130 research outputs found

    How does nonlocal dispersal affect the selection and stability of periodic travelling waves?

    Get PDF

    Selected topics on reaction-diffusion-advection models from spatial ecology

    Full text link
    We discuss the effects of movement and spatial heterogeneity on population dynamics via reaction-diffusion-advection models, focusing on the persistence, competition, and evolution of organisms in spatially heterogeneous environments. Topics include Lokta-Volterra competition models, river models, evolution of biased movement, phytoplankton growth, and spatial spread of epidemic disease. Open problems and conjectures are presented

    Partial Differential Equations in Ecology

    Get PDF
    Partial differential equations (PDEs) have been used in theoretical ecology research for more than eighty years. Nowadays, along with a variety of different mathematical techniques, they remain as an efficient, widely used modelling framework; as a matter of fact, the range of PDE applications has even become broader. This volume presents a collection of case studies where applications range from bacterial systems to population dynamics of human riots

    Advanced Nonlinear Dynamics of Population Biology and Epidemiology

    Get PDF
    abstract: Modern biology and epidemiology have become more and more driven by the need of mathematical models and theory to elucidate general phenomena arising from the complexity of interactions on the numerous spatial, temporal, and hierarchical scales at which biological systems operate and diseases spread. Epidemic modeling and study of disease spread such as gonorrhea, HIV/AIDS, BSE, foot and mouth disease, measles, and rubella have had an impact on public health policy around the world which includes the United Kingdom, The Netherlands, Canada, and the United States. A wide variety of modeling approaches are involved in building up suitable models. Ordinary differential equation models, partial differential equation models, delay differential equation models, stochastic differential equation models, difference equation models, and nonautonomous models are examples of modeling approaches that are useful and capable of providing applicable strategies for the coexistence and conservation of endangered species, to prevent the overexploitation of natural resources, to control disease’s outbreak, and to make optimal dosing polices for the drug administration, and so forth.View the article as published at https://www.hindawi.com/journals/aaa/2014/214514

    Regularity, Asymptotic Solutions and Travelling Waves Analysis in a Porous Medium System to Model the Interaction between Invasive and Invaded Species

    Get PDF
    This work provides an analytical approach to characterize and determine solutions to a porous medium system of equations with views in applications to invasive-invaded biological dynamics. Firstly, the existence and uniqueness of solutions are proved. Afterwards, profiles of solutions are obtained making use of the self-similar structure that permits showing the existence of a diffusive front. The solutions are then studied within the Travelling Waves (TW) domain showing the existence of potential and exponential profiles in the stable connection that converges to the stationary solutions in which the invasive species predominates. The TW profiles are shown to exist based on the geometry perturbation theory together with an analytical-topological argument in the phase plane. The finding of an exponential decaying rate (related with the advection and diffusion parameters) in the invaded species TW is not trivial in the nonlinear diffusion case and reflects the existence of a TW trajectory governed by the invaded species runaway (in the direction of the advection) and the diffusion (acting in a finite speed front or support).UDIMA2021-2

    Existence, uniqueness and travelling waves to model an invasive specie interaction with heterogeneous reaction and non-linear diffusion.

    Get PDF
    It is the objective to provide a mathematical treatment of a model to predict the behaviour of an invasive specie proliferating in a domain, but with a certain hostile zone. The behaviour of the invasive is modelled in the frame of a non-linear diffusion (of Porous Medium type) equation with non-Lipschitz and heterogeneous reaction. First of all, the paper examines the existence and uniqueness of solutions together with a comparison principle. Once the regularity principles are shown, the solutions are studied within the Travelling Waves (TW) domain together with stability analysis in the frame of the Geometric Perturbation Theory (GPT). As a remarkable finding, the obtained TW profile follows a potential law in the stable connection that converges to the stationary solution. Such potential law suggests that the pressure induced by the invasive over the hostile area increases over time. Nonetheless, the finite speed, induced by the non-linear diffusion, slows down a possible violent invasion.post-print287 K

    Mathematical Modeling of Biological Systems

    Get PDF
    Mathematical modeling is a powerful approach supporting the investigation of open problems in natural sciences, in particular physics, biology and medicine. Applied mathematics allows to translate the available information about real-world phenomena into mathematical objects and concepts. Mathematical models are useful descriptive tools that allow to gather the salient aspects of complex biological systems along with their fundamental governing laws, by elucidating the system behavior in time and space, also evidencing symmetry, or symmetry breaking, in geometry and morphology. Additionally, mathematical models are useful predictive tools able to reliably forecast the future system evolution or its response to specific inputs. More importantly, concerning biomedical systems, such models can even become prescriptive tools, allowing effective, sometimes optimal, intervention strategies for the treatment and control of pathological states to be planned. The application of mathematical physics, nonlinear analysis, systems and control theory to the study of biological and medical systems results in the formulation of new challenging problems for the scientific community. This Special Issue includes innovative contributions of experienced researchers in the field of mathematical modelling applied to biology and medicine
    • …
    corecore