452 research outputs found

    A Variational Approach for Designing Infinite Impulse Response Filters With Time-Varying Parameters

    Get PDF
    Filter design with short transient state is a problem encountered in many fields of circuits, systems, and signal processing. In this paper, a novel low-pass filter design technique with time-varying parameters is introduced in order to minimize the rise-time parameter. Through the use of calculus of variations a method is developed to obtain the optimal closed-form expression for adjusting the parameters. In this context, two cases are addressed: the ideal case in which infinite bandwidth is required and a solution of finite bandwidth. The latter is obtained by means of a proper constraint formulation in the frequency domain. The proposed filter achieves the shortest rise time and allows better preservation of the edge shape in comparison with other existing filtering methods. The analysis, synthesis, and performance of the proposed system are discussed and illustrated with the aid of simulations

    DSP compensation for distortion in RF filters

    Get PDF
    There is a growing demand for the high quality TV programs such as High Definition TV (HDTV). The CATV network is often a suitable solution to address this demand using a CATV modem delivering high data rate digital signals in a cost effective manner, thereby, utilizing a complex digital modulation scheme is inevitable. Exploiting complex modulation schemes, entails a more sophisticated modulator and distribution system with much tighter tolerances. However, there are always distortions introduced to the modulated signal in the modulator degrading signal quality. In this research, the effect of distortions introduced by the RF band pass filter in the modulator will be considered which cause degradations on the quality of the output Quadrature Amplitude Modulated (QAM) signal. Since the RF filter's amplitude/group delay distortions are not symmetrical in the frequency domain, once translated into the base band they have a complex effect on the QAM signal. Using Matlab, the degradation effects of these distortions on the QAM signal such as Bit Error Rate (BER) is investigated. In order to compensate for the effects of the RF filter distortions, two different methods are proposed. In the first method, a complex base band compensation filter is placed after the pulse shaping filter (SRRC). The coefficients of this complex filter are determined using an optimization algorithm developed during this research. The second approach, uses a pre-equalizer in the form of a Feed Forward FIR structure placed before the pulse shaping filter (SRRC). The coefficients of this pre-equalizer are determined using the equalization algorithm employed in a test receiver, with its tap weights generating the inverse response of the RF filter. The compensation of RF filter distortions in base band, in turn, improves the QAM signal parameters such as Modulation Error Ratio (MER). Finally, the MER of the modulated QAM signal before and after the base band compensation is compared between the two methods, showing a significant enhancement in the RF modulator performance

    A fast-initializing digital equalizer with on-line tracking for data communications

    Get PDF
    A theory is developed for a digital equalizer for use in reducing intersymbol interference (ISI) on high speed data communications channels. The equalizer is initialized with a single isolated transmitter pulse, provided the signal-to-noise ratio (SNR) is not unusually low, then switches to a decision directed, on-line mode of operation that allows tracking of channel variations. Conditions for optimal tap-gain settings are obtained first for a transversal equalizer structure by using a mean squared error (MSE) criterion, a first order gradient algorithm to determine the adjustable equalizer tap-gains, and a sequence of isolated initializing pulses. Since the rate of tap-gain convergence depends on the eigenvalues of a channel output correlation matrix, convergence can be improved by making a linear transformation on to obtain a new correlation matrix

    Advanced automatic mixing tools for music

    Get PDF
    PhDThis thesis presents research on several independent systems that when combined together can generate an automatic sound mix out of an unknown set of multi‐channel inputs. The research explores the possibility of reproducing the mixing decisions of a skilled audio engineer with minimal or no human interaction. The research is restricted to non‐time varying mixes for large room acoustics. This research has applications in dynamic sound music concerts, remote mixing, recording and postproduction as well as live mixing for interactive scenes. Currently, automated mixers are capable of saving a set of static mix scenes that can be loaded for later use, but they lack the ability to adapt to a different room or to a different set of inputs. In other words, they lack the ability to automatically make mixing decisions. The automatic mixer research depicted here distinguishes between the engineering mixing and the subjective mixing contributions. This research aims to automate the technical tasks related to audio mixing while freeing the audio engineer to perform the fine‐tuning involved in generating an aesthetically‐pleasing sound mix. Although the system mainly deals with the technical constraints involved in generating an audio mix, the developed system takes advantage of common practices performed by sound engineers whenever possible. The system also makes use of inter‐dependent channel information for controlling signal processing tasks while aiming to maintain system stability at all times. A working implementation of the system is described and subjective evaluation between a human mix and the automatic mix is used to measure the success of the automatic mixing tools

    Efficient Algorithms for Immersive Audio Rendering Enhancement

    Get PDF
    Il rendering audio immersivo Ăš il processo di creazione di un’esperienza sonora coinvolgente e realistica nello spazio 3D. Nei sistemi audio immersivi, le funzioni di trasferimento relative alla testa (head-related transfer functions, HRTFs) vengono utilizzate per la sintesi binaurale in cuffia poichĂ© esprimono il modo in cui gli esseri umani localizzano una sorgente sonora. Possono essere introdotti algoritmi di interpolazione delle HRTF per ridurre il numero di punti di misura e per creare un movimento del suono affidabile. La riproduzione binaurale puĂČ essere eseguita anche dagli altoparlanti. Tuttavia, il coinvolgimento di due o piĂč gli altoparlanti causa il problema del crosstalk. In questo caso, algoritmi di cancellazione del crosstalk (CTC) sono necessari per eliminare i segnali di interferenza indesiderati. In questa tesi, partendo da un'analisi comparativa di metodi di misura delle HRTF, viene proposto un sistema di rendering binaurale basato sull'interpolazione delle HRTF per applicazioni in tempo reale. Il metodo proposto mostra buone prestazioni rispetto a una tecnica di riferimento. L'algoritmo di interpolazione Ăš anche applicato al rendering audio immersivo tramite altoparlanti, aggiungendo un algoritmo di cancellazione del crosstalk fisso, che considera l'ascoltatore in una posizione fissa. Inoltre, un sistema di cancellazione crosstalk adattivo, che include il tracciamento della testa dell'ascoltatore, Ăš analizzato e implementato in tempo reale. Il CTC adattivo implementa una struttura in sottobande e risultati sperimentali dimostrano che un maggiore numero di bande migliora le prestazioni in termini di errore totale e tasso di convergenza. Il sistema di riproduzione e le caratteristiche dell'ambiente di ascolto possono influenzare le prestazioni a causa della loro risposta in frequenza non ideale. L'equalizzazione viene utilizzata per livellare le varie parti dello spettro di frequenze che compongono un segnale audio al fine di ottenere le caratteristiche sonore desiderate. L'equalizzazione puĂČ essere manuale, come nel caso dell'equalizzazione grafica, dove il guadagno di ogni banda di frequenza puĂČ essere modificato dall'utente, o automatica, la curva di equalizzazione Ăš calcolata automaticamente dopo la misurazione della risposta impulsiva della stanza. L'equalizzazione della risposta ambientale puĂČ essere applicata anche ai sistemi multicanale, che utilizzano due o piĂč altoparlanti e la zona di equalizzazione puĂČ essere ampliata misurando le risposte impulsive in diversi punti della zona di ascolto. In questa tesi, GEQ efficienti e un sistema adattativo di equalizzazione d'ambiente. In particolare, sono proposti e approfonditi tre equalizzatori grafici a basso costo computazionale e a fase lineare e quasi lineare. Gli esperimenti confermano l'efficacia degli equalizzatori proposti in termini di accuratezza, complessitĂ  computazionale e latenza. Successivamente, una struttura adattativa in sottobande Ăš introdotta per lo sviluppo di un sistema di equalizzazione d'ambiente multicanale. I risultati sperimentali verificano l'efficienza dell'approccio in sottobande rispetto al caso a banda singola. Infine, viene presentata una rete crossover a fase lineare per sistemi multicanale, mostrando ottimi risultati in termini di risposta in ampiezza, bande di transizione, risposta polare e risposta in fase. I sistemi di controllo attivo del rumore (ANC) possono essere progettati per ridurre gli effetti dell'inquinamento acustico e possono essere utilizzati contemporaneamente a un sistema audio immersivo. L'ANC funziona creando un'onda sonora in opposizione di fase rispetto all'onda sonora in arrivo. Il livello sonoro complessivo viene cosĂŹ ridotto grazie all'interferenza distruttiva. Infine, questa tesi presenta un sistema ANC utilizzato per la riduzione del rumore. L’approccio proposto implementa una stima online del percorso secondario e si basa su filtri adattativi in sottobande applicati alla stima del percorso primario che mirano a migliorare le prestazioni dell’intero sistema. La struttura proposta garantisce un tasso di convergenza migliore rispetto all'algoritmo di riferimento.Immersive audio rendering is the process of creating an engaging and realistic sound experience in 3D space. In immersive audio systems, the head-related transfer functions (HRTFs) are used for binaural synthesis over headphones since they express how humans localize a sound source. HRTF interpolation algorithms can be introduced for reducing the number of measurement points and creating a reliable sound movement. Binaural reproduction can be also performed by loudspeakers. However, the involvement of two or more loudspeakers causes the problem of crosstalk. In this case, crosstalk cancellation (CTC) algorithms are needed to delete unwanted interference signals. In this thesis, starting from a comparative analysis of HRTF measurement techniques, a binaural rendering system based on HRTF interpolation is proposed and evaluated for real-time applications. The proposed method shows good performance in comparison with a reference technique. The interpolation algorithm is also applied for immersive audio rendering over loudspeakers, by adding a fixed crosstalk cancellation algorithm, which assumes that the listener is in a fixed position. In addition, an adaptive crosstalk cancellation system, which includes the tracking of the listener's head, is analyzed and a real-time implementation is presented. The adaptive CTC implements a subband structure and experimental results prove that a higher number of bands improves the performance in terms of total error and convergence rate. The reproduction system and the characteristics of the listening room may affect the performance due to their non-ideal frequency response. Audio equalization is used to adjust the balance of different audio frequencies in order to achieve desired sound characteristics. The equalization can be manual, such as in the case of graphic equalization, where the gain of each frequency band can be modified by the user, or automatic, where the equalization curve is automatically calculated after the room impulse response measurement. The room response equalization can be also applied to multichannel systems, which employ two or more loudspeakers, and the equalization zone can be enlarged by measuring the impulse responses in different points of the listening zone. In this thesis, efficient graphic equalizers (GEQs), and an adaptive room response equalization system are presented. In particular, three low-complexity linear- and quasi-linear-phase graphic equalizers are proposed and deeply examined. Experiments confirm the effectiveness of the proposed GEQs in terms of accuracy, computational complexity, and latency. Successively, a subband adaptive structure is introduced for the development of a multichannel and multiple positions room response equalizer. Experimental results verify the effectiveness of the subband approach in comparison with the single-band case. Finally, a linear-phase crossover network is presented for multichannel systems, showing great results in terms of magnitude flatness, cutoff rates, polar diagram, and phase response. Active noise control (ANC) systems can be designed to reduce the effects of noise pollution and can be used simultaneously with an immersive audio system. The ANC works by creating a sound wave that has an opposite phase with respect to the sound wave of the unwanted noise. The additional sound wave creates destructive interference, which reduces the overall sound level. Finally, this thesis presents an ANC system used for noise reduction. The proposed approach implements an online secondary path estimation and is based on cross-update adaptive filters applied to the primary path estimation that aim at improving the performance of the whole system. The proposed structure allows for a better convergence rate in comparison with a reference algorithm

    Digital Signal Processing Techniques For Coherent Optical Communication

    Get PDF
    Coherent detection with subsequent digital signal processing (DSP) is developed, analyzed theoretically and numerically and experimentally demonstrated in various fiber-optic transmission scenarios. The use of DSP in conjunction with coherent detection unleashes the benefits of coherent detection which rely on the preservation of full information of the incoming field. These benefits include high receiver sensitivity, the ability to achieve high spectral-efficiency and the use of advanced modulation formats. With the immense advancements in DSP speeds, many of the problems hindering the use of coherent detection in optical transmission systems have been eliminated. Most notably, DSP alleviates the need for hardware phase-locking and polarization tracking, which can now be achieved in the digital domain. The complexity previously associated with coherent detection is hence significantly diminished and coherent detection is once again considered a feasible detection alternative. In this thesis, several aspects of coherent detection (with or without subsequent DSP) are addressed. Coherent detection is presented as a means to extend the dispersion limit of a duobinary signal using an analog decision-directed phase-lock loop. Analytical bit-error ratio estimation for quadrature phase-shift keying signals is derived. To validate the promise for high spectral efficiency, the orthogonal-wavelength-division multiplexing scheme is suggested. In this scheme the WDM channels are spaced at the symbol rate, thus achieving the spectral efficiency limit. Theory, simulation and experimental results demonstrate the feasibility of this approach. Infinite impulse response filtering is shown to be an efficient alternative to finite impulse response filtering for chromatic dispersion compensation. Theory, design considerations, simulation and experimental results relating to this topic are presented. Interaction between fiber dispersion and nonlinearity remains the last major challenge deterministic effects pose for long-haul optical data transmission. Experimental results which demonstrate the possibility to digitally mitigate both dispersion and nonlinearity are presented. Impairment compensation is achieved using backward propagation by implementing the split-step method. Efficient realizations of the dispersion compensation operator used in this implementation are considered. Infinite-impulse response and wavelet-based filtering are both investigated as a means to reduce the required computational load associated with signal backward-propagation. Possible future research directions conclude this dissertation

    Compensation of fibre impairments in coherent optical systems

    Get PDF
    Tese de mestrado integrado. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 201

    Microwave Photonic Signal Processing with Dynamic Reconfigurability

    Get PDF
    An optical beamforming network that uses an uncooled Fabry-Perot laser is demonstrated. This is achieved by using a fast-scanning, high-resolution optical spectrum analyzer to track the frequency and power shift of the uncooled laser, and then reconfiguring a programmable Fourier-domain optical processor to provide compensation. In this way, the need for temperature control of the laser is eliminated, and the number of optical sources is reduced by using the output spectral lines of the laser. The system realizes six wideband microwave photonic phase shifters, and the resulting magnitude and phase responses vary within a 2σ deviation of 6.1dB and 14.8°, respectively, even when the laser current is changed during measurement. A microwave photonic filter is presented based on a feedback structure, which uses a Fourier-domain optical processor as the control element and the fast-scanning optical spectrum analyzer as the feedback component. This system provides low-pass RF response. Experimental results demonstrate a 6-tap microwave photonic filter with a free spectral range of 2.5GHz. The power fluctuation of the first-order passband in RF response is within ±1dB over 20 minutes. A novel tunable all-optical microwave photonic mixer is presented based on serial phase modulation and an on-chip notch filter. The notch filter breaks the out-of-phase symmetry between the upper and lower sidebands generated from phase modulation, resulting in bandpass response of frequency selection. This system is achieved through an all-optical approach, which does not require electrical components, thus increasing the operation bandwidth of the system. The tunability of frequency selection is achieved through adjusting the wavelength of the optical source. Experimental results verify the technique with a 3rd-order SFDR of 91.7dBm/Hz2/3

    Head-Related Transfer Functions and Virtual Auditory Display

    Get PDF
    • 

    corecore