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Abstract. In ecology a number of spatiotemporal datasets on cyclic populations reveal peri-
odic travelling waves of abundance. This calls for studies of periodic travelling wave solutions of
ecologically realistic mathematical models. For many species, such models must include long-range
dispersal. However mathematical theory on periodic travelling waves is almost entirely restricted to
reaction-diffusion equations, which assume purely local dispersal. I study integrodifferential equation
models in which dispersal is represented via a convolution. The dispersal kernel is assumed to be
of either Gaussian or Laplace form; in either case it contains a parameter scaling the width of the
kernel. I show that as this parameter tends to zero, the integrodifferential equation asymptotically
approaches a reaction-diffusion model. I exploit this limit to determine the effect of a small degree
of nonlocality in dispersal on periodic travelling wave properties and on the selection of a periodic
travelling wave solution by localised perturbation of an unstable steady state. My analysis concerns
equations of “λ–ω” type, which are the normal form of a large class of oscillatory systems close to a
Hopf bifurcation point. I finish the paper by showing how my results can be used to determine the
effect of nonlocal dispersal on spatiotemporal dynamics in a predator-prey system.
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1. Introduction. Many natural populations undergo regular cycles of abun-
dance. Investigation of the population dynamics of such cyclic populations is an
active research area because of well documented evidence that in many cases their
demographic parameters are shifting in response to climate change [1,2]. A particular
focus of recent research has been the spatial distribution of cyclic populations, with
field studies documenting periodic travelling waves (ptws) in a number of natural
populations including voles [3, 4], moths [5] and red grouse [6] (see [7] for additional
examples). Spatially extended oscillatory systems have a family of ptw solutions [8],
and the initial and boundary conditions select one member of the family [11–14]. Solu-
tion of this wave selection problem is crucial for a thorough understanding of the ptws
seen in the field. In this paper I focus on ptw selection by localised perturbations of
an unstable steady state.

There is an extensive mathematical literature on ptw generation [12–19], but it
concerns almost exclusively reaction-diffusion equations. Although such equations are
widely used in ecological modelling (see for example [20]), their realism is limited by
the use of diffusion to represent dispersal. Rare long-distance dispersal events play a
key role in the spread of many natural populations, and thus it is more appropriate
to use a nonlocal term: spatial convolution with a dispersal kernel. Estimation of
dispersal kernels is at its most refined in plants; for example the recent review of
Bullock et al. [21] lists the most appropriate kernels for 144 plant species. However
long-range dispersal is also important for animals. For example, Fric & Konvicka [22]
studied dispersal kernels for three species of butterfly, and Byrne et al. [23] discuss
the potential importance of long-range dispersal of European badgers for the spread
of bovine tuberculosis.
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Many of the theoretical models used in applied ecology involve nonlocal dispersal,
and the aim of this paper is to bridge the gap between such models and the mathe-
matical work on ptw generation in reaction-diffusion systems. The results presented
here build directly on two previous papers of mine [24, 25]. In [24] I studied ptws
in integrodifferential equations with “λ–ω” kinetics (details below), which arise as
the normal form of an oscillatory system close to a standard supercritical Hopf bi-
furcation, and which offer considerable mathematical simplicity compared to general
kinetics. In [24] I derived the form of ptw solutions of these equations, and condi-
tions for their stability, when the dispersal kernel is of either Gaussian or Laplace form
(defined below). In [25] I focussed on ptw generation, with the central result being
a theorem on ptw selection, and I also made a brief numerical comparison between
ptw selection in a predator-prey model with nonlocal dispersal and the correspond-
ing reaction-diffusion model. In the present paper I undertake a much more detailed
version of this comparison. I begin by showing that for a dispersal kernel of Gaussian
form, the integrodifferential equation reduces to a reaction-diffusion system to leading
order in a suitable asympototic limit; the case of a Laplace kernel is discussed later in
the paper. Focussing again on the case of λ–ω kinetics, I exploit this to derive leading
order corrections to the ptw that is selected by localised perturbation of an unstable
steady state, and its stability. I also consider the absolute stability of the selected
ptw, which is a key determinant of the resulting spatiotemporal dynamics. Finally I
apply my results to a model for predator-prey interaction.

2. Relating Local and Nonlocal Dispersal. The study of ptw solutions of
models with nonlocal dispersal is very much in its infancy, and the general case is cur-
rently out of reach. Throughout this paper I restrict attention to models satisfying
two simplifying assumptions: (i) the dispersal is scalar, meaning that the dispersal
kernel and coefficient are the same for each interacting population; (ii) the kinetic
parameters are close to a Hopf bifurcation of standard supercritical type. These as-
sumptions are made for mathematical simplicity. From the viewpoint of ecological
applications, scalar dispersal is appropriate in some situations, for example for in-
teracting microscopic aquatic populations [26]; however in terrestrial or macroscopic
marine predator-prey systems the predators typically disperse more rapidly than their
prey [27, 28]. Being close to a Hopf bifurcation point implies that oscillations are of
low amplitude which is certainly relevant to applications, although many population
cycles involve large variations in abundance. Nevertheless, a study making assump-
tions (i, ii) is valuable as a first stage in understanding ptws in integrodifferential
equation models.

For scalar dispersal, the normal form of an oscillatory system with nonlocal dis-
persal close to a standard supercritical Hopf bifurcation in the kinetics has the form

∂u/∂t = δ

[∫ y=∞

y=−∞

K(x− y)u(y, t)dy − u

]

+ (λ0 − λ1r
2)u− (ω0 + ω1r

2)v

(2.1)

∂v/∂t = δ

[∫ y=∞

y=−∞

K(x− y)v(y, t)dy − v

]

+ (ω0 + ω1r
2)u + (λ0 − λ1r

2)v

[29–32], and it is this system of equations that will be the focus of my study. Here
r =

√
u2 + v2 and δ, λ0, λ1, ω0 and ω1 are constants with δ,λ0, λ1 > 0. In the context

of an ecological application, these constants would be functions of the ecological pa-
rameters and u and v would be functions of the population densities; these functional
dependencies can be derived using standard normal form theory [31–33] (see also §6).
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The inclusion of the dispersal parameter δ is actually unnecessary because it can
be removed by suitable rescalings of t, λ0, λ1, ω0 and ω1. However I include it
because it simplifies the comparison between (2.1) and the corresponding model with
local dispersal. The dispersal kernel K(y) must be ≥ 0 for all y, and must satisfy
∫
∞

−∞
K(y) dy = 1 so that the dispersal term conserves population. I will focus on two

specific forms:

Gaussian kernel: K(s) =
(
1/ǫ

√
π
)
exp
(
−s2/ǫ2

)
(2.2)

Laplace kernel: K(s) = (1/2ǫl) exp
(
−|s|/ǫl

)
(2.3)

(ǫ, ǫl > 0) which are probably the most widely used kernels in ecological and epidemi-
ological applications (e.g. [34–36]). I will consider the Gaussian kernel (2.2) in the
bulk of the paper, with corresponding results for the Laplace kernel discussed in §7.

The central objective of my study is to compare ptw generation by localised
disturbance of the (unstable) steady state u = v = 0 in (2.1) and in the corresponding
model with local dispersal:

∂u/∂t = ∂2u/∂x2 + (λ0 − λ1r
2)u− (ω0 + ω1r

2)v
(2.4)

∂v/∂t = ∂2v/∂x2 + (ω0 + ω1r
2)u+ (λ0 − λ1r

2)v .

This generic oscillatory reaction-diffusion system was first studied in the 1970s [8],
and the existence and stability of its ptw solutions are known in detail [8, 11, 17]. I
will begin by showing that (2.1) with (2.2) reduces to (2.4) as the parameter ǫ → 0,
provided that the dispersal coefficient δ is chosen appropriately; a similar argument
was used in [37].

For the Gaussian kernel (2.2), the dispersal term (for u, say) is

δ

[
1

ǫ
√
π

∫ s=∞

s=−∞

e−s2/ǫ2u(s+ x, t)ds− u(x, t)

]

= δ

[
1

ǫ
√
π

∫ s=∞

s=−∞

e−s2/ǫ2
{
u(x, t) + sux(x, t) +

1

2
s2uxx(x, t) + . . .

}
ds− u(x, t)

]

∼ δuxx(x, t)

2ǫ
√
π

∫ s=∞

s=−∞

s2e−s2/ǫ2ds = 1

4
ǫ2δuxx(x, t)

using Watson’s Lemma. Here the subscript x denotes a partial derivative. Therefore
taking δ = 4/ǫ2 means that the (nonlocal) dispersal term in (2.1) approaches the
(local) diffusive dispersal term in (2.4) asymptotically as ǫ → 0. It is this direct
correspondence between the models with local and nonlocal dispersal that enables a
detailed comparison of ptw behaviour.

3. Previous Results on Periodic Travelling Waves for Nonlocal Disper-

sal. The starting point for my work is the results in [24, 25] on ptws in (2.1) with
(2.2) or (2.3), which I now summarise.

• Ptw solutions of (2.1) with (2.2) or (2.3) have the form u = R cos
[
(ω0 +

ω1R
2)t ± αx

]
, v = R sin

[
(ω0 + ω1R

2)t ± αx
]
, where the amplitude R (> 0)

and the wavenumber α (of either sign) are related by

λ0 − λ1R
2 = δ

[

1−
∫ s=∞

s=−∞

K(s) cosαs ds

]

(3.1)

(equation (2.2) of [24]). When λ0 ≥ δ this implies that a ptw exists for all
α, while for λ0 < δ ptws exist for α below a critical value at which R = 0.
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• The ptw is stable as a solution of (2.1) if and only if

δ

[

1 +

(
ω1

λ1

)2
]

·
[∫ s=∞

s=−∞

sK(s) sinαs ds

]2

< λ1R
2

∫ s=∞

s=−∞

s2K(s) cosαs ds

(3.2)
(Theorems 2.1, 3.2 and 3.3 of [24]). For both kernels, this implies a critical
value of |α| above/below which waves are unstable/stable.

• Numerical simulations show that a localised disturbance of the steady state
u = v = 0 generates transition fronts moving in the positive and negative x
directions with constant speed. Behind the fronts ptws develop, which have
the same amplitude but opposite direction behind the fronts moving in the
positive and negative x directions.

• The ptw selected behind the transition front moving in the positive x direc-
tion satisfies

cα = −ω1R
2 (3.3)

where c is the front (or spreading) speed (Theorem 3.1 of [25]). The com-
bination of this equation and (3.1) has a unique solution for α whose sign
is opposite to that of ω1. Intuitive arguments based on theorems on front
propagation in simpler integrodifferential equation systems [35, 38] suggest
that the spreading speed c satisfies

c = min
η>0

1

η

[

δ

∫ s=∞

s=−∞

K(s)eηs ds− δ + λ0

]

(3.4)

(equation (3.4) of [25]); however a formal proof of this is lacking. Note that
M(η) ≡

∫ s=∞

s=−∞
K(s)eηs ds is known as the moment generating function of

the kernel K(.).
Figure 3.1 illustrates the generation of ptws by localised perturbation of u = v = 0
in (2.1). In(a) and (b) the values of ω1 have opposite sign, and consequently the
ptws move in opposite directions. In (c) and (d) the selected ptw is unstable; in
(c) ptws are generated but they then destabilise, with the long-term behaviour being
spatiotemporal disorder. In (d) spatiotemporal disorder occurs without any preceding
ptws; nevertheless ptw selection is the key process underlying this behaviour, as I
will show.

From the viewpoint of applications to predator-prey systems, the solutions illus-
trated in Figure 3.1 correspond to the spreading of ptws into predators and prey
at the coexistence steady state. In applications this is relevant when a change in
environmental conditions alters the stability of the coexistence state. The local dy-
namics then change from non-cyclic to cyclic; an example of this is given in Brommer
et al.’s work on voles in Finland [41]. The alternative process of predators invading
a population of prey is more complex and has yet to be addressed in models with
nonlocal dispersal, other than in numerical simulations. For reaction-diffusion models
it is known that the two processes actually select the same ptw solution close to
a Hopf bifurcation in the kinetics [42]; however there is no corresponding result for
integrodifferential equation models.

4. Periodic Travelling Wave Selection and Stability for Small ǫ. My
basic approach in this paper is to calculate asymptotic expansions in ǫ for the various
conditions in §3, in order to determine how a small but non-zero value of ǫ affects



Wave Selection & Stability with Nonlocal Dispersal 5

Fig. 3.1. Examples of ptw generation by a localised disturbance of the steady state u = v = 0
in the λ–ω system (2.1). In (a) and (b) the selected ptw is stable, moving in the opposite direction
to the spread of the ptws in (a) and the same direction in (b). In (c) the ptw is unstable; a
band of ptws is visible, followed by spatiotemporal disorder. In (d) spatiotemporal disorder develops
immediately: in this case a ptw is selected but it is absolutely unstable in the frame of reference
moving with the spreading speed (see §5). The equations were solved numerically by discretising in
space using a uniform grid (δx = 0.012) and calculating the spatial convolutions using fast Fourier
transforms. This gives a system of ordinary differential equations that was solved using the stiff
ode solver rowmap [39] (http://numerik.mathematik.uni-halle.de/forschung/software/), with
relative and absolute error tolerances both set to 10−10. At t = 0 I set u = v = 0 except for a
small perturbation near x = 0. The solutions are plotted for x > 0 only, but I actually solved on
−L < x < L for L sufficiently large that the solution remains close to u = v = 0 near the domain
boundaries x = ±L during the time period considered. The boundary conditions are u = v = 0
at x = ±L; this avoids the difficulties posed by non-Dirichlet boundary conditions for nonlocal
equations. The parameter values are δ = 1, λ0 = 0.8, and ǫ = 0.2 with (a) ω0 = 3.0, ω1 = −3.0,
λ1 = 2.8; (b) ω0 = 1.0, ω1 = 3.0, λ1 = 2.8; (c) ω0 = 3.0, ω1 = −3.0, λ1 = 1.0; (d) ω0 = 3.0,
ω1 = −3.0, λ1 = 0.08. In (a)–(c) the solution is plotted for 105 ≤ t ≤ 135; in (d) t = 120. By
choosing L sufficiently large I deliberately avoid consideration of the longer term behaviour after
the spatiotemporal patterns spread over the whole domain. This is an important objective for future
work: necessarily work such as that in the present paper must be done first. There are some results on
long-term behaviour following ptw generation on finite domains for reaction-diffusion models [40],
but none (to my knowledge) for nonlocal models.
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ptw behaviour, relative to the local dispersal limit of ǫ → 0. I consider the Gaussian
kernel (2.2) and I fix δ = 4/ǫ2; I comment on the case of the Laplace kernel (2.3) in
§7.

4.1. PTW existence. For the Gaussian kernel (2.2), (3.1) implies

λ0 − λ1R
2 =

4

ǫ2

[

1− 1

ǫ
√
π

∫ s=∞

s=−∞

e−s2/ǫ2 cosαs ds

]

=
4

ǫ2

[

1− 1

ǫ
√
π

∫ s=∞

s=−∞

e−s2/ǫ2
{
1− 1

2
α2s2 + 1

24
α4s4 + . . .

}
ds

]

∼ 4

ǫ2

[

1− 1

ǫ
√
π

{∫ s=∞

s=−∞

e−s2/ǫ2ds− 1

2
α2

∫ s=∞

s=−∞

s2e−s2/ǫ2ds

+ 1

24
α4

∫ s=∞

s=−∞

s4e−s2/ǫ2ds+ . . .

}]

using Watson’s Lemma

= α2 − 1

8
ǫ2α4 +O(ǫ4) . (4.1)

This relationship between ptw amplitude and wavenumber defines the ptw family.
Note that the first two terms in the expansion (4.1) depend on the dispersal kernel
only through its second and fourth moments.

4.2. PTW stability. Asymptotic expansions of the integrals in (3.2) can be
obtained in a similar way. This gives the condition for ptw stability as

α2
(
3 + 2ω2

1/λ
2
1

)
+ 1

8
ǫ2α4

(
3 + 4ω2

1/λ
2
1

)
+O(ǫ4) < λ0 . (4.2)

As expected, setting ǫ = 0 in (4.2) gives the condition for ptw stability in a reaction-
diffusion system of λ–ω type, which has been known since the 1970s (e.g. equation
(41) in [8]).

4.3. Spreading speed. An asymptotic expansion of the moment generating
function M(.) of the Gaussian kernel (2.2) can again be found using Watson’s Lemma,
giving

M(η) =
1

ǫ
√
π

∫ s=∞

s=−∞

e−s2/ǫ2eηs ds ∼ 1 + 1

4
ǫ2η2 + 1

32
ǫ4η4 +O(ǫ6).

Therefore

[δM(η)− δ + λ0]
/
η ∼ λ0/η + η + 1

8
ǫ2η3 +O(ǫ4)

whose minimum occurs at η = λ
1/2
0 − 3

16
ǫ2λ

3/2
0 +O(ǫ4), giving

c = 2λ
1/2
0 + 1

8
ǫ2λ

3/2
0 +O(ǫ4) . (4.3)

Again the first two terms in this expansion depend on the dispersal kernel only through
its second and fourth moments.

4.4. PTW selection by a localised perturbation of u = v = 0. Substitut-
ing the expressions (4.3) for the spreading speed c and (4.1) for the ptw amplitude
R into (3.3) gives the wavenumber of the ptw selected by localised perturbation of
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u = v = 0 as

α = α0 + ǫ2α1 +O(ǫ4) (4.4a)

where α0 = λ
1/2
0

[
(
λ1

/
ω1

)
− sign(ω1)

√

1 +
(
λ1

/
ω1

)2
]

(4.4b)

and α1 =
α0

16
· α

3
0 + λ

3/2
0 λ1/ω1

α0 − λ
1/2
0 λ1/ω1

. (4.4c)

Note that (3.3) actually gives a quadratic equation for α0; the appropriate root has a
sign opposite to that of ω1.

4.5. Effects of nonlocal dispersal on wavenumber selection. My focus in
this paper is to compare ptw generation by localised perturbation of u = v = 0
when ǫ = 0 (local dispersal) and ǫ > 0 (slightly nonlocal dispersal). Equation (4.3)
shows that the speed of ptw spread is faster in the latter case – as expected, long
range dispersal accelerates the spreading speed. To investigate differences in the
wavenumber of the selected ptw, it is convenient to write ξ = λ1/|ω1|. Then

α1 = −sign(ω1) ·
[

λ
3/2
0

16
·
√

1 + ξ2 − ξ
√

1 + ξ2

]

·Q(ξ)

where Q(ξ) =
(√

1 + ξ2 − ξ
)3

− ξ

=
(
1 + ξ2

)1/2(
1 + 4ξ2

)
− 4ξ

(
1 + ξ2

)

=
(1 + 8ξ2 + 16ξ4)− 16ξ2(1 + ξ2)
(
1 + ξ2

)
−1/2(

1 + 4ξ2
)
+ 4ξ

=
1− 8ξ2

(
1 + ξ2

)
−1/2(

1 + 4ξ2
)
+ 4ξ

.

Recall that the sign of α0 is opposite to that of ω1. Therefore α1 has the same sign
as α0 if and only if ξ < 1/

√
8 ≈ 0.354. In that case a small degree of nonlocal

dispersal increases the absolute value of the wavenumber of the selected ptw (and
thus decreases its wavelength); for ξ above 1/

√
8 the wavelength increases.

4.6. Effects of nonlocal dispersal on PTW stability. Another important
consideration is how nonlocal dispersal affects the stability of the selected ptw. Sub-
stituting (4.4) into (4.2) gives a criterion for stability, but it is very complicated alge-

braically. To simplify it, I write α0 = sign(ω1)λ
1/2
0 α0, α1 = sign(ω1)λ

1/2
0 α1, ǫ = λ

1/2
0 ǫ,

and as before ξ = λ1/|ω1|. With these rescalings the stability criterion has no explicit
dependence on λ0 or on the sign of ω1; its form is F1(ξ) + ǫ2F2(ξ) +O(ǫ4) < 0 where

F1(ξ) =
(√

1 + ξ2 − ξ
)2 (

3ξ2 + 2
)
− ξ2

F2(ξ) =
(
1 + ξ2

)
−1/2(

3ξ2 + 2
)
[{(

1 + ξ2
)1/2 − ξ

}3

− ξ

]

+
(
3ξ2 + 4

){(
1 + ξ2

)1/2 − ξ
}2

.

Now

F1(ξ) < 0 ⇔ 2ξ
(
3ξ2 + 2

)(
1 + ξ2

)1/2
>
(
1 + 2ξ2

)(
3ξ2 + 2

)
− ξ2 .
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Since both sides of this inequality are positive, one can square them, which gives
C(ξ2) > 0 where C is a cubic polynomial with a positive leading coefficient and with
a unique real positive root, which can easily be calculated numerically as 0.871 . . ..
Therefore to leading order in ǫ, the selected ptw is stable ⇔ ξ >

√
0.871 . . . ≈ 0.933.

Turning now to F2(ξ), this simplifies to

F2(ξ) = 2(1 + ξ2)1/2
[(
9ξ4 + 11ξ2 + 3)− ξ

(
9ξ2 + 8

)(
1 + ξ2

)1/2
]

=
2(1 + ξ2)1/2

(
9 + 2ξ2 − 33ξ4 − 27ξ6

)

(
9ξ4 + 11ξ2 + 3) + ξ

(
9ξ2 + 8

)(
1 + ξ2

)1/2
.

The numerator in this expression is a cubic polynomial in ξ2 with a unique real
positive root at ξ2 = 0.467 . . ., implying that F2(ξ) < 0 ⇔ ξ >

√
0.467 . . . = 0.683 . . ..

The key implication of this is that F2(ξ) < 0 whenever F1(ξ) < 0, so that a small
degree of nonlocality in dispersal always increases the region of parameter space in
which the selected ptw is stable.

5. Absolute Stability of the Periodic Travelling Wave Selected by a Lo-

calised Perturbation of u = v = 0. In spatiotemporal systems, unstable solutions
subdivide into those that are “absolutely unstable” and those that are “convectively
unstable” but “absolutely stable” (see [43] for a detailed review). The distinction lies
in the spatiotemporal behaviour of small perturbations. In the convectively unstable
case all growing perturbations move while they are growing, and actually decay at
their original location. In contrast, absolute instability is defined by the growth of a
small perturbation at its point of application. For ptws generated by a localised per-
turbation of an unstable steady state, the two types of instability lead to very different
spatiotemporal behaviour. When the ptw is convectively unstable, one sees bands
of alternating left- and right-moving ptws separated by sharp transitions known as
sources and sinks [44–46]. The change from convective to absolute instability in the
selected ptw leads to a single band of ptws followed by more comprehensive disorder
(Figure 3.1c). Another change occurs when the selected ptw becomes absolutely un-
stable not just in a stationary frame of reference but also in a frame moving with the
spreading speed. Then spatiotemporal disorder arises immediately, without a band
of ptws (Figure 3.1d).

To my knowledge there are no results on the absolute stability of solutions of inte-
grodifferential equations, but I will show that it is possible to determine the absolute
stability of the ptw selected by a localised perturbation of u = v = 0 when the pa-
rameter ǫ is small. I begin by rewriting (2.1) in terms of the amplitude r =

√
u2 + v2

and phase θ = tan−1(v/u):

∂r

∂t
= δ

∫ y=+∞

y=−∞

K(y − x)r(y) cos
[
θ(y)− θ(x)

]
dy + rλ(r) − r (5.1a)

∂θ

∂t
= δ

∫ y=+∞

y=−∞

K(y − x)
r(y)

r(x)
sin
[
θ(y)− θ(x)

]
dy + ω(r) . (5.1b)

The advantage of this formulation is that ptw solutions have a particularly simple
form: r = R, θ =

(
ω0 + ω1R

2
)
t± αx. As with stability, the investigation of absolute

stability begins by linearising (5.1) about this ptw and looking for solutions propor-
tional to eνx+Λt. The criterion for non-trivial solutions of this type (the “dispersion
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relation”) is

D(Λ, ν) ≡ (Λ −A)(Λ −D)−BC = 0 (5.2)

where A = λ0 − 3λ1R
2 + ν2 − α2 + 1

8
ǫ2
(
α4 + ν4 − 6α2ν2

)
+O(ǫ4)

B = −2Rαν + 1

2
ǫ2αν(α2 − ν2)R+O(ǫ4)

C = 2ω1R+ 2αν
/
R− 1

2
ǫ2αν

(
α2 − ν2

)/
R+O(ǫ4)

D = λ0 − λ1R
2 + ν2 − α2 + 1

8
ǫ2
(
α4 + ν4 − 6α2ν2

)
+O(ǫ4) .

Ptw stability depends on the sign of ReΛ in solutions of (5.2) with Re ν = 0,
but for absolute stability, one must consider ν with non-zero real and imaginary
parts. For spatially uniform solutions of certain classes of pde, absolute stability
is determined by repeated roots for ν of D(Λ, ν) = 0, i.e. simultaneous roots of
D(Λ, ν) = (∂/∂ν)D(Λ, ν) = 0. Specifically, denote the repeated roots by ν1, ν2, . . . , νN
where Re νi ≥ Re νi+1, and suppose that the pde is such that on a finite domain with
separated boundary conditions, nL conditions are required on the left-hand bound-
ary, and nR on the right (nL + nR = N). Then (Λ, ν) pairs for which D(Λ, ν) =
(∂/∂ν)D(Λ, ν) = 0 and for which the repeated roots for ν are νnL

and νnL+1
are

known as “saddle points satisfying the pinching condition” [47, 48] or as “branch
points of the absolute spectrum” [49]. The ptw is absolutely stable if and only if all
such pairs have ReΛ ≤ 0. (See [49] for a precise statement and for the required tech-
nical conditions). Note that the two distinct terminologies reflect two quite different
approaches to considering absolute stability, one developed in the physics literature,
initially by Richard Briggs in the 1960’s [50] and the other developed more recently
by Björn Sandstede and Arnd Scheel [49].

Although the theory underlying the above remarks is rather complicated, its prac-
tical implementation is relatively straightforward. One simply has to study (usually
numerically) roots for ν of the polynomial D(Λ, ν) = 0. However it depends funda-
mentally on D(Λ, ν) = (∂/∂ν)D(Λ, ν) = 0 having a finite number of roots. This is
guaranteed for a partial differential equation since D is then a polynomial, but for an
integrodifferential equation D can have an infinite number of repeated roots for ν, so
that nL and nR are not defined. However asymptotic expansion for small ǫ restores
the polynomial form for D, enabling absolute stability to be determined. Neglecting

terms that are O(ǫ4) and writing ν = λ
1/2
0 ν, ǫ = λ

1/2
0 ǫ and Λ = Λ/λ0 gives the

dispersion relation as

D1(Λ, ν) ≡ Λ
2 −

[
P2(ν) + ǫ2P4(ν)

]
Λ +

[
Q4(ν) + ǫ2Q8(ν)

]
= 0 (5.3)

where P2, P4, Q4 and Q8 are polynomials of degree 2, 4, 4 and 8 (respectively) in ν;
their algebraic forms are rather complicated and are omitted for brevity. The various
rescalings result in there being no explicit dependence on λ0: thus the coefficients of
ν in the Pi’s and Qi’s are functions of ξ only. Ordering the roots of (5.3) for ν by real
part as above (Re νi > Re νi+1), the transition from convective to absolute stability
occurs when ν4 = ν5 with ReΛ = 0.

When ǫ = 0 the dispersion relation (5.3) reduces to a quartic polynomial in
ν, which has been studied in previous work on the absolute stability of ptws in
reaction-diffusion equations of λ–ω type [17]. I denote the four roots of this quartic
by ν ǫ=0

1 , . . . , ν ǫ=0

4 , again with Re ν ǫ=0

i ≥ Re ν ǫ=0

i+1. It is important to consider how
the νi’s are related to the ν ǫ=0

i ’s. Clearly four of the νi’s are small perturbations
of the ν ǫ=0

i ’s; the other four approach infinity as ǫ → 0. To investigate this latter
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group in more detail, I note that when |ν | is large the dominant terms in Q4(ν) and
Q8(ν) are ν4 and 1

8
ν8 respectively. These must balance, so that 1

8
ǫ4ν8 + ν4 = 0 to

leading order, implying that the roots approach infinity as ǫ → 0 with ν4 ∼ −8/ǫ4 ⇒
ν ∼ 21/4(1 ± i)

/
ǫ, and 21/4(−1 ± i)

/
ǫ. Therefore these roots are respectively ν1,

ν2, ν7 and ν8. It follows that ν4 and ν5 are small perturbations of ν ǫ=0

2 and ν ǫ=0

3 ,
with the transition from convective to absolute stability occurring when these roots
are equal with ReΛ = 0.

Investigation of the roots for ν ǫ=0 has been presented previously in [17]. Briefly,
elimination of Λ between D1|ǫ=0 = 0 and (∂/∂ν)D1|ǫ=0 = 0 gives a quartic polyno-
mial in ν ǫ=0, with coefficients depending on ξ. For any given ξ this polynomial can
easily be solved numerically, and each of the four roots can be substituted back into
(∂/∂ν)D1|ǫ=0 = 0 to give the corresponding values of Λ. By tracking these roots for
ν and Λ as ξ is varied, it is straightforward to calculate critical values of ξ at which
ReΛ changes sign. At such points, the (pure imaginary) value of Λ can be substituted
back into D1|ǫ=0 = 0 which can then be solved (numerically); this will recover the
repeated roots for ν and will give two additional roots. This procedure shows that
there is one case in which the repeated roots are ν ǫ=0

2 = ν ǫ=0

3 , corresponding to a
change in absolute stability, namely

ξ ≈ 0.661 ν ǫ=0

2 = ν ǫ=0

3 ≈ −0.256 + 0.564i Λ ≈ 0.561i . (5.4)

Details of this procedure are given in [17].
The critical case (5.4) provides a starting point for calculating the transition point

when ǫ > 0. I fix Λ to be pure imaginary in (5.3), with ǫ positive but very small,
and solve D1 = ∂D1/∂ν = 0 numerically using (5.4) as an “initial guess”. I then
gradually increase ǫ, on each occasion using the solution for the previous value of ǫ
as an “initial guess”. The results of this calculation are illustrated in Figure 5.1a, in
which the threshold value of ξ for absolute stability is plotted against ǫ.

Fig. 5.1. The threshold value of the parameter ξ = λ1/|ω1| for absolute stability of the ptw

generated by a localised perturbation of u = v = 0 in the λ–ω integrodifferential equation model (2.1),

as a function of the parameter ǫ = ǫ/λ
1/2
0

in the dispersal kernel. Part (a) shows the critical value
for absolute stability in a stationary frame of reference; this is the division between “source-sink”
behaviour [44–46], and a band of ptws followed by more comprehensive disorder. Part (b) shows
the critical value for absolute stability in a frame of reference moving with the spreading speed; for
ξ below this value there is spatiotemporal disorder without a band of ptws.

Absolute stability in a frame of reference moving with the spreading speed can
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be calculated in a directly analogous way. In this case the dispersion relation is

(
Λ− c ν

)2 − P
(
Λ − c ν

)
+Q = 0

where O(ǫ4) terms have been neglected. Here c = c/λ
1/2
0 and c is the spreading

speed, given in (4.3); thus c = 2 + 1

8
ǫ2. For ǫ = 0 the transition from convective to

absolute instability of the ptw generated by a localised perturbation of u = v = 0
occurs at ξ ≈ 0.0534 1 and again the critical value of ξ increases with ǫ, as illustrated
in Figure 5.1b. For ξ below this value, there is no band of ptws but rather an
immediate onset of spatiotemporal disorder.

Note that, as in §4, the results derived in this section depend on the dispersal
kernel only through its second and fourth moments.

6. Application to a Predator-Prey Model. The λ–ω equations (2.1) are not
a model for any particular biological or physical system; rather their significance is as
the normal form of models for real systems close to a (standard supercritical) Hopf
bifurcation. As an illustration of applying the results that I have derived for (2.1),
I consider the predator-prey model given by the Rosenzweig-MacArthur kinetics [51]
with nonlocal dispersal:

predators
∂p

∂t
=

dispersal
︷ ︸︸ ︷

δ̃

[∫ y=∞

y=−∞

K(x− y)p(y, t)dy − p

]

+

benefit from
predation

︷ ︸︸ ︷

(C̃/B̃)hp/(1 + C̃h)−
death
︷ ︸︸ ︷

p/ÃB̃ (6.1a)

prey
∂h

∂t
= δ̃

[∫ y=+∞

y=−∞

K(x− y)h(y, t)dy − h

]

︸ ︷︷ ︸

dispersal

+ h(1− h)
︸ ︷︷ ︸

intrinsic
birth & death

− C̃ph

1 + C̃h
.

︸ ︷︷ ︸

predation

(6.1b)

These equations are non-dimensional with p(x, t) and h(x, t) denoting predator and
prey densities at space point x and time t. Ã, B̃, C̃ and δ̃ are positive constants. The
prey consumption rate per predator is taken to be an increasing saturating function
of prey density with Holling type II form: C̃ > 0 reflects how quickly the function
saturates. Parameters Ã > 0 and B̃ > 0 are dimensionless combinations of the birth
and death rates. The equations (6.1) have a unique coexistence steady state which
has a (standard supercritical) Hopf bifurcation at C̃ = (Ã+1)/(Ã−1). Treating C̃ as
the bifurcation parameter, the standard process of reduction to normal form [31–33]
gives equations (2.1) to leading order, with

λ0 =
(Ã− 1)C̃ − (Ã+ 1)

2Ã(Ã+ 1)
λ1 =

Ã+ 1

4Ã
(6.2a)

ω0 =

(

Ã− 1

ÃB̃(Ã+ 1)

)1/2

+

[

(Ã− 1)C̃ − (Ã+ 1)
]

(Ã− 1)1/2

2Ã3/2(Ã+ 1)3/2B̃1/2
(6.2b)

ω1 =
(Ã+ 1)1/2

(

2Ã2+5ÃB̃−Ã5B̃−Ã4−4Ã3B̃−4Ã2B̃2−1
)

24[Ã7(Ã− 1)B̃3]1/2
. (6.2c)

(See [16, 18] for details of the calculations for the specific case of the Rosenzweig-
MacArthur kinetics, including maple worksheets).

1The corresponding spatial and temporal eigenvalues are ν ≈ −1.082 + 0.999i and Λ ≈ 3.41i.
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The expressions (6.2) enable ξ = λ1/|ω1| to be calculated in terms of Ã and B̃.
From this, one can determine the stability and absolute stability of the ptw selected
by a localised perturbation of the coexistence steady state, using the results in §4 and
§5. This is illustrated in Figure 6.1, which also shows the effect of changing the kernel
parameter ǫ on this parameter plane. Such a division of the Ã–B̃ parameter plane
makes it possible to predict the type of spatiotemporal dynamics expected following
a localised perturbation of the coexistence steady state.

Fig. 6.1. The stability of the ptw generated by a localised perturbation of the coexistence steady
state in (6.1) for C̃ a little above the Hopf bifurcation value (Ã + 1)/(Ã − 1), as a function of the
parameters Ã and B̃. The Gaussian kernel (2.2) is used for dispersal, but the corresponding pictures
for the Laplace kernel (2.3) are very similar. In the left hand panel I fixed ǫ = 0.2 and considered
a regular grid of (Ã, B̃) points. For each point I calculated λ0, λ1 and ω1 using (6.2), which gives

ξ = λ1/|ω1| and ǫ = λ
1/2
0

ǫ. The calculations in the main body of the text then enable determination
of the stability and absolute stability of the selected ptw. In the right hand panel I used a similar
approach to determine the boundary in the ǫ–B̃ parameter plane between stability and (convective)
instability for Ã = 2.5. In both parts of the figure, C̃ is set to 1.2(Ã+ 1)/(Ã − 1).

Figure 6.2 shows numerical simulations of these dynamics. For small B̃, there is
a relatively narrow band of ptws followed by spatiotemporal disorder (Figure 6.2a).
As B̃ in increased (with other parameters fixed) the band of ptws becomes wider
(Figure 6.2b) and for sufficiently large B̃ the selected ptw is stable and persists
(Figure 6.2c).

7. Discussion. The detection of ptw behaviour in spatiotemporal datasets from
ecology demands a detailed mathematical understanding of ptw solutions of ecologi-
cally realistic models. For many species such models must include nonlocal dispersal.
This paper is the third in a series studying ptws in the integrodifferential equations
that arise when one uses a convolution-based representation of dispersal. I have fo-
cussed on the generation of ptws by a localised perturbation of an unstable steady
state, showing how nonlocality in dispersal affects ptw selection, stability and abso-
lute stability.
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Fig. 6.2. Examples of ptw generation by a localised perturbation of the coexistence steady state
in the predator-prey model (6.1). In (a) and (b) the selected ptw is unstable, and there is a band
of ptws followed by spatiotemporal disorder; in (c) the selected ptw is stable and persists. The
equations were solved numerically as described in the legend to Figure 3.1; the spatial grid spacing
δx was set to 0.5. The perturbation to the coexistence steady state was applied at the centre x = 0
of a large spatial domain. As in Figure 3.1 I used Dirichlet boundary conditions and I stopped the
simulation before the ptws reached the boundaries of the domain. I used the Laplace kernel (2.3)
with ǫl = 0.5; the parameter values are Ã = 2, C̃ = 3.6, δ̃ = 1, and (a) B̃ = 0.5, (b) B̃ = 1.0, (c)
B̃ = 2.5. In all three parts of the figure, the solution is plotted for 18800 ≤ t ≤ 18880.

I have restricted attention to the Gaussian dispersal kernel, but conditions for
existence and stability of ptws are also known for the Laplace kernel (2.3) [24], as are
results on ptw selection by localised perturbation of an unstable steady state [25].
All of the calculations in this paper can be repeated for the Laplace kernel. The

appropriate choice for δ is then 1/ǫ2l , and if one uses this and redefines ǫ = ǫl
/(

λ
1/2
0

√
8
)

then the conditions on ξ for stability and absolute stability of the selected ptw are
exactly the same as for the Gaussian kernel. To explain this, it is convenient to
denote by M2 and M4 the second and fourth moments of the dispersal kernel. Then
the key players in the calculations in §4 and §5 are δM2 and ǫ2δM4, and appropriate
choices for δ and ǫ (given above) make these the same for the Laplace kernel as for the
Gaussian kernel. This would also be true for any other (thin-tailed) kernel; however
the key ingredient of a condition for ptw stability is then missing – this is only known
for the two kernels that I have considered.

All of my results concern behaviour when the degree of nonlocality in dispersal is
small, meaning that ǫ (or ǫl) is small. Analytical investigation of behaviour for larger
ǫ (or ǫl) is a much harder problem, but a numerical study is possible. Figure 7.1 shows
one example of numerical results. I solved (3.1, 3.3, 3.4) numerically to calculate the
wavenumber of the ptw selected by a localised perturbation of the steady state;
in this case I used the Laplace kernel. Substituting this into (3.2) enables numerical
calculation of ptw stability, and I repeated this process for different values of ξ in order
to determine the critical ξ giving a change in stability. My analytical calculations show
that for small ǫl this critical ξ will decrease as ǫl increases, and this is confirmed by the
numerical calculations illustrated in the figure. However for larger ǫl (above about 2.1)
the trend reverses and the critical ξ increases with ǫl. This argues persuasively for the
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importance of detailed investigation of ptw generation when dispersal is significantly
nonlocal.

Fig. 7.1. An example of numerical calculations of the critical value of ξ = λ1/|ω1| above which
the ptw generated by a localised perturbation of an unstable steady state is stable. I use the Laplace
kernel (2.3) and consider large values of ǫl: my analytical results are valid only for sufficiently small
ǫl. The parameters are δ = 1 and λ0 = 0.1; the numerical procedure is outlined in the main text.

Integrodifferential equations are certainly not the only class of ecological model
that includes a representation of nonlocal dispersal. Integrodifference equations are
also in widespread use, as are cellular automata and agent-based models incorporat-
ing long-range movement. The spatial and/or temporal discreteness in these models
makes the study of ptws particularly challenging, and thus integrodifferential equa-
tions are a natural starting point for investigating the role of nonlocal dispersal in
ptw behaviour.

I have focussed on ptw generation by a localised perturbation of an unstable
steady state because it is the best studied generation mechanism in models with local
dispersal (e.g. [9–11]). However other features of spatiotemporal systems can generate
ptw behaviour, including heterogeneous habitats [5,13,19] and hostile habitat bound-
aries [14,16]. Neither of these has been studied for models with nonlocal dispersal, and
this is a natural area for future work. Once basic results on ptw selection by these
mechanisms in integrodifferential equation models have been obtained, the approach
of the present paper could be used to make a comparison between the selected ptws
when dispersal is local, and when it has a small nonlocal component.
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