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A singular prey-predator model with time delays is formulated and analyzed. Allee effect is considered on the growth of the prey
population. The singular prey-predator model is transformed into its normal form by using differential-algebraic system theory.
We study its dynamics in terms of local analysis and Hopf bifurcation. The existence of periodic solutions via Hopf bifurcation
with respect to two delays is established. In particular, we study the direction of Hopf bifurcation and the stability of bifurcated
periodic solutions by applying the normal form theory and the center manifold argument. Finally, numerical simulations are
included supporting the theoretical analysis and displaying the complex dynamical behavior of the model outside the domain
of stability.

1. Introduction

The economic theory proposed by Gordon [1] in 1954 was
described as follows:

net economic revenue (NER) = total revenue (TR) −
total cost (TC).

This provides theoretical evidence for the establish-
ment of singular bioeconomic model, which is described
by differential-algebraic equations. Recently, there has been
extensive literature dealing with such systems, describing
the interactions between the different species and harvesting
effort regarding activity, stabilities of equilibrium, bifurca-
tions, and other dynamics (see, e.g., [2–5] and the references
therein).

Inmost of ecosystems, since one species does not respond
instantaneously to interactions with other species, some
delays due to several reasons, such as gestation, hunting,
and maturation, are required. To incorporate this idea in a
modelling approach, time delays have been introduced into
ecosystems. For a long time, it has been recognized that
delays can have very complicated impact on the dynamics of a
system (see, e.g., monographs by Hale [6], Hale and Verduyn

Lunel [7], Kuang [8], Yuan and Song [9], and Wu [10]).
Generally speaking, delays can cause the loss of stability and
lead to periodic solutions. Some authors like in [11] described
the effects of time delay in a prey-predator model incorporat-
ing parasite infection for the prey population. The literature
[12] described the dynamics of a stage structured population
model with time delay in fluctuating environment. The
literature [13] investigated dynamics of delayed prey-predator
model with harvesting. Chakraborty et al. [14] introduced
a single discrete gestation delay in a differential-algebraic
biological economic system and showed Hopf bifurcation in
the neighborhood of coexisting equilibrium point through
considering the delay as a bifurcation parameter. Zhang et al.
[15] studied a ratio-dependent prey-predator singular model
and analyzed the direction and stability of periodic solutions.
Some other authors have discussed dynamical models with
multiple delays. While analyzing, the multiply delayed mod-
els are mostly simplified by taking equal magnitude for two
delays 𝜏

1
= 𝜏

2
= 𝜏 [16, 17] or choosing the sum 𝜏 of two

delays as a bifurcation parameter [18, 19]. However, the delays
appearing in different terms of an ecological system are not
always equal. Therefore, it is necessary to discuss dynamical
system with different delays.
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In addition, numerous examples demonstrate that the
growth of natural populations can exhibit Allee effect [20],
which describes a positive relation between population
density and the per capita growth rate. When populations
get larger, the effect will saturate or disappear. Allee effect
may result from some causes, such as mate finding, social
dysfunction, inbreeding depression, fool exploitation, and
predator avoidance of defense. Therefore, in this paper, we
consider a differential-algebraic prey-predator model with
two time delays and the Allee effect as follows:

𝑑𝑥

𝑑𝑡

= 𝑥 (

𝑥

𝐴 + 𝑥

− 𝑑

1
− 𝑥 (𝑡 − 𝜏

1
)) −

𝑥𝑦

1 + ℎ

1
𝑥

,

𝑑𝑦

𝑑𝑡

= 𝑦(

𝑏𝑥 (𝑡 − 𝜏

2
)

1 + ℎ

1
𝑥 (𝑡 − 𝜏

2
)

− 𝑑

2
) − 𝐸𝑦,

0 = 𝐸 (𝑝𝑦 − 𝑐) − 𝑚,

(1)

where 𝐴 is the Allee effect constant of the prey species,
respectively. 𝑑

1
and 𝑑

2
are the intrinsic mortality rate of the

prey and predator population, respectively. ℎ
1
is the handling

time. 𝑏 denotes food utilization efficiency. Prey dynamics is
delayed by 𝜏

1
due to crowing and the predator takes time

𝜏

2
to convert the food into its growth; 𝐸 is harvesting effort

for predator, and 𝑝 > 0, 𝑐 > 0, and 𝑚 > 0 are harvesting
reward per unit harvesting effort for unit weight of predator,
harvesting cost per unit harvesting effort for predator, and the
net economic revenue per unit harvesting effort, respectively.
All the parameters are positive constants.

In this paper, we investigate the effects of two delays
on the dynamics of singular bioeconomic model with Allee
effect. The existence of periodic solution has been explored
through Hopf bifurcation. The domain of stability is defined.
Then, the formula for determining the properties of Hopf
bifurcation is derived by using the normal form method
and center manifold theorem. Finally, numerical simulations
show the bifurcation plot with respect to time delay and give
the effectiveness of the result mentioned above.

2. Stability and Existence of Hopf Bifurcation

There exists a positive equilibrium𝑃
0
= (𝑥

0
, 𝑦

0
, 𝐸

0
) formodel

(1), where coordinates 𝑥
0
, 𝑦
0
, and 𝐸

0
satisfy the following

equations:

𝑥

𝐴 + 𝑥

− 𝑑

1
− 𝑥 −

𝑦

1 + ℎ

1
𝑥

= 0,

𝑏𝑥 (𝑡 − 𝜏

2
)

1 + ℎ

1
𝑥 (𝑡 − 𝜏

2
)

− 𝑑

2
− 𝐸 = 0,

𝐸 (𝑝𝑦 − 𝑐) − 𝑚 = 0.

(2)

For the sake of the simplicity, denote the two differential
equations by 𝑓

1
(𝑥, 𝑦, 𝐸) and 𝑓

2
(𝑥, 𝑦, 𝐸) and the algebraic

equation by 𝑔(𝑥, 𝑦, 𝐸).

Let 𝑢 = 𝑥, V = 𝑦, and𝐸 = (𝑝𝐸
0
𝑦/(𝑝𝑦

0
−𝑐))+𝐸.Therefore,

the system (1) can be rewritten in the following form:

𝑑𝑢

𝑑𝑡

= 𝑢 (

𝑢

𝐴 + 𝑢

− 𝑑

1
− 𝑢 (𝑡 − 𝜏

1
)) −

𝑢V
1 + ℎ

1
𝑢

,

𝑑V
𝑑𝑡

= V(
𝑏𝑢 (𝑡 − 𝜏

2
)

1 + ℎ

1
𝑢 (𝑡 − 𝜏

2
)

− 𝑑

2
− 𝐸 +

𝑝𝐸

0
V

𝑝𝑦

0
− 𝑐

) ,

0 = (𝐸 −

𝑝𝐸

0
V

𝑝𝑦

0
− 𝑐

) (𝑝V − 𝑐) − 𝑚.

(3)

Consider the following local parametric 𝜓 of the third
equation of the system (3):

[𝑢, V, 𝐸]
𝑇

= 𝜓 (𝜏

1
, 𝜏

2
, 𝑌)

= 𝑁

𝑇

0
+ 𝑈

0
𝑌 + 𝑉

0
ℎ (𝑌 (𝑡) , 𝑔 (𝜓 (𝑌 (𝑡)))) = 0,

(4)

where𝑈
0
= (

1 0

0 1

0 0

),𝑉
0
= (

0

0

1

),𝑌 = (𝑦
1
, 𝑦

2
)

𝑇,𝑁
0
= (𝑢

0
, V
0
, 𝐸

0
),

and ℎ(𝑦
1
, 𝑦

2
) : 𝑅

2
→ 𝑅 is a smooth mapping and has the

following expression:

ℎ (𝑦

1
, 𝑦

2
) =

𝑝𝐸

0
(V
0
+ 𝑦

2
)

𝑝V
0
− 𝑐

+

𝑚

𝑝 (V
0
+ 𝑦

2
) − 𝑐

−

𝑝𝐸

0
𝑦

0

𝑝V
0
− 𝑐

− 𝐸

0
.

(5)

Then, the linearization part of the system (3) is

𝐽 (𝑁

0
)

= (

𝐷

𝑁
𝑓

1
(𝑁

0
)

𝐷

𝑁
𝑓

2
(𝑁

0
)

)(

𝐷

𝑁
𝑔(𝑁

0
)

𝑈

𝑇

0

)

−1

(

0 0

1 0

0 1

)

= (

𝐴𝑢

0

(𝐴 + 𝑢

0
)

2
+

ℎ

1
𝑢

0
V
0

(1 + ℎ

1
𝑢

0
)

2
− 𝑢

0
𝑒

−𝜆𝜏
1
−

𝑢

0

1 + ℎ

1
𝑢

0

𝑏V
0

(1 + ℎ

1
𝑢

0
)

2
𝑒

−𝜆𝜏
2

𝑝𝐸

0
V
0

𝑝V
0
− 𝑐

) .

(6)

For the sake of the simplicity, let

𝑢

1
= 𝑢

11
+ 𝑢

12
, 𝑢

11
= −𝑢

0
,

𝑢

12
=

𝐴𝑢

0

(𝐴 + 𝑢

0
)

2
+

ℎ𝑢

0
V
0

(1 + ℎ𝑢

0
)

2
,

𝑢

2
= −

𝑢

0

1 + ℎ𝑢

0

, 𝑢

3
=

𝑏V
0

(1 + ℎ𝑢

0
)

2
,

𝑢

4
=

𝑝V
0
𝐸

0

𝑝V
0
− 𝑚

.

(7)

According to the Jacobian matrix 𝐽, the characteristic
equation of (1) at 𝑃

0
can be written as follows:

𝑅

1
(𝜆) = 𝜆

2
− (𝑢

4
+ 𝑢

12
) 𝜆 + 𝑢

12
𝑢

4

− 𝑢

11
(𝜆 − 𝑢

4
) 𝑒

−𝜆𝜏
1
− 𝑢

2
𝑢

3
𝑒

−𝜆𝜏
2
= 0.

(8)
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When the time delays are not considered, the characteris-
tic polynomial formodel (1) can be expressed as the following
form:

𝜆

2
− (𝑢

1
+ 𝑢

4
) 𝜆 + 𝑢

1
𝑢

4
− 𝑢

2
𝑢

3
= 0.

(9)

It is clear that if the following conditions are satisfied:

𝑢

1
+ 𝑢

4
< 0, 𝑢

1
𝑢

4
− 𝑢

2
𝑢

3
> 0, (10)

then 𝑃
0
is locally asymptotically stable for model (1).

Next, we consider the effects of the two time delays on the
stability of model (1) in the following cases.

Case 1 (𝜏
1
= 0 and 𝜏

2
> 0). Due to 𝜏

1
= 0, (8) becomes

𝜆

2
− (𝑢

1
+ 𝑢

4
) 𝜆 + 𝑢

1
𝑢

4
− 𝑢

2
𝑢

3
= 0.

(11)

Assume that a purely imaginary solution of the form 𝜆 =

𝑖𝜔

2
exists in (11). Substituting it into (11) and separating the

real and imaginary parts, we have

− 𝜔

2

2
+ (𝑢

11
+ 𝑢

12
) 𝑢

4
= 𝑢

2
𝑢

3
cos𝜔
2
𝜏

2
,

− (𝑢

11
+ 𝑢

12
+ 𝑢

4
) 𝜔

2
= −𝑢

2
𝑢

3
sin𝜔
2
𝜏

2
.

(12)

Taking square on both sides of (12) and summing them up,
we obtain

𝜔

4

2
+ (𝑢

2

1
+ 𝑢

2

4
) 𝜔

2

2
+ 𝑢

2

1
𝑢

2

4
− 𝑢

2

2
𝑢

2

3
= 0. (13)

From condition (10), (13) has unique positive real root 𝜔
20
if

𝑢

1
𝑢

4
+ 𝑢

2
𝑢

3
< 0. (14)

The critical value of the delay corresponding to 𝜔
20

is given
by

𝜏

2𝑘
=

1

𝜔

20

arccos
−𝜔

2

20
+ 𝑢

1
𝑢

4

𝑢

2
𝑢

3

+

2𝑘𝜋

𝜔

20

, 𝑘 = 0, 1, 2, . . . .

(15)

If 𝑢
1
𝑢

4
+ 𝑢

2
𝑢

3
> 0, (13) has no real root and model (1) is

asymptotically stable for any time delay 𝜏
2
> 0.

Now, differentiating (8)with respect to 𝜏
2
and substituting

the eigenvalue 𝑖𝜔
20
, it follows that

sign (
𝑑

𝑑𝜏

2

Re (𝜆))














𝜏
2𝑘

= sign (𝜔4 − 𝑢2
1
𝑢

2

4
+ 𝑢

2

2
𝑢

2

3
) > 0.

(16)

Theorem 1. Assume that condition (14) holds; then, there
exists a 𝜏

20
> 0 given by

𝜏

20
=

1

𝜔

20

arccos
−𝜔

2

20
+ 𝑢

1
𝑢

4

𝑢

2
𝑢

3

+

2𝑘𝜋

𝜔

20

,

(17)

such that the positive equilibrium 𝑃

0
of model (1) is locally

asymptotically stable for 𝜏
2
< 𝜏

20
and undergoes a Hopf

bifurcation when 𝜏
2
= 𝜏

20
. That is, model (1) has a branch of

periodic solutions bifurcating from the positive equilibrium 𝑃

0

near 𝜏
2
= 𝜏

20
.

Case 2 (𝜏
1
> 0 and 𝜏

2
= 0). According to a similar discussion

as in Case 1, we can obtain the following result.

Theorem 2. There exists a 𝜏
10

> 0 such that the positive
equilibrium 𝑃

0
of model (1) is locally asymptotically stable for

𝜏

1
< 𝜏

10
and undergoes a Hopf bifurcation when 𝜏

1
= 𝜏

10
given

by

𝜏

10
=

1

𝜔

10

arccos
−𝑢

12
𝜔

2

10
+ 𝑢

4
(−𝑢

12
𝑢

4
+ 𝑢

2
𝑢

3
)

𝑢

11
(𝑢

2

4
+ 𝜔

2

10
)

,
(18)

where 𝑖𝜔
10
is the root of corresponding characteristic equation.

Case 3 (𝜏
1
> 0 and 𝜏

2
∈ (0, 𝜏

20
)). This case states that 𝜏

1
is

regarded as a parameter and 𝜏
2
is in its stable interval. Assume

that (8) has purely imaginary solution of the form 𝜆 = 𝑖𝜔.
Substituting it into (8) and separating the real and imaginary
parts, we have

− 𝜔

2
+ 𝑢

12
𝑢

4
− 𝑢

2
𝑢

3
cos𝜔𝜏

2

= −𝑢

11
𝑢

4
cos𝜔𝜏

1
+ 𝑢

11
𝜔 sin𝜔𝜏

1
,

− (𝑢

12
+ 𝑢

4
) 𝜔 + 𝑢

2
𝑢

3
sin𝜔𝜏

2

= 𝑢

11
𝜔 cos𝜔𝜏

1
+ 𝑢

11
𝑢

4
sin𝜔𝜏

1
.

(19)

Eliminating 𝜏
1
leads to

𝜔

4
+ [(𝑢

4
+ 𝑢

12
)

2

− 2 (𝑢

12
𝑢

4
− 𝑢

2
𝑢

3
cos𝜔𝜏

2
) − 𝑢

2

11
] 𝜔

2

− 2𝑢

2
𝑢

3
(𝑢

4
+ 𝑢

12
) ⋅ (sin𝜔𝜏

2
) 𝜔 + 𝑢

2

12
𝑢

2

4
+ 𝑢

2

2
𝑢

2

3
− 𝑢

2

11
𝑢

2

4

− 2𝑢

12
𝑢

2
𝑢

3
𝑢

4
cos𝜔𝜏

2
= 0.

(20)

It can be seen that there exists at least one real positive root
𝜔



10
for (20) if the condition (𝑢

12
𝑢

4
− 𝑢

2
𝑢

3
)

2
< 𝑢

2

11
𝑢

2

4
holds.

Equation (19) can also be written as

− 𝑢

2
𝑢

3
cos𝜔𝜏

2
= −𝑢

11
𝑢

4
cos𝜔𝜏

1
+ 𝑢

11
𝜔 sin𝜔𝜏

1

+ 𝜔

2
− 𝑢

12
𝑢

4
,

𝑢

2
𝑢

3
sin𝜔𝜏

2
= 𝑢

11
𝜔 cos𝜔𝜏

1
+ 𝑢

11
𝑢

4
sin𝜔𝜏

1

+ (𝑢

12
+ 𝑢

4
) 𝜔.

(21)
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Equation (21) can be solved as

𝜏



1𝑘
=

1

𝜔



10

× (arccos(((𝜔2 − 𝑢
12
𝑢

4
)

2

+ (𝑢

4
+ 𝑢

12
)

2

𝜔

2

+𝑢

2

11
𝑢

2

4
+ 𝑢

2

11
𝜔

2
− 𝑢

2

2
𝑢

2

3
)

× (−2𝑢

11
√

𝑢

2

4
+ 𝜔

2

×

√

(𝜔

2
− 𝑢

12
𝑢

4
)

2

+ 𝜔

2
(𝑢

4
+ 𝑢

12
)

2

)

−1

)

+𝜙

1
+ 𝜙

2
) +

2𝑘𝜋

𝜔



10

, 𝑘 = 0, 1, 2, . . . ,

(22)

where 𝜙
1
= arctan(𝑢

4
/𝜔



10
) and 𝜙

2
= arctan((𝜔2

10
− 𝑢

12
𝑢

4
)/

𝜔



10
(𝑢

4
+ 𝑢

12
)).

Now, differentiating (8)with respect to 𝜏
1
and substituting

the eigenvalue 𝑖𝜔
10
and time delay 𝜏

1
= 𝜏



10
, it follows that

𝑀(

𝑑 (Re 𝜆)
𝑑𝜏

1

)















𝜏


10

+ 𝑁(

𝑑𝜔

𝑑𝜏

1

)















𝜏


10

= 𝑃,

−𝑁(

𝑑 (Re 𝜆)
𝑑𝜏

1

)















𝜏


10

+ 𝑀(

𝑑𝜔

𝑑𝜏

1

)















𝜏


10

= 𝑄,

(23)

where

𝑀 = − (𝑢

4
+ 𝑢

12
) − 𝑢

11
cos𝜔
10
𝜏



10

+ 𝜏



10
𝑢

11
(−𝑢

4
cos𝜔
10
𝜏



10
+ 𝜔



10
sin𝜔
10
𝜏



10
)

+ 𝜏

2
𝑢

2
𝑢

3
cos𝜔
10
𝜏

2
,

𝑁 = − 2𝜔



10
− 𝑢

11
sin𝜔
10
𝜏



10

− 𝜏



10
𝑢

11
(𝜔



10
cos𝜔
10
𝜏



10
+ 𝑢

4
sin𝜔
10
𝜏



10
)

+ 𝜏

2
𝑢

2
𝑢

3
sin𝜔
10
𝜏

2
,

𝑃 = 𝑢

11
𝜔



10
(𝜔



10
cos𝜔
10
𝜏



10
+ 𝑢

4
sin𝜔
10
𝜏



10
) ,

(24)

𝑄 = 𝑢

11
𝜔



10
(−𝜔



10
sin𝜔
10
𝜏



10
+ 𝑢

4
cos𝜔
10
𝜏



10
) . (25)

Solving (23), we obtain

(

𝑑 (Re 𝜆)
𝑑𝜏

1

)















𝜏


10

=

𝑀𝑃 −𝑁𝑄

𝑀

2
+ 𝑁

2
̸= 0. (26)

Theorem3. Assume (𝑢
12
𝑢

4
−𝑢

2
𝑢

3
)

2
< 𝑢

2

11
𝑢

2

4
and 𝜏
2
∈ [0, 𝜏

20
).

The positive equilibrium 𝑃
0
of model (1) is asymptotically stable

for 𝜏
1
∈ [0, 𝜏



10
) and undergoes Hopf bifurcation at 𝜏

1
= 𝜏



10
,

where

𝜏



10
=

1

𝜔



10

× ( arccos (((𝜔2
10
− 𝑢

12
𝑢

4
)

2

+ (𝑢

4
+ 𝑢

12
)

2

𝜔

2

10

+𝑢

2

11
𝑢

2

4
+ 𝑢

2

11
𝜔

2

10
− 𝑢

2

2
𝑢

2

3
)

× (−2𝑢

11
√

𝑢

2

4
+ 𝜔

2

10

×

√

(𝜔

2

10
− 𝑢

12
𝑢

4
)

2

+ 𝜔

2

10
(𝑢

4
+ 𝑢

12
)

2

)

−1

)

+ 𝜙

1
+ 𝜙

2
) ,

(27)

where 𝜙
1
= arctan(𝑢

4
/𝜔



10
) and 𝜙

2
= arctan((𝜔2

10
− 𝑢

12
𝑢

4
)/

𝜔



10
(𝑢

4
+ 𝑢

12
)).

Case 4 (𝜏
1
∈ (0, 𝜏

10
) and 𝜏

2
> 0). According to a similar

discussion as in Case 3, we can obtain the following result.

Theorem 4. The positive equilibrium 𝑃

0
of model (1) is

asymptotically stable for 𝜏
2
∈ [0, 𝜏



20
) and undergoes Hopf

bifurcation at 𝜏
2
= 𝜏



20
, where

𝜏



20
=

1

𝜔



20

× ( arccos (((𝜔2
20
− 𝑢

12
𝑢

4
)

2

+ (𝑢

4
+ 𝑢

12
)

2

𝜔

2

20

+𝑢

2

12
𝑢

2

3
− 𝑢

2

11
𝑢

2

4
− 𝑢

2

11
𝜔

2

20
)

× ( − 2𝑢

2
𝑢

3

×

√

(𝑢

4
+ 𝑢

12
)

2

𝜔

2

20
+ (𝜔

2

20
− 𝑢

12
𝑢

4
)

2

)

−1

)

−𝜓) ,

(28)

where 𝜓 = arctan((𝑢
4
+ 𝑢

12
)𝜔



20
/(𝜔

2

20
− 𝑢

12
𝑢

4
)).

3. Direction and the Stability of
Hopf Bifurcation

In the previous section, we obtain the conditions underwhich
a family of periodic solutions bifurcate from the positive
equilibrium at the critical values of time delays 𝜏

1
and 𝜏
2
. As

pointed out by Hassard et al., by employing the normal form
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and center manifold theory, the formulae for determining
the directions, stability, and period of Hopf bifurcation can
be presented. Following the ideas of Hassard et al., this
section discusses the directions, stability, and period of Hopf
bifurcation.These properties are studiedwith respect to 𝜏

1
for

fixed 𝜏
2
∈ (0, 𝜏

20
). Throughout this section, it is considered

that the system (1) undergoes Hopf bifurcation at 𝜏
1
= 𝜏



10
,

𝜏

∗

2
∈ (0, 𝜏

20
) at the equilibrium 𝑃

0
. Without loss of generality,

this section assumes that 𝜏∗
2
< 𝜏



10
.

Let 𝑥
1
= 𝑦

1
− 𝑦

∗

1
, 𝑥
2
= 𝑦

2
− 𝑦

∗

2
, 𝑡 = 𝑡/𝜏

1
, 𝑥
𝑖
(𝑡) = 𝑥

𝑖
(𝜏

1
𝑡),

and 𝜏
1
= 𝜏



10
+ 𝜇 and dropping the bars for simplification

of notations, the system (1) can be written as a functional
differential equation in 𝐶 = 𝐶 ([−1, 0], 𝑅2)

�̇� (𝑡) = 𝐿

𝜇
(𝑥

𝑡
) + 𝐹 (𝜇, 𝑥

𝑡
) , (29)

where 𝑥(𝑡) = (𝑥

1
(𝑡), 𝑥

2
(𝑡))

𝑇
∈ 𝑅

2, and 𝐿
𝜇
: 𝐶 → 𝑅, 𝐹 :

𝑅 × 𝐶 → 𝑅 are given, respectively, by

𝐿

𝜇
(𝜙) = (𝜏



10
+ 𝜇)

×((

𝐴𝑢

0

(𝐴 + 𝑢

0
)

2
+

ℎ

1
𝑢

0
V
0

(1 + ℎ

1
𝑢

0
)

2
−

𝑢

0

1 + ℎ

1
𝑢

0

0

𝑝𝐸

0
V
0

𝑝V
0
− 𝑐

)

× 𝜙 (0) + (

0 0

𝑏V
0

(1 + ℎ

1
𝑢

0
)

2
0

)𝜙(−

𝜏

∗

2

𝜏



10

)

+(

−𝑢

0
0

0 0

)𝜙 (−1)) ,

𝐹 (𝜇, 𝜙) = (𝜏



10
+ 𝜇)

× ((

𝐴

2

(𝐴 + 𝑢

0
)

3
+

ℎ

1
V
0

(1 + ℎ

1
𝑢

0
)

3
)𝜙

2

1
(0)

− 𝜙

1
(0) 𝜙

1
(−1) −

1

(1 + ℎ

1
𝑢

0
)

2
𝜙

1
(0) 𝜙

2
(0)

− (

𝐴

2

(𝐴 + 𝑢

0
)

4
+

ℎ

2

1
V
0

(1 + ℎ

1
𝑢

0
)

4
) ⋅ 𝜙

3

1
(0)

+

ℎ

1

(1 + ℎ

1
𝑢

0
)

3
𝜙

2

1
(0) 𝜙

2
(0) + ⋅ ⋅ ⋅

−

𝑏ℎ

1
V
0

(1 + ℎ

1
𝑢

0
)

3
𝜙

2

1
(−

𝜏

∗

2

𝜏



10

)

+

𝑏

(1 + ℎ

1
𝑢

0
)

2
𝜙

1
(−

𝜏

∗

2

𝜏



10

)𝜙

2
(0)

−

𝑝𝐸

0
𝑐

(𝑝V
0
− 𝑐)

2
𝜙

2

2
(0) +

𝑏V
0
ℎ

2

1

(1 + ℎ

1
𝑢

0
)

4
𝜙

3

1
(−

𝜏

∗

2

𝜏



10

)

−

𝑏ℎ

1

(1 + ℎ

1
𝑢

0
)

3
𝜙

2

1
(−

𝜏

∗

2

𝜏



10

)𝜙

2
(0)

+

𝑚𝑝

2
𝑐

𝑝V
0
− 𝑐

𝜙

3

2
(0) + ⋅ ⋅ ⋅ ) ,

(30)

where𝜙(𝜃) = (𝜙
1
(𝜃), 𝜙

2
(𝜃))

𝑇
∈ 𝐶. By theRiesz representation

theorem, there exists a 2×2matrix 𝜂 (𝜃, 𝜇)whose components
are bounded variation for 𝜃 ∈ [−1, 0], such that

𝐿

𝜇
𝜙 = ∫

0

−1

𝑑𝜂 (𝜃, 𝜇) 𝜙 (𝜃) , for 𝜙 ∈ 𝐶, (31)

where we choose

𝜂 (𝜃, 𝜇)

=

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

(𝜏



10
+ 𝜇)

×(

𝐴𝑢

0

(𝐴 + 𝑢

0
)

2
+

ℎ

1
𝑢

0
V
0

(1 + ℎ

1
𝑢

0
)

2
− 𝑢

0
−

𝑢

0

1 + ℎ

1
𝑢

0

𝑏V
0

(1 + ℎ

1
𝑢

0
)

2

𝑝𝐸

0
V
0

𝑝V
0
− 𝑐

) ,

𝜃 = 0,

(𝜏



10
+ 𝜇)(

−𝑢

0
0

𝑏V
0

(1 + ℎ

1
𝑢

0
)

2
0

) , 𝜃 ∈ [−

𝜏

∗

2

𝜏



10

, 0) ,

(𝜏



10
+ 𝜇)(

−𝑢

0
0

0 0

) , 𝜃 ∈ (−1, −

𝜏

∗

2

𝜏



10

) ,

0

2 × 2
, 𝜃 = −1.

(32)

For 𝜙 ∈ 𝐶1([−1, 0], 𝑅2), define

𝐴 (𝜇) 𝜙 =

{

{

{

{

{

{

{

{

{

𝑑𝜙 (𝜃)

𝑑𝜃

, 𝜃 ∈ [−1, 0) ,

∫

0

−1

𝑑𝜂 (𝑠, 𝜇) 𝜙 (𝑠) , 𝜃 = 0,

𝑅 (𝜇) 𝜙 = {

0, 𝜃 ∈ [−1, 0) ,

𝐹 (𝜇, 𝜙) , 𝜃 = 0.

(33)

Then, system (29) is equivalent to

�̇�

𝑡
= 𝐴 (𝜇) 𝑥

𝑡
+ 𝑅 (𝜇) 𝑥

𝑡
, (34)

where 𝑥
𝑡
(𝜃) = 𝑥(𝑡 + 𝜃) for 𝜃 ∈ [−1, 0].
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For 𝜓 ∈ 𝐶1([0, 1], (𝑅2)∗), define

𝐴

∗
𝜓 (𝑠) =

{

{

{

{

{

{

{

{

{

−

𝑑𝜓 (𝑠)

𝑑𝑠

, 𝑠 ∈ (0, 1] ,

∫

0

−1

𝑑𝜂

𝑇
(𝑡, 0) 𝜓 (−𝑡) , 𝑠 = 0,

(35)

and bilinear form
⟨𝜓 (𝑠) , 𝜙 (𝜃)⟩ = 𝜓 (0) 𝜙 (0)

− ∫

0

−1

∫

𝜃

𝜉=0

𝜓 (𝜉 − 𝜃) 𝑑𝜂 (𝜃) 𝜙 (𝜉) 𝑑𝜉,

(36)

where 𝜂(𝜃) = 𝜂(𝜃, 0), 𝐴 = 𝐴(0), and 𝐴∗ are adjoint
operators. Since±𝑖𝜔

10
𝜏



10
are eigenvalues of𝐴(0), they are also

eigenvalues of 𝐴∗. Next, we need to compute the eigenvector
of 𝐴(0) and 𝐴

∗ corresponding to 𝑖𝜔



10
𝜏



10
and −𝑖𝜔



10
𝜏



10
,

respectively.
In terms of the discussion mentioned above, we see that

±𝑖𝜔



10
𝜏



10
are eigenvalues of 𝐴(0) and 𝐴∗. Next, we calculate

the eigenvector 𝑞(𝜃) of𝐴(0) corresponding to 𝑖𝜔
10
𝜏



10
and the

eigenvector 𝑞∗(𝑠) of 𝐴∗ belonging to −𝑖𝜔
10
𝜏



10
, respectively.

By the definition of 𝐴(0) and 𝐴∗, it is not difficult to obtain
that

𝛼 = (𝑖𝜔



10
+ 𝑢

0
𝑒

−𝑖𝜔


10
𝜏


10
−

𝐴𝑢

0

(𝐴 + 𝑢

0
)

2
−

ℎ

1
𝑢

0
V
0

(1 + ℎ

1
𝑢

0
)

2
)

×(−

𝑢

0

(1 + ℎ

1
𝑢

0
)

)

−1

.

(37)

Similarly, let 𝑞∗(𝑠) = 𝐷(1, 𝛼∗)𝑒𝑖𝜔


10
𝜏


10
𝑠 be the eigenvector of𝐴∗

corresponding to −𝑖𝜔
10
𝜏



10
, and we can obtain

𝛼

∗
= (−𝑖𝜔



10
+ 𝑢

0
𝑒

𝑖𝜔


10
𝜏


10
−

𝐴𝑢

0

(𝐴 + 𝑢

0
)

2
−

ℎ

1
𝑢

0
V
0

(1 + ℎ

1
𝑢

0
)

2
)

× (

𝑏V
0

(1 + ℎ

1
𝑢

0
)

2
𝑒

𝑖𝜔


10
𝜏
∗

2
)

−1

.

(38)

It follows from (36) that

⟨𝑞

∗
(𝑠) , 𝑞 (𝜃)⟩

= 𝐿 (1, 𝛼

∗
) (1, 𝛼)

𝑇

− ∫

0

−1

∫

𝜃

𝜉=0

𝐿 (1, 𝛼

∗
) 𝑒

−𝑖𝜔


10
𝜏


10
(𝜉−𝜃)

𝑑𝜂 (𝜃) (1, 𝛼)

𝑇
𝑒

𝑖𝜔


10
𝜏


10
𝜉
𝑑𝜉

= 𝐿(

1 + 𝛼

∗
𝛼 − 𝑢

0
𝑒

−𝑖𝜔


10
𝜏


10
+

𝑏V
0
𝜏

∗

2
𝛼

∗

𝜏



10
(1 + ℎ

1
𝑢

0
)

2
𝑒

−𝑖𝜔


10
𝜏
∗

2
) .

(39)

Then, we obtain

𝐿 = (

1 + 𝛼

∗
𝛼 − 𝑢

0
𝑒

−𝑖𝜔


10
𝜏


10
+

𝑏V
0
𝜏

∗

2
𝛼

∗

𝜏



10
(1 + ℎ

1
𝑢

0
)

2
𝑒

−𝑖𝜔


10
𝜏
∗

2
)

−1

,

(40)

such that ⟨𝑞∗(𝑠), 𝑞(𝜃)⟩ = 1, ⟨𝑞∗(𝑠), 𝑞(𝜃)⟩ = 0.

Based on the ideas in Hassard et al. [21], we can obtain
𝑔(𝑧, 𝑧) = 𝑞

∗
(0)𝐹

0
(𝑧, 𝑧) and the following expressions:

𝑥

1𝑡
(0) = 𝑊

(1)
(𝑡, 0) + 𝑧 + 𝑧,

𝑥

2𝑡
(0) = 𝑊

(2)
(𝑡, 0) + 𝛼𝑧 + 𝛼𝑧,

𝑥

1𝑡
(−

𝜏

∗

2

𝜏



10

) = 𝑊

(1)
(𝑡, −

𝜏

∗

2

𝜏



10

) + 𝑧𝑒

−𝑖𝜔


10
𝜏
∗

2
+ 𝑧𝑒

𝑖𝜔


10
𝜏
∗

2
,

𝑥

2𝑡
(−

𝜏

∗

2

𝜏



10

) = 𝑊

(2)
(𝑡, −

𝜏

∗

2

𝜏



10

) + 𝛼𝑧𝑒

−𝑖𝜔


10
𝜏
∗

2
+ 𝛼𝑧𝑒

𝑖𝜔


10
𝜏
∗

2
,

𝑥

1𝑡
(−1) = 𝑊

(1)
(𝑡, −1) + 𝑧𝑒

−𝑖𝜔


10
𝜏


10
+ 𝑧𝑒

𝑖𝜔


10
𝜏


10
,

𝑥

2𝑡
(−1) = 𝑊

(2)
(𝑡, −1) + 𝛼𝑧𝑒

−𝑖𝜔


10
𝜏


10
+ 𝛼𝑧𝑒

𝑖𝜔


10
𝜏


10
,

(41)

where those important parameters can be computed as
follows:

𝑔

20

= 2𝐷𝜏



10
[(

𝐴

2

(𝐴 + 𝑢

0
)

3
+

ℎ

1
V
0

(1 + ℎ

1
𝑢

0
)

3
)

− 𝑒

−𝑖𝜔


10
𝜏


10
−

𝛼

(1 + ℎ

1
𝑢

0
)

2

+ 𝛼

∗
(

𝑏𝛼

(1 + ℎ

1
𝑢

0
)

2
𝑒

−𝑖𝜔


10
𝜏
∗

2

−

𝑏ℎ

1
V
0

(1 + ℎ

1
𝑢

0
)

3
𝑒

−2𝑖𝜔


10
𝜏
∗

2

−

𝑝𝐸

0
𝑐𝛼

2

(𝑝V
0
− 𝑐)

2
)] ,

𝑔

11

= 2𝐷𝜏



10
[(

𝐴

2

(𝐴 + 𝑢

0
)

3
+

ℎ

1
V
0

(1 + ℎ

1
𝑢

0
)

3
)

− Re {𝑒𝑖𝜔


10
𝜏


10
} −

Re {𝛼}
(1 + ℎ

1
𝑢

0
)

2

+ 𝛼

∗
(

𝑏

(1 + ℎ

1
𝑢

0
)

2
Re {𝛼𝑒𝑖𝜔



10
𝜏
∗

2
}

−

𝑏ℎ

1
V
0

(1 + ℎ

1
𝑢

0
)

3
−

𝑝𝐸

0
𝑐𝛼𝛼

(𝑝V
0
− 𝑐)

2
)] ,
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𝑔

02

= 2𝐷𝜏



10
[(

𝐴

2

(𝐴 + 𝑢

0
)

3
+

ℎ

1
V
0

(1 + ℎ

1
𝑢

0
)

3
)

− 𝑒

𝑖𝜔


10
𝜏


10
−

𝛼

(1 + ℎ

1
𝑢

0
)

2

+ 𝛼

∗
(

𝑏𝛼

(1 + ℎ

1
𝑢

0
)

2
𝑒

𝑖𝜔


10
𝜏
∗

2

−

𝑏ℎ

1
V
0

(1 + ℎ

1
𝑢

0
)

3
𝑒

2𝑖𝜔


10
𝜏
∗

2

−

𝑝𝐸

0
𝑐𝛼

2

(𝑝V
0
− 𝑐)

2
)] ,

𝑔

21

= 2𝐷𝜏



10
{(

𝐴

2

(𝐴 + 𝑢

0
)

3
+

ℎ

1
V
0

(1 + ℎ

1
𝑢

0
)

3
)

× (2𝑊

(1)

11
(0) + 𝑊

(1)

20
(0))

− (𝑊

(1)

11
(−1) +

𝑊

(1)

20
(−1)

2

+

𝑊

1

20
(0)

2

𝑒

𝑖𝜔


10
𝜏


10

+𝑊

(1)

11
(0) 𝑒

−𝑖𝜔


10
𝜏


10
) −

1

(1 + ℎ

1
𝑢

0
)

2

× (𝑊

2

11
(0) +

𝑊

(2)
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(42)

According to the computation process similar to Hassard’s,
parameters of 𝑔

21
can be written as follows:

𝑆

1

= (

𝐴
2

(𝐴 + 𝑢0)
3
+
ℎ1V0
(1 + ℎ1𝑢0)

3
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𝜏
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Figure 1: Without any time delay, the positive equilibrium point 𝑃
0
is asymptotically stable.

Therefore, we can compute 𝑔
21

by the parameters and
delays. Then, the following results can be expressed as

𝑐

1
(0) =

𝑖

2𝜔



10
𝜏



10

(𝑔

20
𝑔

11
− 2









𝑔

11









2

−

1

3









𝑔

02









2

) +

𝑔

21

2

,

𝜇

2
= −

Re {𝑐
1
(0)}

Re {𝜆 (𝜏
10
)}

,

𝛽

2
= 2Re {𝑐

1
(0)} ,

𝑇

2
= −

Im {𝑐
1
(0)} + 𝜇

2
Im {𝜆 (𝜏

10
)}

𝜔



10
𝜏



10

.

(44)

These parameters give a description of the bifurcating peri-
odic solutions in the center manifold of system (1) at critical
values 𝜏

1
= 𝜏



10
, which can be expressed as follows.

(i) 𝜇
2
determines the direction of the Hopf bifurcation: if

𝜇

2
> 0 (𝜇

2
< 0), the Hopf bifurcation is supercritical

(subcritical).

(ii) 𝛽
2
gives the stability of periodic solution: if 𝛽

2
<

0 (𝛽

2
> 0), the periodic solution is stable (unstable).

(iii) 𝑇
2
expresses the period of the bifurcating periodic

solutions: if 𝑇
2
> 0 (𝑇

2
< 0), the period of the

bifurcating periodic solution increases (decreases).

4. Numerical Simulation

With the help of MATLAB, we present some numerical
simulations to verify and extend our theoretical analysis
proved in Sections 2 and 3. The parameters of model (1) are
chosen as 𝐴 = 0.02, 𝑑

1
= 0.01, ℎ

1
= 1.25, 𝑏 = 7.5, 𝑑

2
= 2,

𝑝 = 35, 𝑐 = 1, and𝑚 = 0.5.
According to the parameters given above, we can obtain

the positive equilibrium point 𝑃
0
(0.4055, 0.8099, 0.0183) of

model (1). It is easy to obtain that 𝑃
0
is asymptotically stable

in the absence of delay (see Figure 1). Moreover, since 𝑢
1
𝑢

4
+

𝑢

2
𝑢

3
= −0.7233 < 0, there is a positive root 𝜔

20
= 0.8389

for (13). Hence, when 𝜏
1
= 0, the critical value of the delay
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Figure 2: When 𝜏
2
= 0.288 > 𝜏

20
, bifurcating periodic solutions

from the equilibrium point 𝑃
0
occur.

corresponding to 𝜔
20

is 𝜏
20
= 0.2247, which is shown in

Figure 2. When 𝜏
2
= 0, by a similar computation, we can

obtain that the critical delay for 𝜏
1
is 𝜏
10
= 1.272.

Based on the results of Cases 3 and 4 in Section 2, we draw
a critical curve 𝜏

2
= 𝑓(𝜏

1
) with respect to two parameters

𝜏

1
and 𝜏
2
(see Figure 3). The main algorithm for drawing the

critical curve is searching the values 𝜏
10
(𝜏
20
) for fixed positive

values of 𝜏
2
∈ (0, 𝜏

20
) (𝜏

1
∈ (0, 𝜏

10
)). From Figure 3, it is clear

that the domain surrounded by the critical curve 𝑓(𝜏
1
) and

the two axes, that is, the gray region, is stable for model (1).
In addition, according to the algorithm derived in

Section 3, we can obtain the following values: 𝑐
1
(0) =

−1.9243 − 3.0887𝑖, 𝜔
10
= 0.7538, 𝜏

10
= 0.6546, 𝜆(𝜏

10
) =

0.0879 + 0.1826𝑖, 𝜇
2
= 21.8851, 𝛽

2
= −3.8487, and

𝑇

2
= −1.8402. By the discussion in Section 3, we know that

model (1) can undergo a supercritical Hopf bifurcation at the
positive equilibrium 𝑃

0
and the bifurcating periodic solution

occurs when 𝜏
1
crosses 𝜏

10
to the right with fixed 𝜏∗

2
∈ (0, 𝜏

20
)

and the bifurcating periodic solution is stable. Figure 4 plots
the bifurcating periodic solution of themodel (1) at 𝜏

1
= 𝜏



10
=

0.6546 and 𝜏∗
2
= 0.15.

To explore the possibility of occurrence of chaos, bifur-
cation diagrams are plotted for the key parameter 𝜏

1
. Bifur-

cation diagram in Figure 5 of model (1) in (𝜏
1
− 𝑥) plane

is given for the fixed 𝜏
2
= 0.15. We can see that model

(1) experiences the processes of periodic, periodic doubling
cascade and chaos in the region 0.98 < 𝜏

1
< 1.018. When

0.98 < 𝜏

1
< 0.996, model (1) exhibits a stable limit cycle.

When 𝜏
1
is increasing, the limit cycle is unstable and there

is a cascade of periodic doubling bifurcation (see Figure 6)
leading to chaos.

5. Conclusions

In this paper, dynamical complexity of a multiple-delayed
predator-prey model with Allee effect is analyzed by
using differential-algebraic system theory. The prey-predator
model with single delay has been investigated by many

0.2 0.4 0.6 0.8 1 1.2
0

0.05

0.1

0.15

0.2

0.25

𝜏2

𝜏1

f(𝜏1)

Figure 3: The critical curve of stable domain with respect to 𝜏
1
and

𝜏

2
.

researchers (see, e.g., [22–25]). However, to our best knowl-
edge, there are few papers on the bifurcations of differential-
algebraic population dynamics with two or multiple delays.
On the other hand, it should be noted that almost the existing
bioeconomic models (see [2–5, 14, 15]) only investigate the
simplest case of a logistic prey growth function. Compared
with these works, the introduction of Allee effect makes the
work studied in this paper novel.

This paper provides a new and efficient method for the
qualitative analysis of the Hopf bifurcation of differential-
algebraic biological economic system with multiple delays.
From the analysis of the proposed model, we have obtained
some interesting and useful results. The main contribution
of this paper is that the stability domain with respect to two
delays is defined and plotted. By choosing the time delay 𝜏

1

as a bifurcation parameter, the direction of Hopf bifurcation
and stability of the bifurcating periodic orbit are discussed by
using normal formand centermanifold.Moreover, numerical
simulations are carried out which substantiate the theoretical
results. At the same time, bifurcation diagrams and attracting
sets are plotted, which validate the existence of chaos due
to periodic doubling bifurcation. However, those theoretical
analyses, such as the existence of chaos and conditions of
periodic doubling bifurcation, will be the topics of the future
research.
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