

For w ∈ Σ, we define

`(w) =
〈
Hw(w), f (1)(w)

〉〈
Hw(w), f (1)(w)

〉
= (R0(θ + µ)pζ − (θ + µ)ζ) (R0(θ + µ)pζ − (θ + µ)ζ − u)

The set

Σc = {w ∈ Σ : `(w) > 0}
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corresponds to the crossing region in Σ and the set

Σs = {w ∈ Σ : `(w) ≤ 0}

corresponds to the sliding zone.

For system (5) in Σs, we define the following tangent points:

T1 =

(
1

R0
, ζ

)
and T2 =

(
1

R0

(
1 +

u

(θ + µ)ζ

)
, ζ

)
and the pseudo-equilibrium:

SE =

(
µ

µ+R0(θ + µ)ζ
, ζ

)
Regions S1 and S2 show two equilibrium points each one. Region S2 contains the

equilibrium points:

(p11, q11) and (p12, q12),

which satisfy the conditions defined in (3).

Region S1 contains the equilibrium points

E1 = (0, 0) E2 =

(
1

R0
,
µ(R0 − 1)

R0(µ+ θ)

)
which are obtained from (3) when u = 0.

2.3. Codimension-1 local bifurcation

When we vary parameter R0 > 1 and we keep constant parameters µ and θ, the system

shows a local non-smooth bifurcation of codimension 1, when

α
(1)
R0

=
µ

µ− (θ + µ)ζ
and α

(2)
R0

=
µ (u+ (θ + µ)ζ)

(µ− u− (θ + µ)ζ) (θ + µ)ζ

Such a bifurcation appears when the equilibrium points E2, SE , T1 y T2 of (5) collide

on the switching surface q = ζ [1], [12]. Such bifurcation is shown in Figures 1 and 2.
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(a) (b) (c)

E2

T1 T2 S1 T2 T1 SE T2

Figure 1. Bifurcation when R0 = α
(1)
R0

(a) (b) (c)

T1 SE T2 T1 T2

P

T1 S2

Figure 2. Bifurcation when R0 = α
(2)
R0

If 1 < R0 < α
(1)
R0

, the solutions in Ω of system (5) are attracted to the equilibrium

E2 (see Figure 1(a)). When R0 reaches the bifurcaction value α
(1)
R0

the equilibrium point

E2 collides with the tangent point T1 at the bifurcation point S1 (see Figure 1(b)). When

R0 > α
(1)
R0

, there is a change in system (5) and equilibrium E2 changes stability. Also, an

asymptotically stable pseudo-equilibrium SE appears (see Figure 1(c)).

In a similar way, we obtain another bifurcation when R0 = α
(2)
R0

. If α
(1)
R0

< R0 < α
(2)
R0

,

the vector field in (5) is as in Figure 1(c). When R0 reaches the bifurcation value α
(2)
R0

,

pseudo-equilibrium SE collides with the tangent point T2 at S2 (see Figure 2(b)). When

R0 > α
(2)
R0

, point SE disappears and a new equilibrium point P = (p11, q11) appears, which

is asymptotically stable (See 4 and Figure 2(c)).
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2.4. Numerical results

Figure 3 shows the numerical results for the solutions of system (5) for µ = 0.1, θ = 0.1,

u = 0.01, ζ = 0.3 and R0 varying in the interval [2, 5.26]. In this case, we observe that if

R0 < α
(1)
R0

= 2.5, equilibrium E2 is asymptotically stable. If R0 = α
(1)
R0

= 2.5, E2 collides with

T1 in S1 (first bifurcation point). When α
(1)
R0

= 2.5 < R0 < α
(2)
R0

= 3.88, pseudo-equilibrium

SE lies on ΣS and it is an asymptotically stable point. If R0 = α
(2)
R0

= 3.88, SE collides

with T2 at S2 (second bifurcation point). Finally, if R0 > α
(2)
R0

= 3.88, the equilibrium point

P = (p11, q11) appears, which was defined in (4), and it is asymptotically stable.

Figure 3. Bifurcations when R0 = α
(1)
R0

and R0 = α
(2)
R0
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3. Conclusions

A mathematical model representing the dynamics of transmission and control of dengue

virus in the human population was presented through the use of the bacterium Wolbachia,

in a non-smooth system. In each zone f (i)(w), i = 1, 2, two equilibrium points were found

and three equilibria on the switching surface: two tangent points T1 and T2 , and a pseudo-

equilibrium SE .

According to the theory in [2], in the system (5) we can verify that if R0 ≤ 1, the

equilibrium E1 of (1) is asymptotically stable and E2 is unstable. This means that the

disease disappears from the environment. In addition, it can be concluded that:

• If 1 < R0 < α
(1)
R0

, E2 from f (1) is asymptotically stable.

• If R0 = α
(1)
R0

, equilibrium E2 colides with T1 at S1 and system (5) has a local

codimension-1 bifurcation.

• If α
(1)
R0

< R0 < α
(2)
R0

, pseudo-equilibrium SE is asymptotically stable.

• If R0 = α
(2)
R0

, equilibrium SE colides with T2 in S2 and system (5) also has a bifurcation

as in the previous case.

• If R0 > α
(2)
R0

, equilibrium P = (p11, q11) from f (2) is asymptotically stable.

The proposed scheme is an alternative to control the disease. It is based on the fact that

if the fraction of infected persons exceeds the threshold θ, the biological control (u 6= 0).

Otherwise, we must leave the disease to continue uncontrolled (u = 0). In this case, control

u is considered constant. This strategy will not eliminate the disease from the environment,

but will only stabilize the proportion of infected people under the desired threshold, provided

that the basic number R0 does not increase.
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On the stability and ultimate boundedness of solutions for certain
third order non-autonomous delay differential equations

Akinwale Olutimo

Abstract: Sufficient conditions are established to ensure the uniform asymptotic
stability and uniform ultimate boundedness of solutions of certain third order
nonlinear non-autonomous delay differential equations. By using Lyapunov’s
second or direct method, we obtain new results on the subject which improve
the well known results in the literature with particular cases of the equation
considered for the ultimate boundedness and asymptotic behavior of solutions
using complete Lyapunov functions. Our aim is to further extend and improve
on the results to more general equation considered for which the forcing and
nonlinear terms depend on certain variables and deviating arguments.

1. Introduction

This paper studies the uniform asymptotic stability and uniform ultimate boundedness of

solutions of third order nonlinear non-autonomous delay differential equation

x′′′(t) + ψ(t, x, ẋ)x′′(t) + a(t)φ(x(t− r(t)), x′(t− r(t))) + b(t)h(x(t− r(t)), x′(t− r(t))) =

p(t, x(t), x′(t), x(t− r(t)), x′(t− r(t)), x′′(t)) (1)

which is equivalent to the system

x′ = y,

y′ = z,

z′ = − ψ(t, x, y)z − a(t)φ(x, y)− b(t)h(x, y) + a(t)

∫ t

t−r(t)
φ′x(x(s), y(s))y(s)ds

+ a(t)

∫ t

t−r(t)
φ′y(x(s), y(s))z(s)ds+ b(t)

∫ t

t−r(t)
h′x(x(s), y(s))y(s)ds

+ b(t)

∫ t

t−r(t)
h′y(x(s), y(s))z(s)ds+ p(t, x, y, x(t− r(t)), y(t− r(t)), z), (2)

where a(t), b(t) ∈ C(R+,R), ψ(t, x, y) ∈ C(R+ × R2,R), φ(x, y), h(x, y) ∈ C(R2,R) and

p(t, x, y, x(t− r(t)), y(t− r(t)), z) ∈ C(R+ × R5,R), t ∈ R+, R = (−∞,∞) and R+ = [0,∞);

a(t), b(t), ψ, φ, h and p depend only on the arguments displaced explicitly and ψt, ψx(t, x, y), φx(x, y), a′(t), b′(t)

exist and are continuous for all t, x and y with ψ(0, 0, 0) = φ(0, 0) = h(0, 0) = 0 and
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0 ≤ r(t) ≤ γ, γ is a positive constant that will be determined later with r′(t) ≤ β, 0 < β < 1.

The functions ψ(t, x, y), φ(x, x′(t−r(t))), h(x, x′(t−r(t)) and p(t, x, y, x(t−r(t)), y(t−r(t)), z)
satisfy a Lipschitz condition in x, y, x(t − r(t)), y(t − r(t)) and z; hence, the solutions of

(1.1) are unique. Throughout the paper x(t), y(t) and z(t) are respectively abbreviated as

x, y and z.

Nonlinear delay differential equations are important tools in scientific modeling of some prac-

tical problems arisen in many fields of science and technology such as after-effect, nonlinear

oscillations, coupled oscillations and equations with deviating arguments (see [1]). Stabil-

ity and boundedness of solutions of non-autonomous delay differential equations are quite

complicated. It is even more complicated for ultimate boundedness of solutions of non-

autonomous delay differential equations. It is known that ultimate boundedness is a very

important problem in the theory and applications of differential equations. Equations of the

form (1) in which a(t) = b(t) = 1 and ψ not explicitly depended on t have been studied by

several authors, see for instance Sadek [2], Afuwape and Omeike [3], Ademola and Aramowo

[4], Yao and Meng [5] to mention a few. They obtained the stability and boundedness of

solutions. For the equations in which a(t) 6= 1, b(t) 6= 1 and ψ explicitly depending on t,

some authors have obtained conditions for the stability and boundedness of solutions, see

for example, Omeike [6], Tunc [7], Remili and Oudjedi [8] and Olutimo and Adams [9]. The

Lyapunov function used in [6, 7, 8, 9] is not complete (see [10]). Particularly, the bounded-

ness result considered in [6, 7, 8, 9] is of the type in which the bounding constant depends

on the solution in question.

Our motivation comes from the above mentioned papers. With respect to our observation

in the literature, till now, no author has discussed the ultimate boundedness of solutions for

the more general non-autonomous equation (1). Thus, the investigation on the subject for

(1) is worthwhile. Our result extends and improves the results obtained by [6, 7, 8, 9]. It

may be useful to researchers as it plays an important role in characterizing the behavior of

solutions of sufficiently complicated nonlinear delay differential equations.

1.1. Preliminary results

Now, we will state the stability criteria for the general non-autonomous delay differential

system. We consider:

ẋ = f(t, x), xt = x(t+ θ) − r ≤ θ ≤ 0, t ≥ 0, (3)

where f : I× CH −→ Rn is a continuous mapping,

f(t, 0) = 0, CH := {ϕ ∈ (C[−r, 0],Rn) : ‖ϕ‖ ≤ H}
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and for H1 ≤ H, there exists L(H1) > 0, with

|f(ϕ)| ≤ L(H1) when ‖ϕ‖ ≤ H1.

Lemma 1 ([2,3]) An element ϕ ∈ CH is such that the solution xt(ϕ) of (3) with xo(ϕ) = ϕ

is defined on [0,∞) and ‖xt(ϕ)‖ ≤ H1 < H for t ∈ [0,∞), then Ω(ϕ) is a non-empty,

compact, invariant set and

dist(xt(ϕ),Ω(ϕ))→ 0 as t→∞.

Lemma 2 ([2,3]) Let V (t, ϕ) : I × CH −→ R be a continuous functional satisfying a local

Lipschitz condition. V (t, ϕ) = 0, and such that:

(i) W1|ϕ(0)| ≤ V (t, ϕ) ≤W2‖ϕ‖ where W1(r), W2(r) are wedges

(ii) V̇(3)(t, ϕ) ≤ 0 for ϕ ≤ CH .

Then the zero solution of (3) is uniformly stable. If we define Z = {ϕ ∈ CH : V(3)(t, ϕ) = 0},
then the zero solution of (3) is asymptotically stable provided that the largest invariant set

in Z is Q = {0}.

2. Statement of results

Theorem 1 In addition to the basic assumptions imposed on the functions a(t), b(t), ψ(t, x, y), φ(x, y), h(x, y)

and p. Suppose further that there are positive constants, a, a1, b, b1,m, c, νo, L1, L2,M1,M1, δo, δ1

such that the following conditions are satisfied:

(i) a ≤ ψ(t, x, y) ≤ a1, b ≤ φ(x,y)
y
≤ b1, hx(x, 0) ≤ c, h(x,y)

x
≥ m, ab− c > 0;

(ii) hy(x, θ1y) ≤ 0, hz(x, θ2y) ≤ 0, ψt(t, x, y) ≤ 0, for all t, x, y, z, 0 ≤ θ1 ≤ 1, 0 ≤ θ2 ≤ 1;

(iii) a(t) ≥ b(t) ≥ νo > 0, b′(t) ≥ a′(t) ≥ −νo ≤ 0 for all t ≥ 0;

(iv)
∫ y
0
σψx(t, x, σ)dσ ≤ 0 and

∫ y
0
φx(x, σ)dσ ≤ 0 for all t, x, y;

(v) |φ′x(x, y)| ≤ L1, |φ′y(x, y)| ≤ L2, |h′x(x, y)| ≤M1, |h′y(x, y)| ≤M2, for all x, y;

Then, the zero solution of system (1.2) is asymptotically stable, provided that

1

a
< µ1 <

b

c
, (4)

µ2 < min

{
νo(ab− c)(

a+ ν−1
o m(a(t)φ(x,y)

y
− b
)2 ;

νom(µ1a− 1)

(ψ(t, x, y)− a)2
;
µ1a− 1

µ1
; b

}
(5)
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and

γ < min

{
mµ2[

µ2(L1 + L2) + µ2(M1 +M2)
] ;

2(b− µ1c)(1− β)[
(1 + a)(L1 + L2) + (1 + a)(M1 +M2) + (L1 +M1)(µ1 + µ2 + a+ 1)

] ;

2a(1− β)

νo
[
(1 + µ1)(L1 + L2) + (1 + µ1)(M1 +M2) + (L2 +M2)(µ1 + µ2 + a+ 1)

]}. (6)

Theorem 2 We assume that all the assumptions of Theorem 1 are satisfied and

(i) |p(t, x, y, x(t− r(t)), y(t− r(t)), z)| ≤
[
δo + δ1(|x|+ |y|+ |z|)

]
uniformly for all x, y, z ∈ R where δo > 0, δ1 > 0 are constants and δ1 sufficiently small.

Then, there exists a constant δ > 0 such that any solution (x(t), y(t), z(t))) of the system (2)

uniformly satisfies

|x(t)| ≤ δ, |y(t)| ≤ δ, |z(t)| ≤ δ for t ∈ R+,

where the magnitude of δ depend only on δo, δ1, a, b, c,m, νo and p.

3. The function V

Our main tool is the following Lyapunov functional V = V (xt, yt, zt) defined as

2V = 2b(t)(1 + a)

∫ x

0

h(ξ, 0)dξ + 2(1 + a)

∫ y

0

σψ(t, x, σ)dσ

+ 2a(t)(1 + µ1)

∫ y

0

φ(x, σ)dσ + 2b(t)(1 + µ1)yh(x, 0)

+ (1 + µ1)z2 + µ2bx
2 + 2aµ2xy + 2(1 + a)yz + 2µ2xz − µ2y

2

+ 2λ1

∫ 0

−r(t)

∫ t

t+s

y2(θ)dθds+ 2λ2

∫ 0

−r(t)

∫ t

t+s

z2(θ)dθds, (7)

where µ1, µ2 satisfies (4) and (5) respectively and λ1, λ2 are positive constants which will be

determined later.

We also assume that

limt→∞c(t) = co, limt→∞b(t) = bo and limt→∞a(t) = ao,

where 0 < νo ≤ co ≤ bo ≤ ao.

Lemma 3 Suppose conditions (i) - (iv) of Theorem 1 hold, then there exists positive con-

stants δ2, δ3 such that

δ2(x2 + y2 + z2) ≤ V ≤ δ3(x2 + y2 + z2) (8)
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Proof:

Then (7) can be recast in the form 2V = V1 + V2,

where

V1 = 2b(t)

∫ x

0

h(ξ, 0)dξ + 2

∫ y

0

σψ(t, x, σ)dσ

+ 2a(t)µ1

∫ y

0

φ(x, σ)dσ + 2b(t)µ1yh(x, 0)

+ µ1z
2 + 2yz − µ2y

2

and

V2 = µ2bx
2 + 2ab(t)

∫ x

0

h(ξ, 0)dξ + 2a

∫ y

0

σψ(t, x, σ)dσ

+ 2a(t)

∫ y

0

φ(x, σ)dσ + 2b(t)yh(x, 0)

+ z2 + 2aµ2xy + 2ayz + 2µ2xz

+ 2λ1

∫ 0

−r(t)

∫ t

t+s

y2(θ)dθds+ 2λ2

∫ 0

−r(t)

∫ t

t+s

z2(θ)dθds.

V1 re-arranged as

V1 = b(t)

[
2

∫ x

0

h(ξ, 0)dξ − µ1

b
h2(x, 0)

]
+ b(t)µ1b

[
y +

h(x, 0)

b

]2
+

[
2

∫ y

0

σψ(t, x, σ)dσ − µ−1
1 y2 − µ2y

2

]
+ µ1[z + µ−1

1 y]2

+ µ1

[
2a(t)

∫ y

0

φ(x, σ)dσ − b(t)by2
]
.

The term

b(t)2

∫ x

0

h(ξ, 0)dξ − µ1

b
h2(x, 0),

= b(t)

[
2

∫ x

0

h(ξ, 0)dξ − 2
µ1

b

∫ x

0

h(ξ, 0)
dh(ξ, 0)

dξ
− µ1

b
h2(0, 0)

]
= b(t)

[
2

∫ x

0

(1− µ1

b
hξ(ξ, 0))

]
h(ξ, 0)dξ

≥ bo(1−
µ1

b
c)mx2

≥ νom(1− µ1

b
c)x2.

The term

2

∫ y

0

σψ(t, x, σ)dσ − µ−1
1 y2 − µ2y

2,

by the hypotheses (i) of Theorem 1, we have

(a− µ−1
1 − µ2)y2 ≥ 0.
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The term,

µ1

[
2a(t)

∫ y

0

φ(x, σ)dσ − b(t)by2
]

= µ1

[
2a(t)

φ(x, σ)

y

∫ y

0

σdσ − b(t)by2
]

= µ1(a(t)b− b(t)b)y2

≥ µ1b(ao − bo)y2

≥ 0

and

b(t)bµ1

[
y +

h(x, 0)

b

]2
≥ 0.

Thus,

V1 ≥ νom(1− µ1

b
c)x2 + (a− µ−1

1 − µ2)y2 + µ1[z + µ−1
1 y]2.

Similarly, V2 after re-arrangement gives;

V2 = µ2(b− µ2)x2 +

[
2ab(t)

∫ x

0

h(ξ, 0)dξ − 1

b
h2(x, 0)

]
+ bb(t)

[
y +

h(x, 0)

b

]2
+

[
2a(t)

∫ y

0

φ(x, σ)dσ − bb(t)y2
]

+ a

[
2

∫ y

0

σψ(t, x, σ)dσ − ay2
]

+ [µ2x+ ay + z]2

+ 2λ1

∫ 0

−r(t)

∫ t

t+s

y2(θ)dθds+ 2λ2

∫ 0

−r(t)

∫ t

t+s

z2(θ)dθds,

where

2ab(t)

∫ x

0

h(ξ, 0)dξ − 1

b
h2(x, 0)

= b(t)

[
2

∫ x

0

(a− 1

b
hξ(ξ, 0))hξ(ξ, 0)

]
h(ξ, 0)

ξ
ξdξ

= 2b(t)(a− 1

b
.c)
h(x, 0)

x

∫ x

0

ξdξ − 1

b
h2(0, 0)

≥ bom(a− c

b
)x2

≥ νom(a− c

b
)x2.

Using (iii) of Theorem 1, we have that

2a(t)

∫ y

0

φ(x, σ)dσ − bb(t)y2
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= 2a(t)
φ(x, σ)

y

∫ y

0

σdσ − bb(t)y2

≥ b(ao − bo)y2

≥ 0

and by (i) of Theorem 1,

a

[
2

∫ y

0

σψ(t, x, σ)dσ − ay2
]
≥ 0.

Thus,

V2 ≥
[
µ2(b− µ2) + bom(a− c

b
)

]
x2 + b(ao − bo)y2

+ (µ2x+ ay + z)2.

Combining the results, we have

2V = V1 + V2,

that is,

V ≥
{
νom(1− µ1c

b
) + µ2(b− µ2) + νom(a− c

b
)

}
x2

+

{
(a− 1

µ1
− µ2) + µ1b(νo − νo) + b(νo − νo)

}
y2

+ µ1(z + µ−1
1 y)2 + (µ2x+ ay + z)2

and integrals 2λ1

∫ 0

−r(t)

∫ t
t+s

y2(θ)dθds and 2λ2

∫ 0

−r(t)

∫ t
t+s

z2(θ)dθds are non-negative.

1 − µ1c
b

, b − µ2, ab − c, a − 1
µ1
− µ2, ao − bo are either positive or zero, then there exist a

positive constant δ4 such that

V ≥ δ4(x2 + y2 + z2) for all x, y, z and t ≥ 0. (9)

To prove the right side of inequality (8), the hypothesis (i)-(iv) of Theorem 1 and using

inequality

2|x||y| ≤ x2 + y2

yields for

V ≤ δ5(x2 + y2 + z2). (10)

From (9) and (10), (8) of Lemma 3 is established, where

δ4 = min

{
νom(1− µ1c

b
); (b− µ2); νom(a− c

b
); (a− 1

µ1
− µ2)

}
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and

δ5 = max

{
(νoc+ µ2b+ aνoc+ aµ2 + µ2); (a1 + νoµ1b+ νoµ1c+ 1− µ2) + (aa1 + νob+ νob1

+ aµ2 + a+ νoc); (1 + a+ µ2) + (1 + a+ µ2)

}
.

Now, differentiating (7) along the system (2), we have

V̇ = −W1 +W2 +W3,

where

W1 = − (a+ 1)y

∫ y

0

σψx(t, x, σ)dσ − (µ1 + 1)a(t)y

∫ y

0

φx(x, σ)dσ

− (µ1 + 1)b(t)y2hx(x, 0) + (a+ 1)a(t)yφ(x, y) + (a+ 1)b(t)y2hy(x, θ1y)

+ [ψ(t, x, y)− a]z2 + [µ1ψ(t, x, y)− 1]z2 − aµ2y
2

+ µ2[a(t)
φ(x, y)

y
− b]xy + µ2[ψ(t, x, y)− a]xz

+ az2 + b(t)µ2x
2 h(x, y)

x
+ ab(t)hz(x, θ2y)yz

+ b(t)µ1z
2hz(x, θ2y) + b(t)µ1hy(x, θ1y)yz.

By the conditions of Theorem 1 and the fact that

µ2[a(t)
φ(x, y)

y
− b]xy

=
1

4
µ2bom

{
x+ 2b−1

o m−1

(
a(t)φ(x, y)

y
− b
)
y

}2

+
1

4
µ2bomx

2 +
µ2

bom

(
a(t)φ(x, y)

y
− b
)2

y2.

and

µ2[ψ(t, x, y)− a]xz

=
1

4
µ2bom

{
x+ 2b−1

o m−1(ψ(t, x, y)− a)z

}2

+
1

4
µ2bomx

2 +
µ2

bom
(ψ(t, x, y)− a)2z2.

It follows that

W1 =
1

2
bomµ2x

2 +

[
aaob− boc− µ2(a+ b−1

o m
(a(t)φ(x, y)

y
− b
)2

)

]
y2

+ (aob− µ1boc)y
2 +

[
µ1a− 1− µ2b

−1
o m−1(ψ(t, x, y)− a

)2]
z2

+ az2 +
1

4
µ2bom

[
x+ 2b−1

o m−1(a(t)φ(x, y)

y
− b
)
y

]2
+

1

4
µ2bom

[
x+ 2b−1

o m−1(ψ(t, x, y)− a
)
z

]2
.
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If µ2 satisfy (5) and the last two addends are certainly negative,

it follows that

W1 =
1

2
bomµ2x

2 + (aob− µ1boc)y
2 + az2.

Since ao ≥ bo ≥ co ≥ νo > 0, we have that

W1 =
1

2
νomµ2x

2 + νo(b− µ1c)y
2 + az2.

W2 = (µ1z + y) + (z + ay + µ2x)

[
a(t)

∫ t

t−r(t)
φ′x(x(s), y(s))y(s)ds+ a(t)

∫ t

t−r(t)
φ′y(x(s), y(s))z(s)ds

+ b(t)

∫ t

t−r(t)
h′x(x(s), y(s))y(s)ds+ b(t)

∫ t

t−r(t)
h′y(x(s), y(s))z(s)ds

]
+ λ1r(t)y

2 + λ2r(t)z
2 − λ1(1− r′(t))

∫ t

t−r(t)
y2(s)ds− λ2(1− r′(t))

∫ t

t−r(t)
z2(s)ds.

Following the argument used in [9], we can easily verify the following for W2 after choosing

λ1 =
νoL1(µ1 + µ2 + a+ 2) + νoM1(µ1 + µ2 + a+ 2)

4(1− β)
> 0,

λ2 =
νoL2(µ1 + µ2 + a+ 2) + νoM2(µ1 + µ2 + a+ 2)

4(1− β)
> 0

and using r(t) and r′(t) yields

W2 ≤ 1

2
γνo

{
µ2(L1 + L2) + µ2(M1 +M2)

}
x2

+
1

2
γνo

{
(1 + a)(L1 + L2) + (1 + a)(M1 +M2) +

νoL1(µ1 + µ2 + a+ 2) + νoM1(µ1 + µ2 + a+ 2)

2(1− β)

}
y2

+
1

2
γνo

{
(µ1 + 1)(L1 + L2) + (µ1 + 1)(M1 +M2) +

νoL2(µ1 + µ2 + a+ 2) + νoM2(µ1 + µ2 + a+ 2)

2(1− β)

}
z2.

And By (ii) and (vi) of Theorem 1,

W3 = (a+ 1)b′(t)

∫ x

0

h(ξ, 0)dξ + (µ1 + 1)a′(t)

∫ y

0

φ(x, σ)dσ

+ (µ1+)b′(t)yh(x, 0) + (a+ 1)y

∫ y

0

σψt(t, x, σ)dσ

≤ 0.
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Thus, combining the estimates W1, W2 and W3 for V̇ , we have

V̇ ≤ −1

2
νo

{
mµ2 − γ[µ2(L1 + L2) + µ2(M1 +M2)]

}
x2

− 1

2
νo

{
(b− µ1c)− γ[(1 + a)(L1 + L2) + (1 + a)(M1 +M2)

+
νoL1(µ1 + µ2 + a+ 2) + νoM1(µ1 + µ2 + a+ 2)]

2(1− β)

}
y2

− 1

2

{
a− γνo[(µ1 + 1)(L1 + L2) + (µ1 + 1)(M1 +M2)

+
νoL2(µ1 + µ2 + a+ 2) + νoM2(µ1 + µ2 + a+ 2)]

2(1− β)

}
z2.

If γ satisfy (6), we get

V̇ (xt, yt, zt) ≤ −δ6(x2 + y2 + z2), (11)

for some δ6 > 0.

Proof of Theorem 1

It is obvious that the largest invariant set in Z isQ = {0}, where Z = {ϕ ∈ CH : V̇ (t, ϕ) = 0}.
It follows that V̇ (xt, yt, zt) = 0 if and only if xt = yt = zt = 0, V̇ (ϕ) < 0 for ϕ ∈ CH and

for V ≥ U(|ϕ|) ≥ 0. Thus, by (8), (11) and the last statement agreed with lemmas 1 and 2

respectively. This shows that the trivial solution of (1) is uniformly asymptotically stable.

Hence, the proof of Theorem 1 is complete.

Proof of Theorem 2

Let x(t), y(t), z(t) be any solution of (2). By (8) and (11), it follows that V (xt, yt, zt) = 0 iff

x2 +y2 +z2 = 0, V (xt, yt, zt) > 0 iff x2 +y2 +z2 6= 0, V (xt, yt, zt)→∞ iff x2 +y2 +z2 →∞.

In view of V̇(2) at p = 0, according to (11), we have

V̇(2)(xt, yt, zt) ≤ −δ6(x2 + y2 + z2).

For p 6= 0 in (1), along any solution (xt, yt, zt) of (2), we obtain

V̇(2)(xt, yt, zt) ≤ −δ6(x2 + y2 + z2) + (µ2|x|+ (a+ 1)|y|+ (µ1 + 1)|z|)|p(t, x, y, x(t− r(t)), y(t− r(t)), z)|

By condition (i) of Theorem 2, we have

V̇(2)(xt, yt, zt) ≤ −δ6(x2 + y2 + z2) + δ7(|x|+ |y|+ |z|)[δo + δ1(|x|+ |y|+ |z|)],

where δ7 = max{µ2, (a+ 1), (µ1 + 1)}.
Thus,

V̇(2)(xt, yt, zt) ≤ −(δ6 − 3δ1δ7)(x2 + y2 + z2) + 3
1
2 δoδ7(x2 + y2 + z2)

1
2 ,
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It follows that

V̇ (t) ≤ −δ8(x2 + y2 + z2) + δ9(x2 + y2 + z2)
1
2 , (12)

where δ8 = (δ6 − 3δ1δ7), δ1 < 3−1δ−1
6 δ−1

7 and δ9 = 3
1
2 δoδ7.

If we choose

(x2 + y2 + z2)
1
2 ≥ δ10 = δ9δ

−1
8 .

Inequality (12) implies that

V̇ (t) ≤ −δ8(x2 + y2 + z2).

Then, there exists a δ11 such that

V̇ (t) ≤ −δ11, provided x2 + y2 + z2 ≥ δ11δ−1
8 .

The remainder of the proof of Theorem 2 may now be obtained by the use of the estimates

(8) and (11) an obvious adaptation of the Yoshizawa type reasoning in [11].

4. Conclusions

Analysis of nonlinear non-autonomous systems with delay literarily shows that Lyapunov’s

theory in ultimate boundedness of solutions is rarely scarce due to the difficulty in construct-

ing a complete Lyapunov function. The second Lyapunov’s method allows us to predict the

asymptotic and boundedness behavior of solutions of sufficiently complicated nonlinear phys-

ical system. The solutions of third-order non-autonomous delay differential equation (1) are

asymptotically stable and uniformly ultimately bounded according to Lyapunov’s theory if

(4), (5) and (6) hold as t→∞.

.
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Nullspace method for the uniqueness analysis of reaction and
driving forces in rigid multibody systems with redundant

nonholonomic constraints

Marcin Pe�kal, Janusz Fr czek, Marek Wojtyra

Abstract: Redundantly constrained mechanisms are common. When modelled
as rigid multibody systems (MBS), they have—in general—non-unique reac-
tions. However, some of the reactions may be uniquely determined. Analogous
problem of indeterminacy is also present in overactuated MBS. In this paper,
constraint matrix-based nullspace method for the uniqueness analysis of reac-
tions and driving forces for nonholonomic MBS is developed and discussed. The
method may be used for planar and spatial systems described by absolute or
natural coordinates. The approach may be used for MBS with linear nonholo-
nomic constraints. To illustrate the proposed approach, an exemplary planar
system with knife-edge Pfaffian nonholonomic constraints and with three actu-
ation cases—i.e. non-actuated, fully-actuated and overactuated—is considered.

1. Introduction

Rigid multibody approach is very popular in designing and simulation. Unfortunately, de-

spite its advantages over flexible approach associated with shorter computation time, it has

some limitations which occur for redundant multibody systems (MBS) and may be, in gen-

eral, divided into two groups: numerical and indeterminacy problems. Redundant MBS are

commonly used, e.g. due to strength reasons [31] or their ability to avoid singular posi-

tions [3]. Hence the problems cannot be ignored.

The first group of problems worsens computational efficiency or accuracy of numerical

algorithms [17]. Fortunately, in sequential computations, appropriate methods for redundant

systems are available (see, e.g. [14,15,22,23]). However, the redundant MBS are cumbersome

in parallel computations. Hence it is very common to analyze only non-redundant systems

(see, e.g. [1]) or serial systems (see, e.g. [2]).

The second group of problems concerns a global indeterminacy of reactions of redundant

rigid multibody systems (see, e.g. [4, 7, 10, 11, 31, 32, 35]). This is the result of the structure

of the system, hence it does not depend on the coordinates used to describe the system

[7, 31, 32, 35–37]. Awareness of this phenomenon is crucial when the resulting reactions are

used in simulations, e.g. in design process (e.g. for bearings selection) or when friction is

considered. In such cases, the reactions are indeterminate (arbitrary), and the mentioned
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analyses may lead to erroneous outcomes. Note that in the case of friction (see, e.g. [33,34]),

not only the joint reactions but also the simulated motion may be non-physical (non-unique)

[7]. As the paper is solely devoted to joint reactions uniqueness, friction is neglected.

For many redundant rigid MBS, despite the general non-uniqueness, some of the re-

actions (e.g. total joint reactions) may be unique [7, 31, 32, 35–37]. The methods allowing

to check the uniqueness of the reactions are available and they are still under develop-

ment. The approaches are based on the analysis of the Jacobian matrix of constraints (see,

e.g. [10, 32, 35]) or kinetostatics (see, e.g. [21, 24, 26]). These methods may use one of two

approaches originated from linear algebra—direct sum or nullspace method. Direct sum

approach resulted in three alternative numerical methods of uniqueness checking, i.e. rank

comparison method, QR method and SVD method (of course, just one of them should be

used in order to check the reaction uniqueness).

The similar problem of indeterminacy may occur also for driving forces. Non-unique

drives are introduced into MBS for several reasons, e.g. in order to reduce torques in joints

of the system [8], to eliminate gear backlash and clearances [29] or to improve the performance

of the MBS [38]. Fortunately, the uniqueness analysis of driving forces may be performed

using the same methods as reaction uniqueness test. It is useful to point out that driving

forces should be considered together with reactions, because they may change the uniqueness

of the reactions (in the case of overactuated systems) [13].

The aim of this paper is to broaden the range of applicability of the Jacobian-based

method which use nullspace approach. The method was previously studied in [13,25]. In [13]

the novel nullspace formulation was proposed and applied to reaction and driving forces

uniqueness analysis based on the study of Jacobian matrix of constraints (for holonomic

systems only). In [25] the nullspace method was applied to reaction uniqueness analysis of

linear nonholonomic systems. Note that previous papers about nullspace method allowed

us to study the uniqueness of single reactions components only [5, 10]. This is not enough

in many cases, e.g. unique joint reaction may have non-unique components (see, e.g. [31]).

Hence, the novel nullspace formulation is used in this paper. The aim of this paper is to

show that the method may be used to both reaction and driving forces uniqueness analysis

of linear nonholonomic systems. The presented approach may be used for planar and spatial

rigid MBS described by means of absolute or natural coordinates. This is because, for such

coordinates, constraint matrix includes information about all joints, i.e. it contains the

structure of the considered MBS [13]. In this paper absolute coordinates are used.

In order to illustrate the method, linear nonholonomic planar MBS is studied. The non-

holonomic constraints are introduced in the form of knife-edge Pfaffian constraints. More-

over, to show that driving forces may influence reaction uniqueness, three actuation cases
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are considered: non-actuated, fully-actuated and overactuated.

2. Governing equations

In this paper the absolute coordinates are used. For the systems described by such co-

ordinates, the appropriate vector of constraints, has to be defined. Vector of holonomic

constraints at the position level has, in general, the following form [9,12]:

Φ = Φ(q, t) = 0, (1)

where q is a vector of absolute coordinates and t is time. Constraints contained in Eq. (1)

can be divided into two groups: kinematic constraints that describe kinematic pairs (ΦK =

ΦK(q)) and driving constraints that describe the imposed motion (ΦD = ΦD(q, t)). Subse-

quently, Eq. (1) may be differentiated with respect to time, which gives [12]:

Φ̇ = Φqq̇ + Φt = 0, (2)

where Φq is a Jacobian matrix of holonomic constraints.

Eqs. (1) and (2) determine only holonomic constraints. For linear nonholonomic con-

straints the equation of kinematic constraints is formulated at the velocity level as [37]:

ΨK q̇ = 0, (3)

where ΨK is a constraint matrix of linear nonholonomic constraints.

There may exist nonholonomic driving constraints, which can be written as:

ΨDq̇− f(t) = 0, (4)

where f(t) is a function determining the imposed motion of the system.

At the velocity level holonomic and nonholonomic constraints may be combined as:[
(ΦK

q )T (ΨK)T (ΨD)T (ΦD
q )T

]T
q̇ = JT q̇ =

[
0 0 (f(t))T − (Φt)

T
]T
, (5)

where coefficient matrix is called a constraint matrix. Transposition of this matrix (denoted

by J) may be used to perform the uniqueness test. We assume the ordering of constraints

according to Eq. (5). Naturally, the order of the coordinates may be arbitrary. Moreover,

some of the elements of matrix J may be empty (depending on the considered case).

The usage of matrix J for constraint reactions analysis can be explained when equations

of motion are considered. Lagrange equations of the first kind may be written as [20]:

Mq̈− Jλ = Q, (6)

403



where M is a matrix with inertia terms, λ is a Lagrange multipliers vector, Q is a vector

containing the other generalized forces and velocity dependent inertial components. Note

that Jλ contains generalized reactions (i.e. reaction and driving forces). Hence, the reaction

and driving forces uniqueness may be studied by using transposed constraint matrix J.

3. Nullspace method

Calculation of matrix Jn×m (of rank r), defined by Eq. (5), allows us to perform the unique-

ness test. In the case of nullspace method, the following steps have to be followed. First,

the nullspace matrix Nm×(m−r) of matrix J has to be calculated. This matrix fulfills the

following equation [28]:

JN = 0. (7)

Note that in the case of existence of redundant constraints, matrix J is rank-deficient thus

matrix N is non-empty. Hence, generalized reactions Jλ = W may be expressed as [27,28]:

W = Jλ = J(λp + λn) = Jλp︸︷︷︸
W

+ Jλn︸︷︷︸
0

,
(8)

where λp is a particular solution and λn is a nullspace solution of reactions. Vector λn may

be written in the form of a linear combination (see Eq. (7)) [27, 28]:

λn = Nc, (9)

where c(m−r)×1 is a vector of arbitrary coefficients.

The next step is to select a studied element (denoted by U). It may be, e.g. total joint

reaction or driving force. Generalized reaction W may be decomposed into the sum [32,37]:

W = WU + WV , (10)

where WU is a vector of generalized reaction of the element U and WV contains the re-

maining reactions. This decomposition may be unique or not. If it is unique, then WU and

WV are both unique. We will check when WU is unique. Let the element U be described

by w ≤ m columns of matrix J with indices u = {u1, . . . , uw}. Using Eq. (8) yields:

WU = Ju1λu1 + · · ·+ Juwλuw = Ju1(λpu1
+ λnu1

) + · · ·+ Juw (λpuw
+ λnuw

) =

= (Ju1λpu1
+ · · ·+ Juwλpuw

) + (Ju1λnu1
+ · · ·+ Juwλnuw

),
(11)

where Ju is a column of matrix J of number u and λu is the u-th element of vector λ.
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Using Eq. (9), the following formula is obtained:

WU = Ju1λpu1
+ · · ·+ Juwλpuw

+ Ju1(c1nu11 + · · ·+ c(m−r)nu1(m−r)) + · · ·+

+Juw (c1nuw1 + · · ·+ c(m−r)nuw(m−r)) = Ju1λpu1
+ · · ·+ Juwλpuw

+

+c1(Ju1nu11 + · · ·+ Juwnuw1)︸ ︷︷ ︸
a1

+ · · ·+ c(m−r)(Ju1nu1(m−r) + · · ·+ Juwnuw(m−r))︸ ︷︷ ︸
a(m−r)

,

(12)

where ci is the i-th element of vector c and nij is an element which represents the element

at the i-th row and j-th column of matrix N. Note that terms ciai are responsible for

non-uniqueness of WU (because all ci are arbitrary). Hence, the reaction corresponding to

the studied element U is unique when all elements ai are zero. This occurs when:

[Ju1 . . . Juw ]

 nu11 nu12 . . . nu1(m−r)

...

nuw1 nuw2 . . . nuw(m−r)

= [Ju1 . . . Juw ]

 nu1

...

nuw

 = 0, (13)

where ni is the i-th row of matrix N. This equation may be converted into the form:

JUNU = 0, (14)

where JU is created from the columns of matrix J, which describe the studied element U ,

and NU is built (analogously to JU ) from the rows of matrix N. This formula is a uniqueness

condition—generalized reaction of the element U is unique when Eq. (14) is fulfilled.

4. Example

In order to present the method, a planar MBS with nonholonomic constraints is considered.

The system is presented in Fig. 1. This is a four-wheel mobile platform with multi-link

steering mechanism; its concept was inspired by 4RRR Parallel-Kinematics Machine pro-

posed in [30] (and considered in [16,18,19]). The system is described by absolute coordinates

q30×1 =
[
qT
1 qT

2 . . . qT
10

]T
, where qi = [xi yi ϕi]

T is a vector of coordinates of body i.

The system has 10 rigid bodies connected by 12 revolute joints (denoted by: Br, Cr, Dr,

Fr, Gr, Hr, Jr, Kr, Lr, Nr, Pr and Qr) and 1 doubled revolute joint Ar created from 2

revolute joints Ar1 and Ar2. Doubled revolute joint is shown in details in the right-hand

side of Fig. 1. The nonholonomic constraints are introduced by 4 wheels (Ew, Iw, Mw, Rw)

modelled, for simplicity, in the form of knife-edge constraints. The system has 2 degrees

of freedom (DoFs). The main dimension of the system is h = 0.25 m (see Fig. 1). Three

actuation cases are considered: non-actuated, fully-actuated and overactuated mechanism.

The uniqueness analyses are performed in non-singular position of the system, and the joint

friction is neglected. Note that in the next subsections all the actuation cases are described

first, and the obtained results are shown in the last subsection of the example, i.e. Sec. 4.4.
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Figure 1. Nonholonomic mechanism

4.1. Non-actuated case

In the non-actuated case only matrix ΨK of linear nonholonomic constraints and Jacobian

matrix ΦK
q have to be specified. Linear nonholonomic constraints in the form of knife-edge

Pfaffian constraints are introduced. For one knife-edge constraint describing the wheel Xw,

the perpendicularity condition of the pair velocity and its edge is formulated (in global

reference frame 0) as [37]:

(n0
X)Tv0

X=(Rin
i
X)T (ṗi + ΩRir

i
Xϕi)=

[
(Rin

i
X)T (ni

X)TΩriX

][ ṗi

ϕi

]
=bXiq̇i=0, (15)

where v0
X is a velocity vector, nk

X is a vector perpendicular to the allowed direction of motion

of the wheel Xw resolved in reference frame k, ṗi is a time derivative of pi = [xi yi]
T which

determines the position of body i, riX is a vector from the reference frame of i-th body to joint

Xr. This vector is resolved in local reference frame of body i. Ri =

[
cos(ϕi) −sin(ϕi)
sin(ϕi) cos(ϕi)

]
is a rotation matrix and Ω =

[
0 −1
1 0

]
is an auxiliary matrix [6].

Therefore, matrix ΨK
4×30 (of rank rΨK = 4) has the following form (the wheels are

described in the following order: Ew, Iw, Mw, Rw):

ΨK =


01×9 bE4 01×3 01×3 01×3 01×3 01×3 01×3

01×9 01×3 01×3 bI6 01×3 01×3 01×3 01×3

01×9 01×3 01×3 01×3 01×3 bM8 01×3 01×3

01×9 01×3 01×3 01×3 01×3 01×3 01×3 bR10

 , (16)
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where 0i×j is an i× j zero matrix.

To formulate ΦK
q , the vector of kinematic constraints ΦK (see Eq. (1)) has to be formed.

This vector contains only constraints of revolute joints. Note that the constraints of an

exemplary revolute joint Xr, built of bodies a and b, has the form:

ΦK(Xr) ≡
[
pa + RaraX − (pb + Rbr

b
X)
]

= 0. (17)

It is assumed that constraints of revolute joints in vector ΦK are placed in the following

order: Ar (built of Ar1 and Ar2), Br, Cr, Dr, Fr, Gr, Hr, Jr, Kr, Lr, Nr, Pr and Qr.

To obtain Jacobian matrix, vector ΦK
28×1 is differentiated with respect to coordinates,

yielding matrix ΦK
q 28×30

of rank rΦK
q

= 26. This matrix has the following form:

ΦK
q=



aA1 −aA2 02×3 02×3 02×3 02×3 02×3 02×3 02×3 02×3

aA1 −aA2 02×3 02×3 02×3 02×3 02×3 02×3 02×3 02×3

02×3 aB2 −aB3 02×3 02×3 02×3 02×3 02×3 02×3 02×3

02×3 02×3 aC3 −aC4 02×3 02×3 02×3 02×3 02×3 02×3

aD1 02×3 02×3 −aD4 02×3 02×3 02×3 02×3 02×3 02×3

02×3 aF2 02×3 02×3 −aF5 02×3 02×3 02×3 02×3 02×3

02×3 02×3 02×3 02×3 aG5 −aG6 02×3 02×3 02×3 02×3

aH1 02×3 02×3 02×3 02×3 −aH6 02×3 02×3 02×3 02×3

02×3 aJ2 02×3 02×3 02×3 02×3 −aJ7 02×3 02×3 02×3

02×3 02×3 02×3 02×3 02×3 02×3 aK7 −aK8 02×3 02×3

aL1 02×3 02×3 02×3 02×3 02×3 02×3 −aL8 02×3 02×3

02×3 aN2 02×3 02×3 02×3 02×3 02×3 02×3 −aN9 02×3

02×3 02×3 02×3 02×3 02×3 02×3 02×3 02×3 aP9 −aP10

aQ1 02×3 02×3 02×3 02×3 02×3 02×3 02×3 02×3 −aQ10



, (18)

where aXi =
[
I2×2 ΩRir

i
X

]
2×3

and Ii×j is an identity matrix of dimensions i× j.
In this case, transposed constraint matrix J30×32 =

[
(ΦK

q )T (ΨK)T
]

and it has rank

rJ = 28. Subsequently, its nullspace matrix N32×4 may be computed as:

N =
[
N1(4×4) 04×4 N2(4×1) 04×5 N3(4×1) 04×5 N4(4×1) 04×5 N5(4×1) 04×1 N6(4×4)

]T
, (19)

where submatrices Ni contain nonzero elements. The exact values of these elements are not

presented here, because they depend on the algorithm applied for calculation of matrix N.

Now, the uniqueness analysis of reactions may be performed using the algorithm de-

scribed in Sec. 3. The results of the procedure are shown in Sec. 4.4.

4.2. Fully-actuated case

The considered system has 2 DoFs. Hence, to make it fully-actuated, two independent drives

have to be introduced. In this case, joints Ew and Ar1 are actuated. Driving constraint for

the wheel represented by a knife-edge constraint has the form:[
(R4m

4
E)T (m4

E)TΩr4E

]
q̇4 = dE4q̇4 = f(t), (20)
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where m4
E is a vector parallel to the allowed direction of motion of the wheel Ew resolved

in reference frame 4 and f(t) a time function of the driving constraint.

Hence, matrix ΨD
1×30 (of rank rΨD = 1) may be written as:

ΨD =
[

01×9 dE4 01×18

]
. (21)

For joint Ar1, vector of driving constraints ΦDF (where F means fully-actuated case)

has the following form (note that it is scalar in this case):

ΦDF = ΦD(Ar1) ≡ ϕ1 − ϕ2 − θ21(t) = 0, (22)

where θ21(t) is a time function of the driving constraint. This vector, after differentiation

with respect to coordinates, results in Jacobian matrix of driving constraints ΦDF
q(1×30) of

rank rΦDF
q

= 1, which may be written as:

ΦDF
q = [01×2 1 01×2 − 1 01×24] . (23)

Note that scalar functions f(t) and θ21(t) do not depend on the vector of coordinates q.

Hence, they are not present in constraint matrix used in the uniqueness test and, therefore,

they are not specified.

Moreover, the structure of the system is the same as in non-actuated case (matrices ΦK
q

and ΨK remains unchanged). Subsequently, transposed constraint matrix may be computed.

In this case, J30×34 is a matrix of rank rJ = 30 and has the general form as in Eq. (5). For

this matrix, nullspace matrix N34×4 may be computed as:

N=
[
N1(4×4) 04×4 N2(4×1) 04×5 N3(4×1) 04×5 N4(4×1) 04×5 N5(4×1) 04×1 N6(4×4) 04×2

]T
. (24)

After this steps, the uniqueness of reaction and driving forces may be checked. The results

of the procedure are presented in Sec. 4.4.

4.3. Overactuated case

In this case joints: Ew, Ar1 and Br are driven. Hence, two of three driving constraints are

the same as in the previous case (see Eqs. (21) and (22)). Driving constraint of joint Br is

analogous to the driving constraint of Ar1 (see Eq. (22)): Φ(DBr) ≡ ϕ2 − ϕ3 − θ32(t) = 0.

Hence, the row of Jacobian matrix (Φ
D(Br)

q(1×30)) corresponding to Φ(DBr) may be written as:

ΦD(Br)
q = [01×5 1 01×2 − 1 01×21] . (25)

The total Jacobian matrix of driving constraints ΦDO
q(2×30) (O means overactuated case) of

rank rΦDO
q

= 2 has the form:

ΦDO
q =

[
(ΦDF

q )T (ΦD(Br)
q )T

]T
=
[
(ΦD(Ar1)

q )T (ΦD(Br)
q )T

]T
. (26)
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Matrices ΦK
q , ΨK and ΨD are the same (as previously). Hence, matrix J30×35 of rank

rJ = 30 has the form of Eq. (5). Subsequently, matrix N35×5 may be written as:

N=
[
N1(5×5)05×1N2(5×1)05×1N3(5×1)05×5N4(5×1)05×5N5(5×1)05×5N6(5×1)05×1N7(5×4)05×1N8(5×2)

]T
. (27)

The uniqueness test may be performed now. Its results are discussed in Sec. 4.4.

4.4. Results

The results of reaction uniqueness are the same in the non-actuated and fully-actuated cases.

Reactions in joints: Ar, Br, Cr, Fr, Gr, Jr, Kr, Nr and Pr are unique. The remaining

reactions are non-unique. Result for double joint Ar, confirm the fact that unique reaction

may have non-unique components (in this example Ar1 and Ar2). Reactions in the wheels

are non-unique, which is consistent with intuition. Moreover, reactions in wheels’ pivots, i.e.

joints Dr, Hr, Lr and Qr, are non-unique. In fully-actuated case, both drives are unique.

In overactuated case, the reaction uniqueness test gives different results. In this case,

drives in Ar1 and Br are non-unique. Moreover, overactuation introduced by drive in joint

Br causes that unique double joint Ar became indeterminable, and all reactions in chain

B − C −D − E are non-unique. It is worth pointing out that different overactuation cases

may not change uniqueness of the reactions or may influence other reactions.

5. Conclusions

The paper presents nullspace method for reactions and driving forces uniqueness analysis

which may be used to MBS with linear nonholonomic constraints. In this paper knife-

edge Pfaffian constraints are studied. The method can be used to planar and spatial systems

described by absolute or natural coordinates. This paper shows that overactuation may affect

the reaction uniqueness. Hence, the reaction and driving uniqueness should be performed

together, especially for redundantly actuated systems.
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Enhancing the stability of the boost converter using the saltation
matrix

Arnold Pérez, Guillermo Muñoz, Fabiola Angulo

Abstract: It is well known that using current mode control, the boost power
converter requires a compensation ramp when the voltage gain is greater than
twice the input voltage. However, as the slope of the compensation ramp
increases overcompensation occurs, and the system response is slower when
changes are applied, mainly if the converter feeds light loads. In this work,
a new method to tune the parameters of the compensator in a peak-current
mode-controlled converter is derived using information of the saltation ma-
trix, particularly its induced norm. At the beginning, the tuning parameters
obtained from a classical method are considered, including the slope of the
compensation ramp, and after, analyzing the norm of the saltation matrix we
obtain a new set of parameters which provides a very wide range to guarantee
stability of the period-1 orbit. The method is validated by mean of numerical
and analytical solutions.

1. Introduction

Power converters are devices intended to receive an energy signal and convert or adapt

it according to the required applications. Among converter types, we can find DC-DC,

AC-DC (Rectifiers), DC-AC (Inverters) and AC-AC (Transformers) converters [14]. With

the advancement of electronics it has been possible to improve these devices to the point

that quality and efficiency of energy delivered by the converters has become a topic widely

researched [10, 16]. Even more, given the importance that renewable energy sources have,

power converters play a key role to adapt these sources to the electrical grid [7,11,15]. Boost

converters allow to step up the input voltage twice [12]. This converter can be used in

different applications such as Fuel Cells [13] and Photovoltaic sources [4]. Boost converter

is a very simple and used topology, it has been studied with different controllers, as peak

current mode control which uses two different loops: an outer voltage loop and an inner

current loop [3].

The peak current control [9] is the control mode used in this paper; its main disadvantage

is that the period-1 orbit loses the stability when the voltage gain is greather than two [2].

This problem can be solved adding an adequate compensation ramp. However, to increase

the range of stability the solpe compensation must be widened causing overcompensation
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and affecting the proper performance of the converter [17]. For this reason other methods

must be explored.

Peak current mode control has a mathematical expression to compute the slope com-

pensantion in a boost converter [5, 9]. In [6], a new method to found the parameters of the

controller based on Filippovs theory [1] is explored and the boundaries of stability by mean

of Floquet exponents were found. The disadavantage of this method is the computational

cost because it is necessary to recalculate the compensation until the eigenvalues are inside

the unit circle. In this paper, we propose to use the information of the saltation matrix,

in particular the induced norm, and modify it such that the stability of the whole system

enhances. To achieve that, the induced norm of the commutation surface is modified com-

puting a new set of parameters for the outer and inner control loops.

The main contribution of this paper is the application of the concept of the induced

norm of a matrix with the aim of widenning the range of stability. The rest of the paper is

organized as follows, in Section 2, the boost power converter is presented and analyzed. In

Section 3, the satbility of the period-1 orbit is analyzed using the monodromy matrix. In

Section 4, the method to tune the control parameters is presented and, finally, in Section 5,

results and conclusions are shown.

2. Boost power converter
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Figure 1. Peak current mode control

The boost power converter analyzed in this paper is presented in figure 1. In the circuit
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diagram, Vin is the input voltage and Vref is a scaled reference voltage (or scaled desired

output voltage). L is the inductor, C is the capacitor, and R is the load resistance. D and S

resemble the diode and the MOSFET. rL, rs, rD and rC are the internal resistances of the

inductor, MOSFET, diode and capacitor, respectively. R1 and R2 are the voltage divider.

ra and Ca with the operational amplifier conform the PI controller. A compensation ramp is

added to the output of PI controller to obtain iref . Finally, the inductor current multiplied

by M that is compared with iref and the flip-flop is handled by this signal, and it controls

the MOSFET.

The converter is peak current mode controlled as in [9]. This controller includes current

and voltage control loops. The current loop senses the current flowing through the inductor

and multiplies it by a gain factor M , and the voltage one uses the output voltage Vout and

the PI controller to provide a current reference iref .

The system has three state variables which are X(t) =
[
iL Vc Va

]T
where iL is

the inductor current, VC is the voltage in capacitor C and Va is the voltage in capacitor Ca.

the system can operate in three topologies depending on the switch and diode positions. In

a compact form, the dynamical equations are written as:

Ẋ =


A1X(t) + B1 Vin S = 1, D = 0

A2X(t) + B2 Vin S = 0, D = 1

A3X(t) + B3 Vin S = 0, D = 0

(1)

The matrices A1, A2 and A3 as well as vectors B1 = B2 and B3 are defined as follows:

A1 =


− rL+rS

L
0 0

0 − 1
Tm(1+kC)

0

0 g
Ta(1+kC)

0

 , B1 =


Vin
L

0

− gkDVref

TaVin

 (2)

A2 =


− rL+rD

L
− rC

L(1+kC)
− 1

L(1+kC)
0

1
C(1+kC)

− 1
Tm(1+kC)

0
grC

Ta(1+kC)
g

Ta(1+kC)
0

 , B2 =


Vin
L

0

− gkDVref

TaVin

 (3)

A3 =


0 0 0

0 − 1
Tm(1+kC)

0

0 g
Ta(1+kC)

0

 , B3 =


0

0

− gkDVref

TaVin

 (4)
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With g = ra/R1, Tm = RC, Ta = raCa kc = rc/R, kD = (R1 +R2)/R2. The output of

the voltage loop is Vk, which is given by:

Vk(t) = Vref (1 + gkD)−
(

g
1+kC

)
VC(t)− Va(t)

Where Vref is the reference voltage. With the voltage Vk and the compensation ramp

Vr, the reference current iref is generated as:

iref = Vk(t)− Vr

Vr = ma mod
(

t
T

)
Where ma is the slope of the compensation ramp. The current loop provides a current

iM which is defined as MiL, where M is a constant gain factor. iM and iref are compared to

obtain the control signal that drives the flip-flop. The PWM signal and the value of current

iL define the topology in which the system is at every moment. The value of the parameters

are L = 165µH, C = 150µF, rL = 0.04Ω, rC = 0.03Ω, rD = 0.01Ω, rS = 0.055Ω, T = 60µs,

Vref = 2.5V, R1 = 47kΩ, R2 = 6.8kΩ, ra = 4.7kΩ, Ca = 2000nF, M = 0.3, ma = 0.445.

Figure 2 shows a bifurcation diagram when the input voltage Vin varies. There, it can

be observed the dynamical behavior of the inductor current iL. When Vin < 5.84V the

period-1 orbit is unstable and for Vin ∈ (5.84V 10V ) is stable.

Figure 2. iL (A) vs Vin (V)
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3. Stability analysis of the period-1 orbit

The boost power converter can be analyzed as a piece-wise linear system (PWL). This means

that the system changes between two linear systems when some events occur. One of the

most important mathematical tools to analyze the stability of periodic orbits in PWL is

the monodromy matrix. A complete explanation about the construction of the monodromy

matrix can be found in [8]. Figure 3 shows schematically the evolution of the system in one

period T . The system starts in t = 0 and evolves in the subspace V− according to to flux φ1.

When the event occurs at t = tp the system changes the topology and evolves with flux φ2

in the subspace V+ until t = T . At this moment the topology changes again and the cycle is

repeated. The condition to topology changes is given in a general form as h(x(t)) = 0 and

it is represented as the hipersurface Σ. The name of the vector fields before and after the

commutation are f− and f+, respectively.

0

tp− tp+

φ1

φ2Σ

V− V+

Figure 3. Periodic orbit with switching surface

The monodromy matrix Mm is the solution matrix of the system in a full clock cycle

and it contains the evolution of the systems using the fluxes and the saltation matrix S. The

monodromy matrix is given by

Mm (T, x0, 0) = φ2 S φ1 (5)

and S can be expressed as [8]:

S = I +
(f+(x(tp), tp)− f−(x(tp), tp))nT

nT f−(x(tp), tp) +
∂h(x(tp),tp)

∂t

(6)

where I is the identity matrix and n is the normal vector to the switching surface.

With the monodromy matrix and the Floquet theory it is possible to study the stability of

periodic orbits in a PWL, such as the boost converter [6]. Applying this technique to the

boost power converter, we find the same limit value of stability as the one already reported

in the literature and equally found in the previous section.
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Figure 4 shows the largest absolute value (MVP) of the eigenvalues of the monodromy

matrix for the boost converter as Vin varies. It can be seen that the point where the MVP

is greather than one agrees with the result presented in figure 2.

Figure 4. Maximum modulus of the eigenvalues (MVP) vs Vin (V)

4. A new method to enhance the stability of the period-1 orbit

We propose to change the norm of the saltation matrix to widen the range of stability of

the period-1 orbit. In particular, retuning the parameters of the controller based on their

original values (parameters of current and voltage loops). For a boost converter the switching

function h(x(t)) is given by:

h (x(t)) = k0 −MiL − g
1+kc

Vc − Va −mamod
(

t
T

)

Note that h(x(t)) affects the saltation matrix with its time derivative and its normal vector

n. The normal vector n is obtained as follow

n =

[
∂h

∂iL

∂h

∂VC

∂h

∂Va

]T
=

[
−M − g

1 + kc
− 1

]T
(7)

Then we proposed to add a general term depending on the states such that the new

normal vector n is given by:

n =

[
−M + α − g

1 + kc
+ β − 1 + γ

]T
(8)
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The constants α, β and γ must be tuning using information of the matrix norm. Recall

that the matrix norm-2 is defined as ||M ||2 =
√
ρ(MTM), where ρ(MTM) is the spectral

radius of the MTM matrix, i.e. the maximum eigenvalue. The norm of the monodromy ma-

trix for the boost converter as Vin varies is depicted in Figure 5(a). Close to the point where

the system loses the stability the value of the monodromy matrix norm is 7.3 approximately.

On the other hand, it can be seen that the value of the norm of the saltation matrix is very

close to the the monodromy matrix one (fig. 5(b)), the difference between them is no greater

than 0.08. Even more, as the proposed compensation only affects the normal vector of the

switching surface, we will study the relation between the norm of this vector (||n||) and the

saltation matrix one (||S||).

(a) ‖M‖ vs Vin (V). (b) ‖S‖ vs Vin (V).

Figure 5. Induced norm of monodromy matrix and saltation matrix.

The norm of the normal vector n in terms of the parameters of the paper is 1.0041, and

the saltation matrix norm close to the value where the sytem loses the stability is 7.3. Note

that the norm of normal vector does not depend on the input voltage Vin. At the follows,

we decide to stabilize the period-1 orbit starting at least from Vin = 3V; for doing that

we note that the norm of the saltation matrix is 12 approximately and propose to use an

optimization algoritm such that the norm of the normal vector given by:

‖n‖ =

(
(−M + α)2 +

(
−g

1 + kc
+ β

)2

+ (−1 + γ)2
)1/2

is equal to 1.0041/2. M = 0.3 and g/(1 + kc) = 0.099. The sqp minimization method
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was implemented using the fmincon function provided by Matlab and we obtained α =

0.1570, β = 0.0523, γ = 0.5233.

5. Results and conclusions

The proposed method to tuning the controller parameters for widennig the range of stability

of the period-1 orbit is obtained, as can be seen in Figure 6. Figure 6(a) shows the evolution

of the maximum absolut value of the eigenvalues of the monodromy matrix, and figure 6(b)

displays the bifurcation diagram using Vin as bifurcation parameter. Note that the period-1

orbit is stable for a full range of input voltage Vin without increasing the slope compensation.

(a) MVP vs Vin (V) (b) iL (A) vs Vin (V)

Figure 6.

Control techniques starting from the study of the saltation matrix S have emerged in

the last times. We apply this approach to develop a new strategy for widening the stability

of the period-1 orbit, without changing the firstly defined compensation ramp value.

Converters need to be robust so that they are able to remain stable, even when variations

in external parameters such as input voltage and load resistance are present. To achieve this,

an adequate control technique considering those scenarios must be applied. The method

proposed in this paper guarantees good behavior in both cases.
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Resonance behavior of dissipative spring-pendulum systems 

 

 

Katarina Plaksiy, Yuri Mikhlin 

Abstract: Some nonlinear dissipative system under external and internal resonance 

conditions is considered. In dissipative systems all important characteristics of 

dynamical process depend on time. Besides, nonlinear vibration modes (NNMs) here 

are not the classical nonlinear normal vibration modes because the vibration 

amplitude decreases here. The reduced systems which are written with respect to 

variables determining the system energy, the arctangent of the amplitudes ratio and 

the difference of phases, are used. Interaction of NNMs and appearance of the so-

called transient nonlinear normal modes (TNNMs), which exist only for some levels 

of energy, are analyzed. The system motions approach TNNMs when the system 

energy is close to these specific levels. Then the energy decreases and motions tend to 

other stable vibration modes. All obtained results fully correspond to direct simulation 

of the basic system. 

1. Introduction 

Presence of external and internal resonances leads to complex behavior of nonlinear systems. In 

particular, few vibration modes can exist simultaneously; some vibration modes can lose their 

stability, and new vibration modes can appear as a result of bifurcations; the energy transfer from 

some vibration mode to another one can be observed etc. The resonance dynamics is analyzed in 

numerous publications, in particular, in books [1-3]. The vibration energy transfer and the energy 

localization under resonance conditions is discussed in various publications, in particular, in [4-7]. In 

particular, a process of energy transfer to a nonlinear absorber, where the energy is localized and 

dissipated, is described in different publications.  

Nonlinear normal modes (NNMs) are the important part of nonlinear systems behavior. The 

Kauderer-Rosenberg concept of NNMs, first proposed in [8,9] for conservative systems, is based on 

determination of trajectories in the nonlinear system configuration space. Theory of NNMs for 

conservative and non-conservative systems and different applications of this theory are presented in 

numerous publications, in particular, in [2,10-12]. In nonlinear dissipative systems the classical 

NNMs by Kauderer-Rosenberg cannot appear due to exponential decrease of vibration amplitudes, 

but some similar vibration regimes exist.  

Use of the so-called reduced system, which was utilized earlier for nonlinear non-dissipative 

systems [13,14], permits to describe the resonance behavior of nonlinear dissipative systems too. The 
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reduced system is written with respect to variables which characterize the system energy, the 

arctangent of the ratio of amplitudes and the difference of phases. The most important characteristics 

of the resonance behavior in nonlinear systems can be analyzed by such systems. They were 

successfully used in analysis of the resonance behavior of some nonlinear dissipative systems in 

[15,16]. Besides, the transient nonlinear normal modes (TNNMs) existing only for some specific 

values of the system energy, were first described in these publications. Although TNNMs disappear 

when the energy level decreases, they are temporarily attractive for other motions of the dissipative 

system, when the system energy is close to these specific energy values.  

 This paper is organized as follows. Model of the forced resonance vibrations of a spring-

pendulum system (the rotator on the spring) is considered in Section 2. Note that the small mass 

pendulum can be considered as a vibration absorber. A case of external resonance on the frequency of 

spring vibrations is considered in Section 3. A case of simultaneous external and internal resonances 

is analyzed in Section 4. A case of external resonance on the frequency of pendulum vibrations is 

considered in Section 5. An investigation of the vibration modes stability and bifurcation is performed 

in these resonance cases. The energy transfer from the unstable mode to another stable one is 

considered. The transient nonlinear normal modes are determined and their influence on the system 

behavior is showed. The localization of energy is discussed and obtained results are compared with 

numerical simulations.  

 

Figure 1.   Rotator on the spring (spring-pendulum system) 

2. Forced resonance vibrations of dissipative rotator on the spring 

The model of the system under consideration is presented in Fig. 1.  

Equations of motion of the system with small dissipation are the following: 
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where 
R

y
u  , t , )/( mMk  , )/(2  Rgp , )/( Mmm  , 22 /1 u , 

))/(( 22
0  RmMFf , ))/((  mMuu  ,  )/(  m  , 

x  and   are coefficients of 

dissipation; ε is the small parameter.  

There are two NNMS by Kauderer-Rosenberg in the system (9) without dissipation and external 

excitation, namely, the localized u mode of vertical vibrations ( )(uu  , 0 ) and the non-

localized  mode (or pendulum mode), when vibration amplitudes for vertical and angle coordinates 

are of the same order. When dissipation exists, such modes are not the NNMs by Kauderer-

Rosenberg, because they are not periodic.  

3. Case of external resonance on the frequency of spring vibrations 

Using the multiple time scales method and introducing the transformations uu  ,    for 

small vibrations, we present coordinates in the form of the following asymptotic series: 
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 uuu
                                                                                                                   (2) 

Here iu  and i  are functions of the independent time scales  n
nT   (n=0,1,2,…). To analyze 

the system (9) dynamics in the vicinity of the external resonance on the fundamental frequency 
u , 

the detuning parameter Δ is introduced by the relation   12
u . Using standard procedure of the 

multiple scales method [17], and expansions in power series for sin  and cos , one has as the 

intermediate result the following solution of the zero approximation by the small parameter:   
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Then the solution (3) must be substituted to the system of the second approximation by ε, and 

secular terms are eliminated. The following condition of the secular terms elimination is received:  
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The change of variables ui
uu eaC


 , 


i

eaC   leads the system (4) to the system of equations 

with respect to amplitudes 
ua , a  and phases 

u ,   of the solution (3). The next change of 

variables,  cos5.0 Kau  ,  sinKa   permits to make transformation to the reduced system, 

written with respect to the energy characteristic parameter K, the arctangent of the ratio of amplitudes 

  and the phases 
u ,  : 
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Equilibrium positions of the second and third equations of the system (5) are analyzed. These 

equilibrium positions, describing “vibrations in unison”, correspond to NNMs of the original system 

(1). The additional analysis for the first equation of the system (5) is done for each vibration mode.  

Relation 0sin   corresponds to localized vibrations on the elastic spring. This vibration mode 

exists for all values of the parameter K . It is characterized by the straight line 0  in the space 

),(  . In this case it is necessary to analyze trajectories in the space ),(   to make some 

conclusion about stability of the mode localized vibrations.  

The condition 0cos  . It corresponds to the straight line 2/   in the plane ),(  . One 

has from the second equation of the system (5) that this equilibrium position exists if nu   0 . 

The energy equation for the mode is the following: KK
2

 . We can see that the energy 

decreases, so, localized on pendulum vibrations are unstable, and this hypothetical vibration mode 

cannot be realized.  

If both 0cos   and 0sin  , the mode of coupled vibrations of the system (1) can appear. 

Condition of the mode existence is obtained from the second equation of the reduced system (5) in the 

form: 
22)(2

cos








uK

f
, 




 u

utg


  . 

Then the reduced system (5) is integrated by the Runge-Kutta method of the 4-th order with step 

01.0h , when 
2

)0(0


   for the following parameters: 5.0)0( K , 2.0 , 4.0u , 

4.0  and 2.0f . Trajectories in the space ),(   are presented in Fig. 2.  
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Figure 2.   External resonance on the frequency of spring vibrations. Trajectories in the place ),(  . 

All trajectories in Fig. 2 approach the line 0  which corresponds to the stable vibration mode 

with localization on the spring. Stable modes of coupled vibrations do not appear. 

Note that direct numerical simulation of the original system (1) by the method of Runge-Kutta of 

the 4-th order fully confirms the preceding analysis of the reduced system.  

4. Case of simultaneous external and internal resonances   

To consider motions of the system under consideration in the vicinity of both external and 

internal resonances one introduces to equations of motion (1) two detuning parameters 1  and 2  by 

relations: 1
2 1  u , which corresponds to the vicinity of external resonance, and 2

2

4

1
 p , 

which corresponds to the vicinity of the main parametrical resonance of the system (1).  

The solution of the first approximation by the multiple scales method can be written in the form 

(3) for 2/1p . This solution is substituted to the equations of the second approximation by the 

small parameter, then secular terms are eliminated. Change of variables, ui
uu eaC


 , 


i

eaC  , 

gives the system of modulation equations written with respect to amplitudes 
ua , a  and phases 

u , 

 , which are not presented here. Next change of variables, 


cos
2

Kau  ,  sinKa  , leads 

to the reduced system (6), written with respect to the energy characteristic parameter K, the arctangent 

of the amplitudes ratio   and the phases u ,  . The equation (7) with respect to the phase 

difference   2 u  is written too.  
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)cos))cos/(()2cos()cos)cos/((sin4(5.0 2
21 uu KfK    .   (7) 

Equilibrium positions for the second equation of the system (6) and equation (7) are considered. 

Condition 0sin   corresponds to the localized mode of spring vibrations. This mode exists for all 

values of the energy parameter K ; it is described by straight line 0  in the plane ),(  . If both 

0cos  , and 0sin  , it is possible to observe the mode of coupled vibrations. Condition of the 

mode existence which can be obtained from the second equation of the reduced system (6) is the 

following: uuuu KfK   sin))(2/()2sin()/(cos  . This condition 

corresponds to two modes of coupled vibrations. The further analysis shows that one of them is stable 

mode of coupled vibrations and another one is the transient mode of coupled vibrations, which is a 

result of bifurcation. 

 To construct trajectories in the space ),(   the reduced system (6) is integrated by the Runge-

Kutta method of 4th order, when the initial value of arctangent of the amplitudes ratio changes on the 

interval 
2

)0(0


  , 5.0)0( K  and system parameters are the following: 3.0u , 2.0 , 

4.0 , 2.01  , 1.02  , 35.0f . Trajectories in the space ),(   are shown in Fig.3.  

 

Figure 3.    Simultaneous external and internal resonances. Trajectories in the space ),(   
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 Each trajectory has a loop near some quasi-equilibrium state of the reduced system. This state 

moves in the space ),(   and corresponds to the transient nonlinear normal mode (TNNM) which 

exists only for specific value of the system energy; so, the TNNM exists in some moments of time 

corresponding to this energy level. It is important, that this transient mode is attractive and other 

motions of a system are close to the TNNM near the mentioned moment of time. We can see in the 

Fig. 3, that later, when the transient mode disappears, trajectories in the plane ),(   tend to the 

equilibrium position which corresponds to the stable nonlinear normal mode of coupled vibrations. 

Note that this equilibrium position is closer to the straight line 2/  , which corresponds to 

localized on pendulum vibrations, than to the straight line 0 , which corresponds to localized 

vibrations of spring. So, the mode of the localized vibrations of spring is not stable here.    

 To illustrate behavior of the spring-pendulum system in vicinity of the resonances, the system 

(1) is integrated numerically by the Runge-Kutta method on the interval ]1000,0[  for the 

following initial values corresponding to localized vibrations of the spring, 0995004.0)0( u , 

00196013.0)0(  , 0115758.0)0( u , 000212261.0)0(  , and for the system parameters 

3.0u , 2.0 , 35.0f , 2.0 , 2.01  , 1.02  , 1.0 , 26.02 p , 01.12 u . 

Trajectories in the system configuration plane are shown in Fig.4 for the following intervals of time: 

]250,0[  (Fig.4a), ]500,400[  (Fig.4b) and ]1000,0[  (Fig.4c). 

So, one has the following conclusion about dynamics of the dissipative system (1) in the vicinity 

of simultaneous external and internal resonances: at first, the transient nonlinear normal mode of 

coupled vibrations appears. At the beginning of the process localized mode of spring vibrations loses 

stability and motions of the system become close to this TNNM which is determined by trajectories, 

which are close to parabola with branches down (Fig. 4a). Then, due to instability of this mode, 

motions of the system tend to the mode of coupled vibrations which is stable here. Trajectory of this 

stable mode is observed in Fig. 4b where vibrations for great values of time are shown. This stable 

mode is close to the localized mode of the pendulum vibrations, and it can be used in the problem of 

vibration absorption. Namely, it is possible to guarantee transfer of the energy from vibrations of 

spring to the pendulum vibrations, where the vibration energy can be dissipated. So, the numerical 

simulation fully confirms results obtained above by analysis of the reduced system. 
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(a) (b) 

 
(c) 

Figure 4.    Trajectories )(u  in configuration space for ]250,0[  (a); ]500,400[ (b); ]1000,0[ (c) 

5. Case of external resonance on the frequency of pendulum vibrations 

Similar approach permits to analyze the case of the external resonance on the natural frequency of 

pendulum vibrations. The detuning parameter is introduced by the relation 2
2

4

1
 p .  

Using the same approach which was described above, one obtains the reduced system in the form  
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The equation concerning phase difference can be written in the form: 
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 22cos))1/(( 2
 uf                                                                                               (9) 

Simultaneous analysis of the second equation of the reduced system (8) and equation (9) permits 

obtain two equilibrium states for this case. Namely, the equality 0sin   corresponds to localized 

vibrations of the spring, and 0cos  the equality corresponds to coupled vibrations of the 

pendulum and spring. In the last vibration mode amplitudes of pendulum vibrations increase due to 

external resonance and are essentially larger than amplitudes of the spring vibrations. It means that 

localization of the system energy on the pendulum is possible in this case.  

For the case of localized spring vibrations, 0sin  , there is no need in additional condition for 

phase difference. On the contrary, if 0cos  , one has the condition for equilibrium state of the 

equation (9) as fu /)1(22cos 2   . This state exists in the region of parameters, 

1/)1(2 2  fu ; so, its existence depends on value of amplitude of external excitation f : for 

small values of f  this equilibrium state does not exist.  

To construct trajectories in the space ),(   the reduced system (8) is integrated by the Runge-

Kutta method of 4th order for two values of amplitude of external excitation, 35.0f  and 15.0f

, when 2/)0(0   , 5.0)0( K  and the system parameters are the following 2.0u , 3.0u

, 2.0 , 4.0 , 1.0 . Trajectories for two considered cases are presented in Figs. 5 a,b 

respectively.  

  
    (a)         (b) 

Figure 5.   Trajectories in the space ),(  : (a) 35.0f ; (b) 15.0f . 

Trajectories in Fig.5a approach the straight line  
2


  , which corresponds to the mode with 

large amplitudes of pendulum vibrations. In this region of the system parameters localized vibrations 

of the spring lose stability and the mode of pendulum vibrations with large amplitudes is attractive. In 
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Fig.5b trajectories tend to the straight line 0 , corresponding to localization on the spring. Here 

localized vibrations of the spring are stable and large amplitudes for the pendulum are not observed. 

To illustrate behavior of the spring-pendulum system (1) for the case, when large vibrations of 

the pendulum appear, the system (1) is integrated by the Runge-Kutta method on the intervals 

]500,0[
 

and ]300,0[
 

for the initial values 0630421.0)0( u , 0019999.0)0(  , 

00348917.0)0( u , 00505634.3)0(  e  and 0344584.0)0( u , 0995004.0)0(  , 

00539984.3)0(  eu , 0062685.0)0( 
 
of localized and coupled vibrations respectively, and for 

the parameters 2.0u , 3.0u , 2.0 , 35.0f , 4.0 , 26.02 p , 1.0 , 1.0 . 

Trajectories in the system configuration space are presented in Figs. 6 a,b. Transfer to the stable mode 

of large vibrations of the pendulum is shown. It corresponds to Fig.5 a,b in the space )( . 

 

 

a)                                                                        b) 

Figure 6.   Dependence )(u . a) Transfer from localization on the spring to localization on the 

pendulum; b) Transfer from coupled vibrations to localization on the pendulum. 

To illustrate behavior of the spring-pendulum system (1) in the vicinity of resonance, when large 

vibrations of the pendulum are absent, we consider coupled vibrations of the system for not large 

amplitude of external excitation. The system (1) is integrated by the Runge-Kutta method of the 4-th 

order on the intervals ]500,0[ and ]300,0[
 

for the initial values 015425.0)0( u , 

0099995.0)0(  , 00604.3)0(  eu , 000151775.0)0(  , and for system parameters 2.0u , 

3.0u , 2.0 , 15.0f , 26.02 p , 4.0 , 1.0  1.0 . Trajectories in the 

configuration space are shown in Fig.7. Here coupled vibrations in this region of the system 

parameters are unstable and trajectories tend to the stable mode if localized vibrations of the spring. 

This situation corresponds to Fig.5b in the place )( . So, numerical simulations fully confirm 

results obtained by the reduced system approach.  
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Figure 7.   Dependence )(u  Localization on the spring.  

6. Conclusions  

Dynamics of the dissipative spring-pendulum system (1) under the periodic external excitation is 

analyzed in the vicinity of external resonances and in the vicinity of simultaneous external and 

internal resonances. Analysis of the resonance dynamics in this system is made by using the concept 

of nonlinear normal modes by Kauderer-Rosenberg, which was generalized to dissipative systems. 

Transfer to the reduced system, written with respect to the system energy, the arctangent of 

amplitudes ratio and the difference of phases, is used in this analysis. We can note that earlier new 

results in dynamics of nonlinear non-dissipative systems were obtained by use of similar coordinates. 

It means an analysis of so-called «limiting phase trajectories» (LPT) [18] and of energetic interaction 

between nonlinear normal modes [14].   

Here a transient from the unstable NNMs to the stable ones in vicinity of resonance is described 

in the dissipative spring-pendulum system. Besides, in the vicinity of the resonance the transient 

nonlinear normal modes, which exist only for some levels of the system energy, appear. Although 

each TNNM exists only for some moment of time, it attracts other motions of the system near this 

time value. When this mode disappears, motions of the system attract the stable nonlinear normal 

mode. For the case of the external resonance on the fundamental frequency of pendulum vibrations 

two variants are possible: if the value of amplitude of external excitation is large enough, then 

localization of the system energy on pendulum is observed and localized spring vibrations lose their 

stability; else the localized spring vibrations remain stable. Reliability of obtained analytical results is 

verified by numerical simulation. So, we can conclude, that the analysis of the reduced system is 

effective for nonlinear dissipative systems.  
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Aeroelastic stability analysis via multiparameter eigenvalue 
problems 

 

Arion Pons, Stefanie Gutschmidt 

Abstract: This paper presents a new method of identifying and analysing stability 

boundaries in parametric systems using multiparameter spectral theory. Considering 

our driving application, the analysis of aeroelastic flutter instability, we identify 

methods by which the location of the stability boundary  be expressed as a 

multiparameter eigenvalue problem and thus solved. This approach yields far-

reaching results, including direct solvers for arbitrarily large polynomial problems, 

iterative and approximate direct solvers for systems that are strongly nonlinear in the 

frequency domain, and a novel method of system visualisation. These solvers and 

methods are tested on two aeroelastic section models and the Goland wing benchmark 

model, and their advantages and limitations are explored. 

1. Introduction 

The understanding and prediction of aeroelastic instability is a primary concern in the discipline 

of aeroelasticity. Aeroelastic instability, often termed flutter when occurring dynamically,  be 

observed in a wide variety of systems – not only wings and aerofoils, but wall plates [1], hosepipes 

[2] and more. In a linear system, or the linearisation of a nonlinear system, the onset of flutter can be 

described by the modal stability criterion: 

Im(𝜒) > 0 for stability, (1) 

where 𝜒 are the time-eigenvalues of the system, transformed according to 𝑞(𝑡) = �̂�𝑒𝜄𝜒𝑡 for the system 

coordinate 𝑞 [3]. Note that other transforms and nondimensional eigenvalue definitions are possible. 

A flutter point  then be described as a tuple of the modal frequency of instability, 𝜒f ∈ ℝ, and any 

relevant system parameters (in particular, a local airspeed). As flutter is often associated with 

structural failure, only the first few flutter points are usually of industrial relevance. 

 

However, even in a linear or linearised system, Eq. 1 is not the only stability criterion available; 

it corresponds to what is known as the p-method [4]; and a variety of other aeroelastic ‘methods’ are 

available: A major strain of variants includes the k-method and p-k method, which utilize a structural 

damping term to describe stability. They are detailed and discussed in a number of reference works 

[3–5]. In recent years several authors have refined these methods [6–8] and devised new methods. 

The 𝜇-type methods, including the 𝜇-method by Lind and Brenner [9] and the 𝜇-k method by 

Borglund [10,11], facilitate the propagation of uncertainty distributions through the system. Irani and 
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Sazesh [12] characterized flutter instability using stochastic methods, and Afolabi [13,14] applied 

eigenvector orthogonality conditions from catastrophe theory. 

 

All of these approaches, however, are based on the single-parameter approach of computing a 

stability metric (Im(𝜒), 𝜇 or whatever else) across a range of system parameter values and identifying 

relevant stability boundaries. We propose an entirely different method of analysis. We show that the 

solution of an aeroelastic system for its flutter points – or the analysis of any other frequency-domain 

stability problem – is nothing other than a multiparameter eigenvalue problem. We will demonstrate 

how this approach leads to a number of improved solvers for a wide range of parametric stability 

problems drawn from the field of aeroelasticity. Our methods are equally applicable in other fields. 

2. Multiparameter analysis 

Consider a linear finite-dimensional system with eigenvector 𝐱 ∈ ℂ𝑛, continuously dependent on 

both an eigenvalue parameter 𝜒 ∈ ℂ, and another structural or environmental parameter 𝑝 ∈ ℝ: 

A(𝜒, 𝑝)𝐱 = 𝟎, (2) 

where A ∈ ℂ𝑛×𝑛. Any complex-valued structural parameter can be split into two real parameters. We 

then note that the condition for the stability boundary, Im(𝜒) = 0, is equivalent to defining the 

problem with 𝜒 ∈ ℝ. However, under 𝜒 ∈ ℝ a solution to Eq. 2 only exists on the stability boundary, 

and nowhere else. To define some form of solution in the subcritical and supercritical areas (above 

and below the stability boundary, respectively), following [15], we take the complex conjugate of Eq. 

2 as another equation: 

A(𝜒, 𝑝)𝐱 = 𝟎, (3) 

A̅(𝜒, 𝑝)�̅� = 𝟎. (4) 

As 𝑝 ∈ ℝ and 𝜒 ∈ ℝ are unaffected by conjugation, this operation enforces these conditions. This 

procedure has been utilized before in the analysis of delay differential equations [15], and (in a 

limited form) in the context of Hopf bifurcation prediction [16], though in the latter its significance 

appears not to have been recognised. Equation 3 a multiparameter eigenvalue problem (MEP): an 

eigenvalue problem in which the eigenvalue point is not simply defined by a scalar and an 

eigenvector, but by an 𝑛-tuple and an eigenvector. A number of methods of analysis have been 

developed for such problems, and in this paper we will explore some of these. 

 

 

 

436



3. Linear and polynomial problems 

3.1. Direct solution 

Consider a linear instability problem: 

(A + B𝜒 + C𝑝)𝐱 = 𝟎, (5) 

(A̅ + B̅𝜒 + C̅𝑝)�̅� = 𝟎. (6) 

Post-multiplying Eq. 5 by C̅𝐲 and premultiplying Eq. 6 by C𝐱, we obtain 

(A + B𝜒 + C𝑝)𝐱 ⊗ (C̅𝐲) = 0, (7) 

(C𝐱) ⊗ (A̅ + B̅𝜒 + C̅𝑝)𝐲 = 0. (8) 

Equations 7 and 8 are equal to zero and so we  equate them. After cancelling the terms in 𝑝, the result 

becomes: 

Δ1𝐳 = 𝜒Δ0𝐳, (9) 

with an enlarged eigenvector 𝐳 = 𝐱 ⊗ 𝐲 and the operator determinants 

Δ0 = B ⊗ C̅ − C ⊗ B̅, (10) 

Δ1 = C ⊗ A̅ − A ⊗ C̅, (11) 

Δ2 = A ⊗ B̅ − B ⊗ A̅, (12) 

which are of size 𝑛2 relative to system coefficients of size 𝑛. Equation 9 is a generalized eigenvalue 

problem (GEP), in the single parameter 𝜒. GEP solvers are very widely available.  

 

The operator determinants also define a GEP in 𝑝. Multiplying by B̅𝐲 and B𝐱, we have: 

Δ2𝐳 = 𝑝Δ0𝐳. (13) 

However, only one of Eq. 9 or Eq. 13 need be solved: the solutions of one can be substituted back 

into the original system, which yields smaller GEP for the other parameter. Alternatively, Rayleigh 

quotients  be used. The problem’s stability boundary has thus been computed directly. This solution 

method is known as the operator determinant method. Its computational complexity is 𝒪(𝑛6) [17–19]; 

solving the GEP via the QZ algorithm (an 𝒪(𝑛3) process) [20], with operator determinants of size 𝑛2. 

The operator determinant method has not previously been used in aeroelasticity, and has only rarely 

seen engineering application in the study of dynamic model updating [21].  We note that a variety of 

other iterative methods are also available for the solution of linear MEPs, including the Jacobi-

Davidson [22], Implicitly Restarted Arnoldi [23] and Harmonic Rayleigh-Ritz [24] methods. 
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3.2. Linearisation of polynomials 

Any polynomial MEP can be linearised [18,25]; a process which resembles the well-known 

linearisation of single-parameter problems. For example, a quadratic problem (A + B𝜒 + C𝜏 + D𝜒𝑝 +

E𝜒2 + F𝑝2)𝐱 = 𝟎  be linearised with the eigenvector definition 𝐪 = [𝐱;  𝜒𝐱;  𝑝𝐱]. 

([
A B C
0 −𝐼𝑛 0
0 0 −𝐼𝑛

] + [
0 D E
𝐼𝑛 0 0
0 0 0

] 𝜒 + [
0 0 F
0 0 0
𝐼𝑛 0 0

] 𝑝) [

𝐱
𝜒𝐱
𝑝𝐱

] = 𝟎. (14) 

Quadratic problems are particularly relevant in aeroelasticity given the near-quadratic dependence of 

most systems on airspeed and modal frequency. There is also an alternate method of linearisation, 

known as quasilinearisation [18], which increases the number of eigenvalue parameters instead of the 

coefficient size. In this brief work however we focus on standard linearisation. 

 

3.3. Singularity 

A linear MEP  be singular; as governed by the singularity of Δ0. When this occurs the operator 

determinant method as described breaks down  [18,26].  A number of problems that arise in the study 

of aeroelasticity are singular, because the linearization of polynomial problems tends to generate 

singular linear problems, even if all the coefficients of the original problem are at full rank (cf. Eq. 

14). Recently, an extension to the operator determinant method was proposed that allows it to cope 

with this singularity. Muhič and Plestenjak [25] proved that the eigenvalues of a polynomial system 

are equivalent to the finite regular eigenvalues of the pair of singular operator determinant GEPs 

constructed via linearization. The finite regular eigenvalues of Eq. 5 and 6 are the pairs (𝜒, 𝑝) such 

that [26]: 

rank(A + B𝜒 + C𝑝) < max
(𝑠,𝑡)∈ℂ2

rank(A + B𝑠 + C𝑡), (15) 

that is, they are the points that cause the singular problem to have its maximum rank. On the basis of 

this proof, Muhič and Plestenjak [25] devised a set of algorithms which would extract the common 

regular part of the singular matrix pencils Δ1 − 𝜒Δ0 and Δ2 − 𝑝Δ0. This common regular part is 

represented by two smaller nonsingular matrix pencils (Δ1ns − 𝜒Δ0ns and Δ2ns − 𝑝Δ0ns), which  be 

solved by GEP solvers as per normal. The algorithms involved in the extraction of the common 

regular part are presented in [25] and published also in code [27]. Only one of the additional iterative 

algorithms mentioned in Section 3.1 are capable of solving singular systems with this extension; this 

is the Jacobi-Davidson method [22]. A comparison of this method with the operator determinant 

method for singular systems indicated that the latter is more computationally efficient [28]. 
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4. Nonlinear problems 

4.1. Direct methods 

A variety of nonlinear eigenvalue problems arise in aeroelasticity, and take a variety of forms. 

Note that such problems are not equivalent to nonlinear stability problems; being already in the 

frequency domain. One particularly common class are polynomial problems containing a nonlinear 

scalar function – in aeroelasticity often Theodorsen’s function [4]. Such problems  be transformed 

into approximate polynomial problems (and thus solved) with the choice of an appropriate 

approximation for the nonlinear function. Polynomial, rational or rational fractional-order 

approximations are all admissible. We give a specific example of this method in Section 5. 

4.2. Iterative methods 

Another more general approach to nonlinear MEPs is the use of iterative algorithms that assume 

nothing about the problem’s internal structure. Ruhe [29] proposed a method of successive linear 

problems for one-parameter eigenvalue problems; and generalizations to this method for MEPs were 

published independently by Pons [30] and Plestenjak [31]. For the system of Eq. 2-3 taking first-order 

Taylor series in the eigenvalue variables, we obtain an implicit fixed-point iteration via a linear MEP: 

(A𝑘 + Δ𝜒𝑘X𝑘 + Δ𝑝𝑘P𝑘)𝐱 = 0, (16) 

(A̅𝑘 + Δ𝜒𝑘X̅𝑘 + Δ𝑝𝑘P̅𝑘)�̅� = 0, (17) 

where A𝑘 = A(𝜒𝑘 , 𝑝𝑘), P𝑘 = 𝜕𝑝A(𝜒𝑘, 𝑝𝑘), X𝑘 = 𝜕𝜒A(𝜒𝑘, 𝑝𝑘) and Δ𝜒𝑘 = 𝜒𝑘+1 − 𝜒𝑘, etc. This linear 

problem  be solved at each step with the operator determinant method. This however comes at the 

cost of 𝒪(𝑛6) computational complexity [31]. 

 

Alternatively, a more computationally efficient method of solving nonlinear MEPs  be devised 

by applying Newton’s method to the determinant of the nonlinear matrix coefficient. Defining a state 

vector 𝐯 = [𝜒, 𝑝]𝑇 and the complex-valued scalar determinant function 𝑧 = det(A(𝐯)), we obtain the 

Newton iteration 

𝐯𝑘+1 = 𝐯𝑘 − J(𝐯𝑘)−1𝐅(𝐯𝑘), (18) 

with a real-valued residual function 

𝐅(𝐯) = [
Re(𝑧(𝐯))

Im(𝑧(𝐯))
] = 𝟎, (19) 

and where J is the Jacobian matrix of 𝐅 with respect to 𝐯. We term this method the iterated contour 

plot (ICP) as it can be related to an iterative formulation of the contour plot [30]. It has been applied 
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(in basic form) to two-parameter linear MEPs by Podlevskii [32,33] and to nonlinear MEPs 

independently by Pons [30] and Plestenjak [31]. This method has computational complexity 𝒪(𝑛3), 

for LU-based determinant evaluation [34]. 

4.3. The contour plot 

Modal damping or root locus plots are traditional methods of visualising the stability behaviour of an 

aeroelastic system. However, neither is suitable for visualising our multiparameter formulations, as 

we have 𝜒 ∈ ℝ always. To this purpose we introduce the contour plot, as per Pons and Gutschmidt 

[30,35]. This involves plotting contours of Re(𝑧) and Im(𝑧), where 𝑧 = det(𝐴(𝜒, 𝑝)) for Eq. 2; i.e. 

the real and imaginary parts of the matrix function determinant, as a function of its parameters. These 

contours  be plotted by evaluating 𝑧 over a grid of 𝜒 and 𝑝; their intersection represents a point 𝑧 = 0, 

i.e. a stability boundary. This process is particularly useful for strongly nonlinear matrix functions, 

including nondifferentiable ones. A variety of contour plots are presented in Section 5. 

5. Numerical experiments 

5.1. Section model 

As an initial test system we consider an aerofoil with two degrees of freedom (plunge ℎ and twist 𝜃). 

Figure 1 shows a schematic of such a system, with dimensionless parameters as per Table 1 and the 

airspeed parameter Υ; the airspeed per semichord. A frequency domain analysis of this system, under 

Theodorsen’s unsteady aerodynamic theory yields a problem of the form: 

((G0 + G1
1

𝜅
+ G2

𝐶(𝜅)

𝜅
+ G3

𝐶(𝜅)

𝜅2
) 𝜒2 − D0𝜒 − K0) 𝐱 = 𝟎, (20) 

where 𝐱 = [ℎ; 𝜃], 𝜅 = Υ 𝜒⁄  is the reduced frequency, and 𝐶(𝜅) is Theodorsen’s function, composed 

of a number of Bessel functions [4]. The matrix coefficients in Eq. 20 are: 

G0 =
1

𝜇
[

2 −𝑎 − 𝑟𝜃

−𝑎 − 𝑟𝜃
1
8+𝑎2+𝑟2 ] , G1 =

1

𝜇
[
0 −1
0 −1

2
+ 𝑎] , G2 =

𝜄

𝜇
[

−2 −1 + 2𝑎
1 + 2𝑎 1

2−2𝑎2 ] (21) 

G3 =
1

𝜇
[
0 −2
0 1 + 2𝑎

] , D0 = 2𝜄 [
𝜁ℎ𝜔ℎ 0

0 𝑟2𝜁𝜃𝜔𝜃
] , K0 = [

𝜔ℎ
2 0

0 𝑟2𝜔𝜃
2] (22) 

with parameters as per Table 1. See Pons and Gutschmidt [28] or Hodges and Pierce [4] for details. 

Taking 𝐶(𝜅) = 1 corresponds to the assumption of quasisteady aerodynamics, and with a change of 

variables produces a polynomial system: 

(G0𝜒2 + G1Υ𝜒 + G2Υ2 − D0𝜒 − K0)𝐱 = 𝟎, (23) 
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where Υ = 𝑈 𝑏⁄  is the local airspeed per semichord. This polynomial system  be linearized and solved 

with the operator determinant method of Section 3. 

 

Figure 1.   Schematic of section model 

Table 1: Parameter values for the section model 

Parameter Value 

mass ratio – 𝜇 20 

radius of gyration – 𝑟 0.4899 

bending nat. freq. – 𝜔ℎ 0.5642 rad/s 

torsional nat. freq. – 𝜔𝜃 1.4105 rad/s 

bending damping – 𝜁ℎ 1.4105 % 

torsional damping – 𝜁𝜃 2.3508 % 

static imbalance – 𝑟𝜃 −0.1 

pivot point location – 𝑎 −0.2 

 

The results of this process are shown in Figure 2(a), which includes a contour plot of the system. 

The flutter point is located at 𝜒 = 1.20 rad/s and Υ = 1.98 Hz (𝜅 = 0.606). This agrees with 

nondimensional analytical results by Hodges and Pierce [4]. We can, however, go further than an 

analytical approach:  we  increase the matrix coefficient system size arbitrarily (and the polynomial 

system order) and still obtain exact solutions. A direct solver for polynomial flutter problems of 

arbitrary size and order has never before been presented. 

 

We can also consider the case when 𝐶(𝜅) is fully variable. The resulting MEP is nonlinear; 

however a variety of approximations for Theodorsen’s function are available. We take a rational 

function given by Jones [36]: 

𝐶(𝜅) =
1
2𝜅2+𝑐1𝜅+𝑐2

𝜅2+𝑐3𝜅+𝑐2
, (23) 
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with 𝑐1 = −0.2808𝜄, 𝑐2 = −0.01365, 𝑐3 = −0.3455𝜄. Manipulating Eq. 20 we then obtain a 

polynomial problem of maximum order 𝜅4𝜒2, requiring a custom linearization of 10 blocks width. 

This  be solved via the operator determinant method in under 0.2s on a laptop computer. The results 

are shown in Figure 2(b), also with a contour plot of the system. The fact that this solver is direct is a 

significant advantage over existing solvers for systems of this form. 

 

Figure 2.   Flutter point results for the section model with two aerodynamic models. 

5.2. Goland wing 

As a benchmark test for our iterative algorithms, we analyse the well-known Goland Wing test 

case – representing a cantilever Euler-Bernoulli beam and Saint-Venant torsion model, with strip 

theory Theodorsen aerodynamics [37]. Originally a differential MEP (containing spatial derivatives as 

well as eigenvalue parameters), it is transformed by the Generalised Laplace Transform Method 

(GLTM) [35] into a nonlinear algebraic problem or fixed size (12 × 12). This transformation is 

without discretisation error, though it comes at the cost of obscuring the internal structure of the 

model – hence we treat the transformed problem as black-box nonlinear MEP. There is a small 

variation in parameter values for the Goland wing and so we take parameter values from  Pons and 

Gutschmidt [35] and Wang [38]. For these parameters the Goland wing’s first flutter point is located 

at airspeed 𝑈𝐹 = 138 m/s and modal frequency 𝜒𝐹 = 69.9 rad/s. The first divergence point (static 

instability) is located nearby at 𝑈𝐷 = 253 m/s. Figure 3 shows example SLP iteration paths 

converging to the flutter point, divergence point, and undamped modal frequencies at zero airspeed 

(also technically flutter points). All iterations are convergent, and agree with the results from the 
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literature. Figure 4 shows the convergence basins of the SLP and ICP algorithms to the flutter point, 

computed numerically. The SLP algorithm has the larger basin; though both are very satisfactory and 

the ICP is more computationally efficient.. The SLP algorithm is likely to be attractive for smaller 

systems with little a priori knowledge, whereas the ICP is effective for larger and more expensive 

systems, for which an initial flutter point estimate from an approximate model  be available.   

 

Figure 3.   Six example iterations of the SLP algorithms applied to the Goland wing. 

 

Figure 4.   Convergence basins of the SLP and ICP algorithms to the Goland wing first flutter point. 
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6. Conclusions 

In this paper we have demonstrated and discussed the use of multiparameter solution techniques 

for the solution of aeroelastic stability problems. We have introduced the link between multiparameter 

spectral theory and stability analysis, and we showed how this link can be used to reformulate 

stability problems with a complex-valued stability metric and a pertinent environmental parameter 

into a two-parameter eigenvalue problem. We demonstrated that this allows the direct solution of 

polynomial stability problems, as well as approximate direct and iterative solution methods for 

strongly nonlinear problems. The application of multiparameter methods – in aeroelasticity and in 

other disciplines – has the potential to provide a wide variety of new methods for stability analysis. 
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Theoretical and experimental investigations of nonlinear 

vibrations of a beam with piezoelectric actuators 

 

Jacek Przybylski, Grzegorz Gąsiorski 

Abstract: This paper presents theoretical and experimental investigations of the 

nonlinear flexural vibrations of a structure composed of a host beam with 

piezoelectric ceramic actuators symmetrically bonded to its top and bottom surfaces. 

The composite beam is supported at its ends to completely restrain axial 

displacements or to impose the displacement of one or both ends. Applying voltage to 

piezoelectric actuators one creates prestress which can stabilize the structure when the 

external compressive force appears. The analytical model for describing flexural 

vibration of a beam under both the external load and piezoelectric actuation is based 

on the Euler–Bernoulli model. The piezo material exhibits linear piezoelectricity with 

constitutive equations including electromechanical coupling. Due to the geometrical 

nonlinearity, the solution to the problem has been obtained by using the Lindstedt-

Poincare method. The main results concern the effect of the residual piezo force on 

the non-linear vibration frequency of the structure. In the experimental part of the 

study two laboratory stands has been designed and built for three- and five segmented 

beams to find out and prove the effect of the electric field on the residual force and the 

natural frequency of both systems. A very good agreement between theoretical and 

experimental results has been observed. 

1. Introduction  

The problem of nonlinear vibration of beams with both ends restrained against axial displacement has 

been studied for many years on the basis of both the continuum approach [1-4] and the finite element 

method [5]. While most publications concerned classical Bernoulli-Euler beams, the effects of shear 

deformation and rotary inertia in the case of moderately thick and short beams are also reflected in the 

literature. Raju and Rao [3] used the admissible polynomial functions with multiple terms for 

evaluating the nonlinear (large amplitude) free-vibration behaviour of beams with axially immovable 

ends. The formulation based on the principle of conservation of the total energy of the vibrating 

system were applied to obtain the ratios of the nonlinear to linear frequencies for various maximum 

amplitude ratios. One- and two-term solutions were obtained for the uniform clamped–clamped beam 

and pinned–clamped beam. The two-term solutions showed a very good agreement with the accurate 

finite element solutions available in the literature. A general model based on Hamilton’s principle was 

derived by Azrar et al. [4] who used spectral analysis, Lagrange’s equations and the harmonic balance 
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method to describe non-linear free vibrations occurring at large displacement amplitudes of fully 

clamped and simply supported beams. It was shown that the numerical results obtained by the 

formulations presented in that work are very helpful when the higher order of accuracy is needed for 

very large amplitudes. 

 Piezoceramic smart materials are thoroughly applied for actuators and sensors applications 

because of their high electromechanical coupling coefficients. They are used, among others, for 

vibration control in civil engineering structures like beams, trusses, steel frames and cable-stayed 

bridges. These materials exhibit different types of nonlinearities under different combinations of 

electric and mechanical fields. A review of more than 90 papers including active, passive, semi-active 

and hybrid vibration control systems was presented by Song et al. [6]. Hagedorn and his colleagues 

provided an important contribution to the modeling and experimental testing of the nonlinear 

phenomena in piezoceramic actuators [7, 8] and piezo-beams systems [9]. It was observed in [7] that 

piezoceramics, when excited near resonance in the presence of weak electric fields, exhibit typical 

nonlinearities similar to a Duffing oscillator such as jump phenomena and presence of 

superharmonics in the response spectra. To model such nonlinearities, a nonlinear electric enthalpy 

density function (using quadratic and cubic terms) valid for a general 3-D piezoelectric continuum 

was proposed in that work. In order to optimize the existing applications and develop new 

applications based on the d15-effect of piezoceramic actuators, the nonlinear effects such as softening 

behavior was modeled in [8] using higher-order cubic conservative and nonconservative terms in the 

constitutive equations. Using the approximate solution, nonlinear parameters were identified by 

comparing the theoretical and experimental results. One observed in [9] during experimental tests, 

typical non-linear effects in piezoceramics and in piezo–beam systems excited at resonance by weak 

electric fields, e.g., dependence of the resonance frequency on the amplitude, superharmonics in 

spectra and a non-linear relationship between excitation voltage and vibration amplitude. The 

equations of motion for the system consideration were derived via the Ritz method using Hamilton’s 

principle. After determination the nonlinear’ parameters, the numerical results were compared to 

those obtained experimentally. 

 The main idea of this paper is to find out how piezo actuators in the form of ceramic patches 

bounded symmetrically to a rectilinear beam might influence its static performance and nonlinear 

vibration. It is assumed that the beam from Fig. 1, being unloaded in its reference configuration, is 

subjected to a prescribed axial displacement of one of the supports, which leads to the initial stress. 

The same prestress can be achieved by the compressive axial force, which is related to the axial 

displacement according to Hook’s law. The residual axial force, induced by piezoactuators applying 

the same in-phase voltage, may counteract the external load to prevent the structure becoming 

unstable. The effectiveness of inducing favourable in-plane stress by using piezoelectric elements to 
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enhance the mechanical performance of beams was investigated by Oguamanan et al. [10] and Faria 

[11]. In both works piezoelements were co-locally bonded to the top and bottom surfaces of a beam 

with a rectangular cross section and longitudinally restrained ends. It is necessary to add that only in 

the case when both ends of the beam are constrained against longitudinal displacement, the 

piezoelectric actuators may transfer the tensile forces to the substructure according to the applied 

voltage.  
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Figure 1.   N-segmented beam with co-locally surface-bonded piezoactuators (a), cross-section of the 

piezo-segment (b). 

The particular segments of the beam from Fig. 1 are connected to each other by frictionless pin joints 

with linear massless torsional springs. Modifying the stiffness of the sprigs from zero to infinity one 

may compare the system response adequate to its rigidity and, secondly, this type of articulation is 

often used as a crack model [12]. Free and forced vibrations of beams with cracks have been studied 

extensively for four decades due to its practical importance in order to e.g. control the dynamic 

response of structures to find a possible discrepancy between standard parameters and those 

demonstrating an unusual behaviour resulting from the presence of structure surface damage.      

2. Formulation of the problem 

The considered piezo-beam system shown in Fig. 1 represents n-segmented articulated rectilinear 

stepped beam which ends after application of an initial longitudinal displacement (l) are axially 

constrained. The change in the cross section area of the beam results from the application of  (n-1)/2  

pairs of collocated piezoceramic actuators bonded to the host structure. Przybylski derived in [13] that 
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such number of piezoactuators of the same cross-sectional area (b×hp), being supplied with an equal 

homogeneous electric field characterised by the voltage V, generate the residual piezo-force equal to: 
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where:   am = (1+ Ep Ap)/EA  denotes the axial stiffness ratio of the piezosegment to that of the beam,   

li is the length of the i-th segment,  Ep, E are the Young’s modulus of the piezoceramic and the beam, 

respectively, Ap, A are the cross section areas of the piezoactuators and the beam, respectively, and  

VbeF 312  (2) 

is the piezoelectric force resulting from the voltage V applied to one pair of actuators of width b made 

of the ceramic material characterised by piezoelectric strain constant e31. In the derivation one 

assumed the linear electromechanical coupling and that for thin piezoceramic stripes d33-effect could 

be omitted. It follows from the form of Eq. (1) that the residual force Fr being independent of 

piezosegments' location, depends not only on the piezoelectric force F, but also on the axial stiffness 

ratio am  and the ratio between the length of all piezosegments to whole length of the beam.  

 Due to the large amplitude of the vibrations, the problem is formulated with the use of the von 

Karman nonlinear equations along with Bernoulli-Euler beam theory: 
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where ε(x,t) is the mid-plane strain, κ(x,t) is the curvature, U(x,t), W(x,t) are the axial and transverse 

displacement, respectively. 

2.1. Governing equations 

 To derive the governing equations which are given by the equations of motion one applies 

Hamilton’s principle which for the conservative system takes the form: 
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where T and V are the kinetic and potential energies, respectively. 

The kinetic energy of the system from Fig. 1 is expressed as follows: 
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whereas the potential energy is equal to:  
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where C2i,2i+1 is the stiffness of the rotational spring located between two segments identified by the 

subscripts. 

 The piezosegments denoted in the expressions for energies (6, 7) by even indices have their 

bending and axial stiffnesses as well as masses per unit length equal to the respective sums of those 

for the host beam and piezoceramic layers. The axial force R has got two components:  

R = Fr +P (8) 

- the residual force Fr  and force P which results from an initial prescribed displacement of one or two 

supports. The value of the latter force may be determined from Hooke's law. 

 After inserting Eqs. (6) and (7) into Eq. (5), performing necessary integration and variational 

operations with assumptions that virtual displacements Wi(xi,t) and Ui(xi,t) are independent and 

arbitrary within each interval ii lx 0 , one obtains the following system of 2n governing equations: 
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Integration of Eq. (10) may be useful for defining an axial dynamic stretching force S(t) which 

appears along each segment of the beam during transversal vibrations. Hence both Eqs. (9) and (10) 

may be transformed to the form: 
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For the sake of providing more general analysis and discussion of results, the non-dimensional form 

of governing equations are introduced on the basis of the following introductions: 
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Hence the non-dimensional equation of motion of the i-th segment takes the form: 

         02   ,wn,wsrm,w iiii
II

iii
IV

i
 ,                                i = 1, 2,..., n (14) 

where:  

       1
2

1 2

1



ij

mi rm ,     
 
 

 1
2

1

1

21

2

1

1
















ij

m

m
i

r

a
n




,       1-j  (15) 

and Roman numerals denote the order of derivative with respect to the space variable and dots with 

respect to time. 

Knowing that the axial displacement of supports are equal to zero (u1(0) = un(ln) = 0), dimensionless 

force s() existing in Eq. (14) may be presented as: 

 
   

 
i

n

i

d

i

ii

n

i
i

m

n

i
i d

,w
d

a
ds

i







2

1 0

1

1
2

1

1
2

1
2

1

1
12

1

2
 











 





























  (16) 

2.2. Boundary conditions 

As the solution and analysis of the problem makes possible to cover all types of supports which 

provide axial restraint of the beam-ends, the boundary conditions are divided into two groups:  

 - the first group, being independent from the type of supports, describes the continuity of the 

piezo-beam system and the equality of the shearing forces and the bending moments at the piezo-

segment boundaries (natural boundary conditions derived from Hamilton's principle): 
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                i = 2, 4,..., n-1 (23) 

 - the second group specifies the type of supports. For the pin-ended system the boundary 

conditions are: 
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For a beam with clamped ends, both the displacement w and the slope wI are equal to zero at those 

ends, whereas for a beam with both ends sliding the slope wI and the shearing force - EIwIII vanish at 

the supporting points. When a mixed type of support is used, adequate boundary conditions need to be 

chosen from those described above. 

2.3. Approximate solution 

Lindstedt-Poincare method, which is a technique of uniformly approximating periodic solutions to 

ordinary differential equations, has been chosen to solve the stated non-linear boundary value 

problem. According to the method, the relevant quantities are expanded into exponential series with 

respect to the amplitude parameter  ( << 1). 
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By introducing Eqs. (25-27) into equations of motion (14) and axial force (16), then equating the 

terms of respective  exponents to zero, one obtains an infinite set of equations, from which the first 

four equations are as follows: 
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Boundary conditions for rising powers of , necessary for the solution procedure, are derived after 

introduction of Eqs. (25-26) into Eqs. (17-24). Having those sets of conditions, Eqs. (30-33) may be 

subjected to consecutive analytical solutions after separating time and space variables according to 

Eqs. (28-29). An analytical step-by-step process of the solution to these type of equations was given 

in [14]. The solution to Eq. (30) gives the relationship between load parameter r, which depends on 

both the nondimensional piezoelectric force f and force p resulting from the initial axial prestress, and 

the first term 0 of natural frequency . The second term of frequency 2 is established on the basis 

of the orthogonality condition applied to Eq. (32) to which the solution of Eqs. (30-31) has been 

previously introduced. Having computed 0 and 2 terms, the relationship between natural frequency 

 and vibration amplitude parameter  can be determined by using Eq. (27) with a customary 

restriction of up to the order of two terms. The procedure needs to apply the normalising condition in 

the form: 

    A1imax ww ,         (34) 

where: ξA is the co-ordinate of maximal displacement determined by using derivative tests on the 

mode shape function,   12 
 JAl  is the non-dimensional slenderness parameter of the host beam. 

3. Exemplary numerical results 

Knowing that the main object of the work is to find the effect of the residual piezoelectric force on the 

non-linear vibration of the system, the presented solution allows one to study the transversal 
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vibrations and stability of articulated stepped beams, i.e. the structures which are widely used in 

various engineering fields, such as robot arm and tall building, etc. Quasi-rigid connection between 

particular segments may be used for modelling a crack occurring in a structural element. Solution to 

Eq. (30) gives the opportunity to study the natural vibration frequency of an arbitrary mode as a 

function of the axial force. That has been done for three-segmented beam (i = 3) of three different 

support conditions and the following data: am = 1.4242, 1 = 0.1484, 2 = 2.851, d1 = d3 = 0.2, 

d2 = 0.6. Fig. 2a shows the natural frequency of the first mode in dependency on the compressive and 

tensile force. The compressive axial force reduces the natural frequencies whereas the tensile force 

increases them independently from the way of supporting. The effect of compressive axial force is 

predominant over those of the corresponding tensile force on the natural frequency diminishing it to 

zero where the instability occurs. The tensile piezoelectric force increases the critical load whereas 

the compressive force diminishes it.  
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Figure 2.   Modification of the axial force-vibration frequency relationship by the piezoelectric force f for 

the three-segmented beam with different support conditions (a), Comparison of backbone 

curves for a fundamental mode of a homogeneous uniform beam with different supports (b) 

The non-linear behaviour has been presented in the form of backbone curves in a dimensionless 

frequency-amplitude plane as in Fig. 2b for a homogeneous uniform beam with different support 

conditions. Such system has been chosen to validate the obtained results with those previously 

published. Both results are in a good agreement what is shown in Table 1. 

 

   Table 1. Comparison of the non-linear (ω) to linear natural frequency (ω0) ratios for various  

               support conditions for the uniform beam  
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0  

  
  

 

 

Authors [4] Authors [3] Authors [4] 

0 1 1 1 1 1 1 

1 1.0222308 1.0222308 1.0448 1.0448 1.089724735 1.089724736 

2 1.0861966 1.0861967 1.1692 1.1676 1.322875655 1.322875656 

3 1.1851592 1.1851592 1.3513 1.3458 1.639359631 1.639359631 

 

In Fig. 3a the amplitude-nonlinear frequency relationship is presented for a three-segmented beam 

with different spring stiffness c expressing local flexibility. As for the uniform beams, the shown 

curves characterise the nonlinearity of the hardening type. The greater the stiffness the lower the 

influence of the amplitude on the nonlinear frequency. 
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Figure 3.   Comparison of backbone curves for a three-segmented beam with (a) different rotational 

spring stiffness, (b) different values of the piezoelectric force.  

The effect of the piezoelectric force on the bone curves for the beam of the rotational spring stiffness 

c = 1.5 is sketched in Fig. 3b. The stretching of the beam realised by the piezoelectric force of the 

value f = -0.5, where  is the non-dimensional buckling critical force for the homogeneous uniform 

beam, decreases the nonlinear effect, whereas the compressing piezoelectric force f = 0.5increases 

this effect. The table settled in Fig. 3b contains 0 values calculated for f = 0 and three values of the 

amplitude. 
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4. Experimental results 

The test structure is a uniform aluminium beam with rectangular cross section and a pair of 

piezoelectric patches made of Soft PZT-PCM55 material (Noliac) which were symmetrically attached 

to either side of the beam - Fig. 4a. When both ends of the structure are clamped, the piezoelectric 

actuators under the electric field generate a residual axial force which can be calculated using Eq. (1)-

(2) and measured by strain gauge transducers glued on both sides of the host beam and wired using 

Wheatstone bridge circuit. The strain gauge TFs-10/350 (Tenmex) had the base 10×15 [mm] of the 

thickness 60 [m], resistance 350 [] and accuracy 0.2%. Details of the beam and piezoelectric 

patches are given in Table 2. The purpose of the first part of the experiment is to find the 

correspondence between theoretical and experimental results of the residual force when the voltage is 

gradually increased every 10 [V] from 0 to ±900 [V]. Before starting the force measurements using 

the experimental setup as in Fig. 4b, the bridge was calibrated by using an additional reference system 

loaded with known weights. The test was repeated fifty times at each level of the voltage and the 

average value of the measured residual force determined.    

 

 

 

 

 
+ 

¯ + 

¯ 

 

 

a)  
 

b) 

Figure 4.   Aluminium beam with co-locally surface-bonded piezoactuators (a), experimental setup for 

measuring residual forces (b). 

  The second part of the experiment concerned the natural frequency of the system as a function 

of the voltage applied to the piezoceramic patches. Two methods of measurements have been applied: 

the non-contact vibration measurement, which avoids mass loading or stiffness implications, by using 

Ometron VH-1000-D portable laser Doppler vibrometer of frequency range 0.5 [Hz] - 22 [kHz] and  

Brüel&Kjær accelerometer type 4508B, which was specifically designed to provide a combination of 

high sensitivity, low mass (4.8 [g]) and small physical dimensions. Both devices were connected to 

Brüel&Kjær 2515 vibration frequency spectrum analyzer.  
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 Table 2. Parameters of the structure 

Name Beam  Piezoelectric patch  

Length l [m] 0.23 0.09 

Width b [m] 0.02 0.02 

Thickness h [m] 0.002 0.002 

Young's modulus E [GPa] 71.42 - 

Poisson's ratio  0.3 0.3 

Density [kg/m3] 3260.8 7930 

Charge constant   -d31 [10–12 C/N] - 325 

Elastic compliance 
Es11 [10-12 m2/N] 

- 15.8 

 

During each test, after applying the voltage to the piezoceramic actuators, a smooth excitation by 

Brüel&Kjær 8202 impact hammer was imparted to the test structure over a broad frequency range. 

The output signal collected by laser Doppler vibrometer and accelerometer was processed by the 

analyzer (FFT) and presented in the form of vibration frequency spectrum on the computer linked to 

the analyzer.   

 Fig. 5a shows the correlation between the measured residual force as a function of the applied 

voltage and the computed voltage-residual force relationship. Both the stretching and compressing 

force has been determined and measured. Due to the linearity of the piezoceramic material model an 

adequate linear effect between the voltage and the force can be seen. The observed results indicate a 

small discrepancy in regard to the theoretical ones revealing a real nature of the phenomenon, but 

generally one can notice a very good correlation between both types of results. 

Fig. 5b illustrates the relationship between the applied voltage and the natural vibration 

frequency obtained from both the theory and experimental tests. The maximum natural frequency 

equal to 135.4 [Hz] (an identical measured and calculated value) was obtained under -900 [V] voltage 

input generating the stretching force, whereas the minimum frequency: 118 [Hz] (measured) and 

118.2 [Hz] (calculated) was observed for 900 [V] causing beam compressing. The frequency response 

for zero-voltage was equal to 127.7 [Hz] (theory) and 127.5 [Hz] (experiment). Simulation results 

were in very good agreement with experimental results. 
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Figure 5.   Response results of the (a) residual force and (b) vibration frequency at different voltage.  

5. Conclusions 

In this paper, non-linear vibration analysis of n-segmented articulated beams subjected to the 

prescribed end displacement was performed using a Bernoulli-Euler beam assumption and Lindstedt-

Poincare method. The introductory results concerning an uniform beam provided good agreement 

with available results in the literature. The numerical results obtained for a three-segmented beam 

show that the amplitude–natural frequency relationship depends on the piezoelectric-induced in-plane 

stresses. Two opposing values of the piezoelectric force causing either stretching or compressing were 

taken for consideration. It was proved that the linear frequencies could be tuned by using the 

piezoelectric force. The tensile piezoforce increases the values of the linear natural frequency but 

decreases the non-linear effect, while the compressing force decreases the linear frequencies but 

increases the non-linear effect. The piezoelectric force may diminish or increase the critical buckling 

load dependently on the direction of the electric field vector.  

 Furthermore, an experimental setup for the measurement of residual forces and eigenfrequencies 

was introduced. The results of the experiment performed for a three segmented beam with two 

piezoceramic layers showed that the piezoelectric residual force increases with the increase of the 

applied voltage. The voltage affects also the natural vibration frequency of the system. All numerical 

results coincided well with the findings from numerical simulations. 
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Model of a quarter car suspension with a silencer containing 

magnetorheological fluid and with damaged parts controlled by 

backstepping method control 

 

 

Stanisław Radkowski, Maciej Słomczyński 

Abstract:Work focuses on minimize deflection body from its equilibrium position 

after deflection by force applied to wheel which  has a task to simulate obstacles 

encountered by the wheel. Model presents a quarter of the car's suspension with 

nonlinear spring and a silencer with magnetorheological fluid, by which modify the 

damping of the suspension. System was created in harmony with Lapunov stability. 

Model was designed in Matlab - Simulink.. Model was designed for testing many 

different damaged parts of suspension like for example, spring or silencer. Damaged 

part was represented by changing characteristic during the simulation. In further 

attempts model was tested for many damaged part and sequence of events was 

different. Model was tested for different characteristic of springs and dampers and 

variable method deflection wheel from its equilibrium position. 

1. Introduction 

The backstepping method was first formulated by Petar Kotovic in about 1990 as a method for 

stabilization of non-linear systems. It has been used to stabilize the position of vessels on the sea and 

as a control system for helicopters or mobile robots [1][3][4]. 

2. Backstepping 

In order to start determining the backstepping, first it needs to be assumed that the parameter used to 

control the system is jest 𝑐2 so that we can write: 

𝑢 = 𝑐2, (1) 

It is assumed that the first subsystem is the position of the body in axis perpendicular to the driving 

direction. Next, the derivative was calculated, which can be described with simple equations (9) and 

(10) and virtual control was introduced to the subsystem 𝑧2 designated as ∝ (𝑧1): 

𝑧1 = 𝑥2, (2) 

𝑧2 = 𝑥2−∝ (𝑧1), (3) 

Then, based on the materials [2][3][7], the Lapunov function was determined (11)  and the derivative 

(12) was calculated: 
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𝑉1(𝑧1) =
1

2
𝑧1

2, (4) 

�̇�1(𝑧1) = 𝑧1�̇�1, (5) 

The next step is to substitute the Lapunov function in the derivative �̇�1: 

�̇�1(𝑧1) = 𝑧1 [
𝑐2

𝑚2
𝑥1 −

𝑐2

𝑚2
𝑥2 +

𝑘2𝑥1𝑡

𝑚2
−

𝑘2𝑡(𝑧2−∝(𝑧1))

𝑚2
], (6) 

If the system has a solution that belongs to the set of real numbers, it needs to satisfy the specific 

conditions: 

𝑉1(𝑧1(0)) = 0, (7) 

𝑉1(𝑧1) > 0, dla 𝑧1 ≠ 𝑧1(0), (8) 

�̇�1(𝑧1) ≤ 0, (9) 

based on [3][5][6]. 

When the above conditions are met, it can be found that subsystem  𝑧1 is stabilized. The derivative of 

subsystem 𝑧2 was calculated, which was described with this equation: 

�̇�2 = �̇�2 −∝̇ (𝑧1), (10) 

by ∝ (𝑧1) the first corrective constant was introduced 𝐾1: 

∝ (𝑧1)=-𝐾1𝑧1 − 𝑧1
2, (11) 

Then, the derivative ∝ (𝑧1) was calculated: 

∝̇ (𝑧1) = −𝐾1�̇�1 − 2𝑧1�̇�1, (12) 

The next step is to substitute all equations to subsystem �̇�2: 

 �̇�2 =
𝑐2

𝑚2
𝑥1 −

𝑐2

𝑚2
𝑥2 +

𝑘2𝑥1𝑡

𝑚2
−

𝑘2𝑡(𝑧2−∝(𝑧1))

𝑚2
−∝̇ (𝑧1), (13) 

Assuming that 𝑧2 → 0 it was checked for which values 𝐾1 > 0. This corresponds to the conditio: 

𝑉1(𝑧1) = −𝐾1𝑧1 ≤ 0 (14) 

In order to stabilize the second subsystem, the Lapunov function for both equations should be 

determined and the function derivative needs to be calculated [5]: 

𝑉2(𝑧1, 𝑧2) = 𝑉1(𝑧1) +
1

2
𝑧2

2, (15) 

�̇�2(𝑧1, 𝑧2) = 𝑧1�̇�1 + 𝑧2�̇�2, (16) 
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�̇�2(𝑧1, 𝑧2) = 𝑧1 [
𝑐2

𝑚2
𝑥1 −

𝑐2

𝑚2
(𝑧2−∝ (𝑧1)) +

𝑘2𝑥1𝑡

𝑚2
−

𝑘2𝑡(𝑧2−∝(𝑧1))

𝑚2
] + 𝑧2(�̇�2 −∝̇), (17) 

By introducing the second corrective parameter 𝐾2 we should consider [4]: 

𝑧1 −∝̇ (𝑧1) −
𝑐2

𝑚2
−

𝑘2𝑡

𝑚2
= −𝐾2𝑧2, (18) 

The second to last step is to check for which values of corrective constant 𝐾2 > 0. The following 

equation is higher than 0 based on  [6]: 

�̇�2(𝑧1, 𝑧2) = −𝐾1𝑧1
2 − 𝐾2𝑧2

2 ≤ 0, (19) 

The final step is to determine the control parameter 𝑐2 from equation (25). Corrective constants K1 

and K2 were determined empirically based on Matlab simulations where the setpoints changed by 1. 

Ultimately, the best effects were achieved for setpoints of 999 and 1, respectively. The worst results 

were achieved for K1 and K2 of 100 and 1, which is shown by the time course marked in blue in 

Figure  1. The best results were achieved for K1 and K2 equal to 1 and 999. Moreover, a trend 

indicating improved stabilization time was determined when K2 increased and K1 dropped.  

Figure 1.   Selection of corrective constants K1 and K2 for controller. 
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3. Practical use – physical model 

The model in which control with backstepping method is used is ¼ of a car, and precisely, it is the 

wheel system with suspension and the body. It is a classic system with two degrees of freedom and 

coercion. Its diagram with forces acting on individual elements is shown in Figure  2. 

 

Figure 2.   Diagram of analyzed system and release of force system diagram from constraints  

 

The following motion equations are implied from Figure  3: 

{
𝑚1�̈�1 + 𝑆1 − 𝑆2 + 𝑅1 − 𝑅2 = 𝐹

𝑚2�̈�2 + 𝑆2 + 𝑅2 = 0
, (20) 

Where: 

𝑆1 = 𝑘1𝑥1, (21) 

𝑅1 = 𝑐1�̇�1, (22) 

𝑆2 = 𝑘2(𝑥2 − 𝑥1), (23) 

𝑅2 = 𝑐2(�̇�2 − �̇�1), (24) 

With substitution of formulas (2-5) to the system of equations (1), the equation system (6) was 

obtained: 

{
𝑚1�̈�1 + 𝑘1𝑥1 − 𝑘2(𝑥2 − 𝑥1) + 𝑐1�̇�1 − 𝑐2(�̇�2 − �̇�1) = 0

𝑚2�̈�2 + 𝑘2(𝑥2 − 𝑥1) + 𝑐2(�̇�2 − �̇�1) = 0
 (25) 

where: 

𝑚1  =  90 [𝑘𝑔] – non-sprung mass. 
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𝑚2  =  500 [𝑘𝑔] – mass of 
1

4
 of a car 

𝑘1  =  200 [
𝑘𝑁

𝑚
] – tyre stiffness. 

𝑐1 = 40 [
𝑁∗𝑠

𝑚
] – tyre damping coefficient. 

𝑘2 [
𝑁

𝑚
] – suspension spring stiffness described with characteristics in Figure  3. 

𝑐2  [
𝑁∗𝑠

𝑚
]- damper damping coefficient. Assumes values during work from 1,100 to 2,500 [

𝑁∗𝑠

𝑚
]. 

where: 

 𝑥 = 𝑥2 − 𝑥1 , (26) 

Displacement 𝑥 is the difference in positions of the body and the wheel. In the case in question it is 

important since the spring is described with a different equation when the displacement is higher than 

0.1 [𝑚] which is shown in Figure  3.  

 

Figure 3.   Spring 𝑘2. characteristics 
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The system was modelled in Matlab – Simulink environment where the control parameter is the 

damper damping coefficient marked as 𝑐2, in which the  magnetorheological liquid is present. By 

using the technical documentation made available by LORD [8] the range in which the damping 

coefficient will vary was limited to 1,100 and 2,500 [
𝑁∗𝑠

𝑚
],. These values were determined based on 

the dependence of damping force for the maximum and minimum current acting on the 

magnetorheological liquid. Additionally, non-linearity was introduced to the system by using a spring 

in the suspension with a varying characteristics (Figure  3). With the displacement coercion, the 

system was thrown out of equilibrium which under physical conditions means that the wheel 

encountered an obstacle. The goal is to determine the impact of individual damage on vibration 

damping and control. The following simplifications were introduced to the modelled system: 

 Even vehicle mass distribution for each wheel.  

 Force applied to the wheel is in the system symmetry axis. 

 The model does not take into account any errors of calculated values.  

Figure  4 shows the already mentioned spring with non-linear characteristics.  

In order to model the damper as truly as possible, the signal delay was introduced based on the 

information in [9] of the change of damping parameter of 0.06 seconds. Thanks to this, the first 

coercion peak impacts the suspension when having a minimum damping. This causes the 

minimalization of vertical accelerations. In the next phase, that is after coercion of displacement, the 

damping coefficient in the damper increases causing the minimalization of displacement of the body 

and to a lesser extent, of the wheel and stabilization time of these components.  

3 types of damage were modelled 

 Damage by leakage of magnetorheological liquid 

 Linear damage to the damper, such as damage to the coil or a bunch of conduits   

 Pitch damage to the damper, such as delamination of magnetorheological liquid 

In order to reduce the impact of damage made to the damper, it was put into the emergency mode 

which meant a change made to the damping of the system to the level corresponding to current 0.5 

[A]. This solution enables further adjustment of damping maintaining the current adjustment range 

and also the highest damping increase related to the current variation was used.  

Step damage – is the damage of fixed value and in case of this model it is 1,000 [
𝑁𝑚

𝑠
], but no less 

than 200 [
𝑁𝑚

𝑠
], due to the limited damping of the magnetorheological liquid. 

Liner damage is described by the function: 

𝑓(𝑡) = 200𝑡 + 120, (27) 

This type of damage models the delamination of the magnetorheological liquid or a damage to the 

control system.  

466



 

Figure 4.   MR damper characteristics and theoretical model. 

 

Leakage of the magnetorheological liquid is the worst analyzed case of damage since it prevents 

damping control of the damper and reduces its value to about 40 [
𝑁𝑚

𝑠
]. Damage of this type can be 

divided into two cases. The first one is when the piston rod moves only within the area of the 

magnetorheological liquid that remained in the cylinder and this case will be analyzed here. The 

function that describes the leakage is as follows: 

𝑓(𝑡, 𝑥1, 𝑥2) = (𝑥1𝑚𝑎𝑥
+ 0.1[𝑚])𝑡 − 0.011𝑡 ∗ 𝑥2𝑚𝑎𝑥

, (28) 

The characteristics of variation of the damping value  𝑐2 in the real system and in the model is shown 

in Figure  5. The theoretical model of the magnetorheological damper is described by the following 

system of equations:  

{

𝑓(𝑣) = 1.17 ∗ 𝑣 − 809 𝑑𝑙𝑎 𝑣 ∈ 〈−175, − 12)

𝑓(𝑣) = 60.25 ∗ 𝑣 − 100 𝑑𝑙𝑎 𝑣 ∈ 〈−12,12〉

𝑓(𝑣) = 1.17 ∗ 𝑣 + 609 𝑑𝑙𝑎 𝑣 ∈ (12, 138〉
     , (29) 
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4. Simulation results 

As a simulation of operation of the suspension system, the wheel displacement in the first second of 

0.1[𝑚] with positive sense was assumed. In the 5th second, another displacement occurred with the 

opposite sense but the same value. This adjustment is to minimize the deviation of the body from the 

equilibrium position where the control parameter is damping of the damper with magnetorheological 

liquid marked as 𝑐2. Further diagrams show the results of simulations of displacements and 

accelerations for the body and results of simulation for systems with damages to the 

magnetorheological liquid as well as systems with damages to the magnetorheological liquid under 

emergency mode as shown in Figure  5 – 10.   

A. Damage caused by leakage of the magnetorheological liquid in the 5th second.  

B. Linear damage of the damper since the 1st second.  

C. Step damage of the damper since the 5th second.  

 

Figure 5.   Body vertical displacement for damaged damper – comparison.  

 

As shown in Figure  6, the linear damage of the damper affects the body inclination amplitude from 

balance position. With the increase of the damage, the system is not able to stabilize itself quickly 

(see also Table 1) and what is more, all damper damage results in a longer stabilization time. Re-
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stabilization of body can be observed for 2 types of damage after the damper is put into the 

emergency mode.  

Within seconds [0-5], the system operates correctly and has no damage except the linear one. The first 

damage comes after the 5th second and this is when the damper is affected. The linear and pitch 

damage of the damper changes the body displacement phase which is caused by the varying damping 

parameter. Also it can be seen that in case of simulation with a linear damage of the damper, it can be 

seen that the system falls into oscillations, which is also of concern and affects the driving comfort 

significantly and is destructive for the vehicle itself.   

 

Figure 6.   Body vertical displacement for damaged damper by magnetorheological liquid leakage with 

turning it into emergency mode. 

The leakage of  magnetorheological liquid is the worst case of damage due to the limited damping 

within wide ranges of displacement. With the increased duration of the damage, the range in which 

the system has the proper minimum damping is smaller and its further adjustment is possible. Because 

of this, the activated emergency mode initially increases the coercion amplitude for the body but for 

small amplitudes such a system will stabilize faster. The minimization of the damper displacements 

causes the work within the magnetorheological liquid making it possible to damp the displacements. 

Body displacements for the damper with a leakage and for the damper with a leakage in the 

emergency mode are virtually the same.  
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Figure 7.   Body vertical displacement for step damaged damper with turning it into emergency mode.   

 

Figure 8.   Body vertical accelerations for damaged magnetorheological damper with turning into 

emergency mode.  
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Figure 9.   Body vertical displacement for linearly damaged damper with turning into emergency 

mode.  

 

Putting the damper into emergency mode under step damage increased the body displacement 

amplitude because the vehicle with this configuration is fitted with a hard suspension and thanks to 

this solution, the system will re-stabilize within the time similar to a working system.   

Body vertical accelerations after turning into the emergency mode are minimum and just after 5.25 

seconds, while for the damper damage system, after 5.50 seconds, the passengers can feel the 

overloads.  

Liner damage extends stabilization time and body displacement amplitude which affects the driving 

comfort. Putting the damper into emergency mode reinstates a satisfying stabilization time after about 

2.5 seconds from coercion. Unfortunately, just as in other cases, this increases the body displacement 

amplitude.  
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Figure 10.   Body vertical accelerations for linearly damaged damper with turning into 

emergency mode.  

 

The body accelerations under emergency mode increase, which causes a greater discomfort for the 

passengers and in exchange, the accelerations are minimized in respect of time and the amplitude of 

displacements in further periods after coercion is smaller.  

Table 1. Table of results of extreme measurements. 

BODY Displacement [𝑚] 
Acceleration 

[
𝑚

𝑠2] 
Stabilization 

time [s] 

Leakage from magnetorheological 

damper 
0.025 17,94 31 

Damper linear damage 0.022 10.93 36 

Damper step damage 0.022 10.93 40 

Leakage from magnetorheological 

damper in emergency mode 
0.037 19.44 8.75 

Linear damage of damper in 

emergency mode 
0.024 10.97 8.25 

Step damage of damper in 

emergency mode 
0.040 12.15 8.45 
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It was determined that the stabilization time corresponds to the decreased displacement amplitude 

below 2% of the displacement caused by coercion. Simulations where the damper with 

magnetorheological liquid was damaged showed that this damage considerably extends the 

stabilization time of the body. The system parameters after putting the damper into the emergency 

mode deteriorated considerably, however, the stabilization of the suspension system was achieved, 

which improved the vehicle’s safety against the system with the damage itself. 

 

5. Summary 

Putting the damper into emergency mode resulted in improved parameters for all analyzed cases. 

During coercion, the displacement altitude and body acceleration altitude increased which is caused 

by a higher hardness of the suspension and has a negative effect on the driving comfort. In exchange, 

the efficiency of the suspension system was regained.   

The assumed values of specific coefficients are as close as possible to the actual parameters of 

elements used. It was found that the use of the spring with a non-linear characteristics coupled with a 

controlled damper is a good alternative for conventional suspensions.   

Further research in this respect will allow to introduce such a solution in a car and improve safety of 

the vehicle with such a suspension in a case of damage to the suspension system.  

Tests of damage to the magnetorheological damper concluded successfully where the emergency 

mode allowed in two of three cases to regain the efficiency of the suspension system.  

In further works, it is expected to test the second variant of leakage of the magnetorheological liquid 

and its impact on the passengers and the vehicle structure itself.  

The goals assumed before starting the project were fulfilled.  
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Nonlinear mode veering for enhanced resonant sensing

Dennis Roeser, Samuel Jackson, Thomas Sattel, Stefanie Gutschmidt

Abstract: A research trend in micro systems for resonant sensing is a sensitivity
enhancement utilizing nonlinear and coupling effects, which is mainly applied
to gas sensing and timing applications. In this article, we propose such an
enhancement of the sensitivity for an atomic force microscopy probe. This
scheme is based on a two beam array, where one beam is active and acting as
probe, while the other beam is passive. Both beams of this array are designed
to have an identical resonance frequency at a defined distance between the
active beam and a surface, in the mechanically uncoupled case. The occurring
mode localization close to this distance and the nonlinear interaction potential
lead to an increased sensitivity in this region, with respect to frequency change
and amplitude ratio. The proposed scheme is experimentally validated with a
macro-scale test setup, mimicking a microscale system.

1. Introduction

Today, one challenge in micro-electro-mechanical systems (MEMS) for resonant sensing is to

further increase their performance metrics. These performance metrics include increasing the

sensitivity to measure changes of quantities and the time required to measure such changes.

For instance, atomic force microscopy (AFM) in its dynamic operation modes is based on

resonant sensing. Figure 1 a) shows the setup of an AFM, wherein a probe is excited at its

resonance frequency and brought in close proximity to a sample surface. A positioning stage

is moving the sample in a raster scan pattern to measure the topography of the sample. A

change in tip-sample distance ∆d0 leads to a change in the probe’s resonance frequency ∆ω0,

due to nonlinear interaction forces [7], as illustrated in Fig. 1 b). This change in resonance

frequency, or the resulting amplitude or phase change, is the measured quantity, and its

change with respect to the change in tip-sample distance is the corresponding sensitivity

(e.g. ∆ω0/∆d0). For instance, in an AFM process the tip-sample distance d0 is controlled

to maintain a set resonance frequency ω0 by adjusting the positioning stage’s vertical z̄-axis.

Thus, the z̄-axis motion of the positioning stage represents the topography of the sample

relative to a reference point. Typical amplitudes of the probe and tip-sample distances are in

the range of tens to a few hundreds of nanometers and are of the same order of magnitude [7].

Approaches to increase the performance metric of an AFM are mainly based on a lin-

ear methodology (e.g. focused on the probe’s resonance frequency and damping) and have
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ŵ
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∆d0 < 0

Figure 1. a) Basic AFM setup [13]. b) Shift of resonance frequency ∆ω0 due to a change

in tip-sample distance ∆d0.

reached their upper best. Recent approaches concentrate on utilizing nonlinear dynamic

phenomena to significantly go beyond the performance of what can be achieved by linear

methodology. Prakash et al. [11] utilized a parametric resonance, introduced by a control

loop, to increase the sensitivity. The parametric resonance has a very high Q-factor and,

thus, enhances the amplitude change per change in tip-sample distance ∆ŵ/∆d0. Jeong [8]

used a special probe design in which an in-lay beam is integrated in a cantilever to realize

an internal resonance, which is triggered by a change in tip-sample distance, also enhancing

∆ŵ/∆d0. However, approaches based on nonlinear dynamics applied to AFM are limited

and require further investigation. Nonetheless, the potential of leveraging nonlinear dynam-

ics in resonant sensing has been shown for MEMS in general. Among others, approaches aim

to utilize parametric [12] and internal resonances [2, 13], modal interaction [16], frequency

hardening [3, 15] as well as bifurcations [4] to increase sensitivity, reduce phase noise and

achieve an increased detection speed.

Apart from the utilization of nonlinear dynamics, coupling effects in arrays of beams are a

promising research area to achieve an increased sensitivity. This sensitivity increase is mainly

based on mode-localization [14,17], which is a spatial confinement of energy within a system

of coupled oscillators. In this case, a symmetry breaking perturbation (e.g. stiffness/mass

change) can be measured with orders of magnitude increased sensitivity. However, utilizing

nonlinearities or coupling effects is mainly applied to timing or mass detection applications.

In conclusion, recent research illustrates the potential of utilizing nonlinear dynamics

and coupling effect to increase the performance metric of MEMS. However, consideration of

those approaches to AFM are rare and a detailed study of these effects is missing.

In the scope of this article, a scheme is presented to use the nonlinear interaction between

an AFM probe’s tip and a surface together with a mechanical coupling effect between two
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beams to achieve an increased sensitivity (∆ω0/∆d0). The mechanical coupling between

both cantilevers is caused by the clamp as their common base, seen in Fig. 2. One beam

is active, i.e. is excited at its resonance frequency and the other is passive. The active

beam undergoes the nonlinear interaction between tip and sample surface. For experimental

validation of this approach, a macro-scale test setup has been build to emulating a micro scale

AFM [5]. This setup allows for specific adjustments of the array’s parameters (e.g. coupling,

resonant frequencies, tip-sample distance). The following section begins with the model

used for the analysis, followed by the macro-scale test setup, the analysis and experimental

results. Finally, conclusions from the results and future work is presented.

2. Model

The considered system is an array of two cantilever beams, connected with a common base.

Each beam has an integrated actuator and sensor and is subjected to a quadratic interaction

force between probe tip and sample. Such interaction forces may be due to e.g. van der

Waals or permanent magnet forces. Note that this type of sensor and actuator is especially

for array technology in AFM, and differs from the commercially available AFM probes [10].

As illustrated for a single beam in Fig. 1, the displacement of the beam towards the sample

surface is w (x, t), which is also the coordinate the equations of motion are derived for. An

extended Hamilton’s principle is used to derive the partial differential equations (PDEs)

describing the motion of the coupled two beam array, under Bernoulli assumptions. For the

discretization of the system of PDEs, a Galerkin method (with wm (x, t) =
∑

nWn (x)Xn (t))

has been applied. The displacement of beam m is given by wm, where Wm and Xm are the

spatial mode shapes (i.e. comparison functions) and the time varying modal displacements

of the m-th beam, respectively. A detailed derivation can be found in [5, 6]. Thus, the

reduced order equations of motion including first intrinsic bending modes of both beams are

given in matrix form byẌ1

Ẍ2

 +

Wc11 Wc12

Wc21 Wc22

Ẋ1

Ẋ2

 +

Wk11 Wk12

Wk21 Wk22

X1

X2

−

WF11 WF12

WF21 WF22

AC1Fext

AC2Fext



−

WNL11 WNL12

WNL21 WNL22




τm

(d̂01 −W1X1)2
τm

(d̂02 −W2X2)2

 =

0

0

 ,
(1)

where Wcmn are the coupled damping terms, Wkmn are the coupled stiffness terms, WFmn

are the coefficients of the actuation term applied to each beam, WNLmn are the coefficients of

the nonlinear tip-sample interaction forces applied to each beam. These coefficients include
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the integrals of the comparison functions used for the Galerkin approach [5, 6]. τm is the

coefficient of the attractive force potential between tip and sample, and d0m is the separa-

tion distance between the undeflected cantilever m and the sample surface (see Fig. 1). The

forcing function Fext is the nondimensional oscillatory component of the excitation signal,

with the dimensional amplitude applied to beams 1 and 2 defined by AC1 and AC2, re-

spectively. For frequency modulation AFM (FM-AFM), Fext needs to be defined such that

the excitation signal is sinusoidal with a phase lead of 90◦ over the measured output signal,

which in this case will be the tip displacement w1 (l, t) [1]. The resulting periodic response

of the system as a function of tip-sample separation d0 can be found by solving Eq. (1) in

the time domain. The parameters used for the numerical analysis of Eq. (1) in the following

sections can be found in [5].

3. Experimental setup

To simulate the operation of an AFM array, an equivalent macro-scale experiment is utilized.

The experiment is scaled up 1000× in comparison to standard AFM cantilever dimensions

(hundreds of micrometers in length). Using a macro-scale test rig allows key parameters of

the system, including coupling strength and individual cantilever dimensions, to be easily

varied for the purpose of studying their influence on system response. The macro-scale

test rig is depicted in Fig. 2, and consists of a variable number of cantilevers clamped to

a base structure. Each cantilever is equipped with a piezo-film actuator and strain gauge

sensors. Permanent magnets at the tip of each cantilever are used to simulate attractive

tip-sample interaction forces. The tip-sample separation distance is altered using a stepper

motor assembly.

a) b)
Clamp

Cantilevers

Magnet

Stepper Motors

Figure 2. a) Rendering of the macro-scale test rig. b) Detail view of the real test rig.

To actuate the system at resonance for FM-AFM, a PID controller is employed to control

a 90◦ phase angle between displacement the w1 of beam 1 (measured by strain gauges) and
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the excitation signal Fext. The amplitude of the actuation signal is user controlled and

constant in this case. The stepper motors are used to move permanent magnets relative to

the cantilevers. This allows the tip-sample separation for each cantilever in the array to be

altered independently. As with standard FM-AFM, the actuation frequency changes as a

function of tip-sample separation, allowing actuation frequency to be used as a measurement

variable. The macro-scale experiment was used as a proof of concept of the proposed method

of sensitivity enhancement utilizing a two beam array instead of standard single cantilever

techniques.

4. Results

The active beam is excited with an amplitude AC1 at its resonance with FM control and

is acting as a probe in close proximity to a surface. The passive beam is neither brought

in close proximity nor excited. The effects utilized for the sensitivity increase are based on

the nonlinear interaction potential between beam 1 and the surface, as well as the mode

localization between the active and the passive beam. Thus, the nonlinear shift to lower

resonance frequencies of beam 1 is used to trigger and break the symmetry of the array

to achieve an increased frequency change per change in tip-sample distance. This general

ω0m

δkdcrit

Figure 3. Mode veering for a two beam array, with eigenfrequencies ωm, the stiffness

detuning δk and the critical distance dcrit. Blue lines depict mechanically uncoupled modes

(ω0m), orange lines are out-of-phase (upper) and in-phase (lower) array mode, black arrows

indicate path taken in FM-AFM.

concept is illustrated in Fig. 3, showing the eigenfrequencies ωm over a stiffness detuning δk

at beam 1. In the mechanically uncoupled case (blue lines) both frequencies (ω01 and ω02) are

identical at dcrit, at which δk = 0. Changing δk leads to a change of ω01, while ω02 remains
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constant. In the coupled case (orange lines) the in-phase (lower frequencies) and out-of-phase

(higher frequencies) mode have no intersection, but diverge from another with a varying δk.

This effect is also known as eigenvalue veering [9], and is used in mode-localization sensing

schemes. Thus, by controlling the phase between beam 1 and the excitation while decreasing

δk from positive to negative leads to a sudden shift from the out-of-phase to the in-phase

mode (arrows in Fig. 3), showing a steeper gradient ∆ωa1 δk in the neighborhood of dcrit.

2.4 2.6 2.8 3 3.2 3.4
0.95

0.96

0.97

0.98

0.99

1

d01 in mm −→

ω
0
1
−→

single beam

array (active beam)

Figure 4. Change of normalized eigenfrequency of a two beam array while approaching a

sample surface, damping ratio ζ = 0.007. The amplitude of beam 1 is in the range of 0.5 to

1 mm. Line style represents the excitation amplitude; solid and dashed being AC1 = 0.001

and AC1 = 0.002, respectively.

Figure 4 shows a numerical simulation (model with FM-AFM) of the approach of the

active beam to a fixed surface; depicted is its change of eigenfrequency (scaled) ω01 over the

tip-sample distance d01. The sharp change of eigenfrequency occurs at a critical distance

dcrit ≈ 2.875 mm, which is not present in the approach curve of a single beam (orange line

in Fig. 4). At dcrit the eigenfrequencies of the uncoupled beams are closest together. Every

symmetry breaking detuning of parameters (e.g. stiffness of beam one in this case), leads to

a divergence of the coupled eigenvalues of the array modes (i.e. in-phase and out-of-phase,

c.f. Fig. 3). This mode veering, together with the nonlinear potential and the FM controller,

leads to an increased sensitivity at this region about dcrit. As described earlier, the controller

ensures a 90◦ phase angle between the excitation signal and w1, leading to a change between

out-of-phase and in-phase mode of the array, when crossing dcrit.

The conditions to define dcrit are determined by the uncoupled resonance frequencies

of the two beams as well as the excitation amplitude AC1. The influence of an increased
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AC1 can be observed as a shift of dcrit to higher values (Fig. 4). This shift is due to the

amplitude dependent resonance frequency of the active probe (e.g. caused by the nonlinear

potential). Thus, AC1 influences the slope of the whole approach curve, also in case of

the single beam. Additionally, the damping ratio ζ as well as the coupling between the

beams influence the sensitivity. A decrease of ζ increases ∆ω01/∆d01 at dcrit, whereas a

weaker coupling decreases it. A stronger coupling leads to an increased slope, until multiple

coexisting solutions appear, connected by two saddle node bifurcations [5]. This behavior

has also been shown experimentally. Figure 5 shows the frequency change of ω01 while

approaching a permanent magnet with the array concept and a single beam with the macro-

scale test setup. As can be seen, the characteristics reassemble those gained from numerical

simulations (c.f. Fig. 4), resulting in an increased sensitivity in a region close to dcrit for the

array configuration.

0 1 2 3 4
0.6

0.7

0.8

0.9

1

d01 in mm −→

ω
0
1
−→

single beam

array (active beam)

Figure 5. Experimental approach curves.

Another measure to increase the probe’s sensitivity is the amplitude ratio between the

two beams. As shown in Fig. 6, considering the system below dcrit (at which the amplitude

ratio is equal to 1) leads to a strong increase of this ratio. In contrast to schemes used

with classical mode localization sensing, the increase in this case is nonlinear, due to the

interaction potential between tip and sample surface. The slope of this increase also depends

on the excitation amplitude AC1 as well as on the stiffness of the coupling between the

beams. In this case, higher amplitudes result in an increased sensitivity. In contrast to

the frequency slope shown in Fig. 4, the slope of the amplitude ratio increases in case of a

decreased coupling. Thus, very low coupling results in a very high sensitivity, as also used in

other schemes of localized mode sensing [17]. This strong increase for weakly coupled beams
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is due to a strong change in eigenvectors of the array modes due to mode veering [9].
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ŵ
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Figure 6. Amplitude ratio between the two beam’s of an array while approaching a sample

surface, damping ratio ζ = 0.007. Line style represents the excitation amplitude; solid and

dashed being AC1 = 0.001 and AC1 = 0.002, respectively.

5. Conclusion

The approach presented in this article to increase the sensitivity of an AFM probe is based

on utilizing nonlinear and coupling effects with a two beam array. This array consists of

an active beam sensing the actual topography changes and a passive beam for sensitivity

enhancement. The occurring dynamic effect can be levered in two ways, first by using

the increased frequency change over the tip-sample distance ∆ω01/∆d01 and, second, by

utilizing the increased change of amplitude ratio between the two beams of an array ŵ1/ŵ2.

Both effects show a higher increase in sensitivity for an increased amplitude. However,

the frequency change increases for an increased coupling between the beams of the array,

whereas the slope of the amplitude ratio decreases in this case. The sensitivity gain of both

approaches can be increased by decreasing the damping coefficient ζ as well as by increasing

the amplitude of excitation AC1.

Using an increased ∆ω01/∆d01 has multiple benefits. When controlling the frequency in

an AFM operation, the time to detect changes mainly depends on the control scheme used

and is, thus, not limited by the decay coefficient of the individual beams. Additionally, the

increased frequency change can be further magnified by using an amplitude detection scheme,

or utilizing parametric resonance [11,12], which would combine an increased frequency change
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with an increased amplitude change.

On the other hand, in combination with a very weak coupling, the amplitude ratio can

be used to gain an orders of magnitude increased sensitivity compared to the frequency

change. In this case, the probe is operated below the critical distance dcrit at a high slope.

In contrast to most sensing schemes using mode localization, the probe in close proximity

is driven at resonance using a phase locked loop (PLL) and both amplitudes are measured.

Thus, there is no need for an observer base mode estimation, resulting in a faster control

scheme. The influence of the nonlinear change of the amplitude on the image quality in an

AFM process can be neglected, if the positioning stage is used in the PLL to maintain a

phase shift of 90◦ between excitation and beam response.

Future work is devoted to an analytical solution for the dependency of dcrit on the

systems’s parameters (e.g. AC1, ζ, coupling strength), the achievable sensitivity as well as

the forces exerted onto a sample. Moreover, the implications gained are transferred to AFM

array, in which all beams are actively probing the sample surface. In this case, higher modes

of the array are considered in order to explain observed coupling phenomena while imaging

a sample.
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Dynamical investigation of a vibration driven locomotion system
based on a multistable tensegrity structure

Philipp Schorr, Susanne Sumi, Valter Böhm, Klaus Zimmermann

Abstract: This paper discusses selected realization possibilities of vibration
driven mobile robots based on compliant prestressed structures with multi-
ple states of self-equilibrium. Therefore, a multistable tensegrity structure
is considered exemplarily. The structure has two equilibrium configurations
with different prestress states and corresponding dynamical properties. In the
considered specific application, this discrete adjustable behavior of those struc-
tures is advantageous. The vibration modes of the structure and consequently
the uniaxial locomotion of the system can be adapted according to the given
environmental conditions. In order to study the dynamical behavior of the
considered system, the nonlinear equations of motion are derived. Selected
variants of periodic actuation are compared with the help of transient dynam-
ical analyses, to show possible different vibration modes and the according
locomotion. The movement efficiency of the system is evaluated depending on
actuation and environmental parameters.

1. Introduction

Nowadays the increasing significance of mobile robotics requires a continuous optimization

and miniaturization of the according sensors and actuators as well as the conception of in-

novative locomotion principles. In many application fields the working space is extremely

limited that the use of conventional locomotion systems which base on wheels or legs is

not possible anymore. Therefore the investigation of non-classical locomotion principles

which enable an appropriate miniaturization is essential. Amongst others the application of

tensegrity structures, known from the fields of architecture and modern arts, is a promising

approach. Such prestressed structures contains of members which can be classified accord-

ing to the resulting stress into compressed members and tensioned members. Corresponding

to the tensegrity principle, compressed members are connected to each other via tensioned

members. The mechanical behavior of robotic systems, based on these compliant structures,

can be varied by modifying the prestress state. Beside this adaptability, the multifunction-

ality of those structures offers a huge potential for the application in mobile robotics. For

example different types of motion like crawling, tilting, etc. can be realized using the pro-

nounced shape change capability of tensegrity structures.
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The locomotion of the most known tensegrity based mobile robots is generated by a shape

change of the system induced by systematic modification of the length of selected mem-

bers [5, 6, 9, 10, 12]. Another approach to create a movement of these robots bases on the

shift of internal masses [7]. The use of compliant tensegrity structures in vibration driven

locomotion systems offers several advantages, like simple system design and tunable mo-

tion behavior [2–4, 8, 11]. The dynamical properties of these systems can be influenced by

varying the prestress state. In known systems this could be only realized by changing the

mechanical parameters of selected members. The use of compliant mulistable tensegrity

structures in robotic applications with more than one stable equilibrium state is a promis-

ing research topic. In contrast to the mentioned systems, based on tensegrity structures

with only one equilibrium configuration, multistable tensegrity structures also allow to vary

the prestress state by changing between their different stable equilibrium states. Variable

movement performance can be realized by utilizing the different equilibrium configurations

of these structures.

In this paper an uniaxial vibration driven locomotion system based on a multistable planar

tensegrity structure, inspired by [1, 13] is investigated. The symmetric system is in contact

with a plane horizontal underground and is excited by a single harmonic actuation. The

according equations of motion are derived in section 2. The locomotion of the system with

selected parameters for each member is simulated for different environmental and actua-

tion conditions. The motion in the stationary state is evaluated in section 3 and essential

locomotion characteristics are determined. With regard to the different stable equilibrium

states used as initial configuration qualitative conclusions about the dynamical behavior of

the locomotion system are given in order to show the advantageous properties of multistable

tensegrity structures for the application in mobile robotics.

2. Mechanical description of the multistable tensegrity structures

2.1. Mechanical model

The investigated tensegrity structure is displayed in Fig. 1. The system consist of 9 members

(j ∈ 1, 2, . . . , 9) which are connected by 5 pin-joints (nodes, i ∈ 1, 2, . . . , 5). The elements

1, 2, 3 are compressed members and the remaining elements are tensioned members. The

tensegrity structure is considered as a planar system and is described in the cartesian coor-

dinate system {x, y, z}. The current system configuration is given by the position vectors

~xi = (xi, yi, zi)
T of the nodes i (zi ≡ 0). The locomotion system is in contact with a horizon-

tal plane underground in the gravity field of the earth (~g = −g~ez). The nodes i are supposed

to be the corresponding contact points. The resulting friction is modeled with Coulomb’s

Law of Friction.
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Figure 1. Multistable tensegrity structure in arbitrary state.

Each element j is defined by the nodes j1 and j2 and is modeled as linear elastic spring

characterized by cj as according spring rate and λ0j as initial length. Furthermore material

damping properties are taken into account by an additional linear damping element which

is described by the damping coefficient kj. The mass of each element j is given by mj. The

according mass distribution as well as the inertia of the elements are included by a linear link

element known from the finite-element-method. The resulting element model is developed

by an parallel arrangement of the mentioned components as shown in Fig. 2. Moreover the

tensioned members are considered as massless.

Figure 2. Model of the member j of the investigated tensegrity structure.

In this paper a one-dimensional locomotion is investigated. Therefore the given tensegrity

structure is supposed to be symmetric with respect to the longitudinal axis of the compressed

member 1 as axis of symmetry. Therefore, the elements 2 and 3, 4 and 7, 5 and 6 are supposed

to be identical (see Tab. 1). The direction of motion is given by the orientation of the element

1. Without loss of generality it is assumed that the direction of motion equals the x-axis

(y1 ≡ 0, y2 ≡ 0, y5 ≡ 0, x4 = x3, y4 = −y3). Therefore the mechanical model of the

structure can be simplified as shown in Fig. 3.
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Figure 3. Uniaxial locomotion system based on multistable tensegrity structures.

Hence, the system can be considered as locomotion system with five degrees of freedom. As

generalized coordinates the parameters ~q = (x1, x2, x3, y3, x5)T are chosen. The topology of

the resulting structure and the chosen parameters are listed in Tab. 1.

Table 1. Structural topology and selected simulation parameters.

Element Nodes Inital length Stiffness Damping Mass

j j1 − j2 [m] [N/m] [Ns/m] [kg]

1 1− 2 λ01 = 0.2000 c1 = 106 k1 = 0.2 m1 = 0.1

2 3− 5 λ02 = 0.0800 c2 = 106 k2 = 0.2 m2 = 0.05

3 4− 5 λ03 = 0.0800 c3 = 106 k3 = 0.2 m3 = 0.05

4 1− 3 λ04 = 0.0644 c4 = 43 k4 = 0.2 m4 = 0

5 2− 3 λ05 = 0.0644 c5 = 43 k5 = 0.2 m5 = 0

6 2− 4 λ06 = 0.0644 c6 = 43 k6 = 0.2 m6 = 0

7 1− 4 λ07 = 0.0644 c7 = 43 k7 = 0.2 m7 = 0

8 1− 5 λ08 = 0.0299 c8 = 84 k8 = 0.2 m8 = 0

9 2− 5 λ09 = 0.0319 c9 = 84 k9 = 0.2 m9 = 0

2.2. Elastic deformation and self-equilibrium states

For the description of the dynamical behavior and the locomotion of the structure the equa-

tions of motions have to be derived. Therefore all acting forces have to be defined. Beside

the actuation of the structure the elastic deformation of each member have to be taken into

account. The according force ~Fe,j of the element j is given by the equation formulated in (1).

~Fe,j =

Fe,j,x

Fe,j,y

 =

(
−cj (|~xj2 − ~xj1| − λ0j)− kj

(~̇xj2 − ~̇xj1) · (~xj2 − ~xj1)

|~xj2 − ~xj1|

)
~xj2 − ~xj1

|~xj2 − ~xj1|
(1)
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The element forces can be combined to nodal force ~Fn,i = (Fn,i,x, Fn,i,y)T. Regarding the

chosen generalized coordinates ~q the relevant components of the nodal forces:

Fn,1,x = −Fe,1,x − 2Fe,4,x − Fe,8,x

Fn,2,x = Fe,1,x − 2Fe,5,x − Fe,9,x

Fn,3,x = −2Fe,2,x + 2Fe,4,x + 2Fe,5,x (2)

Fn,3,y = −2Fe,2,y + 2Fe,4,y + 2Fe,5,y

Fn,5,x = 2Fe,2,x + Fe,8,x + Fe,9,x

Because of the given symmetry of the structure, the remaining components of the nodal

forces are equal to zero. For the determination of the equilibrium states of the structure all

of the in (2) listed components of the nodal forces have to be equal zero. This yields to a

nonlinear system of equations which can be solved numerically. As consequence 5 symmetric

equilibrium states were found for the given tensegrity structure with the parameters shown

in Tab. 1. Further investigations regarding the according static stability show that there are

2 stable and 3 instable configurations. For the following analysis of the locomotion system

only the 3 two dimensional equilibrium states (A, B, C) shown in Fig. 4 are relevant.
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Figure 4. Two-dimensional symmetric equilibrium states of the investigated tensegrity-

structure - a) stable state A, b) instable state B, c) stable state C.

2.3. Equations of motion

The actuation of the structure is realized as excitation of the massless member 8. The initial

length of this element is varied by a harmonic function s(t) = −a sin(2πft). In this paper the

amplitude of the excitation function is restricted to a = 0.01 m. This yields to an actuation

force ~Fact = Fact~ex which is formulated in (3).

~Fact = (−c8 · s(t)− k8 · ṡ(t))~ex = −a(c8 sin(2πft) + 2πf cos(2πft))~ex (3)
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Taken the illustrated actuation force into account the nodal forces have to be extended as

shown in (4). To differentiate between these forces and the nodal forces for the static case

they are defined as resulting forces ~Fres,i = (Fres,i,x, Fres,i,y)T.

Fres,1,x = Fn,1,x − Fact

Fres,2,x = Fn,2,x

Fres,3,x = Fn,3,x (4)

Fres,3,y = Fn,3,y

Fres,5,x = Fn,5,x + Fact

To model the friction forces ~FC,i between the nodes and the plane underground Coulomb’s

Law of Friction is used. In order to handle the zero velocity with the corresponding sticking

effects despite of the numerical accuracy, an additional parameter δ is introduced. This

method bases on an idea of Karnopp. The resulting modified Coulomb’s Law of Friction

is formulated in (5). The parameter ~FN,i describes the according contact force.

~FC,i =


−µ|~FN,i| ~̇xi|~̇xi| if |~̇xi| > δ

−µ|~FN,i|
~Fres,i

|~Fres,i|
if |~̇xi| ≤ δ and |~Fres,i| > µ0|~FN,i|

−~Fres,i if |~̇xi| ≤ δ and |~Fres,i| ≤ µ0|~FN,i|

with δ = 10−4 m

s
(5)

As result the acting forces during the motion of the system ~Fi = (Fi,x, Fi,y)T = ~Fres,i + ~FC,i

can be formulated. Furthermore with regard to the generalized coordinates ~q an according

force vector ~Fq(~q, ~̇q, t) can be defined as shown in (6).

~Fq(~q, ~̇q, t) = (F1,x, F2,x, F3,x, F3,y, F5,x)T (6)

Taken the given mass distribution of the structure into account the equations of motion

can be derived as shown in (7). These are formulated as a nonlinear system of 2nd order

differential equations.

M~̈q = ~Fq(~q, ~̇q, t) ⇒



m1
3

m1
6

0 0 0
m1
6

m1
3

0 0 0

0 0 2m2
3

0 2m2
6

0 0 0 2m2
3

0

0 0 2m2
6

0 2m2
3





ẍ1

ẍ2

ẍ3

ÿ3

ẍ5


=



F1,x

F2,x

F3,x

F3,y

F5,x


(7)
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3. Dynamical investigations of the multistable tensegrity structure

The equations of motion, derived in subsection 2.3, are solved numerically using Runge-

Kutta-Method 4th order and a suitable step size of 10−4 s. As initial configuration the stable

equilibrium state A or C is chosen and the system is supposed to be at rest. The movement

of the system is simulated for 1000 actuation periods (period duration of the actuation:

T = 1/f , with f : actuation frequency). The steady state is assumed after 900 actuation

periods. Evaluating the remaining time interval (t ∈ (900T ; 1000T ]), locomotion character-

istics like the stationary locomotion velocity and the vibration mode are determined. In

order to investigate the influence of environmental and actuation conditions, these studies

are repeated for different friction properties and appropriate actuation frequencies.

Furthermore the eigenfrequencies of the multistable tensegrity structure are taken into ac-

count in order to illustrate relations to dynamical effects of the locomotion system. These

frequencies are determined by a modal analysis. Therefore the structure was linearized with

respect to the stable equilibrium states A and C and friction effects were neglected. Beside

the rigid body motions, 7 eigenfrequencies result for each equilibrium state. Neglecting longi-

tudinal oscillations of the compressed members as well as frequencies yielding to asymmetric

eigenmodes, 2 eigenfrequencies remain (fA,1, fA,2 and fC,1, fC,2).

3.1. Chaotic behavior

Because of the non-linearity of the system chaotic motion behavior can appear. The resulting

effects are critical to handle because the motion of the system cannot be predicted anymore.

Especially with regard to a future technological application, those operating conditions have

to be avoided to remain the controllability of the locomotion system. Hence, dynamical

investigations considering the periodicity of the locomotion are necessary. Therefore, as cri-

terion the relative motion of the node 5 along the x-axis (x5,rel = x5 − x1) is considered

exemplarily and the corresponding Poincaré-Map is used to estimate the chaotic behavior

of the system. In Fig. 5 the according bifurcation diagram is shown in dependence of the

actuation frequency. In this figure different chaotic ranges of actuation frequencies can be

identified. In general those depend among others of the friction and damping properties.

An evaluation of typical locomotion characteristics is not possible for such cases. Therefore

chaotic ranges are not taken into account for the further investigations.

Regarding the periodicity of the structural motion, a duplication or even a multiplication of

the corresponding period duration can be observed for some non-chaotic actuation frequen-

cies. This effect can also be reasoned with the non-linear behavior of the locomotion system.

According to this phenomena the parameter Tp = nT (n ∈ N), which describes the period

duration of the structural motion, is defined.
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Figure 5. Poincaré-Map of x5,rel of the locomotion system with µ = µ0 = 0.1 and the stable

equilibrium state A as inital configuration.

3.2. Vibration mode of the tensegrity structure

Evaluating the vibration mode of the structure in the stationary state, different types of

vibration can be classified. The appearance of these different oscillation shapes depends

on the actuation, the initial configuration and the friction properties. The mentioned vi-

brations modes are qualitatively displayed in Fig. 6. In contrast to systems with only one

stable equilibrium states and therefore in general one vibration mode, multistable tensegrity

structures enable several different types of oscillation. Beside small vibrations around each

stable equilibrium state (see Fig 6 a, b), a continuous change between stable equilibrium

configurations occurs for an appropriate actuation (see Fig 6 c).

Figure 6. Vibration modes - a) vibration around state A, b) vibration around state C, c)

continuous change between the states A and C.
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Each type of oscillation leads to different locomotion characteristics. Therefore, depending

on the given environmental conditions, the actuation properties as well as the equilibrium

state as initial configuration can be chosen to effect a vibration mode with desired dynamical

behavior. The appearance of these vibration modes are displayed exemplarily in Fig 7.
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Figure 7. Simulation results regarding the vibration modes for µ = µ0 = 0.1.

The resulting vibration mode can be influenced by the actuation frequencies and the initial

configuration. However, the resulting vibration mode is not predetermined by the initial

state. See for example the frequency range 4 - 5 Hz in Fig. 7. In this case the structure

vibrates around the stable equilibrium state A although the equilibrium state C is chosen as

initial configuration. However for frequencies above the first eigenfrequencies, a control of

the vibration mode by the according equilibrium state which is chosen as initial condition is

suitable (see Fig. 7: f > max[fA,1, fC,1]).

3.3. Stationary locomotion velocity

The locomotion of the structure can be classified by its mean velocity in the stationary state

and by its direction of motion. This values are given by the stationary locomotion velocity.

The corresponding definition is given in (8). Hence, the time t0 is an arbitrary moment in

the stationary state.

~vstat = vstat~ex =
1

Tp

∫ t0+Tp

t0

ẋi dt ~ex =
xi(t0 + Tp)− xi(t0)

Tp
~ex i ∈ 1, 2, 3, 5 (8)

The resulting stationary velocity of the locomotion is displayed in Fig. 8 for different friction

properties and initial configurations. As mentioned in subsection 3.1 chaotic effects can

appear but are not taken into account (see e.g. Fig. 8 a: f ≈ 3 Hz). Moreover, the motion

of the system seems difficult to handle for frequencies near those chaotic ranges (see Fig. 8

a: f < 4 Hz).
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Figure 8. Evaluation of the stationary locomotion velocity - a) µ = µ0 = 0.1, b) µ = µ0 = 0.2,

c) µ = µ0 = 0.5.

Regarding the stationary locomotion velocity for the different equilibrium states as initial

configuration, no useful locomotion results for actuation frequencies above the second eigen-

frequency. This issue limits the working range of the actuation frequency. Nevertheless the

stationary locomotion velocity and the according direction of motion can be controlled by

varying the actuation frequency or switching the equilibrium state as initial configuration.

Even for great friction coefficients a bidirectional locomotion with suitable velocity can still

be realized by changing the equilibrium states (see Fig. 8 c). Comparing the absolute values

of the stationary locomotion velocity for various initial configurations different locomotion

characteristics result for actuation frequencies near the first eigenfrequency (see I and II).

However for increasing actuation frequencies the influence of the initial configuration on the

dynamical behavior of locomotion systems decreases (see III and IV). This phenomena can
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be explained with the according eigenfrequencies. The second eigenfrequencies fA,2 and fC,2

are almost equal. Therefore a change of the equilibrium state effect no modification of the

dynamical properties for actuation frequencies near fA,2 and fC,2. That means, the locomo-

tion characteristics can be influenced by switching the equilibrium states only for actuation

frequencies near the first eigenfrequencies.

According to the shown results, the simulations confirm, that indeed, it is possible to influ-

ence the dynamical behavior, especially the motion characteristics of the locomotion system,

by changing the equilibrium state and the corresponding vibration mode.

4. Conclusion

This paper offers an approach to non-classical locomotion based on multistable tensegrity

structures. A symmetric planar tensegrity structure with a single actuation is considered as

uniaxial vibration driven locomotion system. The mechanical model is introduced and the

equilibrium states of the structure are determined for selected parameters. The nonlinear

equations of motion are derived and solved numerically. The locomotion of the system is

simulated for different environmental and actuation conditions and the stationary state is

evaluated. Chaotic motion behavior is shown and typical locomotion characteristics of the

system are evaluated with regard to the different stable equilibrium states used as initial

configuration. The simulation results confirm, that multistable tensegrity structures offers

several vibration modes with different dynamical properties. Moreover, the dynamical be-

havior of the system can be influenced by changing the equilibrium state. Compared to

systems with only one equilibrium state, multistable tensegrity structures enable additional

opportunities to vary the prestress state and the corresponding motion characteristics of

the locomotion system. Because of the controllable dynamical properties and great adapt-

ability to variable environmental conditions, a vibration-driven locomotion system based on

multistable tensegrity structures is advantageous for the application field of mobile robotics.
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Equilibria and global dynamics of a 2 DoF aeroelastic system 

 
 

Yury Selyutskiy 

Abstract: Study of aerodynamic flutter has a long history. Interest to this problem is 
stimulated by applications: on the one hand, the flutter effect should be eliminated in 
order to ensure durability of structures; on the other hand, this phenomenon can be 
used to harvest energy from the flow. In the present work, an aeroelastic system with 
two degrees of freedom (translational and rotational) is considered. Aerodynamic load 
is simulated using the quasi-steady approach. Evolution of the set of equilibrium 
positions of the system (including both trivial and “oblique” ones) is studied 
depending on structural parameters. Stability criteria are obtained for these equilibria, 
and attraction domains are analyzed. Numerical simulation of the system behavior is 
performed for different values of parameters, including in the area of large angles of 
attack. 

1. Introduction 

Aeroelastic systems are mechanical systems, dynamics of which is determined by the interplay of 

elastic forces (e.g., in attachment of elements of these systems to some basement) and aerodynamic or 

hydrodynamic forces acting upon these systems. It is well known that the nominal” equilibrium of the 

system can become unstable for large enough flow speeds. A vast literature is dedicated to 

investigation of such systems, which is due to their importance from the point of view of applications 

(in aeronautics, civil engineering, etc.).  

A large number of works are related with the classical flutter, when the flow remains practically 

laminar, and the amplitude of arising limit cycle oscillations is determined by structural nonlinearity. 

In these works, local analysis of the system behavior near the trivial equilibrium is performed: 

description of arising limit cycle oscillations, generation of control laws aimed at limiting the 

amplitudes of these cycles and/or prevention of their appearance, etc. (e.g., [1-2]). The so-called stall 

flutter related with separation of flow (amplitude of oscillations in this case is determined by non-

linearity of the aerodynamic load) is also intensely studied. For instance, in [3], where experimental 

and analytical study of large-amplitude limit cycle oscillations of a flat plate is performed, and in [4], 

where limit cycle oscillations and bifurcations of an airfoil undergoing stall flutter are investigated. 

Influence of different types of nonlinearities (such as cubic or free-play) is discussed in [5]. Chaotic 

behavior of such system and various patterns of transition to chaos are investigated in [6]. 
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In many applications, flutter effects are harmful, as they result in faster wear, increased fatigue, 

and destruction of structures. However, since recently, an interest appeared to using these effects to 

harvest the energy from the flow [7,8].  

From this point of view, stability of equilibrium positions is undesired, and it is necessary to 

search for ranges of parameters where limit cycles with large enough amplitude and frequency exist. 

In such applications, it is not important for the wing to make a small angle with the flow. Hence, it is 

reasonable to investigate (analytically, numerically, as well as experimentally) behavior of the 

aeroelastic system in the entire range of angles of attack. However, currently there are practically no 

works of that kind.  

In the present paper, questions of existence and stability of “oblique” equilibrium positions 

arising in the aeroelastic system are considered, and numerical simulation of the system dynamics 

under different values of parameters is performed.  

2. Equations of motion 

Consider an aeroelastic system consisting of a thin wing with symmetrical airfoil which is mounted 

on elastic support in such a way that it has two degrees of freedom (translational and rotational). The 

system is installed in the horizontal airflow, so that the axis  of translation is perpendicular to the 

flow speed, and the axis of rotation (elastic axis) is vertical and can move along the axis  (see Fig. 

1). Choose the displacement  of the elastic axis and angle  between the wing chord and the flow 

speed as the generalized coordinates. Suppose that the center of mass  of the wing coincides with the 

elastic axis. 

 

Figure 1.   Aeroelastic system with translational and rotational degrees of freedom. 

The pitch spring is unloaded when the wing makes a zero angle with the flow. Assume also that 

both plunge spring stiffness and pitch spring stiffness are linear.  
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In order to describe the aerodynamic load upon the wing, we use the quasi-steady approach. 

Under the conventional assumption that the flow about the wing is two-dimensional, the aerodynamic 

load can be represented as a force applied in the mid-chord point  of the wing, and the torque about 

this point. The aerodynamic force can be decomposed into two components: drag force , which is 

directed against the airspeed  of the mid-chord point, and lift force , which is perpendicular to . 

Lift and drag forces, as well as the aerodynamic torque, are described by the following formulae: 

( )2

2 C l

S
L V C a=


, ( )2

2 C d

S
D V C a=


, ( )2 .

2 C m

S
M V bC a=


 (1) 

Here   is the air density; S  is the wing area; b  is the chord length; a  is the efficient angle of 

attack; by which we will mean the angle between CV  and the wing chord; ( )lC a , ( )dC a , and 

( )mC a  are non-dimensional coefficients of the lift force, drag force, and torque, correspondingly. 

Dependencies of these coefficients upon the angle of attack can be taken from static experiments. 

The angle of attack and the airspeed of the point C  are given by the following kinematical 

relations: 

cos cos sin ,                     

sin sin cos ,            
C

C

V V y

V V y r

a q q
a q q q
= -
= + -




 (2) 

where r  is the distance from the mid-chord point to the center of mass of the wing (positive towards 

the trailing edge of the wing). 

Then equations of motion of the system can be represented as follows: 

( ) ( )cos sin ,

cos sin ,

my ky L D

J M Lr Dr

a q a q

q kq a a

+ = - + -

+ = + +




 (3) 

where m  is the mass of the wing, J  is the moment of inertia of the wing with respect to the elastic 

axis, k  is the plunge spring stiffness, k  is the pitch spring stiffness. 

In order to simplify the notation, introduce the dimensionless time 0/b Vt =  ( 0V  is a 

characteristic speed) and the following dimensionless variables and parameters: y bh = , r bx = , 

0u V V= , 0C Cu V V= . 

Taking into account (1), equations (2) and (3) can be rewritten as follows (dot means derivative 

with respect to t ): 

cos cos sin ,                     

sin sin cos ,            
C

C

u u

u u

a q h q
a q h q xq
= -
= + - 




 (4) 
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( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

2

2

cos sin ,

cos sin ,   

C l d

C m l d

m k u C C

J u C C C

h h a a q a a q

q kq a a x a a x a

+ = - + -

+ = + +


  (5) 

Relations (4)-(5) form a closed system of equations. 

3. Equilibria and their stability 

For symmetrical airfoils, lift coefficient and moment coefficient are equal to zero for 0  . Hence, 

(5) admits the trivial solution 0  , 0  . Usually, behavior of the aeroelastic system in the 

vicinity of this equilibrium is considered. However, this equilibrium, under certain conditions that we 

will discuss below, is not unique.  

Write down equilibrium equations: 

( )
( ) ( ) ( )( )

2
* *

2
* * * * * *

, 

cos sin ,

l

m l d

k u C

u C C C

h q

kq q q x q q x q

=

= + +
. (6) 

The second equation (6) contains only q , so the first equation can be considered as equation on 

y . Functions ( )mC a , ( )lC a , and ( )dC a  are 2p - periodic. Moreover, it is known from experiments 

that, for symmetric airfoils, ( )mC a  and ( )lC a  are uneven functions, and ( )dC a  is even. Hence, the 

function in the right-hand side of the second equation (7) is uneven. This means that, for different 

values of k , this equation can have multiple solutions, and their number tends to infinity as k  tends 

to zero. Consider the function ( ) ( ) ( ) ( )cos sinm l df C C Ca a a x a a x a= + + . Based on results of tests 

performed in wind tunnels, the following inequality can be established for relatively thin symmetrical 

airfoils: 

( )0 ,f faa a³  where 0
0

df
f

da
aa =

= . (7) 

From (7) it follows that if 

2
0u fak>  (8) 

then there exists only one equilibrium, namely, the trivial one. For smaller , there exist additional 

couples of equilibria (evidently, if  * *,    is an equilibrium, then  * *,      is also an equilibrium). 

Note that increase in the flow speed leads to violation of (8) and appearance of additional equilibria.  

Stability conditions of equilibrium positions are rather cumbersome. However, one can readily 

find the condition of static instability: 
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2
*u fak> , where 

*

*

df
f

da
a qa =

= . (9) 

Comparing (8) and (9), we can conclude that “oblique” equilibria exist, when the trivial 

equilibrium becomes statically unstable. 

Consider the situation when the wing is heavy: 

1J  , 1m  (10) 

Taking into account (10), one can easily derive the following approximation formulae for roots 

of characteristic polynomial of the system linearized near the corresponding equilibrium: 

   
 
 

2
* * * *

1,2 2
*

2 3
* * * ** * *

3,4 2
*

1
                         

2

2 sin cos1 1

2 2

d d l
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u mu f C C C Jk mk
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m m mu f Jk m
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J J mu f Jk m







 








 


  
  

 


   

 

 (11) 

Here * *( )d dC C q= , 
*

* /l lC dC da
a q

a
=

= . 

Formulae (11) only hold for the situation when the value 2
*mu f Jk ma k+ -  is not small.  

Note that for small enough k  there exist equilibria, such that * ( 1)n
n nnq p j= + - , 1nj  , n  

are integers. For brevity, discuss only positive *q  (for negative ones, the situation is similar). Static 

experiments show that *f  is practically linear in nj  for such *q , and the following relations hold, if 

x  is large enough: * 0dC > , * 0f > , * 0lCa > ; for even n  * 0 0f fa a= > , for odd n  

'
* 0f f fa a apa p=
= = < . Hence, from (11) it follows that for even n , when the wing is oriented 

almost “against” the flow, 3,4l  are real (this follows from the fact that for small k  the inequality (8) 

is not satisfied), and have different signs, which means that the corresponding equilibria are unstable. 

For odd n  (the wing is oriented practically along the flow), when the stiffness of the plunge spring is 

small enough, real parts of all l  are negative, and the equilibria are asymptotically stable. Evidently, 

the same holds for the case of large k . Real part of 3,4l  becomes zero when  

( )( )
( )

2 2
* * * * * * *

*
* * * *

2 sin cos

2 sin cos
lmr f f u f Ju f C

k k
Jr f f

a
a a a

a

q q k

q q

+ - +
= =-

+
  

Note that * 0k >  for odd n , which means that for each such equilibrium there exists an interval 

of values of the plunge spring stiffness where this equilibrium is unstable. 
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4. Global behavior 

In order to study global behavior of the system, that is, its dynamics in the entire range of angles 

of attack, numerical simulation was performed with the following values of parameters: 100J = , 

100m= , 1x = , 1u = . Hereinafter, aerodynamic characteristics of the standard NACA0015 airfoil 

provided in [9] are used. 

Bifurcation diagrams for equilibrium positions are shown in Fig. 2 for different values of 

stiffness coefficients (a logarithmic scale for k  is used). Black points denote stable equilibrium 

positions, and grey points denote unstable ones. Note that “oblique” equilibria are mostly stable for 

high and low stiffness of plunge spring, while for ~ 1k  they are, as a rule, unstable. 

    

 

Figure 2.   Bifurcation diagrams 

In order to understand the influence of the plunge spring stiffness upon limit cycles, consider the 

case when the value of pitch spring 0.08k= . Then there exist eleven equilibrium positions (one 

trivial and 10 “oblique” ones). Phase plane  ,   is shown in Fig. 3 for different values of k (circles 
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denote asymptotically stable positions, crosses denote saddle-type equilibria, and asterisks denote 

unstable equilibria, which are not saddles, black lines denote limit cycles, and grey lines denote phase 

trajectories). 

     

     

Figure 3.   Limit cycles for different values of k. 

Increase in k first leads to appearance of attracting limit cycles, growth in their amplitude, and 

increase of their number. Though there can exist asymptotically stable equilibria, their domains of 

attraction are small. However, as was mentioned before, larger k lead to “stabilization” of the system: 

domains of attraction of stable equilibria enlarge, and attracting limit cycles disappear. 

Simulation shows that for larger values of  limit cycles disappear, and the only attractors are six 

asymptotically stable “oblique” equilibrium positions.  

5. Conclusions 

An aeroelastic system with two degrees of freedom (translational and rotational) is considered. 

Aerodynamic load is simulated using the quasi-steady approach. Evolution of the set of equilibrium 
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positions of the system (including both trivial and “oblique” ones) is studied depending on structural 

parameters.  

Stability criteria are obtained for these equilibria, and attraction domains are analyzed. Numerical 

simulation of the system behavior is performed for different values of parameters, including in the 

area of large angles of attack.  
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Influence of the spring system in vehicle vibrafon 

 

 

 

Martin Svoboda, Václav Schmid, Josef Soukup, Milan Sapieta 

Abstract: The work deals with the adhesion of the wheels to the road and the resulting 

oscillation of the individual parts of the vehicle in dependence on its load, the 

inflation of the tires, the type of springing at different vehicle excitement. Wheel grip 

has been measured using EUSAMA chassis tester. Acceleration was measured by 

three-axis acceleration sensors deployed on the vehicle, both on the measuring station 

and in operation. The problems were evaluated from the point of view of individual 

technical solutions of damping systems. The work was carried out experimentally in 

the laboratory and under real conditions in operation.  

1. Introduction 

The issue of damping and determining the required properties of shock absorbers and springs in 

passenger cars is directly related to the efforts of motor vehicle designers to increase comfort and 

safety of the crew as well as road safety. The aim is also to reduce the negative impact of the 

vibration transfer on other parts of the vehicle, thus increasing wear and decreasing their lifetime. 

When we overcome the unevenness of the vehicle, we need a fast damping system response and 

a change in the softness of the shock absorbers from a soft one - for the comfort of the crew to the 

hard - advantageous for quicker attenuation by suppressing the disadvantageous shape of the 

vibrations. 

With the tire pressure monitoring car to meet for over 10 years, but nobody gives him with 

attention. In the Regulation of the European Union the system was the prerogative of special 

equipment and most importantly concerned primarily premium brands or models. According to the 

norms of the European Union EC 661/2009 and ECE-R 64 car manufacturers from 1. 11. 2014 

obliged to equip all new cars for the European market monitoring system, tire pressure monitoring - 

TPMS (Tyre Pressure Monitoring System). The reason for this is to ensure optimum tire inflation, 

which affects the production of harmful gas emissions, road safety, vehicle operation economy and 

ride comfort [1, 2]. 

Theme of tire pressure monitoring is interesting in view of the technical solution of the system is 

supported by theoretical knowledge of mechanics and thermodynamics, also uses knowledge of 

electronics, automation and evaluation using computer technology. 
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The aim of the work was to assess the whole system of passenger car springs. The impact of tire 

inflation, tire types, springs and shock absorbers was assessed on the vehicle. The required data was 

obtained by measuring the acceleration of the various parts of the car (axle, steering wheel, driver's 

seat attachment, bodywork and acceleration to the driver). This was done by means of the 

acceleration and thrust sensors between the wheel and the road using test stands of shock absorbers 

operating under the EUSTAMA and CAP methodologies [3-4]. 

2. Methodology of measurement 

Using acceleration sensors LIS331DL STMicroelectronics were measured and evaluated acceleration 

values of various operating conditions. The sensors were placed on the chassis, bodywork, in the 

interior of the vehicle were placed on the driver's seat and the steering wheel. 

Measurements have been made: 

 Tire adhesion to the road depending on the vehicle's driving mode with varying 

stiffness and acceleration on the chassis, bodywork, steering wheel and driver's seat. 

 Tire-to-ground tire grip depending on load and acceleration on steering wheel and 

driver's seat. 

 Tire adhesion to the road depending on tire inflation and acceleration on the driver's 

seat. 

 Statistical measurement of damper condition. 

 Acceleration on the seat mounts when crossing unevenness on the test track. 

Measurement of tire acceleration and adhesion to the road (damping) was performed on the test 

bench of the silencers. At the same time pressure was measured using EUSAMA al. The EUSAMA 

methodology is the most commonly used way of assessing the chassis state, more precisely the 

adhesion of the wheels to the oscillating tester pad. The ratio of the dynamic dynamic force of the 

wheel to the static force was measured. The percentage of these forces was measured in the test. At 

the same time, the forces on the left and right sides of one axle were compared. The measurements 

were made on vehicles equipped with passive damping and damping adaptable. For vehicles with a 

controllable system, all dampers have been measured. 

Tire-to-road adhesion measurements were measured and vibration transmitted to different parts 

of the vehicle, depending on the stiffness of the silencers for soft, medium and hard setting. 

Securing a constant oscillation frequency can only be done by adjusting the damping unit to a 

vehicle height control device. This can provide either a constant height of the vehicle constant size 

and thus the spring travel of the spring or may purposefully vary this height, and thus achieve the 

desired frequency at different driving (driving on flat highways at higher speeds / crossing obstacles 

at slow speed). 
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Changing the stiffness of the damper changes the resistance of the system. This also changes the 

magnitude of the amplitude. The tougher the damping, the higher the resistance, the lower the 

amplitude and the faster the oscillation. This assumption was tested on a vehicle with a variable 

adjustable stiffness dampers. For some types of chassis, such as McPherson independent suspension, 

when crossing unevenness, a change in steering geometry is required. 

Accelerometers sensed both the mechanical oscillation induced by the displacement of the test 

plate of the silencer tester as well as the non-periodic oscillation. 

 

A- shock absorber with variable efficiency, B and C - sensor location (marked with a cross), 

D - acceleration sensor measurement directions 

Figure 1.   Scheme of system – asymmetrical arrangement of extra weights 

 

Table 1. Variations of acceleration measurements made on the vehicle 

 

seat sensor steering wheel sensor sensor on the axle sensor on the bodywork 

0,5 A excitation I II III IV 

0,8 A excitation V VI VII VIII 

1,2 A excitation IX X XI XII 

without excitation XIII XIV XV XVI 

3. Measurement results 

Before running the oscillating plates, the chassis tester measures the weight of the individual 

wheels on the test plates. This determines the static force Fst [N], the vehicles on individual wheels. 

This figure, together with the minimum force acting on the plate at oscillation Fs min [N], is required 

for the calculation of the wheel grip by the EUSAMA method. 

100.
min

st

s

F

F
EUS  [%]  (1) 
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After the shock absorber tester (left front and then right front wheel) was triggered, the force 

applied to the wheel was recorded. This force is determined by the adhesion of the tire to the road 

while measuring acceleration by three-axis acceleration sensors. The measurement results are shown 

in the following graph (Fig. 2). 

 

Figure 2.   Measurement No: I. - Acceleration of the driver's seat in comfort mode. 

 

Figure 3.   Acceleration of the driver's seat - Comparison of measurement No: I., V., IX. 

 

For each measurement, the adhesion of the left (L) and right (P) front tire to the support was 

recorded (Fig. 4 - comfort mode). 
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Figure 4.   LINE 7000 chassis screen test - Comfort mode. 

 

Figure 5.   LINE 7000 chassis screen test - Comfort mode. 

The compression force in comfort mode is noticeably smaller than in the sport mode. This 

corresponds to the theoretical assumption for passive silencers that the silencer is set to the 

compromise between safety and convenience. In the comfort mode, greater convenience is preferred, 

where the maximum acceleration measured on the driver seat mount is only 3,07 m /s2, at a pressure 

of 45%. 
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The values of the force computation evaluation according to the EUSAMA methodology are [4]: 

 over 60%  excellent 

 41-60%  good 

 21-40%  compliant 

 1-20%  unsatisfactory 

 0%  inoperative. 

Table 2 shows the results of the tire pressure measurement. 

Table 2. Front wheel axle pressures with different stiffness of stiffeners  

generation adhesion - left front  wheel adhesion - right front wheel difference  

0,5 A 46,3 % 44,1 % 2,2% 

0,8 A 55,8 % 55,7 % 0,1% 

1,2 A 56,9 % 53,5 % 3,4% 

without 57,2 % 57,3 % 0,1% 

 

According to EUSTANA methodology, all damping state measurements were in the second area, 

with a grip of 41-60 %. This applies to areas marked as good shock absorbers. 

The difference in pressure between the soft comfort mode and the hard mode of sport (in the 

front right wheel) is 17,6 %. The difference in the maximum acceleration at the driver's seat is 

19,8 %. A more pronounced difference in acceleration is between the comfort mode and the 

excitement of the solenoid valve with a current of 1,2 A. In this comparison, the maximum 

acceleration on the driver's seat is 53,8 % larger and reaches 6,65 m/s2, although adhesion is only 

17,6% greater. The 1,2 A current excitation is not a normal driving mode but only a temporary state 

when the control unit evaluates the extreme load during braking, acceleration or tilting when 

cornering. 

When comparing the measured values from individual acceleration sensors at 0,5 A (soft damping - 

comfort setting), it is clearly visible the difference in vibration on the individual parts of the vehicle. 

The vibration record shows that the vibration magnitude is significant for each side of the vehicle 

under test, that is, the wheel under which the test plate vibrates during the test.  

When testing on the right side, there is no significant transverse vibration transmission on the 

driver's seat. At maximum, the acceleration is around 1 m/s2, but most of the test runs below this 

value. For vibration transfer to the steering wheel, the maximum acceleration value is around 1 m/s2, 

but the transmitted vibration is different from that of the seat. 
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Figure 6.   The course of acceleration acting on the handle of the seat in comfort mode 

 

Figure 7.   The course of accelerations on the steering wheel in comfort mode. 

The vibration transfer to the sensor located on the right wheel axle when testing the wheel on the 

opposite (left) side is higher in the region of the resonant frequency. When testing the right front 

wheel vibration is significant. They reach an acceleration of up to 13 m.s-2. The transmission of 

vibrations from the wheel to an undisturbed axle is crucial in terms of wear on the chassis 

components and the formation of clearance. 

4. Conclusions 

The aim of the measurement was to determine the response of the damping system to the different 

operating conditions of the tested passenger cars. All measurements made with the help of tester 

chassis and riding test were performed to reveal the possible impacts of operating conditions in 

particular on crew comfort and driving safety. 
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By measuring, it was found (verified theoretical assumption) that the magnitude of transmission 

of vibrations to different parts of the vehicle depends on the amount and type of connection between 

the wheel and the measured part of the vehicle. The type of connection that is disadvantageous to the 

vibration transfer is a fixed connection (most commonly spot welded) and glued. This is visible in the 

transmission of vibration to the post. Conversely, the advantageous connections for vibration transfer 

are flexible connections (seat cushion laid on a flexible metal structure, various types of joints of 

articulated, sliding, ridge gears, ie, classic gear transmission, pneumatic, hydraulic transmissions etc. 

Of course, the number of these elements At their distances from the source of vibration. With 

different tumbling stiffness, the tire's grip (tire pressure) was measured. By measuring it was found 

(also verified theoretical assumption) that manufacturers resolve damping as a compromise between 

pressure (safety) and comfort (acceleration on the crew). The soft damping has a 20% lower 

maximum acceleration value but also a 20% lower thrust than a hard mode. Even with one 

measurement, we are not outside the range of acceptable values. The difference in the pressure setting 

would be appreciated rather in extreme situations, ie in a fast ride on a low-quality surface in sports 

cars, regardless of the effect of higher vibrations on the crew. In conventional vehicles, the softer 

setting is more convenient, which is more comfortable for the crew and safer for cargoes when 

crossing unevenness. With the vehicle being measured, the most powerful auto-hard mode is the most 

meaningful, which is activated during braking, acceleration or quick cornering. 
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A compensation for positioning of the remote control artillery-
missile set in external disturbance conditions 

 

Piotr Szmidt 

Abstract: An artillery-missile set mounted on a moveable object, such as a battleship, 

is subjected to movements that cause the line of sight to move relative to desired line 

of sight. This is a highly undesirable phenomenon during defense operations. The 

paper presents an attempt to compensate for these disturbances by using PID 

controllers and set’s own driving systems. It has also been assumed that disruptive 

movements came from the ship motion on the sea wave, and that the object (e.g. a 

attack helicopter) hovers in place. Numerical simulations were performed in SciLab 

environment and the results was graphically presented. 

1. Introduction 

The paper is focused on controlling missile-artillery set during influence of external disturbances. 

Disturbances acting on the set can be in form of kinematic extortions coming from warship motion on 

which set is mounted and such case was considered in the paper. These kinematic extortions acting on 

the set make the line of sight changing its desired position. It results in inaccurate tracking of a target 

what is very undesired. 

Precise manual control of the set under disturbance conditions is very difficult. Operator training 

is expensive and takes time [1] and additionally operator can be exposed to aggressor’s fire. It is 

obvious that, for these reasons, it is preferable to replace human work with automatic control systems. 

In other research centre, this type of work is carried out [2,3], however, they involve 35 mm cannons. 

Here, attention will be paid to the popular and produced in Poland naval set ZU 23-2MR equipped 

with double-coupled 23 mm cannon and two GROM missiles [4]. 

2. Artillery-missile set model 

In the Figure 1 there is presented scheme of artillery-missile set (AMS) model. It consist of two 

bodies and has two degrees of freedom which are responsible for position in azimuth deviation and 

elevation tilt. It was assumed that the generalized torque M1 rotates the body 1 by an azimuth angle θ1 

about the axis z1. Further, the generalized torque M2 rotates the body 2 by the elevation angle θ2 about 

the axis y2 that moves along with the body 1. Also, some simplifications have been made to the 

impact of external disturbances. It was assumed that the linear acceleration and yawing of the ship is 

negligibly small, and the base of the set is subject only to rolling and pitching. However, they are 

sufficient to test the control system as they can cause large displacement of the aiming line. 
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Figure 1.   AMS mechanical model scheme 

 

Designations presented in Fig. 1: 𝜃1– azimuth angle, 𝜃2– elevation angle, Qi – generalised torque 

impacting on i-th body, I1 – constant mass inertia moment of body 1 in relation to z1 axis, 

Is(n) – variable mass inertia moment of body 1 in relation to z1 axis depending on a number of 

cartridges n in boxes, I2 – constant mass inertia moment of body 2 in relation to y2 axis, 

Ia(θ2) – variable mass inertia moment of body 2 in relation to z1 axis depending on elevation angle θ1, 

m – mass of body 2, g – gravitational acceleration, r – distance from the centre of gravity of body 2 in 

relation to y2 rotation axis, 𝛾 – angular displacement of the centre of gravity of body 2 in relation to 

an axis of a gun barrel. 

The non-linear equations of AMS dynamics are given by (1) and (2). 
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Where: x – roll angle, y – pitch angle, Qi = Mi – Ti and Mi – driving torque acting on i-th body 

reduced by friction torque Ti; a, b, c, d, q, p – parameters of the set described in detail in the paper [5]. 

The nonlinear friction model for given parameters of set has been replaced with good accuracy by the 

3rd degree polynomial. Coefficients were found by the least squares method and finally the friction 

has form (3) and (4). 

T1 = 86.15n1
3 + 77,44n1 (3) 

T2 = 8.98n2
3 - 8.04n2 (4) 
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3. Control loop structure 

A control-loop structure along with additional devices is shown in Figure 2. The main additional 

element is the compensator, where target position signals αT and εT from the scan-track head and the 

angular displacement of the base of the set τx and τy are received. The compensator allows for 

calculation of corrections and sends the resulting angular angles of the azimuth and elevation θ1
d and 

θ2
d respectively to the control system. In other words, the θ1

d and θ2
d are desired angles that will 

maintain the line of sight at target in spite of the effects of τx and τy extortion. 

 

 

Figure 2.   Control-loop structure for considered dynamical system 

Next, the azimuth and elevation position errors e1 and e2 are calculated and are sent to PID 

controllers. The PID controllers have parallel structure and their parameters are KP1 = 9.81; KI1 = 0; 

KD1 = 3.31 and KP2 = 9.23; KI2 = 4.16; KD2 = 1.3. The controllers tuning was described in detail in [5], 

where optimal parameters were found by implementing Nelder-Mead optimization algorithm [6]. As 

result, the azimuth regulator is a PD regulator. 

The controllers generate signals u1 and u2 (e.g. voltage) which corresponds to desired output 

torque in servo-motor drive models. Both for azimuth and elevation servo-motor drive models are 

based on SBL 4-0530 brushless motor [7] which has maximum output torque of 21 Nm. The drive 

models satisfy non-linear saturation of torque-speed curve shown in Figure 3. Also, the motors inertia 

are modelled by transfer function of 1st order system (5) [8]. Additionally, in drive models there are 

included reduction gear with ratios i1 = 53 for azimuth and i2 = 38 for elevation with η = 95% 

efficiency for both gears. 

1

1

)(

)(




TssX

sY
 (5) 

Where: Y(s) – output torque, X(s) – desired torque, T – time constant [7]. 
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Figure 3.   Peak torque-speed curve for the SBL 4-0530 servo-motor 

4. Tracking a motionless target 

As first example of maintaining target at line of sight let’s consider a case of aiming to attack 

helicopter under influence of kinematic extortions. The scheme of the system is shown in the Figure 

4. The Oxyz is fixed coordinate system and the O’x’y’z’ is coordinate system related to AMS. The 

helicopter remains at place and scan-track head determined its location αT  = 15 deg, εT  = 30 deg and 

distance rT  = 500 m. Assume also that these coordinates already include ballistic and weather 

corrections and head is internally stabilized. The task is to control the set in such a way to get azimuth 

angle θ1(t) = αT  = 15 deg and elevation angle θ2(t) = εT  = 30 deg.  

 

Figure 4.   Scheme of rotations 

However, kinematic extortions are acting on the basis of the set as roll τx and pitch τy angles 

relatively the longitudinal and transverse axes of the set base. Without compensation, line of sight 

will be moving in some way depending on current set configuration, i.e. θ1 and θ2 angles. The 

assumed kinematic extortions are presented in the Figure 5. The signals was obtained by inverse 

Scan-track 

head 

Set base 
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Fourier transformation and linear amplitude scaling. Coefficients have been selected so that the 

graphs are similar in their character to irregular wave shown in the work [9]. 

 

Figure 5.   Assumed kinematic disturbances τx and τy 

As a result of the simulation of the considered case, signals of desired and realized azimuth and 

elevation angles and driving torques both for azimuth and elevation were obtained and presented in 

the Figure 6. The initial set position was θ1(0) = 20 deg and θ2(0) = 25 deg. 

 

Figure 6.   Realization of positioning and driving torques for azimuth and elevation 
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Figure 7 presents desired trajectory to maintain target at line of sight and trajectory that was 

realized. In the Figure 8 there are shown position errors for azimuth and elevation during the 

simulation. 

 

Figure 7.   Desired and realized trajectory for still target 

 

Figure 8.   Azimuth and elevation position errors 

 

5. Tracking a maneuvering target 

In this part we examine tracking a maneuvering target during external disturbances. The target 

coordinates are also obtained from scanning-tracking head [10]. For this simulation it was supposed 

that the target (i.e. fighter) flies up almost perpendicular to the line of sight with speed 170 m/s and 

distance of 1000 m. Signals of target position αT and εT are shown in the Figure 9.  
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Desired 
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Figure 9.   Waveforms obtained from the scan-track head 

 

If we take a closer look to αT and εT signals (Figure 10), they are a set of points actually. Thus, 

target position is known only at certain moments of time and, what is significant, the signals are 

noised. The linear interpolation between points will not give good results, so filtering approach was 

taken. 

 

Figure 10.   Close-up of fragments of signals directly from the head 

6. Kalman filtering 

To estimate real position of the target Kalman filtering [11] was implemented. Kalman filter was 

originally described in 1960s and since then has found application in many issues related to e.g. 

control, GPS positioning, DSP or even economics. For filtering process there was constructed the 

state-transition model A as constant acceleration motion (6).  
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Where dt is simulation integration step. The estimated state vector x̂ will be thus given as (7). 
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The control input model B is zero matrix (8), since we have no influence on the signal run. 
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The observation model H is implemented as (9) because in such case we are interested only in 

target position. 

 001H  (9) 

The gain q = 0.5 of the covariance of the process noise Q, given by formula (10), and the 

covariance of the observation noise R, constant (11), have been experimentally selected to get 

satisfactory filtering performance. 
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Effects of filtering signals with Kalman filter and parameters presented above is shown in the 

Figure 11. As expected, the target position estimations appears to be accurate. The estimation graphs 

seems to cover theoretical average line drawn by measurement points with a very good results. 
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Figure 11.   Effect of Kalman filter application 

Assumed kinematic disturbances τx and τy for considered second case are shown in the Figure 12. 

These signals also was obtained by inverse Fourier transformation and linear amplitude scaling but 

the amplitude grows faster and reaches 9 deg for roll and 4.5 deg for pitch.  In the Figure 13 there are 

shown positioning errors during simulation. 

 

Figure 12.   Assumed kinematic disturbances τx and τy 

 

Figure 13.   Azimuth and elevation errors during analyzed movement 
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As a result of the simulation of the second case, signals of desired and realized angles and 

driving torques both for azimuth and elevation were obtained and presented in the Figure 14. The 

initial set position was θ1(0) = 0 deg and θ2(0) = 0 deg. Desired and realized trajectory is presented in 

the Figure 15. 

 

Figure 14.   Realization of positioning and driving torques for azimuth and elevation 

 

Figure 15.   Desired and realised trajectory with zoom of maximal following error  
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7. Conclusions 

In this paper there is presented mathematical model of ZU-23-2MR dynamics. Also, the control 

structure was proposed. It can be assumed with high probability that in relation to manual control 

improved tracking quality can be achieved through the use of PID based automatic control systems 

coupled with a scan-track head and displacement sensors. 

As shown in simulations, PID regulators have provided quite good positioning of artillery-

missile set quality under external disturbances. The control system remained stable and tried to keep 

up with the desired signals. As can be seen from the trajectory graphs, the maximum momentary of 

target position following error does not exceed 0.4 degrees for the first case and 0.25 degrees for the 

second one. 

It has been shown that it is theoretically possible to compensate quite well for kinematic 

disturbances using PID based control system. However, by analyzing the driving torque waveforms, 

we can say that the motors still have some power reserves that can be used for more precise control, 

for example by using LQR or LQG controllers. 

The results of these simulations will be used to compare the quality of regulation between 

different types of controllers. It is also worth mentioning of the internal disturbances, which will 

primarily be attributed to cannons firing. Undoubtedly, these disturbances will be a big challenge for 

the control system and they will be the subject of further research. 
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On Artifacts in Nonlinear Dynamics

Utz von Wagner, Lukas Lentz

Abstract: Nonlinear oscillations are of permanent interest in the field of dynam-
ics of mechanical and mechatronical systems. There exist several well-known
semi-analytical methods like Harmonic Balance, perturbation analysis or mul-
tiple scales for such problems. We reconsider in our presentation the method
of Harmonic Balance but add some additional steps in order to avoid artifacts
and get information about the stability. The classical method of Harmonic
Balance is therefore added by an error criterion, which considers the neglected
terms. Looking on this error for increasing ansatz orders, it can be decided
whether a solution exists or is an artifact of the method. For the low error
solutions, a stability analysis is performed. As example, an extended Duffing
oscillator with additional nonlinear damping and excitation is considered show-
ing regions of separated island solutions. Also a nonlinear piezo-beam energy
harvesting system is investigated. The described method enables to calculate
solutions in a rapid manner with comparable low effort, to get an overview over
regular responses of nonlinear systems.

1. Introduction

One of the most used academic examples for an oscillator in nonlinear dynamics is the so-

called Duffing oscillator named after the German engineer Georg Duffing (1861-1944), who

investigated in his original work 1918 an oscillator with quadratic and cubic stiffness and

linear viscous damping performing free or forced harmonic vibrations [3]. Nowadays the term

Duffing equation is used much broader and in general describes any nonlinear equation of

motion including a cubic stiffness term. For solving such equations the method of Harmonic

Balance was and is still very popular and described in many textbooks, e.g. by Hagedorn [2].

In the present paper an overview is given over some examples, where this method is extended

by a corresponding error criterion introduced by Urabe et al. [7]. The examples are classical

and extended Duffing oscillators added by an energy harvesting system.

2. Classical Duffing oscillator

Corresponding results for the classical softening Duffing oscillator are already described by

the authors of the present paper in [9], where additionally to the Harmonic Balance an error

criterion is applied which was also used much earlier by Urabe et al. [7]. This classical
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softening Duffing oscillator is used in the present paper as well for introducing the method

and showing some additional results compared to [9].

The Duffing oscillator is given by

mẍ+ dẋ+ cx+ αx3 = F0 cos Ωt (1)

with m being the oscillator mass, d the damping coefficient, c the linear stiffness, α the

coefficient of the nonlinear stiffness, F0 the excitation force amplitude and Ω the circular

excitation frequency. In the case of the softening Duffing oscillator α is negative, while m,

d, c and F0 are positive. This equation is transformed with respect to dimensionless time

derivatives by introducing the circular frequency of the undamped free linear vibrations

ω2
0 = c/m, the damping ratio D = d/(2

√
cm) and the dimensionless time τ = ω0t as

x′′(τ) + 2Dx′(τ) + x(τ) + εx3(τ) = f cos(ητ) (2)

with ()′ = d()/dτ , ε = α/(mω2
0), f = F0/(mω

2
0) and η = Ω/ω0. Equation (2) is solved

approximately by introducing the Harmonic Balance ansatz

x(τ) =

n∑
k=1

(ak cos(kητ) + bk sin(kητ)) . (3)

Using the classical method of Harmonic Balance i.e. introducing (3) into (2) results in a

system of nonlinear algebraic equations

n∑
k=1

(
ãk cos(kητ) + b̃k sin(kητ)

)
= f cos(ητ)−

3n∑
k=n+1

(
ãk cos(kητ) + b̃k sin(kητ)

)
. (4)

Herein the coefficients ãk, b̃k are nonlinear functions of the original ansatz coefficients ak, bk.

Following Harmonic Balance, the higher order frequency terms

3n∑
k=n+1

(
ãk cos(kητ) + b̃k sin(kητ)

)
(5)

in (4) are neglected. After this neglection the coefficients ak, bk can be calculated from the

modified equation (4).

For the visualization of the thereby determined approximate solution x(τ), x̂ is defined

as

x̂ = max
0≤τ≤ 2π

η

{
n∑
k=1

(ak cos(kητ) + bk sin(kητ))

}
. (6)

Now as mentioned before an error criterion is introduced by considering the neglected terms

in the Harmonic Balance method ( [7], [9], [10]). The corresponding coefficients ãk, b̃k of the
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neglected higher order terms can be calculated using the solution for ak, bk and the error ê

is defined from this by

ê = max
0≤τ≤ 2π

η(n+1)

{
3n∑

k=n+1

(
ãk cos(kητ) + b̃k sin(kητ)

)}
. (7)

For the decision, whether a solution is an artifact or not a relative error ẽ is introduced as

ẽ =
ê

x̂
. (8)

With respect to the demonstration of some results, the same parameters as used in [9]

D = 0.06, ε = −0.1 and f = 0.2 (9)

are taken, but displayed by x̂ (6) and by using a specific labeling. For this, the obtained

solutions are first examined with respect for their relative error ẽ (8). Solutions with relative

errors larger than 1% are marked by triangles. Solutions with relative error lower than 1%

are investigated via Floquet theory for stability and corresponding results are marked with

grey circles in the case of unstable and black circles in the case of asymptotically stable

solutions. Corresponding results are shown in Figures 1-4 for increasing ansatz orders n.
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Figure 1. Solutions x̂ according to (6) for the Duffing oscillator (2) with Harmonic Balance

ansatz (3) in case of n = 1. Solutions with relative error ẽ according to (8) larger than 1%

are marked by triangles. Solutions with relative error ẽ lower than 1% are marked by circles

in grey color in the unstable case (not present in the actual figure) and circles in black color

in the asymptotically stable case.

There are two areas of solutions. First the well-known resonance curve starting for small η
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Figure 2. Solutions x̂ according to (6) for the Duffing oscillator (2) with Harmonic Balance

ansatz (3) in case of n = 3. Labeling of solutions as in Fig. 1
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Figure 3. Solutions x̂ according to (6) for the Duffing oscillator (2) with Harmonic Balance

ansatz (3) in case of n = 5. Labeling of solutions as in Fig. 1.

with also small x̂, having the resonance peak close to η = 1 and going to zero for η → ∞.

Due to the softening characteristic, the resonance peak is turning to the left. This solution

preserves its basic shape for all ansatz orders. With the error analysis it can be seen, that

this solution shows very small relative errors ẽ for higher ansatz orders and in case of three

coexisting solutions for the same η the middle amplitude one is unstable (which is also well

known).

The other solutions are the ”nose-like” ones occuring for small η and large x̂. For n = 1,

this solution can be found sketched in many textbooks on nonlinear dynamics. They can also

occur in case of using perturbation analysis [9]. Increasing the ansatz number, it changes its
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Figure 4. Solutions x̂ according to (6) for the Duffing oscillator (2) with Harmonic Balance

ansatz (3) in case n = 7. Labeling of solutions as in Fig. 1.
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Figure 5. Solutions x̂ according to (6) for the Duffing oscillator (2) with Harmonic Balance

ansatz (3) in case of n = 7. Result from a parameter set investigated by van Dooren [8] with

a small separated region with a stable solution. Labeling of solutions as in Fig. 1.

shape (without converging to a final one until n = 7) and the error remains large.

Therefore we consider this solution to be an artifact solution. In general, solutions with large

relative errors even for high ansatz orders are considered to be artifacts in the following. The

change of solution shape is also characteristic for these artifacts due to our experience.

In [9] it was furthermore shown, that an additional unstable solution (not being an

artifact) with non-zero mean value can be calculated also for small η. To get this solution
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as a result of Harmonic Balance, the ansatz (3) has to be extended by a constant term a0.

Finally for this introductory chapter it should be mentioned, that not all parts of the nose-

like solution are in any case an artifact. Van Dooren [8] investigated the Duffing oscillator

with the parameter set

D = 0.2, ε = −4 and f = 0.1105 (10)

also using the error criterion by Urabe et al. [7] and focusing on the transition to chaos.

Using for this parameter set the same analysis as before it can be seen in Figure 5 for n = 7

that small parts of the nose-like solution are not an artifact and that even a small part of

this solution is asymptotically stable. This could also be confirmed by numerical integration.

3. Extended Duffing oscillator

In the following the focus will be, as in the last parameter set, on an example with ”island”

regions of separated solutions. Therefore we consider a modified Duffing oscillator

x′′ + 2Dx′ + x+ ε1x
3 + ε2x

2x′ = f1 cos(ητ) + f2x
2 cos(ητ) (11)

with the methods introduced in section 2. Herein the same denominations are used as

in (2) and the classic Duffing Oscillator where the cubic nonlinearity with parameter ε1 is

complemented by a cubic damping term x2x′ with parameter ε2 and the harmonic excitation

with intensity f1 is combined with a nonlinear parameter excitation term with constant f2.

Such an equation can e.g. be obtained from piezoceramic continua by adding conservative

and non-conservative terms in piezoelectric coupling and elasticity [6].

The parameters here are chosen arbitrarily to show certain nonlinear phenomena and do

not necessarily represent a real piezoceramic. The same equation of motion is considered

in [10] with other parameter sets. Here, the parameters are chosen as ε1 = −0.25, ε2 = −0.3,

D = 0.1, f1 = 0.1 and f2 = 0.1. Using again the ansatz (4), x̂ can be calculated according to

equation (6) and the relative error ẽ corresponding to equation (8). Corresponding results

are shown in Figures 6-9. The results show now three types of solutions for n = 1. Beside

the well known resonance curve (which shows the well known behavior and converges for

higher order n) there is again a nose-like solution for small η and additionally a new island

of solutions for medium η i.e. 0 < η < 1. These solutions show initially large errors and

change their shape (both regions merge) for higher ansatz orders. Finally for n = 7 the right

end of the solution island shows low-error but unstable solutions so that again main parts

of the results obtained can be considered as artifacts especially the structure observed for

n = 1.

From discussions of amplitude diagrams of such problems one might be used to, that stable
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Figure 6. Solutions x̂ according to (6) for the extended Duffing oscillator (11) with

Harmonic Balance ansatz (3) in case of n = 1. Labeling of solutions as in Fig. 1.
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Figure 7. Solutions x̂ according to (6) for the extended Duffing oscillator (11) with

Harmonic Balance ansatz (3) in case of n = 3. Labeling of solutions as in Fig. 1.

and unstable solutions occur in an alternating manner. Therefore, the neighborhood of two

unstable solutions might be surprising. In fact, these solutions are in an area of initial

conditions showing a fractal character as can be seen in Figure 10 where the basins of

attraction are displayed. Hereby, grey points denote initial conditions resulting in the stable

solution on the resonance curve. Black points are initial conditions for solutions drifting

away to x → −∞ and white points for x → +∞. In the immediate neighborhood of these

solution, basins of attraction for all three types of solution can be found.
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Figure 8. Solutions x̂ according to (6) for the extended Duffing oscillator (11) with

Harmonic Balance ansatz (3) in case of n = 5. Labeling of solutions as in Fig. 1.
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Figure 9. Solutions x̂ according to (6) for the extended Duffing oscillator (11) with

Harmonic Balance ansatz (3) in case of n = 7. Two unstable solutions in the ”island” region

are marked for η = 0.8. Labeling of solutions as in Fig. 1.

4. Energy Harvesting

Finally an example from an energy harvesting system shall be discussed in this section.

This energy harvesting system consists of a cantilever beam with bonded piezoceramics

on the surface close to the clamping. The excitation of the system is realized by a base

excitation which may have a harmonic or a stochastic characteristic. In order to increase

the energy output, nonlinearities are introduced by mounting two magnets on the frame
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Figure 10. Basins of attraction for η = 0.8 (left) with detail (right). Grey points denote

initial conditions resulting in the stable solution on the resonance curve. Black points are

initial conditions for solutions drifting away to x→ −∞ and white points for x→ +∞. Circle

and square are marking the initial conditions without transition for the solutions marked in

same manner in Figure 9.

the cantilever beam is clamped in close to the tip of the beam. Depending on the magnet

properties and positions, multiple stable equilibrium deflections of the beam can result.

In our investigations, we are focusing on bistable systems. Corresponding results in case

of stochastic excitation can be found e.g. in [5] where probability density functions are

calculated. The system also shows a broad variety of solutions if excited harmonically. The

simplest useful way of modeling such a system is to discretize the beam with a single mode

and couple it with a model of the electric circuit [1], which consist in the present case beside

the piezoceramics by a simple resistor. Performing a transformation to dimensionless time

τ with circular frequency ω (this is not necessarily the circular eigenfrequency of the mode

shape used for discretization) this results in two coupled ODEs namely

x′′(τ) + ξx′(τ)− αx(τ) + βx3(τ)− χv(τ) = f cos(ητ), (12a)

v′(τ) + λv(τ) = −κx′(τ). (12b)

Herein x is the dimensionless modal coordinate, v is the dimensionless voltage across the

resistor, (·)′ denotes the derivative with respect to τ and η is the ratio between the excitation

frequency and ω. Modal damping is introduced with the coefficient ξ and α and β are the stiff-

ness coefficients which are both strictly positive. χ and κ denote the electro-mechanical cou-

pling coefficients, λ is reciprocal proportional to the product of the capacitance of the piezoce-

533



ramic layers and the resistance and f is the modal amplitude of the harmonic base excitation.

For the following calculations the parameter values ξ = 0.0105, α = β = 0.5, χ = −0.1223, λ = 0.5396,

κ = −0.2331 and f = 0.1739 are used.
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Figure 11. Solutions x̂ (turning points of the displacement x(τ)) for the energy harvester

(12a), (12b) with numerical integration.
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Figure 12. Solutions x̂ (turning points of the displacement x(τ)) for the energy harvester

(12a), (12b) with Harmonic Balance ansatz (3). Only stable solutions with low relative errors

are plotted.

Figure 11 shows results of a numerical integration. In comparison with the Harmonic Bal-

ance method of course only stable solutions (and not unstable solutions) can be identified;
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but additionally also chaos can be detected. Performing the Harmonic Balance method with

the error criterion and displaying only stable solutions, the results in Figure 12 are obtained.

It should be mentioned, that the original Harmonic Balance results in numerous additional

artifacts and unstable solutions which are neglected in this figure. Both results agree well

but the effort for the Harmonic Balance is much lower. For special interest for increasing

the energy output of the energy harvester is to obtain so-called interwell solutions, i.e. so-

lutions with vibrations sweeping around both equilibrium positions. Compared to so-called

intrawell solutions (vibrations around one equilibrium position) or chaotic solutions these

interwell solutions are in general resulting in a higher energy output. In Figure 12 it can be

seen, that there is around η ≈ 0.75 an area, where just one interwell solution exists. Such

interwell solutions can be identified by the procedure described in this paper in a comparably

easy manner. A more detailed discussion of results related to applying the described method

to the energy harvester can be found in [4].

5. Conclusions

The classical method of Harmonic Balance in an extended version using an error criterion

was applied in the present paper to several nonlinear oscillators. In the error criterion the

neglected terms in Harmonic Balance are considered and compared with the remaining terms

of the approximate solution. Solutions showing large relative errors even for high ansatz

orders are then considered to be artifacts. Solutions with low relative errors are examined

for their stability using Floquet’s theory. Very often, Harmonic Balance calculations are

limited to the ansatz order n = 1. With the two examples of a classical and an extended

Duffing oscillator it could be shown, that such results may be misleading and that parts of

the results could be identified as artifacts. With the example of an energy harvesting system

it can be demonstrated that the thereby extended Harmonic Balance is a powerful tool for

the rapid identification of interwell solutions promising high energy output.
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Vibration modes of rotating thin-walled composite blades

Jerzy Warminski, Jaroslaw Latalski, Zofia Szmit

Abstract: Dynamics of a rotating structure composed of a rigid hub with at-
tached flexible blades is studied in this paper. The blades are represented
by linear composite thin–walled beams with a rectangular box cross-section.
A mathematical model of each single beam is based on classical laminate theory
taking into account anisotropic properties of the composite material, full me-
chanical coupling between different components of the specimen deformation,
linear constitutive laws and a specific reinforcing fibres placement. The reduced
model of the whole hub-beam structure is, however, nonlinear due to noncon-
stant angular speed and non-linear coupling terms occur in the mathematical
model. The modes of the rotor for selected configurations are determined ana-
lytically and then resonance zones for periodic torque supplied to the hub are
presented.

1. Introduction

Rotating slender structures are of intensive scientific interest due to their applications in

mechanical, aviation or aerospace engineering [9]. Modern helicopter blades, robot arms

or aerospace rotating panels may serve as typical examples. With the development of new

materials and control techniques, the importance of accurate modelling of these systems

increases rapidly. A fundamental nonlinear model of a rotating helicopter blade has been

presented by Crespo da Silva and Hodges [2, 4]. In the proposed formulation a nonlinear

curvature and longitudinal deformation of the beam as well as coupling of flexural and

torsional oscillations have been taken into account. A model of a nonlinear rotating beam

carrying a tip mass has been also proposed in [9]. The considered nonlinear curvature and

longitudinal deformation of the beam has been expanded up to the third perturbation order.

The importance of the foreshortening effect for different models of the rotating beams has

been studied in [7]. As reported, this phenomenon may be essential for the case of a rotating

beam if its elongation caused by rotation is considered.

However, the mentioned above approaches have been essentially based on the assumption

of isotropic properties of the specimen material. This is a serious drawback if referring to

new designs based on composites having orthotropic, or even more general, nonsymmetric

anisotropic properties [6]. Analysis of free vibrations of anisotropic thin-walled beams with

a closed cross-section have been presented in paper [1]. Authors have shown that anisotropic
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properties of the specimen may lead to different dynamics characteristics comparing to a

similar structure made of an isotropic material. Moreover, it has been concluded that a

properly designed configuration of reinforcing fibres orientation and placement may induce

various intended deformation couplings.

A detailed mathematical model of the composite thin-walled beams with open or closed

cross-sections has been presented by Song and Librescu in [8]. This formulation has been

later extended to rotating structures [6]. The model of slender, flexible thin-walled beam

attached to a rotating rigid hub has been also proposed in [3] and then updated in [5],

where the importance of selected nonlinear terms in order to get proper results has been

demonstrated. In this research the complex mathematical model represented by a set of

seven partial differential equations has been derived. Next this model has been used for

the analysis of the specific design case of Circumferentially Asymmetric Stiffness (CAS)

beam. As demonstrated this configurations exhibits mutual coupling of flapwise bending and

twisting deformations. The general analytical formulation of the problem enabled finding

the maximum magnitude of the bending and twist coupling coefficient. In Fig. 1 we present

the plot of this coefficient against the reinforcing fibres orientation angle for the typical

rectangular box cross-section specimen [5]. This figure shows that the maximal coupling

(a) (b)

6 3 2 3 6

a (rad)
π π π 2π 5π

π

140

160

180

200

220

240

260

×10
3
(N)

Figure 1. Bending-twisting coupling coefficient for CAS configuration with global maximum

at approx. 72 deg. (a) and numerical FEM verification (b).

(indicated by red line) is observed for the fibres orientation α ≈ 72◦, where the angle is

measured from the circumferential direction. The analytical model has been later confirmed

by FEM and the excellent agreement between analytical and numerical models results has

been obtained. The first complex bending-twisting natural mode is presented in Fig. 1 (b).

This mode has been used for further analytical studies. In particullar, applying the Galerkin

procedure, the partial differential equations of motion of the hub-beam structure have been

reduced to ordinary differential ones as presented in paper [5]. The discussed complex
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deformation mode could be of major interest in terms of possible structural control. The

inherent bending-twisting coupling enables control of both coupled deformations just by

a single actuator. Nonlinear control strategy applied for these complex flexural-torsional

vibrations has been presented in [10].

The purpose of the present paper is to develop, on the basis of the previous authors

research, the mathematical model of a three-blades rotor system. The new model has to

represent the dynamics of the hub and complex flexural-torsional oscillations of the blades

in CAS configuration. Moreover, the arbitrary orientation of reinforcing fibres is assumed to

capture the possible detuning of the system.

2. Model of a rotating structure

The analysed rotating structure (a rotor) is composed of three flexible composite beams

attached to a rigid hub (Fig. 2 a). The beams preset angle is fixed so that their flapwise

bending occurs in the plane of system rotation (lead-lag bending). Moreover, we consider

fibers in the opposite beam profile walls to be oriented according to the circumferentially

asymmetric stiffness (CAS) lamination scheme. This layout leads to mutual bending-twisting

coupling with the maximum value of coupling coefficient to be observed at about 72◦ – see

Fig. 1 (a). Studying this plot one may notice that a small change above this value results in

significant decrease of the coupling coefficient down to global minimum noted at π/2.

As already reported the CAS antisymmetric arrangement of reinforcing fibres decouples

the full set of six beam equations of motion (six degrees of freedom) into two independent

subsystems: one exhibiting flapwise bendingsheartwisting coupling and the second where

axial stretching and chordwise bendingshear modes coexist. Following this observation,

and bearing in mind that the stiffness of the blades in the orthogonal (lateral) direction

is much larger (Fig. 1 a), so their out-of-plane deformation might be neglected in further

analysis. Dynamics of the elastic thin-walled beam is described by a set of Partial Differential

Equations (PDEs) originally derived in [5]. As it has been reported later in [10] also the hub

inertia must be taken into account, since this parameter has significant impact on overall

system characteristics.

The ordinary differential equations of motion of the rotor are based on paper [5] and if

adopted for the three-blades rotor they take the form
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Figure 2. Model of a rotor (a) and CAS composite beam configuration (b).

(

Jh +
3
∑

i=1

Jbi +
3
∑

i=1

αhi2q
2
i

)

ψ̈ + ζhψ̇ +
3
∑

i=1

(

αhi1q̈i + αhi3qiq̇iψ̇
)

= µ(t),

q̈1 + ζ1q̇1 + α12ψ̈ +
(

α11 + α13ψ̇
2
)

q1 + α14q1q̇1ψ̇ = 0,

q̈2 + ζ2q̇2 + α22ψ̈ +
(

α21 + α23ψ̇
2
)

q2 + α24q2q̇2ψ̇ = 0,

q̈3 + ζ3q̇3 + α32ψ̈ +
(

α31 + α33ψ̇
2
)

q3 + α34q3q̇3ψ̇ = 0,

(1)

where i = 1, 2, 3, and Jh, Jbi denote mass moment of inertia of the hub and beams, respec-

tively, ζh, ζi, viscous damping coefficients, µ(t) represents an external torque imposed to

the hub, αhi1, αhi2, αhi3, αi1, αi2, αi3, αi4 are coefficient obtained from the modal reduction

procedure. One may observe, equations (1) are coupled due to inertia terms. If angular

velocity of the hub is constant then all equations are uncoupled except the quadratic terms

occurring in the first equation. These terms are of higher order and for small oscillations

can be neglected too. However, if angular velocity is not constant then all equations are

coupled and Coriolis forces and nonlinear quadratic term due to rotation are involved in the

full structure dynamics.

3. Nonlinear normal modes - analytical solutions

Let us determine normal modes of the hub-beams rotor. Because the structure is nonlinear

we may expect that the modes can be nonlinear too.

We seek nonlinear normal modes (NNM) of the rotor neglecting damping and external

torque; so one presumes ζ1 = 0, ζ2 = 0, ζ3 = 0, ζh = 0, µ(t) = 0. Furthermore, we introduce

a formal small parameter ε and express individual coordinates as

q1 = εq̃1, q2 = εq̃2, q3 = εq̃3, (2)
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which, after substitution and rearrangement, yields

q̈1 [1 + Jb2 + Jb3 + Jh − αh11α12 − αh21α22 − αh31α32

−ε2
(

αh12q
2
1 + αh22q

2
2 + αh32q

2
3

)]

= (α22αh21 + α32αh31)
[

εq1

(

α11 + α13ψ̇
2
)

+ ε
2
α14q1q̇1ψ̇

]

−α12αh21

[

εq2

(

α21 + α23ψ̇
2
)

+ ε
2
α24q2q̇2ψ̇

]

−α12αh31

[

εq3

(

α31 + α33ψ̇
2
)

+ ε
2
α34q3q̇3ψ̇

]

−
[

εq1

(

α11 + α13ψ̇
)

+ ε
2
α14q1q̇1ψ̇

]

×
[

1 + Jb2 + Jb3 + Jh + ε
2
(

αh12q
2
1 + αh22q

2
2 + αh32q

2
3

)]

+ε2α12 (αh13q1q̇1 + αh23q2q̇2 + αh33q3q̇3) ψ̇,

(3)

q̈2 [1 + Jb2 + Jb3 + Jh − αh11α12 − αh21α22 − αh31α32

−ε2
(

αh12q
2
1 + αh22q

2
2 + αh32q

2
3

)]

= (α12αh11 + α32αh31)
[

εq2

(

α21 + α23ψ̇
2
)

+ ε
2
α24q2q̇2ψ̇

]

−α22αh11

[

εq1

(

α11 + α13ψ̇
2
)

+ ε
2
α14q1q̇1ψ̇

]

−α22αh31

[

εq3

(

α31 + α33ψ̇
2
)

+ ε
2
α34q3q̇3ψ̇

]

−
[

εq2

(

α21 + α23ψ̇
2
)

+ ε
2
α24q2q̇2ψ̇

]

×
[

1 + Jb2 + Jb3 + Jh + ε
2
(

αh12q
2
1 + αh22q

2
2 + αh32q

2
3

)]

+ε2α22 (αh13q1q̇1 + αh23q2q̇2 + αh33q3q̇3) ψ̇,

(4)

q̈3 [1 + Jb2 + Jb3 + Jh − αh11α12 − αh21α22 − αh31α32

−ε2
(

αh12q
2
1 + αh22q

2
2 + αh32q

2
3

)]

= (α12αh11 + α22αh21)
[

εq3

(

α31 + α33ψ̇
2
)

+ ε
2
α34q3q̇3ψ̇

]

−α32αh11

[

εq1

(

α11 + α13ψ̇
2
)

+ ε
2
α14q1q̇1ψ̇

]

−α32αh21

[

εq2

(

α21 + α23ψ̇
2
)

+ ε
2
α24q2q̇2ψ̇

]

−
[

εq3

(

α31 + α33ψ̇
2
)

+ ε
2
α34q3q̇3ψ̇

]

×
[

1 + Jb2 + Jb3 + Jh + ε
2
(

αh12q
2
1 + αh22q

2
2 + αh32q

2
3

)]

+ε2α32 (αh13q1q̇1 + αh23q2q̇2 + αh33q3q̇3) ψ̇,

(5)
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ψ̈ [1 + Jb2 + Jb3 + Jh − αh11α12 − αh21α22 − αh31α32

−ε2
(

αh12q
2
1 + αh22q

2
2 + αh32q

2
3

)]

= αh11

[

εq1

(

α11 + α13ψ̇
2
)

+ ε
2
α14q1q̇1ψ̇

]

αh21

[

εq2

(

α21 + α23ψ̇
2
)

+ ε
2
α24q2q̇2ψ̇

]

αh31

[

εq3

(

α31 + α33ψ̇
2
)

+ ε
2
α34q3q̇3ψ̇

]

−ε2 (αh13q1q̇1 + αh23q2q̇2 + αh33q3q̇3) ψ̇,

(6)

Tilde has been dropped in the above notation for simplicity.

Solutions of Eqs. (3)-(6) are sought in the form

q1 = A1 sin (ω0t+ φ) , q2 = A2 sin (ω0t+ φ) ,

q3 = A3 sin (ω0t+ φ) , qh = Ah sin (ω0t+ φ) ,
(7)

where A1, A2, A3, Ah are unknown amplitudes, φ is a phase and ω0 frequency of natural

oscillations.

Substituting Eq. (7) into Eqs. (3)-(6), neglecting higher order terms and taking into

account only the first harmonic we get

A1

[(

α11 − ω
2
0 + 1

4
A

2
hα13

)

(1 + Jb2 + Jb3 + Jh − α22αh21 − α32αh31)

+ α12αh11ω
2
0

]

+ A2α12αh21

(

α21 +
1
4
A

2
hα23ω

2
0

)

+A3α12αh31

(

α31 +
1
4
α33ω

2
0

)

= 0,

A1α22αh11

(

α11 +
1
4
A

2
hα13ω

2
0

)

+A2

[(

α21 − ω
2
0 + 1

4
A

2
hα23

)

(1 + Jb2 + Jb3 + Jh − α12αh11 − α32αh31)

+α12αh11ω
2
0

]

+ A3α22αh31

(

α31 +
1
4
α33ω

2
0

)

= 0,

A1α32αh11

(

α11 +
1
4
A

2
hα13ω

2
0

)

+ A2α32αh21

(

α21 +
1
4
α23ω

2
0

)

+A3

[(

α31 − ω
2
0 + 1

4
A

2
hα33

)

(1 + Jb2 + Jb3 + Jh − α12αh11 − α32αh31)

+ α12αh11ω
2
0

]

= 0,

A1αh11

(

α11 − 1
4
A

2
hα13ω

2
0

)

+ A2αh12

(

α21 +
1
4
A

2
hα23ω

2
0

)

+A3αh31

(

α31 +
1
4
A

2
hα33ω

2
0

)

= 0.

(8)

A set of nonlinear algebraic equations (8) can be solved analytically and strict solutions for

amplitudes can be determined as functions of unknown parameter ω0. The trivial solution
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A1 = 0, A2 = 0, A3 = 0, Ah = 0 satisfies Eqs. (8). However, also nontrivial solutions A1 6= 0,

A2 6= 0, A3 6= 0, Ah 6= 0 may exists for a certain domain of parameter ω0. The analytical

expressions for amplitudes are not prsented in this paper due to their complex form.

4. Numerical examples

Numerical calculations have been performed for data presented in [5, 8]. The following

material constants are used E1 = 206.75 ·109 Pa, E2 = E3 = 5.17 ·109 Pa, G23 = 3.1 ·109 Pa,

G13 = G12 = 2.55 · 109 Pa, ν32 = 0.25, ν21 = ν31 = 0.00625, ρ = 1528.15 kg/m3. Dimensions

of the beam are taken as c = 0.00508 m, d = 0.0254 m, h = 0.001 m, l = 0.254 m and hub

radius R0 = 0.1× l. After transformation to dimensionless form and the reduction procedure

based on the first bending-twisting mode we get values of coefficients of Eqs. (1) computed

for CAS layout and three different, arbitrary assumed, reinforcing fibres angles of 75, 80 and

60 degrees

beam 1 : 75 deg.

α11 = 95.41318α12 = 2.9063α13 = 0.3527192α14 = −0.920491

αh11 = 0.3201742αh12 = −0.146365αh13 = −0.29273

beam 2 : 80 deg.

α21 = 159.6166α22 = 3.765367α23 = 0.353319α24 = −0.69457

αh21 = 0.244628αh22 = −0.085284αh23 = −0.170568

beam 3 : 60 deg.

α31 = 30.971α32 = 1.7747α33 = 0.3506α34 = −1.5447

αh31 = 0.53051αh32 = −0.402182αh33 = −0.80436

(9)

We assume that all beams have the same geometry and mass moment of inertia Jb1 = Jb2 =

Jb3 = 1, but due to different orientation of the fibres the beams are de-tuned and thus

coefficients in Eqs. (1) are different for each beam, as given in (9). Mass moment of inertia

of the hub has been assumed as Jh = 5.

For these data three different vibration modes have been computed from Eqs. (8). In

Fig. 3 amplitudes of the blades and hub are plotted versus natural frequency of the rotor.

We can notice three different vibration modes with different amplitudes ratios. For all cases

amplitudes vary nonlinearly against natural frequency, which results from nonlinearities of

the system. If oscillations are very small then we obtain natural frequencies of the linear

model, ω01 = 5.85, ω02 = 10.35, ω03 = 13.97. As amplitudes increase natural frequency

increases as well for all three vibration modes, the stiffening phenomenon is observed.

The motion of the beams and the hub is presented by time history plots in Fig. 4. The
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Figure 3. Natural frequency ω0 versus amplitudes of the blades A1, A2, A3 and the hub Ah.

time histories are obtained from direct numerical simulations of Eqs. (1). They are in a

full agreement with analytical prediction. In Fig. 4 (a), (b) and (c) the first, the second

and the third mode are activated by putting properly computed initial conditions for each

coordinate. However, if the oscillations are very large then the numerical simulations shows

different result then the analytical prediction. In Fig. 5 we demonstrate activation of the

first mode by putting large initial conditions. As we may see in this case the response is not

harmonic, due to large oscillations higher harmonics are involved in the motions.

In spite of the fact that in Fig. 3 stiffening phenomenon for all vibration modes has
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Figure 4. Time histories of blades and hub response q1, q2, q3, ψ for the first, the second

and the third mode activated; Jh = 5.

Figure 5. Time histories of blades and hub response q1, q2, q3, ψ for the first mode activated;

large oscillations; Jh = 5.
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been observed if we plot modal lines (Rosenberg lines) we get linear dependencies between

amplitudes (Fig. 6). Therefore the influence of nonlinear terms can be observed only for

vary large values of amplitudes which are out of realistic examples (Fig. 7).
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Figure 6. Modal lines A2 − A1, A3 − A1, Ah − A1 for activated the first vibration mode,

Jh = 5.
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Figure 7. Modal lines A2−A1, A3−A1, Ah−A1 for activated the first vibration mode, large

amplitudes, Jh = 5.

The resonance curves presented in Fig. 8 computed for the harmonic external torque

µ = ρ sinωt have linear nature and they confirm the modal analysis results. It means that

rotation shifts the natural frequency but modal lines and resonance characteristics does not

exhibit nonlinear nature.

5. Conclusions

A reduced model of the three blades rotor has been analysed in this paper. It has been show

that CAS composite layout leads to bending-twisting coupling of the thin-walled box beam.

Due to nonconstant angular speed the equations of motion of individual beams and the hub
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Figure 8. Amplitudes of blades q1, q2, q3 and the hub ψ against excitation frequency ω;

ρ = 0.01, Jh = 5.

equation are coupled by inertia terms. Analytically determined vibration modes show that

natural frequencies depend on vibration amplitudes and stiffening phenomenon is observed

as a right-shift of the characteristics on the amplitude frequency plot. In spite of this fact,

however, modal lines remains linear. The nonlinearities occur only for very large amplitudes

and then nonlinear normal modes occur. However, the resonance zones computed for real

parameters do not demonstrate nonlinear behaviour.
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Experimental and numerical investigations of one-degree-of-freedom impacting oscillator  Krzysztof Witkowski, Grzegorz Kudra, Grzegorz Wasilewski, Fryderyk Wiądzkowicz, Jan Awrecjewicz Abstract: The work concerns preliminary studies of dynamics of experimental setup consisting of cart mounted on a guide, connected with springs to the support and equipped with a rigid limiter of motion. The cart is excited by an unbalanced disk driven with step motor. Mathematical model of the system is developed with particular attention paid to modelling of impacts as well as resistance of linear ball bearing. The collisions are modelled as soft impacts with Hertzian contact stiffness. Model parameters are identified and good agreement between numerical simulations and experimental results is obtained. System dynamics is then analyzed using different numerical tools. 1. Introduction Mechanical systems with impacts and friction are commonly encountered in physics and technology. This is a reason of interest of scientists and engineers in mathematical modelling and dynamical properties of mechanical oscillators with dry friction or rigid limiters of motion. Besides the practical and engineering aspects, mechanical systems with impacts and friction can often be modelled as discontinuous dynamical systems and therefore lead to special class of phenomena of nonlinear dynamics and con-classical bifurcation scenarios, being the branch of science undergoing rapid development in the last decades. Analysis of impacting oscillators has a long history in scientific literature. For example in the work [1] there is presented a periodically forced one-degree-of-freedom oscillator, where for ideally plastic impacts the dynamics is modelled by discontinuous maps on the circle, which undergo period doubling bifurcations and other complex discontinuous transitions, leading to occurrence of  arbitrary long super-stable periodic motions. Numerical evidence that discontinuous bifurcations occurring in impact oscillators are just the limits of classical bifurcations of smooth dynamical systems is given in [2]. Budd and Dux [3] use a piecewise linear forced oscillator with impacts to show numerically and analytically different non-linear dynamics bifurcation phenomena typical for systems with rigid stops. Among others there are presented special types of non-smooth bifurcations: chatter with infinitely many impacts in finite time and grazing, when a stable periodic orbit encounters an obstacle and disappears catastrophically. Hinrichs et al. [4] analyze two different types of non-smooth one-degree-of-freedom oscillators are analyzed: an impact system and self-excited friction oscillator. There are presented different types of motion and bifurcation phenomena, both experimentally and numerically. Lyapunov exponents are calculated based on the mathematical models using two different methods. One of them 
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uses linearization of the model and the corresponding jumps of the of perturbations at the instances of discontinuities. The second one is based on a discrete map and its Jacobian. Impacts can be modelled as discontinuous instant phenomena or obstacle can treated as soft object. New bifurcation phenomena exhibited by oscillators with impacts, when stiffness of the limiter changes from zero to infinity, is presented in the work of Peterka [5]. Experimental investigations of one-degree-of-freedom forced oscillator with one-sided elastic stop is analyzed in [6], where different typical grazing scenarios are presented. A comprehensive review of contact dynamics modelling is presented by Gilardi and Sharf [7], as well as by Machado et al. [8], where special attention is paid to the compliant contact force models and Hertz contact theory. Earlier some aspects of restitution coefficient interpreted as damping during contact with compliant obstacle is investigated in the work [9]. In the present work there are reported preliminary results of experimental and numerical investigations of one-degree-of-freedom mechanical oscillator with one-sided stop. In Section 2 there is presented experimental rig of the system, while Section 3 exhibits mathematical model of the experimental stand. In Section 4 we present results of numerical simulations, including results of parameters’ estimation and examples of bifurcation dynamics. Section 5 presents some concluding remarks. 2. Experimental stand Fig. 1 exhibits the view of the built experimental rig. It is a part of the larger reconfigurable system allowing for investigations of multi-degree-of-freedom mechanical oscillations with multiple excitations and impacts. Presently the system plays a role of one-degree-of-freedom forced oscillator with one-sided stop.  
 Figure 1.   Real view of the experimental stand 
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 The stand consists of linear trolley (1) integrated with Hall effect sensor (2). Trolley moves along the linear rail (4) and it is connected with the support (7) by springs (3). Harmonic excitation is performed by the use of the stepper motor (9) on the axis of which the disc (10) with unbalance (5) is mounted. Collisions are realized by the use of the stops (6) mounted in the support (7) and the trolley (1). In order to control absolute angular position of the stepper motor, the transoptor (8) is mounted behind the disc (10). Measurement data is collected by the Hall effect sensor and encoder integrated with the stepper motor and then registered by National Instrument data acquisition card and processed by the use of software created in the LabView environment. 3. Mathematical model In Fig. 2 there is presented physical concept of the experimental rig described in the Section 2. The body (trolley, motor, disc, unbalanced mass and bracket) of total mass m moves along axis x and is connected to the support by the use of springs of total stiffness k. It is assumed that in the position x=0 the spring force is equal to zero. The damper of ratio c models damping in the springs as well as in linear bearing of the cart. At the position x=0 there is a gap �� between two bumpers on the right side of the system. On the cart there is mounted a disk of angular position ��, where � represents the angular frequency of forcing and � denotes time. On the radius e of the disk there is placed a weight of unbalanced mass ��. 
 Figure 2.   Physical model of the experimental stand Mathematical model of the system presented in Fig. 2 has the following form ��� + 
� + ���� � + ���, ��� = ���������� ,  (1) where �� = ��� + � ��√�� ���� , (2) 
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�� = �ℎ � ⋅ 
� "1 + $ℎ� %ℎ� %&'()     for  1 + $ℎ� %ℎ� %&'( ≥ 0            0                                for  1 + $ℎ� %ℎ� %&'( < 0 , (3) ℎ = 0� − ��    for  � ≥ ��     0        for � < �� .  (4)  In Eqs. (1-4) �� denotes resistance force acting on the cart and is not related to the impact phenomenon, while �� stands for the impact force and h is penetration of the obstacle.  The resistance force �� consists of linear damping force of coefficient � and Coulomb friction force of magnitude T, where special smooth approximation of sign function is applied and where 2 is special parameter of regularization. It is assumed that friction force does not depend on normal loading of the linear bearing.  Impact force �� is modelled based on Hertzian contact stiffness and damping [7-9], where 
�  and $ stand for the corresponding stiffness and damping coefficients. Additionally there is introduced a certain non-linearity in the impact damping by adding a parameter n, which in the original version of the model is equal to one. Right-hand-side of Eq. (1) represents harmonic excitation generated by the unbalanced mass ��. In this case it is taken into account only radial inertia force of the unbalance. Tangent inertia force related to angular acceleration of the disk is neglected as small when compared to the total excitation force. Therefore the presented model is valid for constant value of angular frequency of excitation � or for small changes of this quantity as it is assumed during construction of bifurcation diagrams in Section 4. 4. Experiments and numerical simulations Numerical simulations of the mathematical model presented in Section 3 are performed by the use of simulation models and corresponding scripts created by the use of Scilab environment and its module Xcos. The following parameters of the model are assumed to be known and fixed during the subsequent simulations: � = 8.735 kg, ��� = 0.01805 kg·m (based on relatively accurate direct measurements) and 2 = 10'8 m/s.  Position of the obstacle �� is measured accurately before each experiment by the use of the integrated Hall effect sensor. The remaining parameters are estimated based on the experimental data. Identification of the parameters is based on the Nelder-Mead multi-dimensional optimization algorithm realized by fminsearch Scilab function. The minimized function is defined as follows �9:� = ; "�<=>?�'�@AB?�)�C?D�DE ?�'?E   , (5) 
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where �F�G�� and �HIJ�� are the corresponding position signals of the cart obtained experimentally and from the numerical simulation on the time interval K�(, ��L, while : is vector of estimated parameters. There are well known the problems with local minima during the estimation of parameters of dynamical systems with the method described above, especially in the case of identification of large number of parameters in one step. In order to minimize that risk, the identification is performed in two stages. In the first one there is used experimental solution corresponding to free vibrations without impacts presented in Fig. 3. Initial part of the solution is cut off and initial conditions are read from the experimental data for the corresponding maximum of the position signal: �0� = 37.60 mm and ��0� = 0. Then the same initial conditions are used for numerical simulations during estimation of the parameters of  the cart resistance model and the spring stiffness, leading to the results presented in Fig. 3. The following values of the parameters are obtained: c = 6.574 N·s/m, T = 0.6307 N and k = 1419 N/m, where the corresponding minimal value of the objective function is Fo = 0.0772 mm2. In the next step the previously estimated parameters are assumed to be fixed and the parameters of the impact process are identified in the next experiment corresponding to the free vibrations with impacts presented in Fig. 4, where the obstacle position �� = −2.084 mm is obtained precisely by the used of the integrated Hall effect sensor. As previously, the initial segment of the motion is cut off and the initial conditions are read from the experimental record at the corresponding extremum of the position signal: �0� = −36.02 mm and �� 0� = 0. During the estimation process the following values of the parameters are obtained: kI = 2.222·108 N/m3/2, b = 0.8538 m sn n−  and n = 0.1908,  where the corresponding minimal value of the objective function is Fo = 0.0101 mm2. 
 Figure 3.   Result of the parameters’ estimation (c = 6.574 N·s/m, T = 0.6307 N, k = 1419 N/m; Fo = 0.0772 mm2) based on the experimental free vibrations without impacts 
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 Figure 4.   Result of the parameters’ estimation  (kI = 2.222·108 N/m3/2, b =  0.8538 m sn n− , n = 0.1908;  Fo = 0.0101 mm2) based on the experimental free vibrations with obstacle (xI = -2.084 mm) Figure 5 exhibits results of further experimental and numerical investigations of the system. In Fig. 5a there is presented time function of angular velocity of the forcing ��� applied in the experiment. The corresponding experimental bifurcation diagram is presented in Fig. 5b, where position of the system is sampled at instances when �� = 2P� � ∈ ℤ�. The so-defined points of Poincaré section are obtained by the use of cubic spline interpolation of the measured points, where sampling period is 0.5 ms. Position of the obstacle is set as �� = −2.086 mm, so it is very close to the position of the stop during identification experiment presented in Fig. 4. Then the same input signal of forcing (see Fig. 5a) is applied in numerical model with the parameters obtained previously during experiments of free vibrations. The corresponding numerical bifurcation diagram is exhibited in Fig. 5c. One can observe quite good agreement between experimental data and numerical simulations. Since the position of the obstacle is smaller than zero, the initial part of the bifurcation diagram for lower excitation frequencies corresponds to the equilibrium position with the permanent contact between the moving body and the limier of motion. For larger amplitudes and higher frequencies of forcing the cart starts to detach the obstacle and initially periodic orbit is created. Then one can observe sophisticated bifurcation dynamics, chaotic windows, period doubling scenarios, etc. Experimental bifurcation diagram is slightly blurred because of some additional vibrations in the system not taken into account in the mathematical modelling. The quality of bifurcation diagrams, both experimental and numerical, may also be slightly decreased by too short time of the experiment (too high angular acceleration of forcing disk), limited by the parameters of the experimental equipment.  
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a)  
b)  

c)  Figure 5.   The time function of angular velocity of the forcing ��� applied in the bifurcation diagrams’ construction (a) and the corresponding experimental (b) and numerical (c) bifurcation diagrams Fig. 6 exhibits experimental chaotic solution for the angular velocity of the forcing � = 40.86 rad/s corresponding to the bifurcation diagram in Fig. 5b but obtained from different experiment, where excitation frequency grows from 0 to 40.86 rad/s on the initial time interval [0, 120] and then is constant on the time interval [120, 1620]. There are presented time histories of displacement (a) and velocity 
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(b), phase portret (c) and the corresponding Poincaré section (d). Velocity is obtained by the use of numerical differentiation of displacement with the time step equal to the sampling period (0.5 ms) and no filtering.  
a)  
b)  
c)  d)  Figure 6.   Experimental chaotic solution corresponding to the angular velocity of the forcing � = 40.86 [rad/s]: time histories of displacement (a) and velocity (b), phase portret (c) and the corresponding Poincaré section (d) 
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5. Concluding remarks The paper presents results of preliminary investigations of one-degree-of-freedom impact oscillator, where the main goal is to build accurate mathematical model of the system, with special attention paid to resistance in the linear bearing and impact force, allowing to obtain good agreement between numerical simulations and experimental data. The presented results indicate that the assumed goal have been obtained. It is mainly because of introduction of special non-linearity in damping during contact with obstacle. It is interesting that identification process consists of two stages based on two simple experiments of free vanishing vibrations with and without impacts. The obtained parameters are then used in numerical simulations of more sophisticated bifurcation dynamics of the system, exhibiting very good agreement with experimental measurements, which can be treated as a successful validation of the model. The observed system dynamics is very complicated but typical for classical one-degree-of-freedom impact oscillator with harmonic forcing. Measurement data is slightly blurred, which may indicate additional oscillations not taken into account in the model, because the measurement system is very accurate and with very low noise level (uncertainty is equal to 0.001 mm). The developed mathematical and simulation model can serve as a convenient and efficient tool for prediction of bifurcation dynamics of the experimental rig. It is easier, more quickly and cheaper to perform firstly numerical simulations in order to find interesting bifurcation phenomena and then observe them in real system, than perform many time-consuming experimental investigations. Moreover the mathematical model allows for explanations of many non-linear dynamics phenomena observed experimentally, especially in the case when real data is blurred. The presented work has a great potential of development.  The project can be continued in the following directions: experimental and numerical investigations of a system of many-degrees-of-freedom (up to five) with double excitations (periodic, quasi-periodic and chaotic); energy flow investigations; experimental control of bifurcation scenarios; tests of different identification methods and different mathematical models of systems with impacts and linear bearings. References [1] Shaw, S.W., and Holmes, P. Periodically Forced Oscillator with Impacts: Chaos and Long-Period Motions. Physical Review Letters 51, 8 (1983), 623-626. [2] Foale, S., and Bishop, S.R. Bifurcations in Impact Oscillations. Nonlinear Dynamics 6, (1994), 285-299. [3] Budd, C., Dux, F., and Cliffe, A. The effect of frequency and clearance variations on single-degree-of-freedom impact oscillators. Journal of Sound and Vibration 184, 3 (1995), 475-502. [4] Hinrichs, N., Oestreich, M., and Popp, K. Dynamics of Oscillators with Impact and Friction. Chaos, Solitons & Fractals 8, 4 (1997), 535-558. 
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Dynamics of a double physical pendulum with magnetic 

interaction 

 

 

Mateusz Wojna, Grzegorz Wasilewski, Jan Awrejcewicz, Adam Wijata 

Abstract: The paper is devoted to numerical and experimental investigations of a system 

consisting of the double physical pendulum with magnetic interaction caused by a pair 

of permanent magnets repelling each other. The poles of the magnets are oriented 

so that a repulsive force occurs between them. To the experimental rig of double 

physical pendulum system with the first body periodically forced a constructed 

magnetic interaction forces measurement system is added. The work consists 

of modeling, simulation and experimental measurements to validate the analytical 

predictions and the numerical simulation of the earlier introduced mathematical model. 

The parameters of the model are estimated matching the output signals from model and 

experiment. The analyzed system shows several types of non-linear effects. Few chaotic 

zones are detected numerically and confirmed experimentally. 

1. Introduction 

The paper is devoted to dynamics analysis of a unique dynamical system. The object of investigations 

is a double physical pendulum with magnetic interaction caused by two neodymium permanent 

magnets. First of the magnets is mounted on the end of pendulum, the second one – on the body of the 

setup. Magnets are in their nearby when pendulum is oriented downwards. Magnets are oriented so that 

repulsive force exists between them. In this paper mathematical model of this 2DOF system 

is presented. Additionally the system parameters identification and comparison between numerical 

simulations with experimental study are considered. Bifurcation analysis is also provided. 

Described system is a unique construction. There is a lack of investigations about double 

pendulums with magnets in published paper works. There are papers describing systems only with 

single pendulums with magnets. A simple example of the EMS system is considered in [1]. The article 

contains of dynamical system with pendulum, permanent magnet and AC electromagnet. A magnet is 

placed on the end of the pendulum and additionally is its bob. There are presence and relative relations 

of chaos and parametric resonance investigated. Analytical results are confronted with numerical 

simulations and experimental studies. 

Authors of [2] describe a system with single physical pendulum placed in magnetostatic field 

caused by two repelling permanent magnets, forced by sinusoidal signal. Dynamics of that system 

is experimentally investigated. There are results of numerical simulations also shown. 
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The measurement system contains of shaft encoder to measure angle position of pendulum as a function 

of time. Both experimental data and simulations indicates a presence of regular and chaotic behaviors 

of the system, depending on system parameters. As the parameters are defined: forcing frequency, 

relative magnets distance and relative magnets orientation in horizontal plane. Additionally there are 

magnitude jumps, hysteresis and bistable states observed. 

In [3] system with physical pendulum is considered. On its end magnet is mounted, which interacts 

with another one mounted on the setup body. The magnets are in their nearby when a pendulum 

is vertically down placed. Authors show physical and mathematical model. The correctness of assumed 

model is proven by numerical simulations of bifurcation generated by estimation of coefficients for 

many various frequencies of forcing. In addition simulations show that estimated for one particular 

frequency coefficients could be used to predict behavior of the system in case of another forcing 

frequency. 

Authors of [4] consider experimental and numerical analysis of the system with triple physical 

pendulum. Such construction with a possibility of recording multiple revolutions of every link of triple 

pendulum is a unique construction. The system is strongly nonlinear and there can be observed 

phenomena among others: regular and irregular behaviors, bifurcations, coexisting periodic, 

quasiperiodic, chaotic and hiperhaotic solutions. In considered system the motion of first link is forced 

by a specially constructed motor. The motor consists of two immovable stators and two rotors. Both 

parts of motor are symmetric and electrically coupled, but optical commutator is placed only on the one 

stator’s plate. Such drive eliminates eventual misalignments of construction. There may be found 

description of forcing motor and entire measuring system also. Parameters of the system was identified 

by the sum of squares of deviations minimization of signals from the experiment and numerical 

simulation. A high compatibility of experimental and simulation results was obtained.  

2. Mathematical model 

In this section a mathematical model of considered system will be proposed. Fig. 1 presents a physical 

model of the system. Equations of motion consist of developed model of friction. Generally, equations 

of motion have following form: 

𝑴(𝝍) {
�̈�1

�̈�2

} + 𝑵(𝝍) {
𝜓1

2̇

𝜓2
2̇

} + 𝒓(𝝍, �̇�, �̈�) + {
𝑀1 sin 𝜓1

𝑀2 sin 𝜓2
} + {

𝑀1𝑚𝑎𝑔

𝑀2𝑚𝑎𝑔

} = {
𝑀𝑒

0
}.  (1) 

Matrixes existing in (1) are described as follows 

𝑴(𝝍) = [
𝐵1 𝑁12𝑐12

𝑁12𝑐12 𝐵2
],  (2) 
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𝑵(𝝍) = [
0 𝑁12𝑠12

−𝑁12𝑠12 0
],  (3) 

𝒓(𝝍, �̇�, �̈�) = [
𝑀𝑅1 − 𝑀𝑅2

𝑀𝑅2
], (4) 

where 

𝑐𝑖𝑗 = cos(𝜓𝑖 − 𝜓𝑗),

𝑠𝑖𝑗 = sin(𝜓𝑖 − 𝜓𝑗) .
 (5) 

Other quantities are expressed as follows  

𝐵1 = 𝐽1 + 𝑒1
2𝑚1 + 𝑙1

2𝑚2,

𝐵2 = 𝐽2 + 𝑒2
2𝑚2,

𝑁12 = 𝑚2𝑒2𝑙1,
𝑀1 = 𝑚1𝑔𝑒1 + 𝑚2𝑔𝑙1,
𝑀2 = 𝑚2𝑔𝑒2.

 (6) 

Torques of friction 𝑀𝑅𝑖 in bearings are described in the following way  

𝑀𝑅𝑖 = (𝑇𝑖 + 𝜇𝑁𝑖)
2

𝜋
atan(𝜀𝜔𝑟𝑒𝑙(𝑖)) [(1 − 𝜇′)𝑒−𝑐′|𝜔𝑟𝑒𝑙(𝑖)| + 𝜇′] + 𝑐𝑖𝜔𝑟𝑒𝑙(𝑖), 𝑖 = 1,2.  (7) 

Function 
2

𝜋
atan(𝜀𝜔𝑟𝑒𝑙(𝑖)) is used instead of function sgn(𝜔𝑟𝑒𝑙(𝑖)) in numerical simulations. In (7) 𝑇𝑖 

stands for drag torque independent of the load, 𝜇 is a coefficient of friction in the bearings giving a 

torque proportional to the radial loads 𝑁𝑖. Whereas 𝜇′ and 𝑐′ are parameters of friction model according 

to Stribeck curve. Angular velocities 𝜔𝑟𝑒𝑙(𝑖) follow 

𝜔𝑟𝑒𝑙(1) = 𝜓1̇,

𝜔𝑟𝑒𝑙(2) = 𝜓2̇ − 𝜓1̇.
 (8) 

Viscous friction coefficients 𝑐𝑖 are assumed based on the value of one common coefficient 𝑐, i.e. 

we have 

𝑐1 = 2𝑐,
𝑐2 = 𝑐.

  (9) 

 Forcing torque 𝑀𝑒 = 𝑀𝑒(𝑡, 𝑓) applied to the first link of pendulum is a rectangular time 

function with frequency 𝑓. Time series of this function is shown in Fig. 2. Moment of force due 

to magnets interaction 𝑀𝑖𝑚𝑎𝑔 is described separately in the next section. 

Reaction forces 𝑁𝑖 in bearings in equation (7) are computed in the following way 

𝑁1 = √𝑁1𝑛
2 + 𝑁1𝑡

2 ,

𝑁2 = √𝑁2𝑛
2 + 𝑁2𝑡

2 .
 (10) 
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Here using indication from (5), components of reaction forces are as follows 

 

𝑁2𝑛 = 𝑚2 [𝑔 cos 𝜓2 + 𝑒2𝜓2̇
2

+ 𝑙1 (𝜓1̈𝑠12 + 𝜓1̇
2

𝑐12)] ,

𝑁2𝑡 = 𝑚2 [𝑔 sin 𝜓2 + 𝑒2𝜓2̈ + 𝑙1 (𝜓1̈𝑐12 − 𝜓1̇
2

𝑠12)] ,

𝑁1𝑛 = 𝑚1 (𝑔 cos 𝜓1 + 𝑒1𝜓1̇
2

) + 𝑁2𝑛𝑐12 − 𝑁2𝑡𝑠12,

𝑁1𝑡 = 𝑚1(𝑔 sin 𝜓1 + 𝑒1𝜓1̈) + 𝑁2𝑛𝑠12 + 𝑁2𝑡𝑐12.

 (11) 

Whole mathematical modeling process has been conducted in Wolfram Mathematica software 

environment. 

 

Figure 1.   Physical model of the system 

 

Figure 2.   External forcing motor torque function 
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3. Magnetic interaction modeling 

Above described mathematical model contains of a component due to magnets interaction. In this paper 

new approach of magnetic interaction modeling is proposed. Based on experimental data 

approximations curves of torque caused by repulsive magnets have been obtained. Considered 

approximations are the functions of two variables: angular position of first pendulum link and relative 

pendulum links angle. Fig. 3 shows the results of experimental studies. In order to describe magnetic 

interaction exponential function is proposed in the following form 

𝑀𝑚𝑎𝑔(𝜓1, 𝜓𝑟𝑒𝑙) = 𝐴( 𝜓𝑟𝑒𝑙) ∙ 𝑒
−(

𝜓1−𝐵(𝜓𝑟𝑒𝑙)

𝐶1
)

2

, (12) 

where 

𝐴( 𝜓𝑟𝑒𝑙) = 𝐶2 ∙ 𝑒
−(

𝜓𝑟𝑒𝑙−𝐶3

𝐶4
)

2

,

𝐵(𝜓𝑟𝑒𝑙) = 𝐶5 ∙ 𝜓1 + 𝐶6,
𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5, 𝐶6 ≡ 𝑐𝑜𝑛𝑠𝑡.

 (13) 

It should be noticed that considered function has been developed separately for plus and minus values 

of torque taken from approximations curves shown in Fig. 3, and then expressions have been coupled 

into one expression by specially modified 𝑠𝑔𝑛 function. Thus the magnetic interaction torque function 

is able to change its value sign. In magnetic interaction modeling process an assumption was taken that 

the direction of repulsive force is determined by the centers of the magnets. Such described torque due 

to magnets has been distributed into two links of pendulum components 𝑀1,2𝑚𝑎𝑔
 based on the classical 

mechanics calculus. 

 

Figure 3.   Torque due to magnets characteristics in function of an angle of the first pendulum link 
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4. Parameters identification 

In considered mathematical model exist 15 parameters. Vector 𝑾 containing of these parameters can 

be expressed as follows 

𝑾 = [𝑔, 𝑙1, 𝑚1, 𝑚2, 𝑒1, 𝑒2, 𝐽1, 𝐽2, 𝑇1, 𝑇2, 𝑐, 𝜇, 𝜇′, 𝑐′, 𝜀].  (13) 

Values of such parameters as 𝑔, 𝑙1, 𝑚1, 𝑚2 were determined independently by measuring. Other 

parameters were identified by comparing real time series of double pendulum without magnets with 

proposed mathematical model (excluding torque due to magnets). There has been a method of global 

minimum finding for the criterion-function used. Identification process has been conducted repeatedly, 

receiving many sets of parameters. The best correlation coefficient value was obtained based on set 

of time series containing of forced and free pendulum motion. The set of parameters used in numerical 

analysis is presented in Table 1. 

Table 1. System parameters 

Parameter 
[Unit] 

Measured 
Value 

Parameter 
[Unit] 

Identified 
Value 

Parameter 
[Unit] 

Identified 
Value 

𝑔 [𝑚/𝑠2] 9.812 𝑒1 [𝑚] 64.175 ∙ 10−3 𝑐 [𝑁 ∙ 𝑚 ∙ 𝑠] 0.759 ∙ 10−3 

𝑙1 [𝑚] 0.174 𝑒2 [𝑚] 88.292 ∙ 10−3 𝜇 [𝑚] 0.461 ∙ 10−3 

𝑚1 [𝑘𝑔] 4.275 𝐽1 [𝑘𝑔 ∙ 𝑚2] 45.381 ∙ 10−3 𝜇′ [−] 0.631 

𝑚2 [𝑘𝑔] 1.365 𝐽2 [𝑘𝑔 ∙ 𝑚2] 14.308 ∙ 10−3 𝑐′[𝑠/𝑟𝑎𝑑] 13.447 

  𝑇1 [𝑁 ∙ 𝑚] 86.004 ∙ 10−3 𝜀 [𝑠] 1000 

  𝑇2 [𝑁 ∙ 𝑚] 18.824 ∙ 10−3   

5. Numerical simulations and experimental data 

Modeled system was investigated by numerical bifurcation analysis. As a bifurcation parameters was 

obtained a forcing frequency 𝑓. Bifurcation diagrams were prepared for increasing value of the 

parameter in range of 0.1 ÷ 3 𝐻𝑧. Fig. 4 presents bifurcation diagrams for both links of pendulum. 

Diagrams show extensive zones of chaotic behaviors and relative narrow zones of regular motion. 

The most interesting range of frequency in the diagrams is 2 ÷ 3 𝐻𝑧. For such range experimental 

bifurcation diagram has been also developed. Both simulation and experimental diagrams are 

juxtaposed in Fig. 5. 

Numerical simulation shows at this range (see Fig. 5a) firstly occurrence of chaos for both links 

of pendulum. Leaving chaotic zone is sharp and an ordered single periodical behavior is stable for 

approximately 0.25 𝐻𝑧. Order follows to next chaotic zone where the entry is also sharp. 
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Next period-halving bifurcations implies a tendency to move to regular dynamics. It should 

be emphasized that in very narrow range of frequency, four-periodic solutions exist. 

a) 

 

b) 

 

Figure 4.   Bifurcation diagrams for increasing frequency in the range of (0.1 - 3) Hz: 

first (a) and second (b) link of pendulum 

Experimentally obtained bifurcation diagrams has been compared to the simulation results. Fig. 5b 

presents wider first zone of regular motion than that obtained via numerical simulation. It is of worth 

mention that the values of angles in the first order zone (e.g. at 2.2 𝐻𝑧) is very similar. Instead of sharp 

entering to the chaotic zone, experiment exhibits the period doubling bifurcations. Comparing to the 

simulations, the experimental chaotic zone in the neighborhood of frequency 2.4 𝐻𝑧 is narrower. 

It is worthy to highlight that this chaotic zone ends almost at the same value of frequency in both 

diagrams. Similarly to the simulation results the period-halving bifurcations exist, and four-periodic 

motion is visible. Period doubling bifurcations are robust. Regular motion zones are localized on the 

same value for both simulation and experimental diagrams. It should be mentioned that in the range 

of frequency 2.65 ÷ 2.7 𝐻𝑧 there are period doubling bifurcations exhibited by the first pendulum link, 

while the second pendulum link angle does not tend to any stable configuration during the measurement 

time of evolution. It could mean that second link has much longer transitional state or there 
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is coexistence and interplay of regular (of the first link) and chaotic behavior of the second pendulum 

link. 

To show similarities and to compare simulation and experimental results, the phase portraits for 

few forcing frequencies, are reported (see Fig. 6-8).  

a) 

 

b) 

 

Figure 5.   Bifurcation diagrams for increasing frequency in the range of (2 - 3) Hz for the first and 

second links of pendulum: numerical simulation (a) and laboratory experiment (b) 

All of phase portraits shown in Fig. 6-8 have been constructed at the same condition, i.e. the initial 

condition are always the same and transitional processes minimally equal to 100s have been ignored. 

Fig. 6 shows that for the bifurcation parameter 𝑓 = 2.2 𝐻𝑧 both simulation and experimental 

results are qualitatively similar. There is a regular zone of the system behavior, and the ranges of angular 

displacements and velocities are very similar. 

At frequency 𝑓 ≅ 2.48 𝐻𝑧, period doubling bifurcations appear. The bifurcation diagrams indicate 

an exit from the chaotic zone. Shapes of simulation and experimental phase portraits are similar, 

but not identical. It points out that applied mathematical model with the estimated parameters set should 

be verified and eventually improved. 

The last shown set of phase portraits presents very good agreement between both numerical 

simulation and experimental measurements. 
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a) 

 

b) 

 

Figure 6.   Phase portraits at f = 2.2 Hz: 

numerical simulation (a) versus experimental results (b) 

 

567



a) 

 

b) 

 

Figure 7.   Phase portraits at f ≅ 2.48 Hz: 

numerical simulation (a) versus experimental results (b) 
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a) 

 

b) 

 

Figure 8.   Phase portraits at f = 3.0 Hz: 

numerical simulation (a) versus experimental results (b) 

6. Concluding remarks 

Both numerical and experimental studies of a system consisting of the double physical pendulum have 

been reported. There is a unique method of magnetic interaction modeling proposed and tested. 

Generally good agreement between both numerical simulation results and experimental measurements 

has been obtained and presented. Considered investigations point out that the proposed mathematical 

model of double physical pendulum with magnetic interaction with its parameters estimated 

experimentally can be applied as a tool for a first and quick searching for rich phenomena of nonlinear 

dynamics exhibited by a real constructed pendulum with neodymium magnets. 
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A few differences are also shown and discussed. First possible source of differences between 

results of numerical simulations and experimental observations is insufficiently complex mathematical 

model. It is worth to mention the fact that considered system often exhibited very long transitional 

processes, what also could be a reason for a few differences between simulation and experimental 

results. Additionally, the used as an identification method of global minimum finding does not belong 

to perfect ones in case of multi-dimensional problem. 
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Contact interaction of a nanoplate, reinforced by a local set of nanobeams 

located in a stationary temperature field 

Alena A. Zakharova, Jan Awrejcewicz, Tatyana V. Yakovleva, Vadim S. Kruzhilin, 
Anton V. Krysko 

Abstract: In this paper a mathematical model of nonlinear dynamics and contact 

interaction of a nanoplate, reinforced by a local set of nanobeams under conditions of 

external dynamic and temperature influences is constructed. The temperature field 

acts on the beams. In the constructed mathematical model the kinematic model of the 

first approximation is adopted: for nanoplates — Kirchhoff, and for nanobeams — 

Euler-Bernoulli. The contact interaction is taken into account by the Winkler model. 

The obtained mathematical model describes the composite elements work of 

micromechanical systems, and there are small gaps between these elements. 

Equations are derived from variation principles on the moment theory basis. The 

temperature field (two-dimensional) for nanobeams is determined separately from the 

heat equation by the finite differences method of the second and fourth accuracy 

order. Partial differential equations reduced to the Cauchy problem by the Faedo-

Galerkin method in higher approximations, and the Cauchy problem is solved by 

several methods. The reliability of the obtained results is provided by comparison 

with the solution by other methods. The oscillations are investigated using qualitative 

methods of nonlinear dynamics: signals, phase portraits, Fourier power spectrum are 

analyzed; wavelet analysis and analysis of the signs of largest Lyapunov exponents by 

several methods (Rosenstein, Kantz, Wolf).  

Keywords: Euler-Bernoulli nanobeam, Kirchhoff nanoplate, contact interaction, nonlinear dynamics, 

wavelet analysis.  

1.  Introduction  

Nanoplates and nanobeams are components of modern electromechanical systems (MEMS, NEMS). 

Under conditions of external dynamic and temperature effects, the elements between there are small 

gaps, enter into a contact interaction, which leads to a strong nonlinearity (see the classification given 

by Lukash [1]). Therefore, an important issue is the study of the vibrations type and the contact 

interaction of nanoplates and nanobeams under the action of various real world loads. Recently, many 

attempts have been made to develop various theories allowing to model of scale effects in the 

continuum, such as the momentum theory of elasticity [2, 3], the nonlocal theory of elasticity [4], the 

gradient theory of elasticity [5], and the surface theory of elasticity [6]. In reference [7, 8], the 

nonlinear dynamics of a three-layer microplate is first studied. On the basis of the Kirchhoff theory of 
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plates and nonlinear deformations of von Kármán, nonlinear size-dependent, transverse and plane 

equations of motion have been derived. The model takes into account of the nonconservative damping 

force of a viscous type, as well as the external exciting load. The different arrangement effects of 

layers are investigated. In references [9-11] mathematical models have been constructed and layered 

beam nanostructures have been studied. A mathematical model of the contact interaction of plate-

beam systems without taking into account nanoscale has been proposed in references [12-13]. The 

aim of this work is to study the nature of the three-layer packet oscillations consisting of two 

nanoplates, with two parallel nanobeams in between described by the momentum theory of elasticity. 

2. Problem statement 

A mathematical model of a three-layer nanosystem is constructed, which consists of two parallel 

nanoplates and between them there are two parallel nanobeams, which are symmetrical from the 

plates center (Fig. 1). 

 

Fig. 1. Scheme of the studied plate-beams structure (b) 

Between elements there are small gaps of equal value hk. The upper nanoplate is affected by an 

external alternating distributed transverse load )sin(0 tqq p , and the nanobeams are placed in a 

temperature field, i.e. before deformation, nanobeams are heated according to the corresponding law, 

which is determined from the solution of the two-dimensional heat equation. The material of 

nanoplates and nanobeams is isotropic, homogeneous and obeys the Hooke's law. Nanoplates and 

nanobeams are described by the first approximation kinematic hypotheses: Kirchhoff and Euler-

Bernoulli, respectively. The contact interaction between nanoplates and nanobeams is taken into 

account by the Cantor model [14], and during the model derivation we have employed the appropriate 

hypotheses of the moment theory of elasticity [2, 3], the theory of plates [15] and beams, taking into 
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account the contact interaction [14]. The Hamilton-Ostragradsky functional yielded the variational 

equations, differential equations, boundary and initial conditions of dimensional-dependent plate-

beam systems. They have the following form 
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 pp   is Poisson ratio, 41, ww  stands for 

deflection functions of the upper and lower nanoplates, and 32 , ww  denote the nanobeams deflection 

functions. Furthermore, we have also: К - the stiffness coefficient for the transverse compression of 

the structure in the contact area, kh - the gap between the nanoplate and the nanobeam, ),( zx  – the 

temperature increment for both beams; ba,  – nanobeam size for x and y, respectively, a  - 

nanobeams length of unit width, t  – time,   – attenuation coefficient, h  – nanoplates thickness and 

height of nanobeams, g – acceleration of gravity, E  – nanoplates and nanobeams elasticity modulus, 

),,( tyxq  – transverse load acting on nanoplate,  – material density of nanoplates and nanobeams. If 
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khw  21w  then contact exists between the upper nanoplate and nanobeams and ,11   otherwise 

01   [14]. The values 432 ,,   are determined in a similar way. The parameter ,l  presented in 

the higher order moment, is an additional independent material length parameter associated with the 

symmetric tensor of the rotation gradient. The latter must be taken into account in this model along 

with the usual Lamè parameters [16]. This is a direct consequence of the fact that in the moment 

theory of elasticity the strain energy density is a function of only the strain tensor and the symmetric 

curvature tensor. It does not depend explicitly on rotation (the asymmetric part of the strain gradient) 

and the asymmetric part of the curvature tensor [16]. 

The system of equations (1) is reduced to it counter part dimensionless form with the help of the 

following parameters:

 

xax  , yby  ; 
22

4)(

ba

hE
qq  , 



t
t  , 

Egh

ab 
  , 1

b

a
 , kk hhh  . For simplicity, the 

notation bar over the dimensionless parameters in the system of equations (1) is omitted.  

Equations (1) are supplemented by the boundary conditions, i.e. hinged support along the contour for 

nanoplates and hinged support at the ends for nanobeams: 
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(3) 

In addition, the (1)-(2) boundary conditions of the first kind are added for the heat equation: The 

temperature distribution over the body surface S  is set as following 

)2/32/(),0( kk hhzhhax   , Szxtzx  ),(:),,(  (4) 

As initial conditions we take the distribution of deflections, deflection velocities, and temperature 

increment at the initial instant of time 0t : 

0|;0| 00   tmtm ww  ,  m=1,2,3,4,   0|),( 0tzx   
(5) 

In order to solve the problem (1)-(5), a combined approach is proposed. Equation (2) with boundary 

conditions (4) is solved by the finite differences method of the second and fourth accuracy order. 

Further, the temperature moments, which are substituted into equations (1) and (3), are calculated 

using the Newton-Cotes formulas. The resulting systems of constructively nonlinear partial 
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differential equations is reduced to a system of the second order ordinary differential equations by the 

Faedo-Galerkin method in higher approximations with respect to the space variables x  and y . In 

this case, the approximating functions satisfying the boundary conditions (3) have the following form: 

1 2

1 1 1

( )sin( )sin( ), ( )sin( ),
kj

N N N

k

k j k

w A t k x j y w A t k x  
  

  
 

3 4

1 1 1

( )sin( ), ( )sin( )sin( ),
N N N

k kj

k k j

w A t k x w A t k x j y  
  

  
 

(6) 

Due to the nonlinearity caused by the contact interaction between the elements, it is not possible to 

solve the obtained system analytically. Therefore, to confirm the results reliability, the solution was 

carried out by the finite differences method with approximation 0(h2) and 0(h4) and the Faedo-

Galerkin method in higher approximations and the convergence of the methods for different number 

of terms in the series (6) and the different number of partitions in the finite differences method 0(h2), 

0(h4) was investigated. Accuracy was established according to the Runge rule. Also, the solution 

essentially depends on the method and the solution step for time, therefore the Cauchy problem was 

solved by several numerical methods: the Runge-Kutta method of the second (RK2) and the 4th 

(RK4) orders, the fourth-order Kesh-Karp method (RKCK), the fourth-order Runge-Kutta-Felberg 

method (rkf45), the implicit Runge-Kutta method of the 2nd order (rk2imp) and the 4th (rk4imp) 

order, the eighth order Runge-Kutta Prince-Dormand (rk8pd). The convergence of these methods is 

investigated. Studies have shown that the fourth order Runge-Kutta method is optimal for solving a 

system describing the contact interaction of a plate-beam nanostructure under the action of an 

alternating load. Further investigation of the results was carried out by a qualitative method of the 

differential equations theory. For this purpose we analyzed the signals, Poincarè sections, phase 

portraits, Fourier power spectra, and we employed the wavelet analysis. The Morlet, Gauss 8, Haar 

wavelets we have been chosen as the mother wavelet transform. Preference is given to the Morlet 

wavelet, since it has better information at every time instant.  

3. Numerical results 

As an example, we study the contact interaction of a nanostructure consisting of two nanoplates, and 

between them there are symmetrically arranged nanobeams relative to the plates center. Preheating is 

not taken into account. Between nanoplates and nanobeams there are small gaps hk=0.1. Let us study 

the oscillations nature of the multilayer nanosystem under the action of a transverse alternating load 

)sin(0 tqq p  applied to the upper plate. The frequency of the external action p =9 is larger than 
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the eigenfrequency of the nanobeam and nanoplates. Nanoscale coefficient is 7.02  . When the 

load amplitude is q0<200, the upper nanoplate performs periodic oscillations, the nanobeams and the 

lower nanoplate are at rest. When the loading amplitude is q0=200, the upper nanoplate comes in 

contact with the nanobeams, the lower nanoplate is at rest. Both nanobeams perform synchronous, 

short-lived, damped oscillations. Further, with a load intensity q0=250, all the elements of the 

nanosystem enter into the contact interaction, i.e. each nanobeam concerns both the upper and lower 

nanoplate. Table 1 shows the graph of the joint oscillations of all elements of the nanostructure at 

q0=250 (a), Morlet 2D wavelet spectra for the upper (b) and lower nanoplates (e) and both beams (c, 

d). The upper nanoplate (w1) oscillates throughout the considered time interval at the external 

excitation frequency p =9, and on the time interval ]40;1[t  on the wavelet spectrum exists 

frequency spectrum interval ]4;0[  (Table 1, b). Thus, at the moment of contact interaction, a burst 

of frequency characteristics occurs. The lower nanoplate (w4) and both nanobeams (w2, w3) perform 

low-frequency ( ]3;0[ ) oscillations in the time interval ]40;1[t  (Table 1, с,d,e), then they decay 

as a result of the dissipation coefficient presence 1.0 . Oscillations of nanobeams are synchronous 

(Table 1, a). In view of the fact that the dissipative structure is considered and the dissipation 

coefficient for plates and beams is the same, its magnitude significantly affects the nature of the 

oscillations, and with its accepted value, the oscillations die out very quickly, but, nevertheless, these 

oscillations are chaotic. 

Table 1. The vibration characteristics (see text for more details) 

a) b) 

c) d) e) 
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The mathematical modelling of nonlinear vibration of rotors 

influenced by magnetic and electric effects 

 

 

Jaroslav Zapoměl, Jan Kozánek, Petr Ferfecki 

Abstract: The main parts of magnetorheological squeeze film dampers are two 

concentric rings separated by a gap filled with magnetorheological oil. Squeezing the 

oil film due to the rotor vibration produces the damping force. The magnetic flux 

generated in coils embedded in the damper housing passes through the lubricant and 

as its flow resistance depends on magnetic induction the change of the applied current 

can be used to control the damping force. The variation of the width of the damper 

gap changes the magnetic flux, which induces the electromotoric voltage and 

consequently reduces the applied current. As a result, the rotor vibration attenuation 

depends on a complex interaction between mutually coupled mechanical, hydraulic, 

magnetic, and electric transient phenomena. In the developed mathematical model the 

magnetorheological oil is represented by a bilinear material and the damper body by a 

set of meridian segments. Each segment is considered to be a divided core of an 

electromagnet with the gap filled with the magnetorheological oil. The pressure 

distribution in the lubricating film is governed by the Reynolds equation adapted to 

bilinear material. The goal of the carried out investigations was to learn more on 

nonlinear effects and a complex influence of the electromagnetic phenomena 

occurring in magnetorheological damping devices on the vibration attenuation of 

rotors. 

1. Introduction 

Unbalance is one of the principal sources of excitation of lateral vibrations of rotors. A frequently 

used technological solution consists in placing damping devices in the rotor supports. The analysis 

carried out in [1] shows that to achieve their optimum performance their damping effect must be 

adaptable to the speed of the rotor rotation. 

A new approach to controlling the damping force is offered by magnetorheological squeeze film 

dampers. The principles of their work and practical experience with their applications can be found in 

a number of publications, e.g. in [2], [3]. Zapoměl et al. [4] developed the mathematical model of a 

short squeeze film magnetorheological damper, which is based on representing the 

magnetorheological oil by Bingham material. The efforts to increase stability of the computational 

procedures intended for dynamical analysis of rotor systems supported by magnetorheological 

squeeze film dampers arrived at the development of an enhanced model, in which the 

magnetorheological oil is represented by a bilinear material [5]. The determination of magnetic 
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induction in the lubricating film and the distribution of the magnetic flux in the damper body 

generated by electric current of constant magnitude was a subject of the study performed by Ferfecki 

et al. [6]. 

In this paper there is presented an extended mathematical model of a short magnetorheological 

squeeze film damper, which is based on assumptions of the classical theory of lubrication, on 

representing the magnetorheological oil by bilinear material and on taking into account the influence 

of the transient phenomena occurring in the electric circuit on attenuation of the rotors lateral 

vibration. The performed computational simulations contributed to better understanding of nonlinear 

effects related to behaviour of rotors supported by magnetorheological damping devices.  

2. The damping forces produced by the magnetorheological squeeze film damper 

The main parts of a magnetorheological squeeze film damper are two concentric rings separated by a 

thin layer of magnetorheological oil (Fig. 1). The inner ring is coupled with the shaft by a rolling 

element bearing and with the damper housing by a cage spring. The rotor lateral vibration arrives at 

squeezing the oil layer, which produces the damping force. The electric coils embedded in the damper 

body generate magnetic flux passing through the lubricant and as resistance against its flow depends 

on magnetic induction, the change of the applied current changes the damping effect. 

 

 

 

 

 

 

 

 

 

Figure 1.   Scheme of the magnetorheological squeeze film damper. 

The developed mathematical model of the damper is based on assumptions of the classical theory 

of lubrication. The magnetorheological oil is represented by bilinear material, the yielding shear stress 

of which is a function of magnetic induction. In addition, it is assumed that the damper parameters 

make it possible to consider it as short and that the damper is symmetric relative to its middle plane. 

In areas where the thickness of the oil film rises with time, a cavitation is assumed. In cavitated 

regions the pressure of the medium remains constant and equal to the pressure in the ambient space. 

The damper body is considered to be composed of a set of meridian segments and each segment as a 

divided core of an electromagnet with the gap filled with the magnetorheological oil. 
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The pressure distribution in the noncavitated part of the oil film is described by the Reynolds 

equation adapted to bilinear material [5] 
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p is the pressure, p' stands for the pressure gradient in the axial direction, Z is the axial coordinate 

perpendicular to axes X, Y (Fig. 2), h is the film thickness, y is the yielding shear stress, c is the 

shear stress at the core border, ηC, η are the dynamic viscosities of the oil inside and outside the core 

area, respectively, ZC defines the axial coordinate of the location where the core touches the rings 

surfaces, 
Cp  denotes the pressure gradient in the axial direction at location ZC, and (.) denotes the 

first derivative with respect to time. 

 

 

 

 

 

 

 

Figure 2.   The coordinate systems. 

The y and z components of the hydraulic force (Fmry, Fmrz) acting on the rotor journal are given 

by integration of the pressure distribution pd in the damper gap 
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   (6) 

taking into account different pressure profiles in noncavitated and cavitated areas. RD is the mean gap 

radius, LD is the length of the damper, and φ is the circumferential coordinate. 

As evident from (2), the pressure distribution in the damper gap depends on the yielding shear 

stress τy, the dependence of which on magnetic induction is approximated by a power function 
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yn

yy Bk  (7) 

B is the magnetic induction and ky and ny are the material constants of the magnetorheological oil. 

The idea of composing the body of meridian segments makes it possible to express magnetic 

induction in the oil film as a function of its thickness and magnitude of the applied current at any 

location around the damper circumference and along its length [6] 

h

I
kB MRB 0 . (8) 

μ0 is the vacuum permeability, μMR is the relative permeability of the magnetorheological oil, I is the 

applied current, kB is the design parameter that is defined as a product of the number of the coil turns 

(NC) and the magnetic efficiency. More details on its determination can be found in [6]. 

 

3.  The influence of the electric and magnetic effects on the damping force 

The electric current passing through the coil depends on the applied voltage, resistance of the 

electric circuit, and on the time variation of the generated magnetic flux. The variation is caused by 

changing the width of the damper gap due to the rotor lateral vibration 

URI
t


d

d
. (9) 

Φ is the magnetic flux generated by the coil, R is resistance of the electric circuit, U is the applied 

voltage, and t is the time. 

 The total magnetic flux is given as a sum of magnetic fluxes passing through all meridian 

segments  





SN

i

iΦΦ
1

, (10) 

Ns is the number of the meridian segments. 

Utilizing the Hopkins law, it holds 

iMR

i
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S

h
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 . (11) 

The fraction on the right hand side of (11) is magnetic reluctance of the magnetic circuit related 

to the i-th meridian segment. It is assumed that magnetic reluctance of the steel part is negligible 

relative to that in the oil film. The area assigned to each segment through which the magnetic flux 

passes reads 

 DDi LRS  (12) 

where Δφ is the increment of the circumferential coordinate.  
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Next it is assumed that the segments are of the infinitesimal thickness. Then the introduction of  
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expression Φi from (11) and utilization of (10) and (12) give the relation for the total magnetic flux  

)t(ALRINΦ DDCMR   (14) 

The differentiation of (14) with respect to time and its substitution into (9) yields the governing 

equation for the time history of the applied current in the electric circuit 
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4. The investigated rotor system 

The studied rotor (Fig. 3) is rigid. It consists of a shaft and of one disc. At both its ends it is coupled 

with the rigid stationary part by two magnetorheological squeeze film dampers. The rotor rotates at 

constant angular speed, is loaded by its weight, and is excited by the disc unbalance. Both cage 

springs are prestressed to eliminate their deflection caused by the rotor weight. In addition, the whole 

system can be considered as symmetric relative to the disc middle plane. 

 

 

 

 

 

 

 

Figure 3.   Scheme of the studied rotor system. 

The task was to investigate influence of the electric circuit on the damping effect at different 

operating speeds by means of computational simulations. 

In the computational model the rotor and the stationary part were considered to be absolutely 

rigid, the dampers were represented by springs and nonlinear force couplings, and the damping 

caused by the environment was assumed to be viscous and linear. 

Because of the system symmetry, the lateral vibration of the rotor is governed by a set of two 

nonlinear motion equations 

psyTRmryDPR FtemFykybym   cos22 2 , (16) 

gmFtemFzkzbzm RpszTRmrzDPR   sin22 2 . (17) 
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mR is the rotor mass, bP is the coefficient of external damping, kD is the stiffness of the cage spring, ω 

is the angular speed of the rotor rotation, eT is the eccentricity of the rotor unbalance, y, z are 

displacements of the rotor centre, Fpsy, Fpsz are the y and z components of the prestress force, g is the 

gravity acceleration, and (..) denote the second derivatives with respect to time. 

The motion equations are completed with equation (15) that describes the time history of the 

current affected by the magnetic and electric phenomena occurring in the electric circuit. 

The governing equations were solved by means of the implicit Adams-Moulton method. 

5. The results of the computational simulations 

The technological parameters of the studied rotor are: the rotor mass 430 kg, the coefficient of linear 

damping of the rotor caused by the environment 100 Ns/m, the stiffness of one cage spring 

2.0 MN/m, the eccentricity of the rotor unbalance 50 μm, the magnetorheological squeeze film 

damper length/diameter 50/150 mm, the width of the damper gap 1.0 mm, the oil dynamic viscosity 

not effected by a magnetic field 0.3 Pas, the oil dynamic viscosity in the core 300 Pas, the 

magnetorheological oil proportional and exponential constants 2000, 1.1, respectively, the oil relative 

permeability 5, the damper design parameter 60, and the resistance of the electric circuit 10 Ω. 

A simple dynamical analysis shows that the critical speed of the undamped system (e.g. no 

lubricant is supplied to the magnetorheological squeeze film dampers) is 96.4 rad/s. Rising damping 

in the rotor supports shifts the critical velocity to higher values. 

In the first analysis the rotor turns at constant angular velocity of 100 rad/s, which is close to the 

critical speed. The voltage is applied at the point of time of 0.1 s and increases linearly from 0 V to 

10 V during the period of 10 ms. The time history of the corresponding current is drawn in Fig. 4 

(left). The rotor vibration attenuation as a response on the voltage application is depicted in Fig. 4 

(right). The steady state orbits before and after the manipulation can be seen in Fig. 5. 

 

 

 

 

 

 

 

 

 

Figure 4.   Time histories of the current (left) and of the rotor displacement in the horizontal direction 

(right). 
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In the second analysis the rotor rotates at speed of 300 rad/s higher than the critical one. The 

application of the voltage of 30 V at the moment of time of 0.1 s arrives only at a small reduction of 

amplitude of the rotor oscillations (Fig. 6, right). The corresponding time history of the applied 

current is evident from Fig. 6 (left). 

 

 

 

 

 

 

 

 

 

Figure 5.   Steady state orbits of the rotor. 

 

 

 

 

 

 

 

 

Figure 6.   Time histories of the current (left) and of the rotor displacement in the horizontal direction 

(right). 

The time history of the current is continuous and smooth. Some delay of its increase with respect 

to the voltage is evident. It is caused by induction of the electromotoric voltage due to the change of 

the magnetic flux. 

6. Conclusions 

This paper presents the enhanced mathematical model of a short magnetorheological squeeze film 

damper, in which the mutual interaction between the hydraulic forces, transient electromagnetic 

phenomena, and mechanical vibration is implemented. The model is based on assumptions of the 

classical theory of lubrication. The oil is represented by bilinear material. The pressure distribution in 

the full oil film in the damper gap is governed by the adapted Reynolds equation. The developed 
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mathematical model of the magnetorheological damper was implemented in the computational 

procedures for investigating lateral vibrations of rigid rotors. The results of the simulations show that 

the electromagnetic phenomena arrive at a time delay of the damping effect relative to the applied 

voltage. The implementation of the electromagnetic phenomena in the mathematical model of the 

magnetorheological squeeze film damper, its implementation into the computational procedures for 

analysis of lateral vibrations of rotors, and learning more on the influence of magnetorheological 

damping devices on behaviour of rotating machines are the principal contributions of this paper. 
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Contact force control for a high speed pantograph using  
co-simulations 

 

Paweł Zdziebko, Adam Martowicz, Tadeusz Uhl 

Abstract: Active control for operational conditions, which is performed for high speed 

pantographs is one of the promising solutions for improving the current collection 

quality in high speed railways. The present work deals with an exemplary 

configuration of a controller proposed to reduce the contact force deviation in the 

modeled slider-to-catenary interface. Adapted settings of the controller were proposed 

for different train speeds. The performance of the controller is analyzed with the use 

of a co-simulation tool to determine the pantograph-catenary interaction, presented 

recently by the authors in other works. It was achieved by computing statistical 

parameters of the contact force. The simulation algorithm considers the Finite 

Element nonlinear model of a catenary and Multibody pantograph model. Various 

control scenarios were successfully analyzed including disturbance from locomotive 

vibrations and aerodynamic forces fluctuations. Considering realistic scenarios for 

a rail vehicle ride, a significant parameter describing time-delays in the control loop 

was also investigated. The proposed control strategy revealed satisfactory reduction of 

the standard deviation for the contact force. 

1. Introduction 

The pantograph-catenary system is present in electrified railways. In the most basic configuration, 

a catenary consists of a contact, messenger wires (which are tensioned) and droppers. A pantograph 

is mounted on the roof of a train and its carbon strip is in a contact with catenary wire to provide 

energy delivery to a train. Exemplary configuration of this system is presented in Fig. 1.  

 

 

Figure 1.   Pantograph-catenary system. 

The contact interface is disturbed by many factors (e.g. wave reflections in catenary, vibrations 

generated by a rail vehicle or aerodynamic effects), especially at high speed run. Recently, many 

investigations have been performed on the influence of improvement of pantograph’s suspension 

characteristic on the contact quality, e.g. [1]. The second strategy, which was lately studied, is active 
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control for improving pantograph-catenary dynamic interaction [2,3]. The present paper addresses 

a new approach in that field, which concerns simultaneously control of the nominal torque exerted 

by a pneumatic drive of a pantograph, depending on a speed of travel, and control of an additional 

drive (responsible for higher frequency control) mounted in parallel with nominal one. The analysis 

was performed employing the multi-domain co-simulation model presented previously by the authors 

[4]. 

The paper is organized as follows. After brief introductory Section 1, the following Section 2 

introduces a pantograph model employed in the analysis. Subsequently, simulation algorithm 

is presented in Section 3. Next, two steps of the proposed control strategy and results are discussed 

in Section 4. Section 5 presents results for different control scenarios and, finally, Section 6 

summaries the paper.  

2. Pantograph model 

The goal of the presented analysis is to investigate the performance of the proposed control strategy 

applied to a model, which represents the pantograph which is commonly used  in Europe, i.e. 160ECT 

(produced by EC Engineering). Basic kinematic diagram of its mechanism is presented in Fig. 2. 

 

Figure 2.   Kinematic diagram of pantograph. 

Revolute joints that are present in the pantograph mechanism are depicted in the diagram 

by black circles (rotational axis is perpendicular to the ZX plane). Triangular icons denote mounting 

screws (to the frame).  “Nominal torque” (marked in Fig. 2) is responsible for opening the pantograph 

and exerting nominal static contact force (CF) on the contact wire. This is completed by a pneumatic 

actuator (originally present in the pantograph), which can be controlled for low frequencies. On the 

other hand, the “control torque” may be assured by additional high frequency pneumatic actuator 

placed in parallel with nominal one. 

3. Co-simulation environment 

The numerical model, which is employed in the work is an extension of the multi-domain  

co-simulation approach presented in an extended form by the authors in [4]. The present development 
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involves adding a control module, which allows to test different control approaches. The main 

algorithm is presented Fig. 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 3.   Co-simulation environment. 

Simulations are carried out within the following computational environment. Initially, two 

separate models are created: 

1. Employing the Finite Element Method (FEM), initial model of an overhead lines 

(catenary) is built. It is utilized to set final catenary model with appropriate amount 

of a pre-sag (considering gravity force and tension in cables), the model was built using 

Altair Hyper Mesh program (10 spans were modeled, each of them is 60 m long). 

2. Fluid structure interaction (FSI) model of a pantograph. Computed aerodynamic forces 

acting on its parts are then transmitted into the MB model. 

In the next step, when initial configuration of a catenary is set and aerodynamic forces are 

computed, the Multibody (MB) coupled track – rail vehicle – pantograph model is constructed. 

The pantograph – catenary interaction is simulated with given time step dt in the co-simulation 

between FEM and MB models. The simulation framework assumes that MB code is run first, and 

passes the position of the collector head (considering train speed and vibrations of a rail vehicle) into 

FEM catenary model. Next, dynamic solution  of a catenary under actual position of a collector head 

is computed (employing MSC.Marc solver and considering the contact between these two parts) and 

reaction forces acting on the slider are then transmitted into MB code, where the 

track – rail vehicle – pantograph model is solved again, considering CF passed by catenary FEM 

model. Simultaneously, CF computed in FEM model is passed into the torque controller, which 
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generates adequate nominal and control torque for a pantograph depending on the velocity and 

measured actual contact force. The algorithm is iterated within a loop to cover the total simulation 

time (which is needed to run along 10 spans of catenary with individual speed). The obtained results 

are shown in the following and, then, briefly discussed. The proposed multi-domain co-simulation 

produces results based on real physical phenomena present in the modeled system. The method 

of simulation was validated according to the first step of validation process presented in the European 

Standard 50318 [5]. 

4. Control strategy 

The goal of a control strategy is to improve the contact between pantograph slider and catenary wire. 

It is desired to reduce fluctuations of the contact force. Therefore, the standard deviation (STD) 

is used as a parameter to quantitatively characterize the CF, which should be minimized. Minimal and 

maximal values of the contact force also have a significant meaning, because they may cause 

detachments or excessive wear of sliders, respectively. Simplifying, the peak-to-peak (Peak-Peak) 

value is used as the other parameter describing the control strategy performance in this paper. Like 

it was suggested in [5] those statistical quantities are computed from the filtered course of the contact 

force corresponding to two central spans. An exemplary course of contact force is presented in Fig. 4.  

According the European Standard 50367 [6], the mean contact force should be kept within 

specified limits, approximate ranges are presented in Fig.5. The mean contact force is assumed 

to be the next factor utilized in results analysis. 

 

Figure 4.   Exemplary course of the contact force. 

4.1. Nominal torque control 

The idea of „Nominal torque control” is very basic: the mean contact force is kept just above minimal 

accepted value (see Fig. 5). The FSI analysis have proved, that original torque setting in 160ECT 

pantograph causes contact force which is close to the maximum limit for all investigates speeds 

of travel. To gain confidence about FSI results correctness, the validation with experiment performed 

in a wind tunnel test rig was done. The results of validation are presented in Table 1. The achieved 
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numerical results – error of 0.4% - shows that prepared numerical model is correct and can be used 

for calculation of aerodynamic forces also for other flow speeds.  

 

Figure 5.   Acceptance ranges for mean contact force. 

In “Nominal torque control” approach, the torque depicted as “Nominal” in Fig. 2 and 

is controlled to keep the mean contact force on the lowest possible level. 

Table 1. Validation of FSI model. 

 
140 km/h 160km/h 

Contact force – Experiment [N] 129.4 135.9 

Contact force - FSI model [N] 128.9 135.37 

error [%] 0.4 0.4 

Schematic description of “Nominal torque control” approach is presented in Fig. 6. Through the 

preliminary calculations for different speeds, accepted values of minimal contact force were finally 

set and look-up table was created (realized by “Rule based controller”). For selected train speeds 

(which are easy to be measured) adequate value of “Nominal torque” is assigned. 

 

Figure 6.   “Nominal torque control”. 

This approach is considered to be of easy implementation, does not need the contact force 

to be measured, but involves a priori knowledge of aerodynamic properties of the pantograph 

(collected form experiments or FSI analysis). In the analyzed case, the torque was respectively tuned 

to produce minimum allowed static contact force (compare “Static contact force” in Table 2 to the 

Fig. 5). 
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Table 2. Nominal torque control depending on train speed. 

 
Case 1: Initial case Case 2: Nominal torque control 

Speed 

[km/h]: 

Nominal 

torque: 
Static contact force [N] Controlled torque: Static contact force [N] 

140 100% 126.5 95.8% 105.7 

160 100% 134.7 95.1% 109.5 

180 100% 135.6 95.8% 114.4 

The results of above mentioned control strategy are presented in Table 3.  

Table 3. Results of contact force in “Nominal torque control”. 

 
Speed: 140km/h Speed: 160km/h Speed: 180km/h 

 
Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 

Mean [N] 126.4 105.7 134.7 109.4 135.6 114.4 

STD [N] 19.9 16.7 36.2 31.7 37.2 33.2 

Peak-Peak [N] 122.6 100.6 228.0 181.2 224.1 180.4 

In Fig. 7, a percentage reduction of the most important statistical parameters of CF are  presented 

(comparing to the initial Case 1). Despite its simplicity, the “Nominal torque control” approach can 

significantly reduce the STD (up to 16.4%) and Peak-to-Peak (up to 20.5%) of contact force, which 

indeed improves the dynamic interaction between pantograph and catenary. 

 

Figure 7.    “Nominal torque control” performance. 

4.2. Nominal and additional torque control  

In the “Nominal and additional torque control” approach, the torque depicted as “Nominal” in Fig. 2 

is controlled to keep the mean contact force on the lowest possible level like it was mentioned 

in Section 4.1. Moreover, additional “Control torque” is employed in this approach to react for 

instantaneous deviations of CF – which is assumed to be measurable (e.g. see [7]). Schematic 

description of “Nominal plus additional torque control” approach is presented in Fig. 8. 
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Figure 8.   “Nominal and additional torque control” approach. 

In this approach control is realized in a closed loop. Only proportional (P) and  

proportional-integral controllers were taken into consideration. According to [3] derivative term 

of PID controller is not necessary for pantograph active control. Different coefficients of  proportional 

(Kp) and integral (Ki) terms were investigated. The results of the mean contact force, STD and  

Peak-to-Peak of CF calculated for train speed 160km/h are presented in Fig. 9-11. Notice, that 

different perspectives are used at graphs for better results presentation. Precise values were computed 

only for combinations of Kp and Ki depicted by dark points – areas between then is the field 

of further investigation. 

 

Figure 9.   Mean contact force versus Kp and Ki. 
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The mean contact force in all analyzed cases is within the acceptance ranges, therefore 

it is assumed, that any of controller configuration significantly influences the mean contact force. 

 

Figure 10.   STD of contact force versus Kp and Ki. 

 

Figure 11.   Peak-to-Peak of contact force versus Kp and Ki. 

It can be observed, that integral term (Ki) has marginal meaning for control performance 

(in analyzed range) – and does not improve the contact quality in any case. Therefore, for the other 

speeds (140, 180 km/h) only proportional controllers were investigated. 

594



The results for the „Nominal and additional torque control”  approach employing proportional 

control are presented in Fig. 12-13. 

 

Figure 12.   Reduction of STD in “Nominal and additional torque” control. 

 

Figure 13.   Reduction of Peak-to-Peak of CF in “Nominal plus additional torque” control. 

It can be easily seen, that different settings of Kp are preferred for different speeds. Since, the 

STD of contact force is assumed to be more crucial than Peak-to-Peak, therefore following values 

of Kp: 0.6, 0.5, 0 are proposed to be adapted respectively for speeds 140, 160, 180 km/h. 

5. Case study  

For the case of train speed of 160km/h and for selected controller (Kp=0.6), which was assumed 

to generate the best performance for that train speed (highest reduction of STD of contact force), 
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the influence of: time delays in control rig, quality of track and fluctuations of aerodynamics effects 

on the controller performance was investigated.  

Table 4 presents the results for different time delays. It can be observed, that time lag greater 

than 0.012s drastically decreases the robustness of controller, because applied control torque is finally 

set with a phase shift and deteriorate the system behavior. Time delays: 0.036 or 0.048 s even causes 

detachments of pantograph slider. From the other hand, the time delay is inevitable in the real 

implementation, so it may question the sense of additional torque controller implementation. 

Table 4. Results of contact force for different time delays. 

 
Time delays 

 
t=0s 0=0.012s t=0.024s t=0.036s t=0.048s 

Mean [N] 109.5 109.3 108.9 108.6 107.3 

STD [N] 23.4 24.4 31.1 40.3 54.8 

Min. [N] 51.2 48.8 44.2 -0.2 -8.8 

Max. [N] 174.7 174.5 198.4 206.5 234.0 

Peak-Peak [N] 123.5 125.7 154.2 206.6 242.8 

Subsequently, the influence of different track quality classes on the contact force were 

investigated. Randomized track irregularities were modeled using the PSD formula described in [1]. 

The results proves good controller performance for various track quality, see Fig. 14.  

 

Figure 14.   Controller performance for different track quality. 

Employing the “Nominal and additional torque control”, the STD of CF is reduced by 35% 

or slightly greater in all analyzed cases of track quality. Reduction of Peak-to-Peak CF differs on the 

track quality class, but is also on very good level – see Fig. 14.  

Wind fluctuations are the last factor that was investigated. Three different cases of the presence 

of wind fluctuations were considered: “nominal” – only air flow caused by train speed is present, 

“Wind-“,  and “Wind+”. Two last cases represent the situation when additional wind blows from the 
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back or front of the pantograph, respectively (in range of 0-20km/h). Random wind speed was 

generated employing similar PSD formula like in the case of track irregularities. Generated wind 

speed profile is presented in Fig. 15. 

 

Figure 15.   Wind speed history. 

The results of the contact force for wind fluctuations are presented in Table 5. 

Table 5. Results of contact force for different wind fluctuations. 

 
Wind 

Case: Wind - Nominal Wind + 

Mean [N] 107.8 109.5 110.4 

STD [N] 23.2 23.4 23.6 

Min. [N] 49.1 51.2 53.1 

Max. [N] 172.0 174.7 174.9 

Peak-Peak [N] 122.9 123.5 121.8 

It can be observed that despite of marginal influence on the mean CF, wind fluctuations 

(in investigated variability) do not significantly influence the STD and other statistical parameters 

of CF. The proportional controller (with Kp=0.6) is considered to be resistant for wind fluctuations. 

6. Conclusions 

The main conclusions resulting from the paper are: 

1. Lowering the nominal static pressure exerted by a pantograph on a catenary cable to minimal 

allowable level can be used to reduce the STD of contact force in dynamic train run. 

2. The above-mentioned feature was employed to design the open-loop control scheme called 

“Nominal torque control”, which adapts the static pressure exerted by pneumatic drive of 

pantograph to produce minimal allowable contact force, independently for various speeds. 

In this control strategy, STD of CF is reduced by 10.8-16.4% depending on the train speed. 

3. Additional fast pneumatic drive can be employed to reduce actual contact force deviation.  
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4. The previously stated idea (together with “Nominal torque control”)  - called by the authors 

“Nominal and additional torque control” was also investigated in this paper. In this control 

strategy, STD of CF is reduced by 10.8-36%, depending on the train speed. 

5. The performed analysis shows that different gain for proportional controller is favourable for 

different train speed: 0.5, 0.6 and 0 for speed of 140, 160 and 180 km/h respectively.  

6. The results of controllers performance depend on the disturbance from many sources (time 

delays, track quality and wind fluctuations were analyzed). 

7. The most crucial disturbance (among all the mentioned ones) is time delay in the control  

rig – lags greater than 0.012s causes significant deterioration of controller performance 

(results of CF are worse than in “no control” case). 
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Control optimization for a three-segmented hopping leg model of
human locomotion

Ambrus Zelei, Bernd Krauskopf, Tamás Insperger

Abstract: The research of human and robotic legged locomotion applies dy-
namic models with a wide range of complexity and aims to answer many dif-
ferent questions. In our research we focus on the effect of kinematic parame-
ters and foot placement techniques on the ground-foot impact intensity. Our
method is to use the multibody dynamic model of a segmented leg. We obtain
a quantitative measure for the foot collision intensity by analytic calculations.
The pre-impact velocity conditions are obtained by a hopping three-segmented
planar leg model that imitates pedal locomotion. The single legged model con-
tains the foot, the shank, the thigh and a reaction wheel attached in the hip.
Stable periodic motion, i.e. hopping was achieved by means of control torques
in the ankle, the knee and the hip joint. Different control strategies are speci-
fied for the grounded and flight phase. The parameters of the linear feedback
controller are tuned to optimise different cost functions, such as running speed,
energy efficiency and impact intensity. We also investigate how the stability of
periodic motion depends on the control gains.

1. Introduction

Understanding of human walking, running, jumping and the development of corresponding

bipedal robots require thorough analysis of complex dynamic models. Although, there are

many experimental and theoretical results, analysis of bipedal locomotion of humans and

mobile robots are still in the center of interests of biomechanics. In this paper, we develop

a segmented leg model, which can describe stable periodic motion associated with hopping.

1.1. Motivations

A yet unresolved issue is the effect of running kinematics and foot placement pattern on

the ground-foot collision intensity. Depending on the form of running, high impacts and

therefore high kinetic energy absorption may occur, which should actually be avoided in

order to minimize the risk of injuries and also to increase energy efficiency during running

[7,9,11,14]. The hopping leg model presented in this paper provides measures for the ground-

foot collision, like kinetic energy absorption and effective mass. The model provides realistic

pre-impact configuration.
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In spite of the large number of publications, the mechanism of human balancing is still

not entirely understood and is still a strongly researched area [1,6]. A possible research goal

is to discover and compare the energy consumption needed for balancing when standing still

and during walking, running or hopping. The postural sway during standing still shows that

certain energy input is required for the stabilization of the otherwise unstable upright stand-

ing position, similarly to the stabilization of an inverted pendulum via a feedback controller.

Running, on the other hand, is a periodic motion for which the energy consumption can be

divided into two parts: 1) the energy required for the recovery of dissipation and the energy

loss due to dynamic reasons; and 2) the effort needed for the prevention of falling over. The

energy required for the stabilization may actually be smaller in case of running than in case

of standing still.

1.2. Models and results for ground-foot impact intensity

A mechanical model containing the foot and the shank was introduced in [11] for the inves-

tigation of the effect of the foot strike pattern. The foot-shank system falls vertically and

the foot hits a fixed pin. The contact point position is characterized by the strike pattern

s. A further developed but still two-segmented model was introduced in [9]. As an exten-

sion of the model in [11], a variable ankle angle and a horizontal velocity were introduced.

Both [11] and [9] report that the effective mass and therefore the impact intensity is lower

for forefoot-strike, when strike pattern is s = 0.7 . . . 1 than heel-strike, when s = 0 . . . 0.2.

Results in [14] showed that in addition to the strike pattern, the angle of the shank

also strongly affects the properties of the ground-foot impact. The model in [14] involves

the thigh and the total mass of the human body. The segments perform a rigid-body-like

motion in the pre-impact phase with no relative motion of the body segments, which is not

realistic.

A realistic pre-impact velocity condition can be obtained either from experiments or from

a dynamic model that performs stable periodic running motion. In our previous work [3], we

introduced such a dynamic model subjected to a torque control in order to perform further

biomechanical analysis of human running performance. The advantage of this model over an

experiment is that the control parameters can be tuned to optimize different cost functions,

such as running speed, energy efficiency and impact intensity. Present paper reports new

results about the detailed analysis of the model.

1.3. Existing segmented hopping leg models and related results

This subsection overviews a few models developed to perform stable periodic motion, like

walking, hopping and running.
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Many aspects of periodic motion of legged systems are detailed in [5], where several

walking, running and hopping models are reviewed. The classical spring-loaded inverted

pendulum (SLIP) model gives a fundamental background for hopping leg models. SLIP

represents the body inertia as a point mass which bounces along on a single elastic massless

leg. The supporting role of the leg in each stance phase is characterized by the SLIP.

Self-stable running-like locomotion is presented in [13] for a case where the inertia and

dynamic effects of the segments are neglected and the body weight is modeled by a point

mass in the hip. It is reported that the stable domain regarding landing angle and horizontal

speed is larger than in case of SLIP model. The presence of massless segments leads to 1)

smooth dynamics, i.e. there is no impulsive forces when the foot gets in contact with the

ground; 2) the elimination of all inertial forces due to the inertia of the leg segments. These

simplifications facilitates essential analytical and numerical results. Here, we extend this

model in such way, that 1) the energy loss and impact forces are possible to be obtained,

2) the effects due to inertial forces are discovered. While the model in [13] is self-stable, in

the extended model we use state feedback and control actions in order to achieve the stable

hopping motion.

2. Dynamic model of the controlled hopping leg

The single-legged, planar mechanical model depicted in Fig. 1 is an extended combination

of the ground-foot impact model in [14] and the self-stable hopping model in [13]. The new

aspect is that a feedback controller is introduced to the model from [14], which was not

actuated at all. In contrast with [13], self-stability without controller is not possible here,

because the rigid body collision absorbs energy. Another extension is that the proposed

control concept also involves a reaction wheel which is attached in the hip. The overall

model consists of the equations of motion and the control algorithm similarly as in [3].

2.1. Mechanical structure

The three segments 1, 2 and 3 correspond to the foot, shank and thigh, respectively. Points

A, B, C and D correspond to the tiptoe, the ankle, the knee and the hip, respectively. The

reaction wheel plays the role of the upper body: the torque MD that rotates the thigh has

the reaction torque exerted on the wheel. The reaction wheel has mass mr and moment of

inertia Jr. The homogeneous, prismatic bars have masses mi and lengths li, i = 1 . . . 3. The

centre of gravity is located at point G. The segments are interconnected by torsional springs

with stiffnesses kB and kC. Actuating torques MB and MC assist the motion according to

the control, which will be introduced below.

The model has a total of 6 DoFs in the flight phase: qf = [xA, zA, θ1, θ12, θ23, θr], where
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Figure 1. Segmented leg model

xA and zA are the Cartesian coordinates of the tiptoe. There are 4 DoFs in grounded phase:

qg = [θ1, θ12, θ23, θr]. In both phases, the equation of motion assumes the general form:

M(q)q̈ + C(q, q̇) = Q(q, q̇) , (1)

where M ∈ Rn×n is the mass matrix, C ∈ Rn is the inertial force vector and Q ∈ Rn general

force contains the control torques. Here q = qf and n = 6 in flight-phase; while q = qg and

n = 4 in ground-phase.

We assume that the ground-foot impact is completely inelastic, there is no rebound and

the friction coefficient is high enough to prevent sliding of the foot. These assumptions allows

us to constrain the tiptoe to the ground until the contact force is positive. See Section 3.1

for more details.

The non-linear spring characteristics, which is caused by the muscle-tendon dynamics,

is not considered here in order to reduce the number of parameters. The torques exerted by

the linear torsional springs of stiffness kB and kC are given by

kB(θ12 − α12) and kC(θ23 − α23) , (2)

where α12 and α23 denotes the joint angle values that corresponds to unstretched springs.

The anatomical data adopted from [2] of a 24 years old average male with bodyweight

of 73 kg and body height of 173.1 cm were considered (see Table 1).

2.2. Control

On the top of the spring torques, additional torques are exerted with respect to the control

in equations (3) - (5) and (7) - (9). In our concept a control law is formulated that provides
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Table 1. Inertial and geometric data of body segments

mass length/height CoG mass moment of inertia

whole body mb = 73 kg lb = 1.731 m -

trunk mr = 0.6028mb - Jr = 1.9778 kgm2

feet m1 = 0.0274mb l1 = 0.0885lb J1 = 1/12m1l
2
1

shanks m2 = 0.0866mb l2 = 0.2470lb J2 = 1/12m2l
2
2

thighs m3 = 0.2832mb l3 = 0.2320lb J3 = 1/12m3l
2
3

periodic motion of the body. The motion of the segments is dictated by their dynamics,

rather than having prescribed trajectories for the limb segments and a feedback control that

forces the segment onto these prescribed trajectories. These two concepts are distinguished

in [5]. Naturally, our control law needs the observation of the configuration of the segments

and needs information about the actual flight/ground-phase of the leg.

2.2.1. Passive motion does not exist because of ground-foot impact

In general, the tiptoe touches the ground with non-zero velocity. This causes an impact and

a certain kinetic energy loss, called constrained motion space kinetic energy (CMSKE) [9,14].

CMSKE is often used used as an energy efficiency indicator of passive walkers [4] because

their energy loss is the foot impact only.

As a consequence, periodic hopping motion is not possible without some kind of energy

input, which is provided by the muscles in humans and by motors in legged robots. An

alternative possibility to avoid energy loss is to achieve zero-velocity collision, which means

that the tiptoe velocity becomes zero at the instance of time when the foot touches down.

However, impact-free motion does not guarantee periodicity, because the model can fall over,

and using a controller is a more feasible approach.

2.2.2. Flight-phase

The vibrations of the leg segments are suppressed by MB and MC in the flight phase as (3)

and (4) show. A proportional-derivative controller defined in (5) tries to keep the tiptoe

(point A) at a specified horizontal position near to the centre of mass position xG of the

overall model in order to avoid falling over.

M f
B = −DBθ̇12 , (3)

M f
C = −DCθ̇23 , (4)

M f
D = P (xA − (xG + x∆)) +D(ẋA − ẋG) . (5)
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Term x∆ modifies the desired tiptoe position regarding the angular momentum ΠA calculated

for point A. Furthermore, a constant Kv modifies the horizontal velocity:

x∆ = PΠ ΠA −Kv . (6)

2.2.3. Ground-phase

A certain part of the kinetic energy called CMSKE is absorbed in each stride because of

the ground-foot impact. CMSKE is recovered by means of the control torques (7) and (8)

exerted in the ankle and the knee. The goal is to keep the total mechanical energy E at the

freely chosen desired energy level E0. The mechanical power of these torques are positive

only if the joints are in extension, so that θ̇12 is positive and θ̇23 is negative. Torque Mg
D in

(9) prevents the continuous growth of the angular velocity θ̇r of the reaction wheel.

Mg
B = PE(E − E0) sgn(θ̇12) , (7)

Mg
C = PE(E − E0) sgn(−θ̇23) , (8)

Mg
D = −Prθr −Drθ̇r . (9)

2.2.4. Limitations

1) Depending on the configuration, bow and zigzag mode is possible, out of which only the

latter is considered, because only this is possible for human leg. 2) There is no specific

strategy for heel-strike yet. We consider hopping modes with ground-tiptoe contact only.

3) Since the segments are rigid, the behaviour of soft tissue is not possible yet. 4) As we

mentioned earlier, the slip of the foot relative to the ground is not possible in this model.

5) The elastic-plastic behaviour of the ground is not considered.

3. Methods

Present work is based on numerical simulations of the hopping leg model, which was explained

in Section 2. The most fundamental details are summarized in this Section.

3.1. Ground-foot impact intensity and energy loss

The foot touchdown is handled as an impulsive phenomenon, during which the velocity

condition of the model goes under abrupt change. We assume that the ground-foot collision

is instantaneous, which leads to infinitely large instantaneous forces over an infinitesimal

time duration so that the net impulse due to the impact force is finite [9, 11]. Completely

inelastic collision is also assumed, so that there is no rebound [9,11,14]. These assumptions

lead us to consider the ground-foot contact as an instantly arising geometric constraint ϕ(q)

as in [9, 14]. While velocity condition changes instantly, the configuration does not change.
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Before foot touchdown, the system moves freely during flying phase. The new constraints

ϕ(q) = 0 related to the ground contact arise at the time instant of the impact. The post-

impact velocities are determined by the projection to the space of the admissible motion:

q̇+ = Paq̇−, (10)

where q̇− = q̇(t−) and q̇+ = q̇(t+) are the pre- and post-impact generalized velocities re-

spectively. Pa = I−Pc projects into the null-space of the constraint Jacobian Φq = ∇q (ϕ),

which is the subspace of the admissible motion. Pc = Φ†qΦq projects into the constrained

subspace. The generalised inverse of the constraint Jacobian is calculated according to [10]:

Φ†q = M−1ΦT
q (ΦqM−1ΦT

q )−1. (11)

The kinetic energy CMSKE related to the constrained motion vanishes when the foot

touches the ground and can be calculated based on [8] as:

Tc =
1

2
(q̇−)TPT

c MPcq̇
−. (12)

Papers [9] and [8] showed that foot strike intensity can be characterised by the CMSKE

which depends on the pre-impact configuration q− and velocity q̇− and the effective mass

matrix Me = PT
c MPc. In this work the CMSKE is used for characterising the foot impact

intensity: CMSKE is directly proportional to the impulse of the contact reaction force and

also to the peak reaction force [8, 9].

3.2. Periodic paths and tuning of control parameters

Our goal is to find the control parameter set resulting stable periodic motion, while some

cost function, like energy efficiency is minimized. We have 10 parameters in (3)-(9) collected

in the vector p = [DB , DC , P ,D , PΠ ,Kv , PE , E0 , Pr , Dr]. Parameters p were tuned by

trial-and-error method until periodic motion was possible to be found in [3] by means of

shooting method.

For a given set of parameters p, x∗0 = [q∗0 , q̇
∗
0]T ; x∗0 ∈ R2n is a periodic solution, if the

system is in the same state at the beginning and at the end of the period, so that mapping

g(x0,p) has a fix point or in other words F(x∗0,p) = 0, where

F(x0,p) = g(x0,p)− x0. (13)

As Fig. 2 shows, the period starts at the beginning of the flight-phase and ends at the

end of the ground-phase: event function hg 7→f = λA crosses 0 in positive direction (λA is

the vertical contact force magnitude). Transition from flight- to ground-phase occurs when
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event function hf 7→g = zA crosses 0 in negative direction. Between flight- and ground phase a

discontinuity mapping from x− to x+ is realized by (10). Systems with such discontinuities

are referred as hybrid systems in [12].

With a prosperous initial guess for x0, Newton-Raphson iteration provides the numerical

approximation for x∗0 by finding the root of (13). The Jacobian J = ∇x0 (F) is necessarily

computed in the Newton-Raphson method, with which a possible approximation of the

Jacobian M = ∇x0 (g) of the mapping g can be computed as M = J + I.

Figure 2. Schematic picture of a single period: flight-phase, ground-foot impact, ground-

phase and ground foot detachment

The periodic orbit is stable, if a perturbed initial condition x0 is mapped ,,closer” to the

periodic path. Due to the non-smoothness of our system, the accuracy of M is not sufficient

for judging stability of the periodic path. Instead, the flow Jacobian is computed based

on [12]. The following 2n+ (2n)2 size ODE, which is referred as first variational equation in

the literature, is solved during the continuous dynamics:

ẋ(t) = f(x(t)) ; x(0) = x0 , (14)

Φ̇(t) = ∇x (f(x(t))) Φ(t) ; Φ(0) = I , (15)

where I is 2n by 2n identity. Equations (14) and (15) can be applied with substitution f = ff

in flight-phase and f = fg in ground-phase. Flow Jacobians Φf and Φg are obtained at the

end of the flight- and ground-phase respectively. The Jacobian of the composite flow needs

the Jacobian S of the discontinuity mapping, which is referred as saltation matrix in [12].

Finally the composite flow Jacobian, which can be reliably applied for determining stability

of the periodic orbit, is obtained as Φ̃ = ΦgSΦf .
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The method described above makes possible to tune the parameters p in order to find

the optimum for a certain cost function to be minimized. The cost function may be the norm

of the largest eigenvalue of Φ̃, which characterizes stability. An other possible alternative for

instance is to use Tc as cost function, which characterizes impact intensity. In order to find

the minimum of the cost function, several numerical algorithms, like simplex method could

be applied on the top of the above explained shooting method. The following sequence is

repeated until the minimum of the cost function is found: the simplex method modifies p,

and the shooting method serves the solution q∗0 related to p.

4. Results

Periodic paths was found for the control parameters that are collected in Table 2. Parameter

E0 was swept for Kv = 0 and 0.4 m fixed values. E0 and Kv are responsible for the height

and horizontal locomotion speed of the hopping motion respectively. Cases A and B are the

smallest and largest possible E0 values for Kv = 0 m without loosing stability, while Cases

C and D are the same for Kv = 0.4 m. The stiffness parameters were set to kB = 1200 Nm

and kC = 1300 Nm. The unstretchered angle of the springs are α12 = 80 ◦ and α23 = 225 ◦.

Table 2. Control parameters: E0 and Kv are varied in the case examples, the rest are fixed

E0 Kv DB DC P D PΠ PE Pr Dr

case [J] [m] [Nms] [Nms] [N] [Ns] [(Ns)−1] [1] [Nm] [Nms]

A 752 0
B 2970 0 15 20 950 50 0.01 0.2 4 15
C 1027 0.4
D 3310 0.4

4.1. Hopping motion with different speed and height

Hopping motion for four illustrative case examples are shown in Fig. 3. We found stable

hopping motion from 0.018 to 2.141 m tiptoe elevation. The amplitude of the vertical centre

of mass motion are 0.064 m in case A, 1.32 m in B, 0.071 m in C and 1.11 m in case D. The

average locomotion vx speed and the tiptoe elevation are plotted in the right panel of Fig. 3.

A wide range of locomotion speed and hopping height is covered by tuning E0 and Kv only,

however we expect that the tuning of other control parameters provides larger stable domain.

4.2. Ground-foot impact intensity

The total kinetic energy T , the CMSKE (Tc) and the preserved part of the kinetic energy

Ta are calculated for the ground-foot impact as Fig. 4 left panel shows. The normalized Tc

and Ta on the right panel has a minimum value for the different values of the speed control
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Figure 3. Results: the hopping motion with tiptoe and centre of mass path are illustrated

in cases A, B, C and D in the left panel; the velocity vx of the locomotion and the apex

height zAmax of the tiptoe path are plotted as the function of the desired energy level E0.

parameter Kv. For Kv = 0 m the optimal E0 value is 821 J and 0.971 % of the kinetic energy

is absorbed by the ground-foot impact. The optimum for Kv = 0.4 m is E0 = 2230 J and

the absorbed kinetic energy ratio is 2.09 %.

Figure 4. Results: the pre-impact kinetic energy T , the absorbed kinetic energy Tc related

to the constrained subspace and the remaining kinetic energy Ta related to the admissible

subspace are plotted in left panel; the normalized Tc and Ta are plotted in the right panel.

5. Conclusions and further steps

Stable periodic motion, i.e. running was achieved with the planar three-segmented leg model

by means of control torques in the ankle and the knee joint and with a reaction wheel
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placed at the hip. Wide range of locomotion velocity (−0.2 . . . 2.35 m/s) and hopping motion

height (tiptoe elevation: 0.018 . . . 2.14 m) were discovered, where the remaining fixed control

parameters guaranteed stable operation. However, the currently fixed parameters will be

tuned hereafter. The optimum of the hopping height was found, when the ground-foot impact

intensity is the smallest and therefore the largest amount of kinetic energy is preserved.

We applied shooting method to obtain periodic orbits of the hybrid system. However,

in future works, we plan to find and follow periodic orbits and their stability with advanced

continuation methods. The model will be developed further in order to achieve more human-

like motion; in particular, two legs and a more accurate model for the upper body can be

considered. The model can also be used to investigate the effect of the terrain on the optimal

motion, like inclination of the ground. Although some conclusion regarding human motion

can be drawn from mathematically generated trajectories of the a model, a comparison

with laboratory experiments with human subjects is also necessary. After refinement of

the proposed mechanical model and the controller other performance measures of human

running may become feasible.
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