314 research outputs found

    Asymptotic stability for neural networks with mixed time-delays: The discrete-time case

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link - Copyright 2009 Elsevier LtdThis paper is concerned with the stability analysis problem for a new class of discrete-time recurrent neural networks with mixed time-delays. The mixed time-delays that consist of both the discrete and distributed time-delays are addressed, for the first time, when analyzing the asymptotic stability for discrete-time neural networks. The activation functions are not required to be differentiable or strictly monotonic. The existence of the equilibrium point is first proved under mild conditions. By constructing a new Lyapnuovā€“Krasovskii functional, a linear matrix inequality (LMI) approach is developed to establish sufficient conditions for the discrete-time neural networks to be globally asymptotically stable. As an extension, we further consider the stability analysis problem for the same class of neural networks but with state-dependent stochastic disturbances. All the conditions obtained are expressed in terms of LMIs whose feasibility can be easily checked by using the numerically efficient Matlab LMI Toolbox. A simulation example is presented to show the usefulness of the derived LMI-based stability condition.This work was supported in part by the Biotechnology and Biological Sciences Research Council (BBSRC) of the UK under Grants BB/C506264/1 and 100/EGM17735, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grants GR/S27658/01 and EP/C524586/1, an International Joint Project sponsored by the Royal Society of the UK, the Natural Science Foundation of Jiangsu Province of China under Grant BK2007075, the National Natural Science Foundation of China under Grant 60774073, and the Alexander von Humboldt Foundation of Germany

    Exponential synchronization of complex networks with Markovian jump and mixed delays

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link - Copyright 2008 Elsevier LtdIn this Letter, we investigate the exponential synchronization problem for an array of N linearly coupled complex networks with Markovian jump and mixed time-delays. The complex network consists of m modes and the network switches from one mode to another according to a Markovian chain with known transition probability. The mixed time-delays are composed of discrete and distributed delays, both of which are mode-dependent. The nonlinearities imbedded with the complex networks are assumed to satisfy the sector condition that is more general than the commonly used Lipschitz condition. By making use of the Kronecker product and the stochastic analysis tool, we propose a novel Lyapunovā€“Krasovskii functional suitable for handling distributed delays and then show that the addressed synchronization problem is solvable if a set of linear matrix inequalities (LMIs) are feasible. Therefore, a unified LMI approach is developed to establish sufficient conditions for the coupled complex network to be globally exponentially synchronized in the mean square. Note that the LMIs can be easily solved by using the Matlab LMI toolbox and no tuning of parameters is required. A simulation example is provided to demonstrate the usefulness of the main results obtained.This work was supported in part by the Biotechnology and Biological Sciences Research Council (BBSRC) of the UK under Grants BB/C506264/1 and 100/EGM17735, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grants GR/S27658/01 and EP/C524586/1, an International Joint Project sponsored by the Royal Society of the UK, the Natural Science Foundation of Jiangsu Province of China under Grant BK2007075, the National Natural Science Foundation of China under Grant 60774073, and the Alexander von Humboldt Foundation of Germany

    Almost periodic solutions of retarded SICNNs with functional response on piecewise constant argument

    Get PDF
    We consider a new model for shunting inhibitory cellular neural networks, retarded functional differential equations with piecewise constant argument. The existence and exponential stability of almost periodic solutions are investigated. An illustrative example is provided.Comment: 24 pages, 1 figur

    Recent Advances and Applications of Fractional-Order Neural Networks

    Get PDF
    This paper focuses on the growth, development, and future of various forms of fractional-order neural networks. Multiple advances in structure, learning algorithms, and methods have been critically investigated and summarized. This also includes the recent trends in the dynamics of various fractional-order neural networks. The multiple forms of fractional-order neural networks considered in this study are Hopfield, cellular, memristive, complex, and quaternion-valued based networks. Further, the application of fractional-order neural networks in various computational fields such as system identification, control, optimization, and stability have been critically analyzed and discussed

    Stability analysis of impulsive stochastic Cohenā€“Grossberg neural networks with mixed time delays

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link - Copyright 2008 Elsevier LtdIn this paper, the problem of stability analysis for a class of impulsive stochastic Cohenā€“Grossberg neural networks with mixed delays is considered. The mixed time delays comprise both the time-varying and infinite distributed delays. By employing a combination of the M-matrix theory and stochastic analysis technique, a sufficient condition is obtained to ensure the existence, uniqueness, and exponential p-stability of the equilibrium point for the addressed impulsive stochastic Cohenā€“Grossberg neural network with mixed delays. The proposed method, which does not make use of the Lyapunov functional, is shown to be simple yet effective for analyzing the stability of impulsive or stochastic neural networks with variable and/or distributed delays. We then extend our main results to the case where the parameters contain interval uncertainties. Moreover, the exponential convergence rate index is estimated, which depends on the system parameters. An example is given to show the effectiveness of the obtained results.This work was supported by the Natural Science Foundation of CQ CSTC under grant 2007BB0430, the Scientific Research Fund of Chongqing Municipal Education Commission under Grant KJ070401, an International Joint Project sponsored by the Royal Society of the UK and the National Natural Science Foundation of China, and the Alexander von Humboldt Foundation of Germany

    Improved synchronization analysis of competitive neural networks with time-varying delays

    Get PDF
    Synchronization and control are two very important aspects of any dynamical systems. Among various kinds of nonlinear systems, competitive neural network holds a very important place due to its application in diverse fields. The model is general enough to include, as subclass, the most famous neural network models such as competitive neural networks, cellular neural networks and Hopfield neural networks. In this paper, the problem of feedback controller design to guarantee synchronization for competitive neural networks with time-varying delays is investigated. The goal of this work is to derive an existent criterion of the controller for the exponential synchronization between drive and response neutral-type competitive neural networks with time-varying delays. The method used in this brief is based on feedback control gain matrix by using the Lyapunov stability theory. The synchronization conditions are given in terms of LMIs. To the best of our knowledge, the results presented here are novel and generalize some previous results. Some numerical simulations are also represented graphically to validate the effectiveness and advantages of our theoretical results

    Exponential multistability of memristive Cohen-Grossberg neural networks with stochastic parameter perturbations

    Get PDF
    Ā© 2020 Elsevier Ltd. All rights reserved. This manuscript is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence http://creativecommons.org/licenses/by-nc-nd/4.0/.Due to instability being induced easily by parameter disturbances of network systems, this paper investigates the multistability of memristive Cohen-Grossberg neural networks (MCGNNs) under stochastic parameter perturbations. It is demonstrated that stable equilibrium points of MCGNNs can be flexibly located in the odd-sequence or even-sequence regions. Some sufficient conditions are derived to ensure the exponential multistability of MCGNNs under parameter perturbations. It is found that there exist at least (w+2) l (or (w+1) l) exponentially stable equilibrium points in the odd-sequence (or the even-sequence) regions. In the paper, two numerical examples are given to verify the correctness and effectiveness of the obtained results.Peer reviewe
    • ā€¦
    corecore