198 research outputs found

    Dynamical Behavior and Stability Analysis in a Stage-Structured Prey Predator Model with Discrete Delay and Distributed Delay

    Get PDF
    We propose a prey predator model with stage structure for prey. A discrete delay and a distributed delay for predator described by an integral with a strong delay kernel are also considered. Existence of two feasible boundary equilibria and a unique interior equilibrium are analytically investigated. By analyzing associated characteristic equation, local stability analysis of boundary equilibrium and interior equilibrium is discussed, respectively. It reveals that interior equilibrium is locally stable when discrete delay is less than a critical value. According to Hopf bifurcation theorem for functional differential equations, it can be found that model undergoes Hopf bifurcation around the interior equilibrium when local stability switch occurs and corresponding stable limit cycle is observed. Furthermore, directions of Hopf bifurcation and stability of the bifurcating periodic solutions are studied based on normal form theory and center manifold theorem. Numerical simulations are carried out to show consistency with theoretical analysis

    Bifurcation Analysis of a Singular Bioeconomic Model with Allee Effect and Two Time Delays

    Get PDF
    A singular prey-predator model with time delays is formulated and analyzed. Allee effect is considered on the growth of the prey population. The singular prey-predator model is transformed into its normal form by using differential-algebraic system theory. We study its dynamics in terms of local analysis and Hopf bifurcation. The existence of periodic solutions via Hopf bifurcation with respect to two delays is established. In particular, we study the direction of Hopf bifurcation and the stability of bifurcated periodic solutions by applying the normal form theory and the center manifold argument. Finally, numerical simulations are included supporting the theoretical analysis and displaying the complex dynamical behavior of the model outside the domain of stability

    The Dynamic Complexity of a Holling Type-IV Predator-Prey System with Stage Structure and Double Delays

    Get PDF
    We invest a predator-prey model of Holling type-IV functional response with stage structure and double delays due to maturation time for both prey and predator. The dynamical behavior of the system is investigated from the point of view of stability switches aspects. We assume that the immature and mature individuals of each species are divided by a fixed age, and the mature predator only attacks the mature prey. Based on some comparison arguments, sharp threshold conditions which are both necessary and sufficient for the global stability of the equilibrium point of predator extinction are obtained. The most important outcome of this paper is that the variation of predator stage structure can affect the existence of the interior equilibrium point and drive the predator into extinction by changing the maturation (through-stage) time delay. Our linear stability work and numerical results show that if the resource is dynamic, as in nature, there is a window in maturation time delay parameters that generate sustainable oscillatory dynamics

    STOCHASTIC DELAY DIFFERENTIAL EQUATIONS WITH APPLICATIONS IN ECOLOGY AND EPIDEMICS

    Get PDF
    Mathematical modeling with delay differential equations (DDEs) is widely used for analysis and predictions in various areas of life sciences, such as population dynamics, epidemiology, immunology, physiology, and neural networks. The memory or time-delays, in these models, are related to the duration of certain hidden processes like the stages of the life cycle, the time between infection of a cell and the production of new viruses, the duration of the infectious period, the immune period, and so on. In ordinary differential equations (ODEs), the unknown state and its derivatives are evaluated at the same time instant. In DDEs, however, the evolution of the system at a certain time instant depends on the past history/memory. Introduction of such time-delays in a differential model significantly improves the dynamics of the model and enriches the complexity of the system. Moreover, natural phenomena counter an environmental noise and usually do not follow deterministic laws strictly but oscillate randomly about some average values, so that the population density never attains a fixed value with the advancement of time. Accordingly, stochastic delay differential equations (SDDEs) models play a prominent role in many application areas including biology, epidemiology and population dynamics, mostly because they can offer a more sophisticated insight through physical phenomena than their deterministic counterparts do. The SDDEs can be regarded as a generalization of stochastic differential equations (SDEs) and DDEs.This dissertation, consists of eight Chapters, is concerned with qualitative and quantitative features of deterministic and stochastic delay differential equations with applications in ecology and epidemics. The local and global stabilities of the steady states and Hopf bifurcations with respect of interesting parameters of such models are investigated. The impact of incorporating time-delays and random noise in such class of differential equations for different types of predator-prey systems and infectious diseases is studied. Numerical simulations, using suitable and reliable numerical schemes, are provided to show the effectiveness of the obtained theoretical results.Chapter 1 provides a brief overview about the topic and shows significance of the study. Chapter 2, is devoted to investigate the qualitative behaviours (through local and global stability of the steady states) of DDEs with predator-prey systems in case of hunting cooperation on predators. Chapter 3 deals with the dynamics of DDEs, of multiple time-delays, of two-prey one-predator system, where the growth of both preys populations subject to Allee effects, with a direct competition between the two-prey species having a common predator. A Lyapunov functional is deducted to investigate the global stability of positive interior equilibrium. Chapter 4, studies the dynamics of stochastic DDEs for predator-prey system with hunting cooperation in predators. Existence and uniqueness of global positive solution and stochastically ultimate boundedness are investigated. Some sufficient conditions for persistence and extinction, using Lyapunov functional, are obtained. Chapter 5 is devoted to investigate Stochastic DDEs of three-species predator prey system with cooperation among prey species. Sufficient conditions of existence and uniqueness of an ergodic stationary distribution of the positive solution to the model are established, by constructing a suitable Lyapunov functional. Chapter 6 deals with stochastic epidemic SIRC model with time-delay for spread of COVID-19 among population. The basic reproduction number â„›s0 for the stochastic model which is smaller than â„›0 of the corresponding deterministic model is deduced. Sufficient conditions that guarantee the existence of a unique ergodic stationary distribution, using the stochastic Lyapunov functional, and conditions for the extinction of the disease are obtained. In Chapter 7, some numerical schemes for SDDEs are discussed. Convergence and consistency of such schemes are investigated. Chapter 8 summaries the main finding and future directions of research. The main findings, theoretically and numerically, show that time-delays and random noise have a significant impact in the dynamics of ecological and biological systems. They also have an important role in ecological balance and environmental stability of living organisms. A small scale of white noise can promote the survival of population; While large noises can lead to extinction of the population, this would not happen in the deterministic systems without noises. Also, white noise plays an important part in controlling the spread of the disease; When the white noise is relatively large, the infectious diseases will become extinct; Re-infection and periodic outbreaks can also occur due to the time-delay in the transmission terms

    Stability, bifurcation and transition to chaos in a model of immunosensor based on lattice differential equations with delay

    Get PDF
    In the work we proposed the model of immunosensor, which is based on the system of lattice differential equations with delay. The conditions of local asymptotic stability for endemic state are gotten. For this purpose we have used method of Lyapunov functionals. It combines general approach to construction of Lyapunov functionals of the predator–prey models with lattice differential equations. Numerical examples have showed the influence on stability of model parameters. From our numerical simulations, we have found evidence that chaos can occur through variation in the time delay. Namely, as the time delay was increased, the stable endemic solution changed at a critical value of τ to a stable limit cycle. Further, when increasing the time delay, the behavior changed from convergence to simple limit cycle to convergence to complicated limit cycles with an increasing number of local maxima and minima per cycle until at sufficiently high time delay the behavior became chaotic

    Dynamics and Optimal Taxation Control in a Bioeconomic Model with Stage Structure and Gestation Delay

    Get PDF
    A prey-predator model with gestation delay, stage structure for predator, and selective harvesting effort on mature predator is proposed, where taxation is considered as a control instrument to protect the population resource in prey-predator biosystem from overexploitation. It shows that interior equilibrium is locally asymptotically stable when the gestation delay is zero, and there is no periodic orbit within the interior of the first quadrant of state space around the interior equilibrium. An optimal harvesting policy can be obtained by virtue of Pontryagin's Maximum Principle without considering gestation delay; on the other hand, the interior equilibrium of model system loses as gestation delay increases through critical certain threshold, a phenomenon of Hopf bifurcation occurs, and a stable limit cycle corresponding to the periodic solution of model system is also observed. Finally, numerical simulations are carried out to show consistency with theoretical analysis

    Pseudospectral methods and numerical continuation for the analysis of structured population models

    Get PDF
    In this thesis new numerical methods are presented for the analysis of models in population dynamics. The methods approximate equilibria and bifurcations in a certain class of so called structured population models. Chapter 1 consists of an introduction to structured population dynamics, where the state of the art is presented through a classical consumer-resource model [44]. The necessity of new numerical methods for analyzing structured population models is discussed and motivated by their applications to life sciences. In Chapter 2 [44] is extended to a more general class in which a structured population with a unique state at birth interacts with an environment of unstruc- tured populations and interaction variables. Equilibrium types are defined, the model is linearized and a characteristic equation is obtained. Finally, a discussion about equilibria and bifurcations under parameter variation is included. In Chapter 3 a new pseudospectral method for the computation of eigenvalues of linear VFE/DDE systems is presented. The technique consists of constructing a finite approximation of the infinitesimal generator of the solution semigroup. The spectral convergence of the method is proved, and a piecewise variation which speeds up the computations presented and validated with toy models. An exten- sion to deal with structured population models is proposed and validated with the model in [44]. Chapter 4 is devoted to the numerical continuation of equilibrium branches and bifurcation curves under parameter variation for models of the class presented in Chapter 2. A new technique for the curve continuation is presented, where a reduction of the dimension and a simplification of the equilibrium conditions result in new test functions for the detection of transcritical bifurcations, reducing the computational cost. The methods were implemented in the development of routines that were tested and validated with models from the literature
    • …
    corecore