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Asymptotic Stability for Neural Networks with

Mixed Time-Delays: The Discrete-Time Case
Yurong Liu, Zidong Wang∗ and Xiaohui Liu

Abstract

This paper is concerned with the stability analysis problem for a new class of discrete-time recurrent neural networks

with mixed time-delays. The mixed time-delays that consist of both the discrete and distributed time-delays are

addressed, for the first time, when analyzing the asymptotic stability for discrete-time neural networks. The activation

functions are not required to be differentiable or strictly monotonic. The existence of the equilibrium point is first

proved under mild conditions. By constructing a new Lyapnuov-Krasovskii functional, a linear matrix inequality (LMI)

approach is developed to establish sufficient conditions for the discrete-time neural networks to be globally asymptotically

stable. As an extension, we further consider the stability analysis problem for the same class of neural networks but with

state-dependent stochastic disturbances. All the conditions obtained are expressed in terms of LMIs whose feasibility

can be easily checked by using the numerically efficient Matlab LMI Toolbox. A simulation example is presented to

show the usefulness of the derived LMI-based stability condition.
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I. Introduction

In the past few decades, recurrent neural networks (RNNs) have received intensive interest due to their wide

applications in a variety of areas including such as pattern recognition, associative memory and combinational

optimization. Dynamical behaviors (e.g. stability, instability, periodic oscillatory and chaos) of the neural

networks are known to be crucial in applications. For instance, if a neural network is employed to solve

some optimization problems, it is highly desirable for the neural network to have a unique globally stable

equilibrium. Therefore, stability analysis of neural networks has received much attention and various stability

conditions have been obtained.

Time delay is an inherent feature of signal transmission between neurons, and becomes one of the main

sources for causing instability and poor performances of neural networks (see e.g. [1,5,6]). According to the way

it occurs, time-delay can be classified as two types: discrete and distributed. Discrete time-delay is relatively

easier to be identified in practice and, therefore, stability analysis for RNNs with discrete delays has been

an attractive subject of research in the past few years. Various sufficient conditions, either delay-dependent
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or delay-independent, have been proposed to guarantee the global asymptotic or exponential stability for the

RNNs, see e.g. [3, 19, 23, 24] for some recent publications. On the other hand, due to the presence of an

amount of parallel pathways of a variety of axon sizes and lengths, a neural network usually has a spatial

nature. Therefore, it is necessary to introducing continuously distributed delays over a certain duration of time

such that the distant past has less influence compared to the recent behavior of the state [18, 21]. Recently,

the global stability analysis problem for general RNNs with both discrete and distributed delays (or called

mixed time-delays) has received increasing research attention and many relevant results have been reported

in the literature, see e.g. [12,23,24] and the references therein.

It should be pointed out that, to date, almost all results concerning dynamics analysis problems for RNNs

with mixed time-delays have been on continuous-time models. In implementing and applications of neural

networks, however, discrete-time neural networks play a more important role than their continuous-time

counterparts in today’s digital world. If one wants to simulate or compute the continuous-time neural network,

it is essential to formulate the discrete-time analogue so as to investigate the dynamical characteristics [15,

16, 20]. In the past few years, various stability criteria have been proposed for discrete-time neural networks

(DNNs) in the literature, see e.g. [7, 22, 26–29] for DNNs without time delays and [4, 8, 9, 25] for DNNs with

discrete time-delays. Note that pioneering work has been carried out in [17] for preserving exponential stability

in discrete-time analogues of artificial neural networks with distributed delays.

It has now been well recognized that, in implementations of neural networks, stochastic disturbances are

nearly inevitable owing to thermal noise in electronic devices. It has also been shown that certain stochastic

inputs could destabilize a neural network. Therefore, the stability analysis problem for discrete-time stochastic

neural networks with time-delays becomes more significant from the practical point of view, and initial results

related to this problem has recently been published in [13] and the references therein. Unfortunately, so far,

the stability analysis problem for discrete-time stochastic neural networks with mixed time-delays has not

been fully investigated yet and remains challenging. The major difficulty stems from the question that how

to represent the distributed time-delays in the discrete-time domain and then establish a unified framework

to handle both the discrete and distributed time-delays. The main purpose of the present research is to make

the first attempt to shorten such a gap.

In this paper, we study the asymptotic stability problem for a new class of discrete-time stochastic neural

networks with both discrete and distributed time-delays. We first deal with the deterministic neural network.

The existence of the equilibrium point is proved under mild conditions on the activation functions, where

neither differentiability nor monotonicity is needed . By constructing a new Lyapnuov-Krasovskii functional,

a linear matrix inequality (LMI) approach is developed to establish sufficient conditions for the discrete-

time neural networks to be globally asymptotically stable. As an extension, we then consider the stability

analysis problem for the same class of neural networks but with state-dependent stochastic disturbances. All

the conditions obtained are expressed in terms of LMIs whose feasibility can be easily checked by using the

numerically efficient Matlab LMI Toolbox. Note that LMIs can be easily solved by using the Matlab LMI

toolbox, and no tuning of parameters is required [2]. A simulation example is presented to show the usefulness

of the derived LMI-based stability condition.

Notations: The notations are quite standard. Throughout this paper, R
n and R

n×m denote, respectively,

the n-dimensional Euclidean space and the set of all n×m real matrices. The superscript “T” denotes matrix

transposition and the notation X ≥ Y (respectively, X > Y ) where X and Y are symmetric matrices, means

that X − Y is positive semidefinite (respectively, positive definite). In symmetric block matrices, we use an
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asterisk “∗” to represent a term that is induced by symmetry. For vector or matrix z, z � 0 means that

each entry of z is nonnegative. In is the n × n identity matrix. | · | is the Euclidean norm in R
n. If A is a

matrix, denote by λmax(A) (respectively, λmin(A)) means the largest (respectively, smallest) eigenvalue of A.

Matrices, if not explicitly specified, are assumed to have compatible dimensions. Sometimes, the arguments

of a function will be omitted in the analysis when no confusion can arise.

II. Problem Formulation

Consider the following n−neuron discrete-time neural network with discrete and distributed delays of the

form:

ui(k + 1) = aiu(k) +

n
∑

j=1

bij f̂j(uj(k)) +

n
∑

j=1

cij ĝj(uj(k − τ(k)))

+

n
∑

j=1

dij

+∞
∑

m=1

µmĥj(uj(k −m)) + Jj , i = 1, 2, ..., n, (1)

or, in an equivalent vector form

u(k + 1) = Au(k) +BF̂ (u(k)) + CĜ(u(k − τ(k))) +D
+∞
∑

m=1

µmĤ(u(k −m)) + J (2)

where u(k) = (u1(k), u2(k), ..., un(k))T is the neural state vector, A = diag{a1, a2, ..., an} with |ai| < 1 is

the state feedback coefficient matrix; the n × n matrices B = [bij ]n×n, C = [cij ]n×n and D = [dij ]n×n are,

respectively, the connection weight matrix, the discretely delayed connection weight matrix and distributively

delayed connection weight matrix. The positive integer τ(k) denotes the time-varying delay satisfying

τm ≤ τ(k) ≤ τM , k ∈ N, (3)

where τm and τM (k) are known positive integers. In (2), F̂ (u(k)) = [f̂1(u1(k)), f̂2(u2(k)), ..., f̂n(un(k))]T ,

Ĝ(u(k)) = [ĝ1(u1(k)), ĝ2(u2(k)), ..., ĝn(un(k))]T and Ĥ(u(k)) = [ĥ1(u1(k)), ĥ2(u2(k)), ..., ĥn(un(k))]T denote

the neuron activation functions. The constant vector J = [J1, J2, ..., Jn]T is the exogenous input and µm

(m = 1, 2, ...) are scalar constants.

Remark 1: The model (1) or (2) is quite general and can be seen as the discrete analog of the following

well-studied continuous-time RNN with mixed time delay:

du

dt
= Au+BF (u(t)) + CG(u(t− τ(t)))) +D

∫ t

−∞

k(t− s)H(u(s))ds + J.

The activation functions are usually assumed to continuous, differentiable, monotonically increasing and

bounded, such as the sigmoid-type of function. However, in many electronic circuits, the input-output func-

tions of amplifiers may be neither monotonically increasing nor continuously differentiable, hence nonmono-

tonic functions can be more appropriate to describe the neuron activation in designing and implementing an

artificial neural network. In this paper, we make following assumptions for the neuron activation functions.

Assumption 1: For i ∈ {1, 2, ..., n}, the neuron activation functions f̂i(·), ĝi(·) and ĥi(·) in (1) or (2) are

continuous and bounded.
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Assumption 2: For i ∈ {1, 2, ..., n}, the neuron activation functions in (1) or (2) satisfies

l−i ≤
f̂i(s1) − f̂i(s2)

s1 − s2
≤ l+i , ∀s1, s2 ∈ R, (4)

v−i ≤
ĝi(s1) − ĝi(s2)

s1 − s2
≤ v+

i , ∀s1, s2 ∈ R, (5)

σ−i ≤
ĥi(s1) − ĥi(s2)

s1 − s2
≤ σ+

i , ∀s1, s2 ∈ R, (6)

where l−i , l
+
i , v

−

i , v
+
i , σ

−

i , σ
+
i are some constants.

Remark 2: Assumption 2 was first introduced in [12, 13]. The constants l−i , l
+
i , v

−

i , v
+
i , σ

−

i , σ
+
i in As-

sumption 2 are allowed to be positive, negative or zero. Hence, the resulting activation functions may be

non-monotonic, and more general than the usual sigmoid functions and Lipschitz-type conditions. Such a

description is very precise/tight in quantifying the lower and upper bounds of the activation functions, hence

very helpful for using LMI-based approach to reduce the possible conservatism.

Assumption 3: The constant µm ≥ 0 satisfies the following convergent condition:

+∞
∑

m=1

µm < +∞ and

+∞
∑

m=1

mµm < +∞. (7)

Remark 3: Assumptions 1 and 3 make sense as they guarantee that the term D
+∞
∑

m=1
µmĤ(x(k −m)) in (2)

is convergent, which is necessary for the subsequent analysis.

Proposition 1: Under Assumption 1 and Assumption 3, there exists an equilibrium point for system (2).

Proof: It is easy to verify that, under the given conditions, the function T : R
n → R

n with T (u) =

Au+BF̂ (u) +CĜ(u) +D
+∞
∑

m=1
µmĤ(u) is continuous. Then what remains is just a standard exercise to prove

the existence of the equilibrium point by using Brower’ Fixed Point theorem. The proof is therefore omitted

here for simplicity.

Definition 1: Let u∗ = [u∗1, u
∗

2, ..., u
∗

n]. The discrete-time neural network (2) is said to be globally asymptot-

ically stable if each solution u(k) of the neural network (2) satisfies

lim
k→+∞

|u(k) − u∗| = 0.

In the rest of this paper, we will focus on the problem of stability analysis for the discrete time neural

network (2). By utilizing a new Lyapunov-Krasoviskii functional, we will develop an LMI approach to derive

sufficient conditions under which the neural network (2) is globally asymptotically stable. To facilitate the

readers, we will start with deterministic neural networks and then extend the main results to stochastic neural

networks without major difficulties.

III. Asymptotic Stability of Deterministic Discrete-time Neural Network

The following lemmas will be needed in our main derivation.

Lemma 1: Let X, Y be any n-dimensional real vectors and P be a n × n positive semi-definite matrix.

Then, the following matrix inequality holds:

2XTPY ≤ XTPX + Y TPY.

Lemma 2: [14] Let M ∈ R
n be a positive semi-definite matrix, xi ∈ R

n and ai ≥ 0 (i = 1, 2, ...). If the
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series concerned are convergent, the following inequality holds:

(

+∞
∑

i=1

aixi

)T

M

(

+∞
∑

i=1

aixi

)

≤

(

+∞
∑

i=1

ai

)

+∞
∑

i=1

aix
T
i Mxi (8)

We are now ready to state our main results of this paper in the following theorem.

Theorem 1: Under Assumptions 1–3, the discrete time neural network (2) is globally asymptotically stable

if there exist three diagonal matrices Λ = diag{λ1, λ2, ..., λn} > 0, Γ = diag{γ1, γ2, ..., γn} > 0, and ∆ =

diag{δ1, δ2, ..., δn} > 0, and three positive definite matrices P, Q and R such that the following LMI holds:

Ω =























Ξ1 ATPB + ΛL2 ΓΥ2 ATPC ∆Σ2 ATPD

∗ BTPB − Λ 0 BTPC 0 BTPD

∗ ∗ Ξ2 0 0 0

∗ ∗ ∗ CTPC −Q 0 0

∗ ∗ ∗ ∗ µ̄R− ∆ 0

∗ ∗ ∗ ∗ ∗ DTPD − µ̄−1R























< 0, (9)

where

L1 = diag{l+1 l
−

1 , l
+
2 l

−

2 , ..., l
+
n l

−

n }, L2 = diag{
l+1 + l−1

2
,
l+2 + l−2

2
, ...,

l+n + l−n
2

}, (10)

Υ1 = diag{v+
1 v

−

1 , v
+
2 v

−

2 , ..., v
+
n v

−

n }, Υ2 = diag{
v+
1 + v−1

2
,
v+
2 + v−2

2
, ...,

v+
n + v−n

2
}, (11)

Σ1 = diag{σ+
1 σ

−

1 , σ
+
2 σ

−

2 , ..., σ
+
n σ

−

n }, Σ2 = diag{
σ+

1 + σ−1
2

,
σ+

2 + σ−2
2

, ...,
σ+

n + σ−n
2

}. (12)

Ξ1 = ATPA− P − ΛL1 − ΓΥ1 − ∆Σ1, Ξ2 = (dM − dm + 1)Q− Γ, (13)

µ̄ =

+∞
∑

m=1

µk (14)

Proof: First, by Proposition 1, the discrete time neural network (2) has an equilibrium point u∗. For

convenience, we shift the equilibrium u∗ to origin by letting x(k) = u(k) − u∗, and then the system (2) can

be transformed into

x(k + 1) = Ax(k) +BF (x(k)) + CG(x(k − τ(k))) +D

+∞
∑

m=1

µmH(x(k −m)), (15)

where x(k) = [x1(k), x2(k), ..., xn(k)]T ∈ R
n is the state vector of the transformed system, and the transformed

neuron activation functions are

F (x(k)) : = (f1(x1(k)), f2(x2(k)), ..., fn(xn(k)))T = F̂ (u(k)) − F̂ (u∗),

G(x(k)) : = (g1(x1(k)), g2(x2(k)), ..., gn(xn(k)))T = Ĝ(u(k)) − Ĝ(u∗),

H(x(k)) : = (h1(x1(k)), h2(x2(k)), ..., hn(xn(k)))T = Ĥ(u(k)) − Ĥ(u∗).

By Assumption 2, it can be verified readily that the transformed neuron activation functions satisfy

l−i ≤
fi(s1) − fi(s2)

s1 − s2
≤ l+i , (16)

v−i ≤
gi(s1) − gi(s2)

s1 − s2
≤ v+

i , (17)

σ−i ≤
hi(s1) − hi(s2)

s1 − s2
≤ σ+

i , (18)
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In order to show the stability of the neural network (2), we just need to deal with the stability of the

system (15). To this end, we introduce the following Lyapunov-Krasovskii functional:

V (k) = V1(k) + V2(k) + V3(k) + V4(k), (19)

where

V1(k) = xT (k)Px(k), (20)

V2(k) =

k−1
∑

i=k−τ(k)

GT (x(i))QG(x(i)), (21)

V3(k) =

k−τm
∑

j=k−τM+1

k−1
∑

i=j

GT (x(i))QG(x(i)), (22)

V4(k) =
+∞
∑

i=1

µi

k−1
∑

j=k−i

HT (x(j))RH(x(j)) (23)

Notice that from the conditions in (7), V4(k) is convergent. Now, calculating the difference of V (k) along

the system (15), we have

∆V (k) = ∆V1(k) + ∆V2(k) + ∆V3(k) + ∆V4(k), (24)

where

∆V1(k) = V1(k + 1) − V1(k)

=
(

Ax(k) +BF (x(k)) + CG(x(k − τ(k))) +D
+∞
∑

m=1

µmH(x(k −m))
)T

P
(

Ax(k) +BF (x(k))

+ CG(x(k − τ(k))) +D

+∞
∑

m=1

µmH(x(k −m))
)

− xT (k)Px(k)

= xT (k)ATPAx(k) + F T (x(k))BTPBF (x(k)) +GT (x(k − τ(k)))CTPCG(x(k − τ(k)))

+
(

D

+∞
∑

m=1

µmH(x(k −m))
)T

PD

+∞
∑

m=1

µmH(x(k −m)) + 2xT (k)ATPBF (x(k))

+ 2xT (k)ATPCG(x(k − τ(k))) + 2xT (k)ATPD

+∞
∑

m=1

µmH(x(k −m))

+ 2F T (x(k))BTPCG(x(k − τ(k))) + 2F T (x(k))BTPD

+∞
∑

m=1

µmH(x(k −m))

+ 2
(

CG(x(k − τ(k)))
)T

PD

+∞
∑

m=1

µmH(x(k −m)) − xT (k)Px(k), (25)
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∆V2(k) = V2(k + 1) − V2(k)

=
k
∑

i=k+1−τ(k+1)

GT (x(i))QG(x(i)) −
k−1
∑

i=k−τ(k)

GT (x(i))QG(x(i))

= GT (x(k))QG(x(k)) −GT (x(k − τ(k)))QG(x(k − τ(k)))

+

k−1
∑

i=k−τ(k+1)+1

GT (x(i))QG(x(i)) −

k−1
∑

i=k−τ(k)+1

GT (x(i))QG(x(i))

= GT (x(k))QG(x(k)) −GT (x(k − τ(k)))QG(x(k − τ(k))) +

k−1
∑

i=k−τm+1

GT (x(i))QG(x(i))

+

k−τm
∑

i=k−τ(k+1)+1

GT (x(i))QG(x(i)) −

k−1
∑

i=k−τ(k)+1

GT (x(i))QG(x(i))

≤ GT (x(k))QG(x(k)) −GT (x(k − τ(k)))QG(x(k − τ(k))) +
k−τm
∑

i=k−τM+1

GT (x(i))QG(x(i)),

(26)

∆V3(k) = V3(k + 1) − V3(k)

=

k−τm+1
∑

j=k−τM+2

k
∑

i=j

GT (x(i))QG(x(i)) −

k−τm
∑

j=k−τM+1

k−1
∑

i=j

GT (x(i))QG(x(i))

=

k−τm
∑

j=k−τM+1

k
∑

i=j+1

GT (x(i))QG(x(i)) −

k−τm
∑

j=k−τM+1

k−1
∑

i=j

GT (x(i))QG(x(i))

=

k−τm
∑

j=k−τM+1

(

GT (x(k))QG(x(k)) −GT (x(j))QG(x(j))
)

= (τM − τm)GT (x(k))QG(x(k)) −
k−τm
∑

i=k−τM+1

GT (x(i))QG(x(i)), (27)

and

∆V4(k) = V4(k + 1) − V4(k)

=
+∞
∑

i=1

µi

k
∑

j=k+1−i

HT (x(j))RH(x(j)) −
+∞
∑

i=1

µi

k−1
∑

j=k−i

HT (x(j))RH(x(j))

=

+∞
∑

i=1

µi

(

HT (x(k))RH(x(k)) −HT (x(k − i))RH(x(k − i))
)

=

+∞
∑

i=1

µiH
T (x(k))RH(x(k)) −

+∞
∑

i=1

µiH
T (x(k − i))RH(x(k − i))

= µ̄HT (x(k))RH(x(k)) −
+∞
∑

i=1

µiH
T (x(k − i))RH(x(k − i))

(By Lemma 2)

≤ µ̄HT (x(k))RH(x(k)) −
1

µ̄

(

+∞
∑

m=1

µmH(x(k −m))

)T

R

(

+∞
∑

m=1

µmH(x(k −m))

)

. (28)



ACCEPTED FOR PUBLICATION 8

Substituting (25)-(28) into (24) leads to

∆V (k) ≤ xT (k)ATPAx(k) + F T (x(k))BTPBF (x(k)) +GT (x(k − τ(k)))CTPCG(x(k − τ(k)))

+
(

D

+∞
∑

m=1

µmH(x(k −m))
)T

PD

+∞
∑

m=1

µmH(x(k −m)) + 2xT (k)ATPBF (x(k))

+ 2xT (k)ATPCG(x(k − τ(k))) + 2xT (k)ATPD

+∞
∑

m=1

µmH(x(k −m))

+ 2F T (x(k))BTPCG(x(k − τ(k))) + 2F T (x(k))BTPD

+∞
∑

m=1

µmH(x(k −m))

+ 2
(

CG(x(k − τ(k)))
)T

PD

+∞
∑

m=1

µmH(k −m) − xT (k)Px(k),

+ (1 + τM − τm)GT (x(k))QG(x(k)) −GT (x(k − τ(k)))QG(x(k − τ(k)))

+ µ̄HT (x(k))RH(x(k)) −
1

µ̄

(

+∞
∑

m=1

µmH(x(k −m))

)T

R

(

+∞
∑

m=1

µmH(x(k −m))

)

= ξT (k)Ω1ξ(k), (29)

where

ξ(k) =

[

xT (k) F T (x(k)) GT (x(k)) GT (x(k − τ(k))) HT (x(k))

+∞
∑

m=1

µmH
T (x(k −m))

]T

,

Ω1 =























ATPA− P ATPB 0 ATPC 0 ATPD

∗ BTPB 0 BTPC 0 BTPD

∗ ∗ (dM − dm + 1)Q 0 0 0

∗ ∗ ∗ CTPC −Q 0 0

∗ ∗ ∗ ∗ µ̄R 0

∗ ∗ ∗ ∗ ∗ DTPD − 1
µ̄
R























.

Similar to [13], from (16), we have

(fi(xi(k)) − l+i xi(k))(fi(xi(k)) − l−i xi(x)) ≤ 0, i = 1, 2, ..., n,

which is equivalent to

[

x(k)

F (x(k))

]T




l+i l
−

i eie
T
i −

l+
i

+l−
i

2 eie
T
i

−
l+
i

+l−
i

2 eie
T
i eie

T
i





[

x(k)

F (x(k))

]

≤ 0, k = 1, 2, ..., n,

where ek denotes the unit column vector having “1” element on its kth row and zeros elsewhere.

Consequently,

n
∑

i=1

λi

[

x(k)

F (x(k))

]T




l+i l
−

i eie
T
i −

l+
i

+l−
i

2 eie
T
i

−
l+
i

+l−
i

2 eie
T
i eie

T
i





[

x(k)

F (x(k))

]

≤ 0,

namely
[

x(k)

F (x(k))

]T [

ΛL1 −ΛL2

−ΛL2 Λ

][

x(k)

F (x(k))

]

≤ 0. (30)
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Similarly , from (17)-(18), we have

[

x(k)

G(x(k))

]T [

ΓΥ1 −ΓΥ2

−ΓΥ2 Γ

] [

x(k)

G(x(k))

]

≤ 0, (31)

[

x(k)

H(x(k))

]T [

∆Σ1 −∆Σ2

−∆Σ2 ∆

][

x(k)

H(x(k))

]

≤ 0. (32)

Therefore, from (29) and (30)-(32), we obtain

∆V (k) ≤ ξT (k)Ω1ξ(k) −

[

x(k)

F (x(k))

]T [

ΛL1 −ΛL2

−ΛL2 Λ

][

x(k)

F (x(k))

]

−

[

x(k)

G(x(k))

]T [

ΓΥ1 −ΓΥ2

−ΓΥ2 Γ

][

x(k)

G(x(k))

]

−

[

x(k)

H(x(k))

]T [

∆Σ1 −∆Σ2

−∆Σ2 ∆

] [

x(k)

H(x(k))

]

= ξT (k)Ωξ(k). (33)

Since λmax(Ω) < 0, from (33), it is obvious that

∆V (k) ≤ λmax(Ω)|x(k)|2. (34)

Letting N be a positive integer, the summation of both sides of (34) from 1 to N with respect to k yields

V (N) − V (0) ≤ λmax(Ω)
N
∑

k=1

|x(k)|2,

which implies that

−λmax(Ω)
N
∑

k=1

|x(k)|2 ≤ V (0).

By letting N → +∞, it can be seen that the series
+∞
∑

k=1

|x(k)|2 is convergent, and therefore |x(k)|2 → 0.

If the distributed delay term disappears, i.e., D = 0, the neural network (2) reduces to

u(k + 1) = Au(k) +BF̂ (u(k)) + CĜ(u(k − τ(k))) + J. (35)

For the neural network (35), we have the following stability result.

Corollary 1: Under Assumptions 1 and 2, the DRNN (35) is globally asymptotically stable if there exist

two diagonal matrices Λ = diag{λ1, λ2, ..., λn} > 0 and Γ = diag{γ1, γ2, ..., γn} > 0, and two positive definite

matrices P and Q such that the following LMI holds:












W1 ATPB + ΛL2 ΓΥ2 ATPC

∗ BTPB − Λ 0 BTPC

∗ ∗ Ξ2 0

∗ ∗ ∗ CTPC −Q













< 0

where W1 = ATPA− P − ΛL1 − ΓΥ1 and Ξ2 is defined in (13).
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IV. Asymptotic Stability of Stochastic Discrete-time Neural Network

As discussed in the introduction, in the real world, stochastic disturbances is probably one of the main

resources of the performance degradations of the implemented neural networks. In this section, based on the

system (15), we further consider the following n-neuron discrete-time stochastic delayed neural network on a

probability space (Ω,F ,P):

x(k+1) = Ax(k)+BF (x(k))+CG(x(k− τ(k)))+D
+∞
∑

m=1

µmH(x(k−m))+ψ(x(k), x(k− τ(k)), k)w(k), (36)

where w(k) is a scalar Wiener process (Brownian Motion) on (Ω,F ,P) with

E[w(k)] = 0, E[w2(k)] = 1, and E[w(i)w(j)] = 0(i 6= j), (37)

with E[·] being the mathematical expectation operator. In (36), ψ : R
n × R

n × R → R
n is a nonlinear vector

function representing the disturbance intensity.

Assumption 4: The activation functions F (x(k)) = (f1(x1(k)), f2(x2(k)), ..., fn(xn(k)))T , G(x(k)) = (g1(x1(k)),

g2(x2(k)), ..., gn(xn(k)))T and H(x(k)) = (h1(x1(k)), h2(x2(k)), ..., hn(xn(k)))T satisfy F (0) = G(0) = H(0)

and (16)–(18).

Assumption 5: There exist a constant matrix K such that

ψT (x, y, k)ψ(x, y, k) ≤ |Kx|, ∀x, y ∈ R
n,

Definition 2: The stochastic neural network (36) is said to be globally asymptotically stable in the mean

square if, for each solution x(k) of (36), the following holds

lim
k→+∞

E[|x(k)|2] = 0.

For the stochastic neural network (36), we have the following stability results.

Theorem 2: Under Assumptions 1–5, the discrete time neural network (36) is globally asymptotically stable

in the mean square if there exist a constant λ0 > 0, three diagonal matrices Λ = diag{λ1, λ2, ..., λn} > 0, Γ =

diag{γ1, γ2, ..., γn} > 0, and ∆ = diag{δ1, δ2, ..., δn} > 0, and three positive definite matrices P, Q and R such

that the following LMIs hold:

P < λ0I,























Π1 ATPB + ΛL2 ΓΥ2 ATPC ∆Σ2 ATPD

∗ BTPB − Λ 0 BTPC 0 BTPD

∗ ∗ Ξ2 0 0 0

∗ ∗ ∗ CTPC −Q 0 0

∗ ∗ ∗ ∗ µ̄R− ∆ 0

∗ ∗ ∗ ∗ ∗ DTPD − 1
µ̄
R























< 0, (38)

where Π1 = ATPA− P − ΛL1 − ΓΥ1 − ∆Σ1 − λ0K
TK and Ξ2 is defined as in Theorem 1.

Proof: The proof is a fairly straightforward combination of that of Theorem 1 and that of the main

results in [13] concerning stochastic analysis, and is therefore omitted here to avoid duplication.

Remark 4: In Theorem 1 and Theorem 2, the criteria are established that ensures that the discrete neural

networks with mixed delays are globally stable and such criteria are expressed in terms of the solution to

certain LMIs. Note that LMIs can be effectively solved and checked by the algorithms such as the interior-

point method from Matlab toolbox.
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V. Numerical Example

In this section, a numerical example is presented to demonstrate the usefulness of the developed method

on the asymptotic stability of the stochastic delayed neural network (36) with mixed time delays.

Consider the system (36) with the following parameters:

A =







0.4 0 0

0 0.3 0

0 0 0.4






, B =







−0.3 0.1 0.2

0.2 0.2 0

0 −0.1 −0.4






, C =







0.4 0.2 −0.1

0 0.2 0.3

−0.1 0 0.2






,

D =







−0.2 0.1 0

0.2 0.3 0.2

0 −0.2 0.2






, F (x(k)) = G(x(k)) = H(x(k)) =







tanh(0.8x1(k))

tanh(0.6x1(k))

tanh(−0.6x1(k))






,

τ(k) = 3 + [1 + (−1)k]/2, µk = e−4k

and

ψ(x(k), x(k − τ(k))) = diag {0.2 cos(x2(k − τ(k)))| sin x1(k)|, 0.3x2(k), 0.3 sin x3(k)} .

Given the above parameters, it can be verified that τm = 3, τM = 4, τ̄ = e−2 and

L1 = Υ1 = ∆1 = diag{0, 0, 0}, L2 = Υ2 = Σ2 = diag{0.4, 0.3, −0.3}, K = diag{0.2, 0.3, 0.3}.

By using the Matlab LMI Toolbox, we solve LMI (38) and obtain the feasible solutions as follows:

P =







2.7271 0.4618 0.2441

0.4618 3.2760 −0.1929

0.2441 −0.1929 3.6660






, Q =







1.0238 0.2599 −0.2992

0.2599 1.4755 0.1735

−0.2992 0.1735 1.0787






,

R =







0.5425 −0.0825 0.0011

−0.0825 1.0591 −0.0809

0.0011 −0.0809 0.6914






, Λ =







1.4937 0 0

0 4.4576 0

0 0 5.9550






,

Γ =







4.2627 0 0

0 7.0306 0

0 0 3.9344






, ∆ =







0.3788 0 0

0 1.8656 0

0 0 1.2923






, λ0 = 4.2548.

Then, it follows from Theorem 2 that the system (36) with given parameters is globally asymptotically stable

in the mean square, which is further verified by the simulation result given in Fig. 1.

VI. Conclusions

In this paper, we have studied the stability analysis problem for a new class of discrete-time recurrent neural

networks with mixed time-delays that consist of both the discrete and distributed time-delays. The activation

functions are not required to be differentiable or strictly monotonic. The existence of the equilibrium point

has first been proved under mild conditions. By constructing a new Lyapnuov-Krasovskii functional, a linear

matrix inequality (LMI) approach has been developed to establish sufficient conditions for the discrete-time

neural networks to be globally asymptotically stable. As an extension, we have further considered the stability

analysis problem for the same class of neural networks but with state-dependent stochastic disturbances. All

the conditions obtained have been expressed in terms of LMIs whose feasibility can be easily checked by

using the numerically efficient Matlab LMI Toolbox. A simulation example has been presented to show the
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Fig. 1. State trajectories of the discrete-time stochastic neural network in the example.

usefulness of the derived LMI-based stability condition. One of the future research topics is to deal with the

discrete-time complex networks with mixed time-delays [10,11,14].
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