157 research outputs found

    Overdetermined independent vector analysis

    Full text link
    We address the convolutive blind source separation problem for the (over-)determined case where (i) the number of nonstationary target-sources KK is less than that of microphones MM, and (ii) there are up to M−KM - K stationary Gaussian noises that need not to be extracted. Independent vector analysis (IVA) can solve the problem by separating into MM sources and selecting the top KK highly nonstationary signals among them, but this approach suffers from a waste of computation especially when K≪MK \ll M. Channel reductions in preprocessing of IVA by, e.g., principle component analysis have the risk of removing the target signals. We here extend IVA to resolve these issues. One such extension has been attained by assuming the orthogonality constraint (OC) that the sample correlation between the target and noise signals is to be zero. The proposed IVA, on the other hand, does not rely on OC and exploits only the independence between sources and the stationarity of the noises. This enables us to develop several efficient algorithms based on block coordinate descent methods with a problem specific acceleration. We clarify that one such algorithm exactly coincides with the conventional IVA with OC, and also explain that the other newly developed algorithms are faster than it. Experimental results show the improved computational load of the new algorithms compared to the conventional methods. In particular, a new algorithm specialized for K=1K = 1 outperforms the others.Comment: To appear at the 45th International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2020

    Robust variational Bayesian clustering for underdetermined speech separation

    Get PDF
    The main focus of this thesis is the enhancement of the statistical framework employed for underdetermined T-F masking blind separation of speech. While humans are capable of extracting a speech signal of interest in the presence of other interference and noise; actual speech recognition systems and hearing aids cannot match this psychoacoustic ability. They perform well in noise and reverberant free environments but suffer in realistic environments. Time-frequency masking algorithms based on computational auditory scene analysis attempt to separate multiple sound sources from only two reverberant stereo mixtures. They essentially rely on the sparsity that binaural cues exhibit in the time-frequency domain to generate masks which extract individual sources from their corresponding spectrogram points to solve the problem of underdetermined convolutive speech separation. Statistically, this can be interpreted as a classical clustering problem. Due to analytical simplicity, a finite mixture of Gaussian distributions is commonly used in T-F masking algorithms for modelling interaural cues. Such a model is however sensitive to outliers, therefore, a robust probabilistic model based on the Student's t-distribution is first proposed to improve the robustness of the statistical framework. This heavy tailed distribution, as compared to the Gaussian distribution, can potentially better capture outlier values and thereby lead to more accurate probabilistic masks for source separation. This non-Gaussian approach is applied to the state-of the-art MESSL algorithm and comparative studies are undertaken to confirm the improved separation quality. A Bayesian clustering framework that can better model uncertainties in reverberant environments is then exploited to replace the conventional expectation-maximization (EM) algorithm within a maximum likelihood estimation (MLE) framework. A variational Bayesian (VB) approach is then applied to the MESSL algorithm to cluster interaural phase differences thereby avoiding the drawbacks of MLE; specifically the probable presence of singularities and experimental results confirm an improvement in the separation performance. Finally, the joint modelling of the interaural phase and level differences and the integration of their non-Gaussian modelling within a variational Bayesian framework, is proposed. This approach combines the advantages of the robust estimation provided by the Student's t-distribution and the robust clustering inherent in the Bayesian approach. In other words, this general framework avoids the difficulties associated with MLE and makes use of the heavy tailed Student's t-distribution to improve the estimation of the soft probabilistic masks at various reverberation times particularly for sources in close proximity. Through an extensive set of simulation studies which compares the proposed approach with other T-F masking algorithms under different scenarios, a significant improvement in terms of objective and subjective performance measures is achieved

    Temperature-Driven Anomaly Detection Methods for Structural Health Monitoring

    Get PDF
    Reported in this thesis is a data-driven anomaly detection method for structural health monitoring which is based on the utilization of temperature-induced variations. Structural anomaly detection should be able to identify meaningful changes in measurements which are due to structural abnormal behaviour. Because, the temperature-induced variations and structural abnormalities may produce significant misinterpretations, the development of solutions to identify a structural anomaly, accounting for temperature influence, from measurements, is a critical procedure to support structural maintenance. A temperature-driven anomaly detection method is proposed, that introduces the idea of blind source separation for extracting thermal response and for further anomaly detection. Two thermal feature extraction methods are employed corresponding to the classification of underdetermined and overdetermined methods. The underdetermined method has the three phases of: (a) mode decomposition by utilising Empirical Mode Decomposition or Ensemble Empirical Mode Decomposition; (b) data reduction by performing Principal Component Analysis (PCA); (c) blind separation by applying Independent Component Analysis (ICA). The overdetermined method has the two stages of the pre-indication according to PCA and the blind separation by the devotion of ICA. Based on the extracted thermal response, the temperature-driven anomaly detection method is later developed in combination with the four methodologies of: Moving Principal Component Analysis (MPCA); Robust Regression Analysis (RRA); One-Class Support Vector Machine (OCSVM); Artificial Neural Network (ANN). Therefore, the proposed temperature-driven anomaly detection methods are designed as Td-MPCA, Td-RRA, Td-OCSVM, and Td-ANN. The proposed thermal feature extraction methods and temperature-driven anomaly detection methods have been investigated in the context of three case studies. The first case is a numerical truss bridge with simulated material stiffness reduction to create levels of damage. The second case is a purpose constructed truss bridge in the Structures Lab at the University of Warwick. The third case study is Ricciolo curved viaduct in Switzerland. Two primary findings can be confirmed from the evaluation results of these three case studies. Firstly, temperature-induced variations can conceal damage information in measurements. Secondly, the detection abilities of temperature-driven methods, which are Td-MPCA, Td-RRA, Td-OCSVM, and Td-ANN, for disclosing slight anomalies in time are more efficient when compared with the current anomaly detection method, which are MPCA, RRA, OCSVM, and ANN. The unique features of the author’s proposed temperature-driven anomaly detection method can be highlighted as follows: (a) it is a data-driven method for extracting features from an unknown structural system. In another word, the prior knowledge of the structural in-service conditions and physical models are not necessary; (b) it is the first time that blind source separation approaches and relative algorithms have been successfully employed for extracting temperature-induced responses; (c) it is a new approach to reliably assess the capability of using temperature-induced responses for anomaly detection

    Blind source separation the effects of signal non-stationarity

    Get PDF

    Hybrid solutions to instantaneous MIMO blind separation and decoding: narrowband, QAM and square cases

    Get PDF
    Future wireless communication systems are desired to support high data rates and high quality transmission when considering the growing multimedia applications. Increasing the channel throughput leads to the multiple input and multiple output and blind equalization techniques in recent years. Thereby blind MIMO equalization has attracted a great interest.Both system performance and computational complexities play important roles in real time communications. Reducing the computational load and providing accurate performances are the main challenges in present systems. In this thesis, a hybrid method which can provide an affordable complexity with good performance for Blind Equalization in large constellation MIMO systems is proposed first. Saving computational cost happens both in the signal sep- aration part and in signal detection part. First, based on Quadrature amplitude modulation signal characteristics, an efficient and simple nonlinear function for the Independent Compo- nent Analysis is introduced. Second, using the idea of the sphere decoding, we choose the soft information of channels in a sphere, and overcome the so- called curse of dimensionality of the Expectation Maximization (EM) algorithm and enhance the final results simultaneously. Mathematically, we demonstrate in the digital communication cases, the EM algorithm shows Newton -like convergence.Despite the widespread use of forward -error coding (FEC), most multiple input multiple output (MIMO) blind channel estimation techniques ignore its presence, and instead make the sim- plifying assumption that the transmitted symbols are uncoded. However, FEC induces code structure in the transmitted sequence that can be exploited to improve blind MIMO channel estimates. In final part of this work, we exploit the iterative channel estimation and decoding performance for blind MIMO equalization. Experiments show the improvements achievable by exploiting the existence of coding structures and that it can access the performance of a BCJR equalizer with perfect channel information in a reasonable SNR range. All results are confirmed experimentally for the example of blind equalization in block fading MIMO systems

    Blind Source Separation: the Sparsity Revolution

    Get PDF
    International audienceOver the last few years, the development of multi-channel sensors motivated interest in methods for the coherent processing of multivariate data. Some specific issues have already been addressed as testified by the wide literature on the so-called blind source separation (BSS) problem. In this context, as clearly emphasized by previous work, it is fundamental that the sources to be retrieved present some quantitatively measurable diversity. Recently, sparsity and morphological diversity have emerged as a novel and effective source of diversity for BSS. We give here some essential insights into the use of sparsity in source separation and we outline the essential role of morphological diversity as being a source of diversity or contrast between the sources. This paper overviews a sparsity-based BSS method coined Generalized Morphological Component Analysis (GMCA) that takes advantages of both morphological diversity and sparsity, using recent sparse overcomplete or redundant signal representations. GMCA is a fast and efficient blind source separation method. In remote sensing applications, the specificity of hyperspectral data should be accounted for. We extend the proposed GMCA framework to deal with hyperspectral data. In a general framework, GMCA provides a basis for multivariate data analysis in the scope of a wide range of classical multivariate data restorate. Numerical results are given in color image denoising and inpainting. Finally, GMCA is applied to the simulated ESA/Planck data. It is shown to give effective astrophysical component separation

    Convolutive Blind Source Separation Methods

    Get PDF
    In this chapter, we provide an overview of existing algorithms for blind source separation of convolutive audio mixtures. We provide a taxonomy, wherein many of the existing algorithms can be organized, and we present published results from those algorithms that have been applied to real-world audio separation tasks

    Perceptually motivated blind source separation of convolutive audio mixtures

    Get PDF
    • …
    corecore