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ABSTRACT

There is a growing demand for the high quality TV programs such as High Defini-

tion TV (HDTV). The CATV network is often a suitable solution to address this

demand using a CATV modem delivering high data rate digital signals in a cost ef-

fective manner, thereby, utilizing a complex digital modulation scheme is inevitable.

Exploiting complex modulation schemes, entails a more sophisticated modulator and

distribution system with much tighter tolerances. However, there are always distor-

tions introduced to the modulated signal in the modulator degrading signal quality.

In this research, the effect of distortions introduced by the RF band pass filter

in the modulator will be considered which cause degradations on the quality of the

output Quadrature Amplitude Modulated (QAM) signal. Since the RF filter’s am-

plitude/group delay distortions are not symmetrical in the frequency domain, once

translated into the base band they have a complex effect on the QAM signal. Using

Matlab, the degradation effects of these distortions on the QAM signal such as Bit

Error Rate (BER) is investigated.

In order to compensate for the effects of the RF filter distortions, two different

methods are proposed. In the first method, a complex base band compensation filter

is placed after the pulse shaping filter (SRRC). The coefficients of this complex filter

are determined using an optimization algorithm developed during this research. The

second approach, uses a pre-equalizer in the form of a Feed Forward FIR structure

placed before the pulse shaping filter (SRRC). The coefficients of this pre-equalizer

are determined using the equalization algorithm employed in a test receiver, with its

tap weights generating the inverse response of the RF filter. The compensation of

RF filter distortions in base band, in turn, improves the QAM signal parameters such

as Modulation Error Ratio (MER). Finally, the MER of the modulated QAM signal

before and after the base band compensation is compared between the two methods,

showing a significant enhancement in the RF modulator performance.
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1. Introduction

1.1 Background

CATV (Community Antenna Television) systems was created as an alternative for

terrestrial TV broadcasting for areas where the transmitted signals are too weak for

reception. One solution was to use coaxial cables in a CATV network to deliver rea-

sonable quality signals to the customer home. At the beginning, the CATV antenna

towers would receive analog TV channels off air, as would a TV set, and mapped

them in the cable network spectrum. In north America, the bottom portion of the

frequency band 50-550 MHz, is reserved for NTSC analog cable TV broadcast, as it

is shown in figure 1.1. [1]

Figure 1.1 CATV Spectrum

The main reason the CATV service grew so quickly, is that the reach of over-the-air
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television transmitter was very limited, and many communities had poor reception.

For these communities the CATV network was a good solution. Eventually more

channels were added to the network, which made CATV popular even in areas with

good reception over-the-air not just in north America but all around the world.

The most outstanding feature of CATV plant is that it is broadband (0.5MHz-

1.0GHz), and can carry many RF modulated signals. The plant consists of a network

of coaxial cable that links a head end via the distribution network to the customer

equipment (Refer to Figure 2.3 in page 12). The CATV plant can carry any informa-

tion that can be modulated on a RF carrier.

The infrastructure of the CATV plant was designed to deliver analog TV signals

to the end user. The topology and layout of its infrastructure was optimized for

the network to have maximum cost efficiency in performing that goal. This lead

to an architecture that is referred to as a Tree and Brancℎ architecture [2]. The

CATV infrastructure consists of various subsystems, the Head End, the Trunk cable,

the distribution (or feeder) cable, the drop cable in house wiring, and the terminal

equipment (Set Top Box).

1.2 Motivation

Cable TV service was meant to deliver high quality TV reception to the customer

and has been successful in this sense. By 1999 almost 97 percent of U.S. Television

households had cable television service available, and almost 66 million households

subscribed to at least basic video service which is about 67 percent of U.S. TV house-

holds [3].

A growing demand for high quality reception for a large number of TV programs

at reasonable cost has contributed to the evolution of new bandwidth efficient modu-

lation schemes such as 64 and 256 digital Quadrature Amplitude Modulation (QAM)

which have the capability to transfer high data rate digital signals over relatively small

spectral bandwidth. This enables CATV operators to tightly pack a large number of

2



digital carriers and deliver a large number of TV programs at a lower cost.

Using bandwidth efficient modulation techniques comes at the price of higher

signal to noise ratio requirement and more stringent amplitude/group delay specifi-

cations. In this regard, the pristine quality digital RF modulator must be used in

the down stream path which is able to deliver large number of high quality signals

such as HDTV at low cost. However, RF modulators usually use an RF filter which

does not have an ideal amplitude/group delay response, degrading the quality of the

QAM signal. The main motivation for this thesis was to compensate the RF filter

distortions and improve the quality and performance of the RF modulator required

to deliver high quality signals in the down stream path.

1.3 Problem statement

In a typical digital communication system the RF modulator is responsible to

up-convert the base band signal into the RF frequency. At the output of the RF

modulator in addition to the fundamental carrier frequency, second and third har-

monics are also present which must be rejected. For this reason an RF filter will be

used at the output of the RF modulator which ideally has a flat amplitude/group

delay response in the pass band and a large attenuation in the stop band.

Different technologies can be used for the design of the bandpass RF filter. Sur-

face Acoustic Wave (SAW) or ceramic bandpass filters are commonly used in industry.

However, most manufacturers, due to proprietary concerns prefer to design their own

bandpass RF filter using discrete passive components. However, regardless of the tech-

nology used to design the bandpass RF filter, there are always some amplitude/group

delay distortions on the modulated QAM signal caused from the RF filter.

When an RF filter is designed using discrete components, a flat amplitude/group

delay response in the pass band requires fine tuning of the filter which is a labor

intensive and expensive task. In addition the RF filter components have certain tol-

erances which will create even more variation on the amplitude/group delay response

3



during the mass production. Figure 1.2 shows these distortions, also the position

of the QAM carrier in the pass band of a typical RF filter. Since these distortions

are not symmetrical with respect to the carrier frequency, after down conversion into

the base band, will have a complex effect on the QAM signal and cross couple the

in-phase and quadrature components which in turn causes symbol scattering and bit

error rate degradation of the system.

Figure 1.2 RF Filter distortion on the QAM signal

1.4 Research Objectives

The overall aim in this thesis, is to focus only on the amplitude and group delay

distortion caused by the RF filter in the digital QAM modulator. The objective to

reduce the distortion to the point where the system becomes DRFI1 [4] compliant.

These two type of distortions have significant effect on the quality of signal and CATV

1Downstream RF Interface Specification
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system performance as a whole, and are therefore critical. The research plan that

was followed is outlined below:

1. Set up a system level simulation and analysis, of a typical CATV digital com-

munication system (using Matlab) to characterize the behavioral profile of the

various types of amplitude and group delay distortions caused by RF filters.

For the purpose of this simulation, a system performance figure of merit called

Bit Error Rate was used in order to characterize the degradation effects of RF

filter distortions.

2. Propose a feasible compensation technique using a base band Complex Digital

Filter placed after the Square Root Raised Cosine (SRRC) filter in the modu-

lator.

3. Propose a technique that calculates the optimum coefficients for the complex

base band compensation filter.

4. Propose an alternative, in the form of a Feed Forward structure and use chan-

nel equalization technique to calculate the tap weights for the filter.

5. Compare the simulation results of the optimization and equalization techniques.

1.5 Literature Review

The effect of amplitude and group delay distortion caused by the analog RF filter

was studied in [5] for selective fading channels on digital radio. In the analysis,

the amplitude distortions were modeled from a probabilistic point of view. The

probability distribution of amplitude slopes were shown to characterize the amplitude

distortion of the channel.

The effect of amplitude and delay slope of frequency selective fading channels

on QPSK/8PSK modulation has been characterized in more detail by Douglas [6].

Specifically, Douglas characterized the sensitivity of 8PSK modulation by the slopes
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of the amplitude distortions. Later, Mathiopoulos investigated the effect of amplitude

and group delay distortions on the more complicated 1024-QAM signal [7]. Another

special case study was accomplished by Ramadan [8] on the effects of group delay

slope on the prediction of availability threshold of digital microwave system.

More specifically, in the case of 64-QAM and 512-QAM, performance degradation

due to amplitude/group delay distortions was studied by Wu and Feher [9], Tricia [10],

and Mathiopoulos [11], however, these studies, do not directly apply to the problem at

hand in that they target different applications that have different system parameters.

While the trends uncovered in the studies apply, they do not fully represent the

sensitivity of the digital modulation schemes used in the CATV system. Furthermore,

the studies are more limited in scope than the problem at hand, in that they only

evaluated degradation effects of these imperfections, rather than proposing a solution

to compensate for them. Therefore, a new investigation for the system under question,

as well as proposing a solution to compensate these degradations, is necessary.

One approach to the problem is to derive a filter with an amplitude and group

delay response that compensates for the distortions. A commonly used filter structure

is a symmetric Finite Impulse Response (FIR) which has a linear phase response.

Such structures can only compensate for amplitude distortions. The tap weights can

be found using a weigℎted Cℎebycℎev algorithm. This yields a filter with equiripple

error in the pass band. The development of this algorithm started with Herrmann [12]

in 1970. Herrmann’s work was followed by Hofstetter, Oppenheim and Siegel [13].

Then, a series of contributions were made in the 1970s by Parks, McClellan, Rabiner,

and Herrmann [14–19]. The thrust of the work in the 1970s was to improve the

convergence speed, efficiency, and other performance figures of the algorithm.

From this work, a computer algorithm rose to positions of prominence. This was

a computer algorithm known as McClellan-Parks-Rabiner algorithm [20], which was

published in 1979. This algorithm is considered better than the Remez Exchange Al-
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gorithm [21] which was published in 1957. It is worth mentioning that improvements

and contributions continue to be made [22,23].

The approach taken in this research is to compensate for the amplitude distortions

of the RF filter, with a linear phase digital filter. The coefficients for the filter are

found with a variation of Newton’s gradient method. Newton’s method is described

in [24] [14,17,19], and applies to the real filters so can not be directly applied to the

design of a complex FIR low pass filter with complex coefficients.

To compensate the group delay distortion caused by the RF filter, a recursive

all pass digital filter is used. The coefficients are found using the Quasi Newton

Gradient Method, which is described in [24–29]. Again the method was adopted to

find complex coefficients for the all pass filter.

A second approach, which is very different from the approach just described is

also explored. In this second approach compensation is accomplished with a pre-

equalizer feed forward structure. The coefficients for the pre-equalizer are determined

using Least Mean Square (LMS) equalizer at the receiver, which is based on linear

equalizer techniques which are widely used and extensively described by Haykin and

Sayed [30] [31].

1.6 Thesis Organization

The thesis is organized into six chapters.

1. The first chapter provides an introduction to CATV system and to the problem

of interest. It also outlines the two approaches that will be investigated to solve

the problem.

2. Chapter two, provides information on the structure of a typical analog RF filter

as well as its amplitude and group delay responses. A statistical analysis is

performed on the RF filter to show the statistical behavior in terms of the
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amplitude and group delay responses that result when component values are

not precise. Three types of distortions are described and their degradation

effects on the digital communication system performance are discussed. The

compensation goal, is to sufficiently reduce the in-band amplitude and group

delay distortions to be compliant with DOCSIS [32].

3. Chapter three focuses on the process of compensation of amplitude and group

delay distortions of the RF filter, using a complex filter located at the base band

portion of the digital modulator. An optimization algorithm that determines

the coefficients of this complex base band filter is developed as well.

4. Chapter four parallels chapter three with a alternative compensation method,

an Adaptive Equalizer is used to compensate for these distortions. An existing

adaptive equalization algorithm is used. The compensation is accomplished with

a pre-equalizer digital feed forward structure placed in the base band portion

of the modulator. The tap weights for the pre-equalizer are obtained from an

equalizer in a gold standard receiver. These tap weights, are exactly the same

coefficients to be used for the pre-equalizer which compensates the RF filter

distortions.

5. Chapter five centers on verification with simulation. Simulation is used to es-

tablish the methods to compensate the in band amplitude and group delay

distortions sufficiently to comply to DOCSIS. The performance of these two

methods are also compared. The performance measure used in the comparison

is the Modulation Error Ratio (MER).

6. Chapter six contains the conclusions and discussion for future work.
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2. Distortion in CATV networks

2.1 Introduction

In a CATV digital communication system, there are many sources of distortion.

Virtually every component in the network introduces distortion. These include IQ

modulators, RF filters, amplifiers and splitters. This section discusses the distortion

caused by these components, starting from the IQ modulator and continuing along

the downstream path.

2.2 Sources of Distortion

2.2.1 Digital IQ modulator

The input to the digital modulator section, is a digital data stream that has been

mapped to the proper constellation points (typically 64 or 256 QAM) using an in-

phase and quadrature phase carrier. There are two types of up conversion schemes

in use today: the super heterodyne scheme and direct up conversion scheme. The

method discussed here is the direct up conversion method of getting base band digital

data into the QAM RF channel. Figure 2.1 illustrates a typical IQ modulator and

its components. Ideally, the IQ modulator output has a Single Side Band (SSB)

Suppressed carrier modulation format. Impairments in the modulator output occur

when the I and Q local oscillators are not in perfect Quadrature. Another source of

distortion is when the gains in the I and Q paths are not exactly equal. These two

impairments are referred to as phase and gain imbalance, respectively. These will

cause the modulator to create small side bands on the opposite side of the carrier (in

single side band transmission). This spectral growth on the other side of the carrier is
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Figure 2.1 Block diagram of a Digital I/Q modulator (transmitter)

referred to as the Image of the original QAM carrier. Since the bandwidth allocation

in CATV has the QAM carriers tightly packed, even small amounts of image (due to

gain/phase imbalance) of one carrier degrade the signal to noise ratio of neighboring

carriers.

Another source of impairment in an IQ modulator is caused by a DC offset in I

and Q paths. The DC on I and Q paths will create carrier leakage at the output

of the modulator. The gain/phase imbalance between I/Q will shift the modulated

symbols from their ideal position in the constellation chart. Yet another source of

distortion is differential delay, the delay difference between I and Q pathes causes

a loss of Ortℎogonality between I and Q signals. One can take a closer look at

the IQ modulation process in Figure 2.1. For 256 QAM modulation, I(t) and Q(t)

signals would take on the values ±1, ±3, . . . ±15. The distortions caused from

the IQ modulator can be expressed in a mathematical form. For the time being, it

is assumed all other CATV subsystems, such as amplifiers, cable, customer receiver

functionalities such as carrier recovery and symbol timing recovery are perfect and

do not impose any distortion. If the DC offsets for the I and Q channels, denoted as

CI and CQ respectively, are added to the I and Q channels they become: I +CI and

Q + CQ. The amplitude imbalance of Q and I paths can be denoted by a coefficient
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®. The mathematical form of the final RF signal would be:

R(t) = [(I(t) + CI ]cos(ΩLOt) + ®[Q(t) + CQ]sin(ΩLOt+ ') (2.1)

where ' indicates the phase imbalance. One can use trigonometric identities to

simplify equation (2.1) to the form below:

R(t) = A(t)cos(Ωt)−B(t)sin(Ωt) (2.2)

where A(t) and B(t) are:

A(t) = [I(t) + CI ]− ®[Q(t) + CQ]sin(') (2.3)

B(t) = ®[Q(t) + CQ]cos(') (2.4)

Equation (2.3) shows that for ' ∕= 0 the I and Q channels are not Orthogonal.

2.2.2 Analog RF Filter

The output of the IQ modulator contains the fundamental carrier as well as second,

third, fifth, and other harmonics of the fundamental carrier. Since CATV is a broad

band system, it is obvious that the presence of these harmonics at modulator output

is not desirable, because these harmonics will fall within higher frequency channels,

causing interference. Further more, in order to maintain adequate Broad Band Noise

(BBN) level at the digital IQ modulator output, it is necessary to use a band pass

RF channel Filter at modulator output.

This filter is meant to have a flat amplitude and constant group delay response

in the pass band, and a reasonably sharp transition band with adequate attenuation

on the stop band. However, usually this is not the case and there are ripples in the

amplitude and group delay responses. To get a better understanding of RF filter

distortions, Figure 2.2 shows a simulated frequency response of a typical band pass

RF filter (Chebyshev).
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Figure 2.2 Typical RF band pass filter amplitude and group delay responses

Ideally a flat group delay response would be preferred, however, it is clear from Figure

2.2 the group delay is not constant across the band (right axis in nanosecond). In

some regions, the slope of variations is constant, while close to the band edges, it

follows a somewhat parabolic shape, and at some points it has a sinusoid shape.

Amplitude response have similar variations across the band (left axis is the insertion

loss in dB). This group delay and amplitude variations of the RF filter, are certainly

a source of impairment on the IQ modulated signal.

2.2.3 Coaxial Cable

The transmission medium in CATV networks is a combination of optical fiber and

coaxial cable. The distribution network, see Figure 2.3, is primarily co-axial cable.

The trunk lines, which at one time were coaxial cable are now, for the most part,

optical fiber.
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Figure 2.3 The general block diagram of the CATV system

The CATV network, which was designed to deliver analog television signals to

the antenna terminal of subscribers TV sets, has evolved into a sophisticated multi-

service network. In the evolution, some of the coaxial cable was replaced with linear

optical fiber, however, the network remains largely the same. For instance the res-

idential portion of the plant is largely coaxial cable and is still channelized into 6

MHz Frequency Division Multiplex (FDM) channels. While the channelization has

not changed many of the carriers are digitally modulated signals. The digitally mod-

ulated signals are quite sensitive to distortion caused by non linearities. This requires

all components in cable network be linear including amplifiers, passive components,

and fiber optic links.

A coaxial cable has a center conductor surrounded by a concentric cross section

dielectric, and by an outer conductor known as the shield. The RF signal sets up an

electromagnetic field in the cable that has a configuration known as a Transversal

Electric and Magnetic (TEM) field. The characteristic impedance of coaxial cable

is related to the ratio of the diameter of the outer to the inner conductor and the

dielectric constant of the insulator that separates them. The characteristic impedance

is given by:

Zo =
138√
²o

log(
D

d
) (2.5)
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where Zo is the characteristics impedance in Ohms, D is the outer conductor diameter

and d is the inner conductor diameter. Coaxial cable is a lossy medium which means

the signal loses amplitude as it travels along the cable. the attenuation which is a

function of the frequency, is caused by: radiation through the shield, resistive losses

in the cable conductors, signal absorbtion in the dielectric, reflections at places where

cables are joined, spliced, connected, or along the cable where the characteristic

impedance is not uniform. The general equation for the residual loss of a coaxial

cable is as follow:

® = 4.344(
R

Zo

) + 2.774Fp

√
²f (2.6)

where, ® = attenuation in (dB /100 ft), R = the effective Ohmic resistance of the

cables, Fp = the power factor of the dielectric used, f = the frequency in MHz and ²

= relative permittivity of the dielectric in the coaxial cable.

2.2.4 Amplifier

Amplifiers are used to compensate for the insertion loss and to replace the power

tapped off and sent to a subscriber. Due to the thermal random noise inherent in the

electronic components, amplifiers always introduce noise as a function of temperature

and bandwidth in which the noise is measured. This Broad Band Random Noise,

known as Tℎermal noise, has a power that depends on the temperature of the device

and bandwidth given by: ´p = KTB, Where ´ is the noise power density in milli-

Watts (-174 dBm/Hz), K is Boltzman constant (1.3807 x 10−23 Joules/K), T is the

absolute temperate in degrees Kelvin, B is the bandwidth of the noise in Hz.

Since the signal power in CATV is expressed in terms of decibels referenced to 1

mV (dBmV) and the characteristics impedance of the cable is 75 Ohms, the thermal

noise at room temperature (T = 300 K) equals to: np(dBmV ) = −125.1 + 10 logB,

where np is the noise power in dBmV and B is the bandwidth in Hz. To be more spe-

cific about effective noise power within a single CATV channel, although the defined

bandwidth in a analog TV channel is 6 MHz, the receiver noise bandwidth is usually

less. According to the FCC’s rules [33] the effective bandwidth is about 4 MHz. The
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thermal noise power at room temperature for bandwidths of 4 MHz and 6 MHz, are

np = −59.1 dBmV and np = −57.3 dBmV respectively.

The amplifier itself, adds noise that can be considered as additive input noise.

A figure of merit is often used to represent the noise behavior of an amplifier. This

figure of merit is the ratio of the amplifier generated noise to the thermal noise of the

input resistance. This ratio is known as the noise figure of the amplifier. Therefore

an amplifier with a noise figure of FA dB will have a total input noise power of nA,

such that

nA = np + FA (2.7)

where nA and np in dBmV and FA is the noise figure in dB. In the same manner, the

output noise power is the input noise power plus the gain of amplifier, where G is in

dB and nout is in dBmV.

nout = np + FA +G (2.8)

One of the important attributes of amplifiers is linearity. However, the amplifiers usu-

ally have some degree of non linearity which causes intermodulation products. This

distortion in CATV becomes significant due to the fact that there are many frequency

multiplexed RF carriers passing through the amplifier at the same time, creating the

mixing products in the same way that a communications mixer does. In general, a

mixer is a non linear device (with quadratic input/output characteristic) that can

be estimated using a quadratic second order polynomial, generating intermodulation

products between every carrier pair. The frequency of these intermodulation prod-

ucts coincides with the addition and subtraction of the original carriers frequencies,

and typically with lower amplitude. In the case of amplifiers, this non linear behavior

is mostly caused by compression which is a saturation effect that occurs near the

DC supply voltage of the amplifier. Compression can be formulated as a nonlinear

input/output characteristic composed of second and third order polynomials. such

compression creates second and third order distortion or intermodulation distortion

to the amplified signal. The results of this distortion can be classified as even order

distortion, odd order distortion, and cross modulation.
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If an amplifier is perfectly linear, the output can be expressed as input multiplied

by a constant, the constant is known as gain of amplifier. When the input / output

relation (transfer function) is not linear, the output can be expressed as function of

the input using this polynomial

eo = Aei +Be2i + Ce3i + ...

where eo is the output signal, ei is the input signal, and the set of coefficients A, B,

C, are the gains for various input signal power levels.

In this equation, the terms with even numbered powers, indicate the even number

distortions, and terms with odd numbered powers indicate odd order distortions, the

dominant types of distortion in CATV are second order and third order distortions.

In solid state amplifiers, odd order distortions, especially third order distortions, are

significant and create intermodulation products between two carriers.

Composite Triple Beats (CTB) is the spectrum produced between multiple car-

riers. These intermodulation products appears at three times the frequency of the

original carriers. These products appears when the amplifier generates third order

distortion and the amplitudes of all carriers are the same.

Another form of distortion will occur when multiple carriers with multiple mod-

ulated amplitudes pass through an amplifier with a third order nonlinearity. In this

case, the intermodulation product is called Cross Modulation (XMOD). All these

distortions, if too high, can create significant degradation to the quality of the signal,

hence on the performance of the system. Excessive CTB and CTO can degrade a

parameter in CATV known as Modulation Error Ratio (MER) which is reduced to

the signal to noise ratio of the received signal.

2.2.5 Passive Coaxial Components

The CATV network has a branch and leaf structure in the downstream direction.

The new branch and leaves are created by devices called splitters. In the up stream
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Figure 2.4 The Schematic of a typical Band Pass RF Filter

direction the branches and leaves are merged with devices called combiners. It is evi-

dent that thousands of signal splitters and signal combiners are needed to implement

a CATV network.

Splitters are passive components that are used for splitting the signal into two or

more signals with lower power, the most elementary splitter is a 1:2 splitter which

splits the signal into two, each with equal power. Combiners are used to combine two

or more signals into one signal in the up stream direction. Another commonly used

device is directional coupler to divide the signal into outputs with un-even output

powers which is necessary at many points in the network. The typical impairments

caused by splitters and directional couplers are related to insertion loss. The insertion

loss is controlled by using amplifiers along the path.

2.3 RF Filter Distortions

The focus of the research presented in this thesis is on the distortion caused by RF

filters. An understanding of this distortion can be gained from the structure of the

filter. The structure of a typical analog band pass RF filter will be used to explain

amplitude and group delay responses. It will also be used to show the sensitivity of

these responses to the tolerances of filter components.

The RF filter used in the modulator, is a Band Pass Filter. Such filters are

explained in textbooks such as Pozar [34]. A typical schematic diagram of this filter

is shown in Figure 2.4.
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This filter consists of 11 passive components: six inductors and five capacitors.

Generally, variable (i.e. tunable) components will be used and are tuned to get a flat

response across the frequency band of interest. However, during mass production, the

tuning process is very expensive so it is preferable to use fix components. The fixed

components do not have precise values which translates into changes in the amplitude

and group delay responses.

The component tolerances will cause both the amplitude and group delay re-

sponses to vary from the ideal response as shown in Figure 2.2. The concern is to

what extent these two parameters vary, and the rate of change of the variation. It is

important to know the shape and severity of these variations in order to develop an

efficient compensation circuit.

One method to characterize the form and extent of variations is to use an RF

simulation tool. Using this tool it is possible to setup a simulation to analyze the RF

Filter schematic shown in Figure 2.4. Looking at this figure, one can setup a statistical

simulation known as Monte Carlo simulation in which, the value of components will

randomly change within ±0.05 percent of the nominal value, which is a reasonable

practical tolerance. In the Monte Carlo simulation setup, it is possible to define a

uniform shape for the probability density function (pdf ) of the component values.

In order to obtain enough statistical confidence in the simulation outcome, the

simulation was performed for 5000 iterations. The result of the Monte Carlo simula-

tion, is shown in the Figure 2.5.

Looking at the Monte Carlo simulation results in Figure 2.5, which is the result for

a uniform distribution with 0.05 component tolerance, it is clear that both amplitude

and group delay responses depart from the original response.

The maximum variations of attenuation in the pass band is about 2 dB with

respect to the desired frequency response. Like wise, there is up to 2 nsec variations

in group delay in the pass band. In terms of the shape of the variations, they are

smooth and appear to be without high frequency content.
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Figure 2.5 The Monte Carlo simulation result of RF Filter

One solution to get the desired response is to replace components that have poor

tolerance, however, this solution is not practical for mass production. In addition

there are limitations, to get a completely flat response even with exact component

values due to resistive component losses, component value availability. For example,

optimum tuning for the frequency band at near 950 MHz, produces an amplitude

response that decreases with frequency due to the resistive losses in the components.

One of the other common situations is non symmetrical ripples in amplitude response

as the result of component value variations.

2.4 Effects of RF Filter on distortion of QAM signals

Depending on where the QAM signal is located within the RF Filter pass band

frequency, the impairment effects vary in type and severity. The distorted frequency

response can be broken into Hermitian symmetric and Hermitian antisymmetric com-
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ponents with respect to carrier frequency, at baseband the Hermitian symmetric com-

ponents give rise to real coefficients of the complex low pass filter, while the Hermi-

tian antisymmetric give rise to complex coefficients. The antisymmetric components

causes cross coupling between the I and Q channels.

To show this in a mathematical form, let H(e|Ω) denote the transfer function

of the low pass equivalent filter. If H(e|Ω) = H∗(e−|Ω), H(e|Ω) has conjugate or

Hermitian symmetry. This means that the magnitude of the transfer function has

even symmetry and the phase of the transfer function has odd symmetry. This is true

if and only if the impulse response is real [35].

If H(e|Ω) = −H∗(e−|Ω), H(e|Ω) has conjugate or Hermitian antisymmetry or odd

symmetry with its impulse response being purely imaginary. Moreover, any function

H(e|Ω) can be decomposed into its odd and even functions as H(e|Ω) = He(e
|Ω) +

Ho(e
|Ω), where

He(e
|Ω) =

1

2
[H(e|Ω) +H∗(e−|Ω)] (2.9)

Ho(e
|Ω) =

1

2
[H(e|Ω)−H∗(e−|Ω)] (2.10)

Obviously, He(e
|Ω) has conjugate symmetry and Ho(e

|Ω) has conjugate antisymme-

try. Intuitively, the magnitude and group delay distortion caused by the low pass

equivalent filter can be corrected with a low pass filter that has the inverse response.
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Figure 2.6 The position of QAM signal in the RF Filter response

2.4.1 Different types of distortions

Previous work on the effects of amplitude and group delay of the channel on the

QAM signal [6] to [11], indicates that amplitude distortion across the bandwidth can

be segmented into three categories: linear slope distortion, parabolic slope distortion

and sinusoid slope distortion. This can be seen in Figure 2.6.

A QAM signal may span a bandwidth that is characterized with a single category

or perhaps two or more categories. Figure 2.6 shows the response of an RF filter

that is wide enough to pass several QAM signals. The four shaded areas show the

location of four QAM signals. QAM carrier number one and four are located at the

band edges. These signals experiences parabolic group delay response. QAM carriers

number two and three experience a group delay response with linear slope.

As for amplitude response, carrier numbers two, three, and four experience linear
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Figure 2.7 The Communication system used during the simulation

amplitude slope distortion and carrier number 1 experience parabolic amplitude dis-

tortion. The more rare category of sinusoid distortion is not illustrated in Figure 2.6.

2.4.2 Description of simulation parameters

AMatlab simulation was used to characterize the system performance degradation

of the CATV system. The digital communication system used for the simulation is

shown in the Figure 2.7. In this figure the RF filter is modeled as an ideal filter

in cascade with one that has the equivalent distortion. The parameters used in the

simulation are listed in Figure 2.8 on page 25. These parameters are listed as typical

and quoted from [32] Annex-B 256 QAM modulation.

The simulation was setup entirely in the complex base band domain. Both SRRC

filters at transmitter and receiver are ideal with x/sin(x) compensation at the trans-

mitter, hence the whole system satisfies the Nyquist first criterion. In the simulation,

no carrier phase offset or timing offset is introduced, i.e, perfect timing and carrier

are used. To generate the modulating signal source in Matlab, the integer random

source (randint) function was used with enough data length (107) symbols to get ade-

quate statistical confidence. For the modulation, the qammod function was used and

for the pulse shaping, the rcosine function was used with a symbol rate of 5.360537

Msym/s, a roll off factor of 0.12 and an up sample factor of 16. Different amount of
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amplitude/group delay distortions was generated and used as the input to the filter

design tool in Matlab (FDATOOL) and the resulting filter coefficients were used in

the simulation as the RF filter distortions. At the receiver, the function rcosflt was

used for the SRRC filter with identical parameters to the transmitter SRRC filter.

The function qamdemod was used for demodulation in receiver after the match filter,

and finally the bit error rate was measured using the biterr function.

To clarify the method by which the effects of the RF Filter distortions was gen-

erated, consider a band pass filter with equivalent base band transfer function H(f)

between the transmitter and receiver. The transfer function can be expressed in terms

of magnitude and phase as follows:

H(f) = ∣H(f)∣ejµ(f) (2.11)

In Equation (2.11) the magnitude of the transfer function represents the amplitude

frequency response Amp(f) = ∣H(f)∣, the group delay is obtained from Del(f) =

− 1
2¼

dµ(f)
df

, also assuming the group delay of the filter is constant, e.g., Del(f) = 1.

The frequency response of H(f) may be shown as Amp(f) as follows:

Amp(f) =

⎧
⎨
⎩

LAf, for linear amplitude slope

PAf
2, for parabolic amplitude slope

SAsin(2¼Kf/2FBW ), for sinusoid amplitude slope

(2.12)

where

FBW ≜ (1 + ®)RS

2

RS is the symbol rate, and ® is the roll off factor. In the case of 256-QAM Annex-B,

RS = 5360537 sym/s, therefore for roll off factor 0.12 the FBW ≃ 3 MHz. Also K

determines the number of sinusoidal cycles within the QAM signal bandwidth, which

in this case equals four cycles (Although the sinusoidal distortion is not of concern
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here, still the equation is presented).

Destructive effects of the filter distortions can be observed by using the BER curve

described in the previous section (bit error rate indicates the ratio between the number

of erroneous bits, to the total number of received bits). For instance, to characterize

the amount of degradation of bit error curve for a 256-QAM modulation as a result

of linear, parabolic, and sinusoid distortions, the worse case will be considered which

is the maximum amplitude distortion within the filter bandwidth, introduced here as

Am, where

Am =

⎧
⎨
⎩

LA(2fBW ), for linear amplitude slope

PA(fBW )2, for parabolic amplitude slope

SA, for sinusoid amplitude slope

(2.13)

Starting with linear amplitude distortion, the value of LA = 0.1 − 0.5, incrementing

with 0.1 step size, produces five different BER curves which can be compared with

the ideal 256 QAM BER curve to measure the amount of BER degradation as the

result of the RF filter distortions (the ideal BER curve is the result of simulation

with no distortion, which is fairly close to the theoretical 256 QAM BER). In order

to get enough confidence on the BER simulation results, a large number of digitally

modulated symbols were used during simulation to get consistent results for the low

bit error probability ranges. This family of curves for the linear amplitude distortion

is shown in Figure 2.9.

Looking at Figure 2.9, there are six BER curves, lower left curve shows the ideal

BER curve for 256 QAM, the next five curves are the BER curves after applying

the linear slope amplitude distortion for LA = 0.1, 0.2, 0.3, 0.4, 0.5 respectively. A

reference point on the BER curves can be chosen for a probability of error (Pe) equal

to 10−3, using this reference point, degradation of the bit to noise energy ratio(Eb/No)

can be evaluated on these curves, and plotted versus the maximum amplitude slope

(Am) within the filter bandwidth.

This process can be repeated for parabolic, and sinusoid amplitude distortions.
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Figure 2.8 DOCSIS parameters used for BER degradation simulation

For instance, again for the parabolic amplitude distortion, the value of PA = 0.1−0.5

is chosen, likewise, for sinusoid amplitude distortion the value of SA = 0.005− 0.025.

For the sake of comparison, the resulting 256-QAM BER curves are plotted in the

Figures 2.10 and 2.11.

Finally, comparison of results for all types of amplitude distortions are shown in

Figure 2.12. Note that the horizontal axis indicates the amplitude slope in (dB/MHz)

for the case of linear amplitude slopes, for the parabolic slope distortion this axis must

be divided by four, also for the sinusoid slope, must be divided by ten.

It is obvious that for a given maximum amplitude distortion(Am), sinusoid ampli-

tude distortion provides the worst degradation effect on the QAM signal , followed in

decreasing order of degradation by parabolic, and linear amplitude distortions which

creates the least degrading effect.
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Figure 2.9 The BER degradation results due to linear amplitude distortion

Figure 2.10 The BER degradation results due to parabolic amplitude distortion
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Figure 2.11 The BER degradation results for the sinusoid amplitude distortion

Figure 2.12 Eb/No degradation comparison graph between linear, parabolic, sinu-
soid slope amplitude distortions

27



Likewise, for the characterization of the BER degradation of the CATV system

due to the group delay distortions, it is presumed the amplitude response is flat

(i.e., Amp(f) = 1), a series of the group delay distortions are generated with linear,

parabolic and sinusoid slopes. These distortions can be defined as follows:

Del(f) =

⎧
⎨
⎩

LD.f, for linear group delay slope

PD.f
2, for parabolic group delay slope

SD.sin(2¼Kf/2fBW ), for sinusoid group delay slope

(2.14)

To show the simulation results, a maximum group delay ¿m will be defined in the

filter bandwidth (2fBW ) as follows:

¿m ≜

⎧
⎨
⎩

LD(2fBW ) ns, for linear group delay slope

PD(fBW )2 ns, for parabolic group delay slope

SD ns, for sinusoid group delay slope

(2.15)

Starting with the linear slope parameter LD = 0.15 − 0.75 with 0.15 step size, five

different BER curves were generated for a 256-QAM signal accompanied by the ideal

curve for 256-QAM with no distortion. Similar setting will be used for the parabolic

slope. The resulting BER curves are shown in the Figures 2.13 and 2.14.

In order to compare the results of BER degradation due to different group delay

distortion slopes, the Eb/No degradation for Pe = 10−3 versus the group delay slopes

are graphed in the figure 2.15.

From the results shown in Figure 2.15, it is obvious that the degradation effects

of the linear slope group delay distortion on the BER performance of the QAM signal

is much higher than that of sinusoid and parabolic distortions respectively.

It is understood from the group delay comparison curves that only a few nanosec-

ond linear group delay slope would cause significant BER degradation. In this sim-

ulation the DOCSIS parameter settings were used, SRRC roll off = 0.12, for a 6
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Figure 2.13 The BER degradation results for the linear group delay distortion

MHz wide QAM signal, up-sampling is 16, the sampling frequency will be about 85.7

Msym/s and sampling time is about 11.66 nanosecond. Therefore changes in order

of a tenth of a sample period will have noticeable degrading effect on the BER.
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Figure 2.14 The BER degradation results for the parabolic group delay distortion

Figure 2.15 Eb/No degradation comparison graph between linear, sinusoid,
parabolic slope group delay distortion
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2.5 Summary

In this chapter various types of distortions in a CATV system were reviewed.

These distortions impose degradation effects on the quality of the QAM signal. This

thesis focuses on the distortions created in the RF filter in the head end block.

To evaluate the RF filter distortions in a statistical sense, a Monte Carlo analysis

was performed using an RF simulation tool. The simulation showed the effects of

the filter component tolerances, assuming a reactive lumped element low pass-high

pass ladder circuit implementation. The results of this simulation indicated that the

amplitude and group delay responses will follow the original response of the filter

without any abrupt changes in the filter response as long as the filter is reasonably

well tuned.

It is also understood that these distortions can be categorized into three major

categories: linear, parabolic, and sinusoid distortions. From the Monte Carlo simula-

tion result, considering the QAM signal bandwidth and using practical CATV system

parameters, it is understood that it is more likely for a QAM signal to experience

linear and parabolic distortions. For the QAM signal with a 6 or 8 MHz bandwidth,

it is almost impossible to experience sinusoid distortion since the granularity of the

variations of the RF filter response is much larger than an 8 MHz span. Nevertheless,

degradation effects of sinusoid distortion were simulated.

One might be concerned as to which type of these distortions will cause the worse

degradation effects on the QAM signal, or what is the sensitivity of the QAM signal

to these distortions. To address this concern, a simulation carried out on the CATV

system using Matlab, characterizing its BER degradation due to the RF filter distor-

tions. For performance measurement, the BER performance parameter was used. A

family of BER curves for the amplitude and group delay distortions were generated

with three different slopes: linear, parabolic and sinusoid for each.

Using these curves and comparing the bit to noise energy ratio(Eb/No) degrada-

tion for a probability of error (Pe) of 10−3, another curve was derived showing the
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degradation of (Eb/No) versus amplitude and group delay slopes for three different

distortion slopes.

Looking at the comparison graph for group delay distortion, it is understood that

the linear group delay slope creates the worse degradation effect on the QAM signal,

followed in order of decreasing degradation by sinusoid and the parabolic distortions.

For the amplitude distortions, on the other hand, the degradation of the BER

performance to the sinusoid amplitude response is the worst. This suggests that to

define a compensation method, sinusoidal amplitude distortion needs special atten-

tion. Note that for this simulation four cycles of the sinusoid within the QAM signal

bandwidth were used, even though this case is very rare and less likely to happen

in practice, but still this simulation was considered only for comparison with other

types of distortions. This is mostly because the granularity of variations of the filter

amplitude response is much larger than the QAM signal bandwidth. Therefore, in

practice the sinusoid distortion does not happen; also, the parabolic distortion is less

likely to happen within the pass band of the RF filter. The linear amplitude slope is

the one that needs to be dealt with most of the time.

To compensate for the RF filter distortions, two methods will be proposed. In

the first method, a complex digital low pass filter will be used after the SRRC pulse

shaping filter in the base band. This filter will have a frequency response which is the

inverse of the RF filter. The coefficients of this digital filter have to be determined in

some way, which is explained in detail in Chapter three.

The second compensation method will use a pre-equalizer located before the SRRC

filter in the base band. The coefficients of this FIR structure will be determined using

an equalizer at the receiver. The equalizer tap weights will be used as the pre-equalizer

coefficients. This method will be described in detail in Chapter four.
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3. Complex Low Pass Filter Design

3.1 Introduction

The main focus of this chapter is to design a complex low pass filter to be placed

after the SRRC pulse shaping filter in the base band portion of the IQ modulator.

The amplitude/group delay response of this filter has to be the inverse of that of the

low-pass complex equivalent of the RF filter. The compensation filter is a digital filter

whose frequency response is determined by coefficients. Since these coefficients can

be easily changed, the filter is easily adjusted or tuned.

A methodology to design a digital filter with arbitrary amplitude and group delay

response is the subject of this chapter. In Appendix A the basic concept of filtering

using the theory of Linear Time Invariant systems is explained, also the basic concept

of digital low pass filtering will be described. Two types of digital filters will be

described: Finite Impulse Response (FIR) and Infinite Impulse Response (IIR).

In order for compensating both amplitude and group delay responses, the digital

filter can be designed using an optimization method which uses the inverse of RF

filter amplitude and group delay responses in a cost function. This cost function is

used to minimize the error between the digital LPF and RF filter amplitude/group

delay responses. The optimization process needs two goals: one for the amplitude

response, and the other for group delay response. Therefore two cost functions are

needed. In the optimization algorithm it is possible to satisfy only one cost function

at a time. Therefore, it is necessary that each of the amplitude and group delay

responses be dealt with individually using separate optimization algorithms.

33



In order to compensate for the amplitude response, a digital filter has to be used

that corrects the amplitude and has no effect on the phase or group delay. In other

words, this filter will have an arbitrary amplitude response and flat group delay

response. Likewise, the digital filter correcting the group delay, must have an arbitrary

phase or group delay response and have flat amplitude response. The former can be

realized using a FIR structure, and the latter using a specific IIR structure referred

to as All Pass Filter.

The resulting two digital filters can be connected in cascade as is shown in Figure

3.1, compensating for both amplitude and group delay responses of the RF filter. In

this figure, both FIR and IIR filters could have complex coefficients, so the overall

cascaded filter. The structure and design of these two filters will be discussed in detail

in sections 3.3 and 3.5 respectively.

In Appendix B, different optimization methods are described, however, all of the

methods apply for digital filter design, but only to filters with real coefficients. Since

a complex coefficient digital filter is required, a dedicated algorithm is developed to

design complex digital FIR and IIR filter in Sections 3.3 and 3.5 respectively. Finally,

this chapter is concluded in section 3.7 by a brief discussion on the implementation

issues and the summary of the topics covered in this chapter.

Figure 3.1 The Complex Low Pass Filter in base band, consisting of two separate
filters, FIR for amplitude, and IIR for the group delay compensation
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3.2 RF Filter Characterization

For the purpose of this thesis, it is assumed that the RF filter characterization is

already performed and the RF filter amplitude and group delay responses are given.

In practice, the RF filter could be characterized in a number of ways. One way is to

excite the filter with a QAM signal and use the equalizer built into the a QAM signal

Analyzer to determine amplitude and group delay responses. A second way is to

excite the filter with a multi tone signal and use the FFT to compute the amplitude

and group delay responses.

The second method seems a more viable option. In this method a set of harmon-

ically related complex sinusoid tones will be generated. The tones can be generated

inside the FPGA that is connected to the I and Q inputs of the modulator. The com-

plex sinusoids will then pass through the RF filter. The total number of tones used

must be high enough to span the bandwidth of the RF filter with small enough spacing

that the frequency response of the RF filter can be obtained with linear interpolation.

The SRRC pulse shaping filter has to be bypassed during this process. The desired

target response is obtained by inverting the response of the RF filter in the pass band

region. The procedures for designing the FIR and IIR all pass compensation filters

will be discussed in details in section 3.3 and 3.5 respectively. Background material

in the LTI systems and optimization algorithms have been included as appendices A

and B.
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3.3 Real FIR Filter Design Review

For a better understanding of the FIR real filter design method, it is preferred to

refer to Appendix E for familiarization with the Minmax and the Remez exchange

algorithms.

3.4 Finding the Coefficients for the Compensating FIR filter

3.4.1 Introduction

The coefficients for the complex FIR filter that compensate the amplitude dis-

tortion can be found using optimization methods [25–29]. The error function is for-

mulated based on the difference between the desired and compensated amplitude

response. A norm of the error function is minimized by changing the location of the

zeros. As the value of the norm approaches zero, the resulting amplitude response

approaches the desired amplitude.

3.4.2 Using Grid search Algorithm

The FIR compensating filter can be found using a grid search. Since the filter

is complex, the zeros need not appear in conjugate pairs. however, the linear phase

requirement forces any zeros with magnitudes other than one to appear with a zero

equal to its reciprocal.

The following fundamental assumptions are made in searching for the coefficients

of the compensating FIR filter: The width of the pass band is about 30 MHz and

peak-peak amplitude variations across the band is less than 5dB.

The fundamental restriction for the compensating complex FIR filter is the linear

phase property which means zeros must appear in pairs with their reciprocals. The

search for coefficients starts with using only one complex zero (accompanying its

reciprocal), by increasing the number of zeros, the amount of error between the desired

response and the response of the filter under construction is controlled better.
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Another reasonable approach is to use a predefined real filter with a symmetrical

response to be used as default filter for the optimization process. This unique filter

could be modified to a complex FIR filter during the optimization process, which is

a reasonable assumption for compensating the RF filter amplitude response. Given

the above specification for the default filter, the number of zeros in the pass band

can be determined using some empirical methods (simulation). The starting point

would be to use 6 well placed zeros and their 6 reciprocals. The angle of these zeros

will be chosen so that 6 equally spaced zeros with equal magnitude are placed within

the pass band of the desired filter, likewise, their reciprocal zeros with same angles

and reciprocal magnitudes are placed outside of the unit circle in the z-plane. The

simulation results indicated that a filter order of 16 with 12 zeros in the pass band

yields a reasonable response with acceptable ripple in the pass band. A typical con-

figuration of zeros is illustrated in Figure 3.2. In this figure z1, z2, ..., z6 are considered

the reciprocal pairs (in magnitude) of the z17, z18, ..., z13, z14 respectively.

The next step is to define an objective function to be used during the optimization

process. A typical objective function could be the well known mean square error. It

is well known that minimizing mean square error produces overshoots at the band

edges which is referred to as Gibbs phenomenon. Nonetheless, this formulation yields

satisfactory performance for this application. If the desired response is represented

by D(!) and symmetrical response by P (!), the objective function would be

Ψ(!) = ¸[D(!i)− P (!i)]
2 i = 1, 2, ..., 6 (3.1)

where ¸ is a positive real coefficient. The filter must have a linear phase response

which forces the zeros that don’t have a magnitude of one to be accompanied by their

reciprocals. This means only one of the zeros in a reciprocal pair can be adjusted. A

simple convention for this is to independently adjust the location of the zeros inside

the unit circle and as part of the search then change the location of their reciprocals

to keep them reciprocal.
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Figure 3.2 The typical zero layout in z-plane for the default lowpass filter

The objective function only spans the pass band of the filter, since only this region

is contributing to the distortion effects. Furthermore, since the mean square error

yields overshoots at the band edges, these spots are also excluded from the objective

function frequency span to avoid overshoots. This would be a safe assumption, in

that, in the CATV modulator, the QAM carrier frequency is not set to the regions

close to band edges. The pass band is divided into six sub bands, this results in

an objective function with six maximum peaks one in each of these sub bands in

the pass band of the filter. The goal is to minimize these peak errors which means

minimizing the difference between the default response and the desired response.

For this purpose, a convergence factor Q is defined which is indicative of both the

minimum and maximum peak errors in the objective function. This convergence

factor, beside indicating the convergence of the optimization process, will force the

objective function to have equal ripple in the error function, hence equiripple pass

band.

Q =
max ∣Ψp(!i)∣ −min ∣Ψp(!i)∣

max ∣Ψp(!i)∣ i = 0, 1, ..., 6 (3.2)

where Ψp(!i) represents the local peak of the objective function Ψ(!i) and Q factor

represents the ratio of the difference of the maximum and minimum of these local
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peaks to the max peak of the objective function, indicating the convergence of this

objective function.

During the univariate grid optimization for the amplitude response, one zero at a

time will be adjusted, so that the objective function yields the minimum error for that

variable, then this process will be repeated for the other variables iteratively. This

approach yields satisfactory results for the amplitude response within a moderate time

interval. However, this method did not show similar performance and certainly not

satisfactory performance when used for the optimization of the group delay response.

The main reason for this lack of performance for group delay is that group de-

lay adjustment entails an accurate displacement of the zeros, and any slight change

in the phase of the zeros will have a substantial change in the group delay of the

corresponding sub band as well as the neighboring sub bands.

This method is iterative, as the result, it usually involves a large amount of com-

putation which is another disadvantage, and the convergence time is significant for a

reasonable grid size and tolerance.

3.4.3 Using Quasi Newton Algorithm

An alternative approach to the grid search, is some variant of the steepest descent

method, known as the Quasi Newton method. For this method the formulation of

the error function is slightly revised. Suppose the transfer function of the FIR filter is

required to approach some specified amplitude response. Such a filter can be designed

using two steps:

1. Formulate an objective function dependent on the difference between the actual

and specified amplitude response.

2. Minimize the objective function with respect to the system function coefficients

Note that the second step (minimizing with respect to the coefficient independently)

results in a real coefficient FIR filter, whereas, a complex FIR is needed. Therefore,
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instead of using the filter coefficients in the objective function independently, the

magnitude/phase of the zeros inside the unit circle will be changed independently

without any restriction that zeros occur in conjugate pairs. However, the zeros outside

the unit circle will be changed to maintain the reciprocal pairs. Then the resulting

coefficients will be used in the objective function for the calculation of the error.

The amplitude response of the filter can be expressed as M(a, !) = ∣H(e|!T )∣,
where a = [a0, a1, ..., an]

T , and ! is the frequency. Let M0(!) be the specified am-

plitude response. The difference between M(a, !) and M0(!) is the approximation

error expressed as

e(a, !) = M(a, !)−M0(!) (3.3)

The error function is sampled at frequencies (defined by sub bands) !1, !2, ..., !k

which results in the column vector

E(a) = [e1(a) e2(a) ... ek(a)]
T for i = 1, 2, ..., k (3.4)

where ei(a) = e(a, !i)

This approximation problem can be solved by finding the point a = ǎ such that

ei(ǎ) ≈ 0

For this equation to have a solution, a proper objective function must be formed which

can satisfy a number of conditions. It should be a scalar quantity, and its minimization

with respect to the point a should result in the minimization of all the elements of

E(a). Another important requirement of this function is to be differentiable, an

objective function satisfying all these requirements is what is known as the Lp norm

of E(a) such that

Lp = ∣∣E(a)∣∣p =
[

k∑
i=1

∣ei(a)∣p
]1/p

(3.5)
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where p is integer. One special case of Lp norm is where p = 2. This is the popular

Euclidian norm, the L2 norm is expressed by

L2 = ∣∣E(a)∣∣2 =
[

k∑
i=1

∣ei(a)∣2
]1/2

(3.6)

In the case where p = ∞, one can define the maximum of the error function as:

Ê(a) = max
1≤i≤k

∣ei(a)∣ ∕= 0

it follows

L∞ = ∣∣E(a)∣∣∞ = lim
p→∞

{
k∑

i=1

∣ei(a)∣p
}1/p

= Ê(a) lim
p→∞

{
k∑

i=1

[
∣ei(a)∣
Ê(a)

]p}1/p

In the above equation each of the error elements are normalized, therefore the elements

are equal to or less than unity, then

L∞ = ∣∣E(a)∣∣∞ = Ê(a)

meaning the infinity norm of the error function yields the maximum of the error

function in the band of interest.

Now that the objective function is available, the required design will be obtained

by solving the optimization problem

min
a

{∣∣E(a)∣∣∞} (3.7)

The problem stated by Equation (3.7) can be solved using an un constrained opti-

mization algorithm. Different classes of this algorithm have been developed including

the steepest descent algorithm [36]. An important class of optimization algorithm

that proved to be very efficient for the design of digital filters is the quasi Newton al-
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gorithm. It is based on Newton’s method to find the minimum point in the quadratic

convex 1function.

For more insight into the Newton’s Algorithm, consider a function f(a) of n vari-

ables, where a = [a1a2 ...an]
T is a column vector. For small change h = [h1h2 ...hn]

T ,

f(a) can be approximated with a Taylor series about point a. The error in a Taylor

series is o(∣∣h∣∣22) where o(∣∣h∣∣22) is some function of ∣∣h∣∣22 that has the property that

it approaches zero faster than ∣∣h∣∣22. This means:

f(a+ h) = f(a) +
n∑

i=1

∂f(a)

∂ai

hi +
1

2

n∑
i=1

n∑
j=1

∂2f(a)

∂ai∂aj

hihj + o(∣∣h∣∣22) (3.8)

In Equation (3.8), if the reminder o(∣∣h∣∣22) is negligible a stationary point exists in

the vicinity of point a. That stationary point can be found by setting the derivative

of f(a + h) with respect to hk for k = 1, 2, ..., n, and solving for h. From Equation

( 3.8) it follows

g = −Hh (3.9)

where

g = ∇f(a) =

[
∂f(a)

∂a1

∂f(a)

∂a2
...

∂f(a)

∂an

]T

where g and H are the gradient vector and Hessian matrix of f(a), respectively.

Therefore, the value of h that provides the stationary point of f(a) is obtained by

h = −H−1g (3.10)

Equation (3.10) provides a solution, if and only if the following two conditions hold:

1. The error o(∣∣h∣∣22) in Equation (3.8) is negligible.

2. The Hessian is non singular.

1A two variable convex function is one that represents a surface whose shape resembles a punch
bowl
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Furthermore, if f(a) is a quadratic function, its second partial derivatives are con-

stants, thus H is a constant symmetric matrix, and its third and higher derivatives

are zero. Therefore condition (1) holds. If f(a) has a stationary point and there

exists the sufficiency condition for a minimum in the vicinity of the stationary point,

then the Hessian matrix is positive definite, hence non singular. Under these circum-

stances for an arbitrary point a in the n-dimensional Euclidian space, the minimum

point can be found at ǎ = a+ h using Equation (3.10).

If f(a) is a general nonquadratic convex function that has a minimum point ǎ, then

for f(a) in the vicinity of ǎ, i.e. ∣∣a− ǎ∣∣ < ², the reminder o(∣∣h∣∣22) in Equation (3.8)

becomes negligible and the second partial derivatives of f(a) become approximately

constant. To this end, the function f(a) acts as if were a quadratic function and

conditions (1) and (2) are satisfied again. Thus, for any point ǎ such that ∣∣a−ǎ∣∣ < ²,

Equation (3.10) yields an accurate estimate of the minimum point.

Furthermore, if during the minimization of a general function f(a), an arbitrary

point a in an n-dimensional Euclidian space is considered, conditions (1) and/or (2)

maybe violated in which case Equation (3.10) will not yield the solution. If condition

(2) is violated, Equation (3.10) either has an infinite number of solutions or has no

solution at all. In this case, these problems can be overcome by exploiting an iterative

procedure in which the value of the function is progressively reduced by applying a

series of corrections to a until a point in the vicinity of the solution is obtained. When

the reminder o(∣∣h∣∣22) in equation (3.8) becomes negligible, an accurate estimate of

the solution can be obtained by using Equation (3.10). A suitable strategy to achieve

this goal is based on the fundamental property that if H is positive definite, then

H−1 is also positive definite.

Furthermore, in this case, it can be shown using the Taylor series that the direction

pointed to by vector −H−1g of Equation (3.10), which is known as the Newton direc-

tion, is a descent direction of f(a). As a result, if at some initial point a, H is positive

definite, a reduction can be achieved in f(a) by simply applying the correction of the

form h = ®d to a, where ® is a positive factor and d = −H−1g.
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On the other hand, if H is not positive definite it can be forced to become positive

definite by using some algebraic manipulation (for example, it can be changed to the

unity matrix) and again, f(a) can be reduced. In either case, the largest possible

reduction in f(a) with respect to direction d can be achieved by choosing variable ®

such that f(a + ®d) is minimized. This can be performed using one of many avail-

able one-directional minimization algorithms known as line search algorithms [36].

Repeating these steps a number of times will yield a value of a in the neighborhood

of the solution and eventually the solution itself. An algorithm based on these steps

known as Newton’s algorithm, is briefly described below.

Algorithm 1: Basic Newton algorithm

1. Input a0 and ², set k = 0.

2. Calculate the gradient gk and Hessian Hk, if Hk is not positive definite, force

it to become positive definite.

3. Calculate H−1
k and dk = −H−1

k g.

4. Find ®k, such that minimizes f(ak + ®dk), exploiting a line search.

5. Set ak+1 = ak + hk, where hk = ®kdk, and compute fk+1 = f(ak+1).

6. If ∣∣®kdk∣∣2 < ², then output ǎ = ak+1, f(ǎ) = fk+1, and stop. Otherwise, set

k = k + 1 and repeat from step 2.

Finally the algorithm is terminated if the L2 norm of ®kdk, for example, the mag-

nitude of the change in a, is less than ", this parameter is known as termination

tolerance, a small positive constant whose value is determined by the application

under question.

So far, it was assumed that the optimization problem has only one global mini-

mum. However in practice, this may not be true. An optimization problem may have

more than one local minimum, therefore a well-defined minimum may not exist. It is
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reasonable to abandon the idea of having the best solution available, and one should

limit expectation to a solution that satisfies a number of the required specifications.

Quasi Newton Algorithm

The algorithm described in the previous section has three disadvantages. First,

to obtain the gradient and Hessian, both the first and second partial derivatives of

f(a) must be calculated in each iteration, respectively. Second, in each iteration the

Hessian must be checked for positive definiteness , and if it found to be nonposi-

tive definite, force it to become positive definite. Third, in each iteration a matrix

inversion is required.

In contrast, the quasi-Newton algorithm only needs to compute the first derivative,

and it is also not necessary to invert or manipulate the Hessian. Consequently, for

general optimization problems other than convex quadratic optimization problems,

the quasi-Newton algorithm is much more efficient, and it is preferred.

The quasi-Newton algorithm, like the Newton algorithm, was originally developed

for a convex quadratic problem, and then extended to the general problem. The

basic principle is based on an approximation to the n × n inverse Hessian matrix.

The approximation matrix denoted by S is constructed using available data so that

S ≃ H−1. Furthermore, as the number of iterations increases, S becomes a more

accurate representation of H−1. For convex quadratic objective functions, the n× n

matrix H−1 becomes identical to H in n + 1 iterations, where n is the number of

variables.

Basic quasi Newton Algorithm

If the gradient of f(a) at point ak and ak+1 is gk and gk+1, respectively, and

ak+1 = ak + hk
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then the elements of gk+1 computed by the Taylor series are

g(k+1)m = gkm +
n∑

i=1

∂gkm
∂aki

hki +
1

2

n∑
i=1

n∑
j=1

∂2gkm
∂aki∂akj

hkihkj + o(∣∣h∣∣22) (3.11)

For m = 1, 2, ...n. If f(a) is quadratic, the third and higher orders derivatives of f(a)

are zero; likewise, the second and higher derivatives of gkm will vanish. Therefore

g(k+1)m = gkm +
n∑

i=1

∂gkm
∂aki

hki (3.12)

and since

gkm =
∂fk
∂akm

it follows

g(k+1)m = gkm +
n∑

i=1

∂2fk
∂aki∂akm

hki (3.13)

for m = 1, 2, ..., n. Therefore, gk+1 is given by

gk+1 = gk +Hhk (3.14)

where H represents the Hessian matrix of f(a). One can also write

°k = Hhk (3.15)

where

hk = ak+1 − ak

and

°k = gk+1 − gk

This analysis indicates that if the gradient of f(a) is known at two points ak and

ak+1, it is possible to deduce a relation that gives a certain amount of information

about H, for instance, Equation (3.15). Because H is real symmetric matrix with

n × (n + 1)/2 unknowns and Equation (3.15) provides only n equations, H can not
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be uniquely determined using Equation (3.15). One can overcome this situation by

evaluating the gradient sequentially at n+1 points, i.e. at a1, a2, ..., an, such that the

changes in a will form a set of linearly independent vectors

h0 = a1 − a0

h1 = a2 − a1

...
...

hn−1 = an − an−1

With these conditions, Equation (3.15) yields

[°0 °1 ... °n−1] = H[h0 h1 ... hn−1]

Consequently, H can be uniquely determined as

H = [°0 °1 ... °n−1][h0 h1 ... hn−1]
−1 (3.16)

The above principles gives rise to the alternative Newton algorithm

Algorithm 2: Alternative Newton algorithm

1. Input ak0 and ², input a set of n linearly independent vectors h0,h1, ...,hn−1,

and set k = 0.

2. Calculate the gradient gk0.

3. For i = 0 to n− 1 perform:

∙ Set ak(i+1) = aki + hi

∙ Compute gk(i+1).

∙ Set °ki = gk(i+1) − gki.
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4. Compute Hk, using equation 3.16. If Hk is not positive definite, force it to

become positive definite.

5. Determine Sk = H−1
k .

6. Set dk = −Skgk0 and find ®k, the value of ® that minimizes f(ak0+®dk), using

a line search.

7. Set a(k+1)0 = ak0 + ®kdk and compute f(k+1)0 = f(a(k+1)0).

8. If ∣∣®kdk∣∣2 < ², then output ǎ = a(k+1)0, f(ǎ) = f(k+1)0, and stop.

Otherwise, set k = k + 1 and repeat from step 2.

In this algorithm, the parameter ak0 denotes the initial point and ² denotes the

tolerance. ak(i+1) denotes the point ai+1 at ktℎ iteration. gki denotes the gradient

of the f(aki) at ktℎ iteration. °ki also represent the difference between the Hessian

matrix H and pseudo Hessian matrix S which in each iteration become closer to the

Hessian matrix, therefore °ki tends toward zero as the number of iterations increases.

dk represents the dierection of descent in each iteration

It is understood that the above algorithm does not compute H−1 using the second

derivatives, but rather uses the information concealed in the computed data. How-

ever, like the Newton algorithm, it is necessary, for a general nonquadratic problem,

to check, manipulate, and invert the Hessian in every iteration. In addition, the al-

gorithm requires a set of linearly independent vectors i.e., h0,h1, ...,hn−1, hence the

algorithm is of little practical use.

One can overcome this problem by generating H−1 from the data using a set

of linearly independent vectors h0,h1, ...,hn−1 that are themselves generated from

available data. This can be performed by generating the vectors

hk = −Sgk (3.17)

ak+1 = ak + hk (3.18)
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and

°k = gk+1 − gk

By making an additive correction to Sk of the form

Sk+1 = Sk +Ck (3.19)

for k = 1, 2, ..., n. If a correction matrix Ck is found such that conditions

Sk+1°i = hi for 0 ≤ i ≤ k (3.20)

hold, and the vectors h0,h1, ...,hn−1 and °0, °1, ..., °n−1 generated during this process

are linearly independent, then for the case k = n− 1 one can write

Sn[°0 °1 ... °n−1] = [h0 h1 ... hn−1]

or

Sn = [h0 h1 ... hn−1][°0 °1 ... °n−1]
−1 (3.21)

One can conclude from Equations (3.16) and (3.21) that

Sn = H−1 (3.22)

for k = n, Equations (3.17) and (3.22) yield the Newton direction, which is the

steepest descent direction

hn = −H−1gn (3.23)

Therefore, subject to conditions (i) and (ii) described earlier, one can obtain the

solution for a convex quadratic problem from Equation (3.18) and Equation (3.23) as

ǎ = an+1 = an −H−1gn

The above principle gives rise to the basic quasi Newton algorithm described next.
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Algorithm 3: Basic Quasi Newton algorithm

1. Input a0 and ², set S0 = I0, and k = 0. Compute g0

2. dk = −Skgk, and find ®k, the value of ® that minimizes f(ak + ®dk), using a

line search.

3. Set hk = ®kdk, and ak+1 = ak + hk, and compute f(k + 1) = f(ak+1).

4. If ∣∣hk∣∣2 < ², then output ǎ = ak+1, f(ǎ) = fk+1 and stop.

5. Compute gk+1, and set °k = gk+1 − gk.

6. Compute Sk+1 = Sk +Ck.

7. Check Sk+1 for positive definiteness, and if it found nonpositive definite, force

it to become positive definite.

8. Set k = k + 1 and go to step 2.

In this algorithm, the initial value of pseudo Hessian matrix S is set equal to the

identity matrix I. The vector d denotes the direction of descent in each iteration. The

parameter ® in each iteration minimizes the function f(ak + ®dk). The parameter

h represents the direction of descent at a local minimum point in each iteration. Ck

denotes the correction matrix in each iteration that builds the pseudo Hessian matrix

for the next iteration.

In algorithm 3, the set of linearly independent vectors ℎ0, ℎ1, ..., ℎn−1, are not used

as an input. In addition, the inversion of Hk is avoided. Instead, an approximation

is constructed by additive operations to Sk. However, matrices S1,S2, ... have to

be checked for positive definiteness and if they are not, modified to be so. This

may be done through diagonalization of Sk+1 and replacing any nonpositive diagonal

eigenvalues by corresponding positive ones. Although at first glance this seems to be

a radical change, it does not change usefulness. The modification serves its purpose

which is to force the iterative optimization to converge.
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Moreover, in step 2 of algorithm 3, the vector −Skgk is denoted as dk, instead

of hk in Equation (3.17), and f(ai + ®dk) is minimized during a line search process,

with respect to ®. This was done to make the algorithm applicable for both quadratic

and general nonquadratic problems, since −Skgk may not be the Newton direction.

Matrix Sk has to be positive definite in each iteration k to make sure that vector dk

is pointing toward the descent direction.

To obtain a descent direction in step 1 of the first iteration, S0 is assumed to be

the n × n unity matrix. In step 5, the calculation of vector °k is necessary for the

computation of correction matrix Ck (in step 6), this calculation is explained in more

details in the following subsection.

Generating matrix Sk+1 in each iteration

In Equation (3.19), the update formula for matrix Sk+1 has to satisfy tight require-

ments to be useful in algorithm 3. For a convex quadratic problem, Equation (3.20)

has to be satisfied and vectors h0,h1, ...,hn−1 and °0, °1, ..., °n−1 must be linearly in-

dependent. Several distinct formulas have been derived in literature to address the

updating of this type of formula. Among the early works, a so-called rank-one for-

mula was proposed, in which the correction matrix Ck is of rank-one. In recent years,

rank-two formulas were developed by Davidon-Fletcher-Powell (DFP) and Broyden-

Fletcher-Goldfarb-Shanno (BFGS) [36] [37] [38] [39] [40]. These formulas have the

important property that a positive definite matrix Sk yields a positive definite Sk+1

for both the convex quadratic problems and general nonquadratic problem. This is

contingent on the line search in step 2 of the algorithm be exact [37]. Even if an

inexact line search performed, this property may still hold, contingent to forcing a

scalar quantity inherent in the computation of Ck to remain positive.

It is understood that maintaining a positive definite sequence Sk,Sk+1, ... is very

useful in algorithm 3, since checking and manipulation of Sk+1 in step 7 of the algo-

rithm is unnecessary, hence a significant computational load is avoided, which is why
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this algorithm is very desirable. The DFP and BFGS updating formulas are given by

Sk+1 = Sk +
hkh

T
k

°T
k hk

− Sk°k°
T
k Sk

°T
k Sk°k

(3.24)

and

Sk+1 = Sk +

(
1 +

°T
k Sk°k
°T
k hk

)
hkh

T
k

°T
k hk

− hk°
T
k Sk + Sk°kh

T
k

°T
k hk

(3.25)

The condition for positive definiteness of Sk+1 in both formulas is

hT
k °k = hT

k gk+1 − hT
k gk > 0 (3.26)

One can utilize the principles stated in algorithm 3 to design the complex FIR filter.

The formulation of the objective error function can be based on the complex low

pass amplitude response and the specified desired response (as the result of RF Filer

characterization). For more clarification, a hypothetical band pass non-symmetrical

amplitude response (result of RF filter characterization) is shown in the Figure 3.3,

with its complex lowpass equivalent. Note that the RF filter is a real filter but its

response is non-symmetrical with respect to the center of its pass band. The resulting

low pass equivalent filter has complex coefficients and a frequency response that is not

conjugate symmetric. The problem is to design a low pass complex coefficient filter

with the inverse of this amplitude response using the Quasi-Newton optimization

method. The target inverse amplitude response for the complex lowpass filter is

plotted as shown in Figure 3.4. The algorithm finds the coefficients that forces the

response of the compensating filter to that of the target response in only a portion of

the pass band. This region is shown in the Figure 3.4, bounded within the interval

[A,B]. For more clarity, four QAM carriers are also shown in this figure to make a

comparison with the band of interest used during the optimization.

The basic optimization procedure is to adjust the default filter response by chang-

ing the location of its zeros in an iterative manner, such that the amplitude response

become close to that of the target response. Experimentation with Matlab simula-

tions, indicated that the best convergence speed and least error is achieved by starting
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Figure 3.3 Amplitude response of band pass (solid line) and equivalent complex
low pass (dotted line)

with a symmetrical amplitude response. The initial response uses conjugate zeros and

their reciprocals within the pass band. The independent variables were chosen to be

the zeros which determine the pass band response and located inside the unit cir-

cle (in conjunction with their reciprocals). This can be used as a constraint on the

optimization routine of the FIR section, using the zeros in the pass band as inde-

pendent variables and their reciprocals which will be computed correspondingly. The

magnitude and phase of zeros will be used as independent variables in each round

of optimization in a successive manner in order to find the best solution. Another

constraint was to define a limit for the minimum angle between adjacent zeros to be

greater than 0.01 radian/sample to avoid zero overlapping.

As mentioned earlier, the general objective function for the optimization problem

is being formulated based on the coefficients of the real FIR filter. By iteratively

changing the coefficients, the amplitude response of the compensating FIR filter will

approach the target amplitude response. That is to say, the response of the com-

pensating filter converges to the target response and the error function approaches

zero. However, in the case of a complex FIR filer with linear phase property, this
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method can not be used, since the independent adjustment of the coefficients will not

necessarily guaranty the linear phase attribute of the resulting filter.

In this particular design, in order to maintain the linear phase property, priority

will be given to the configuration of zeros and how position in the z-plane, particularly

for those located in the pass band and their reciprocal pairs. After setting the zeros

based on the quasi Newton algorithm in each iteration, the filter coefficients will

be computed according to the optimized zeros. This strategy has the pass band

zeros inside the unit circle treated as independent variables (and paired with their

reciprocals).

The zeros for a typical complex coefficient filter is shown in Figures 3.5. This filter

has 16 zeros in total, with 8 of them in the pass band. It is obvious the pass band

amplitude/phase response is mostly affected by zeros located in this region, likewise,

these zeros determine the response of the objective function. In this example four

zeros are used as independent variables and the other four zeros in the pass band

paired with them reciprocally as shown in Figure 3.5, to maintain the linear phase

property.

In general, the total number of zeros can be determined during the optimization

procedure. One can start with four zeros in the pass band and try to increase /de-

crease the number of zeros in groups of two, until an optimized response is achieved. It

was found, however, for this application and given bandwidth, that the total number

of six zeros in the pass band yields the best results.

To be more specific, in the context of the quasi-Newton algorithm, referring to

Figure 3.2, six zeros z13, z14, z15, z16, z17, z18 will be used as the independent variable

vector [a1 a2 ... a6] in the quasi-Newton algorithm. The differential increase for these

variables is the vector [h1 h2 ... h6]. This vector is used for the calculation of the

gradient vector gk and the direction of pseudo steepest descent vector −Skgk. The

step size, which controls the amount by which hk can change, controls the amount by

which the magnitude/phase of zeros will change from one iteration to the next. The
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step size decreases from one iteration to the next as the optimization progresses.

In each iteration, a line search is performed to minimize the function f(ai+®dk),

the result of this line search is the parameter ® which will be used for the calculation of

the next point and its gradient, followed by the calculation of the correction vector.

This process will be repeated iteratively until the error function become less than

the tolerance. Algorithm 3 was found to converge very quickly, usually within 8-14

iterations. In each iteration the values for all variables (in this case six) are updated,

and pertinent coefficients are calculated. Following that, the amplitude response is

computed, and then the error function.

It was found during the optimization that the euclidian norm L2 yields good

results in terms of the convergence speed and performance accuracy. Higher order

norms were tried, but did not yield better result. In order to avoid the overshoot

effects due to the L2 norm, regarding the objective function calculations, only the

pass band interval [A,B] excluding the band edges was used. Another constraint was

applied to prevent superimposing two zeros on each other.

It is worth mentioning that in the CATV system context, the whole system needs

to meet tight specifications. Among them, each modulator must comply with a

parameter known as latency, which is partly related to the response time of each

individual signal source in the system supplying the QAM signals. The compensating

complex lowpass filter will certainly add latency which is about 2 or 3 symbols.
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Figure 3.4 Amplitude response of the equivalent complex lowpass (solid line), its
inverse (dotted line) in the pass band, and the four QAM carriers.

Figure 3.5 Zero configuration for a typical complex FIR lowpass filter
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3.5 IIR Filter Design

The well known minmax algorithm, which is discussed in Appendix E, can also be

used to determine the coefficients for an IIR filter. The details of this algorithm and

its various augmentations to make it faster and less computationally intensive is ex-

tensively discussed in the literature [22] [23] [28] [29]. Therefore a detailed description

will not be presented here.

The major difference between the FIR and IIR filters is that FIR filters are uncon-

ditionally stable while IIR filters are not. The poles of the IIR filters must be inside

the unit circle for the filter to be stable. The minmax algorithm yields poles that

are inside the unit circle, hence the stability of the optimized filter is not in question.

One can refer to Mitra [41] for a fairly extensive treatment of this topic.

3.5.1 All Pass Filter Review

It was mentioned that for compensation of the RF filter amplitude distortion and

group delay, two separate filters can be used in the base band. An FIR filter with

constant group delay and arbitrary amplitude response to compensate the amplitude

response distortions, and an IIR filter with constant amplitude response and arbitrary

group delay response to compensate for the group delay distortion. A filter that has a

flat amplitude response is called an allpass filter. The allpass filter belongs to the class

of recursive filters, which means it has both poles and zeros in the system function.

An allpass filter has a system function with unity magnitude for all frequencies. The

system function of an all pass filter has the form [41]

AM(z) = ±qM + qM−1z
−1 + ... + q1z

−M+1 + z−M

1 + q1z−1 + ... qM−1z−M+1 + qMz−M
(3.27)

If the denominator of AM(z) is denoted by QM(z), then the system function can be

written as

AM(z) = ±z−MQM(z−1)

QM(z)
(3.28)
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It is understood from Equation (3.28) if the transfer function has a pole at z = re|Á,

then it also has zero at z = (1/r)e−|Á. Moreover, it is clear from Equation (3.27),

the coefficients of the numerator are the reflected coefficients of the denominator

polynomial i.e. the numerator coefficient for zk is equivalent to the denominator

coefficient for zM−k. The reflected coefficients of a degree-M polynomial can be

shown to satisfy QM(z) = z−MQM(z−1). Equation (3.28) implies the poles and zeros

in a real coefficient all pass filter appear in reciprocal form. Thus, Equation (3.28)

can be written as

AM(z−1) = ±zMQM(z)

QM(z−1)
(3.29)

Therefore

AM(z)AM(z−1) =
z−MQM(z−1)

QM(z)

zMQM(z)

QM(z−1)
= 1. (3.30)

the frequency response is therefore

∣AM(e|!)∣2 = AM(z)AM(z−1)∣z=e|! = 1 (3.31)

For recursive filters to be stable all poles must be inside the unit circle. Group delay

which is denoted by ¿(!), is denoted by

¿(!) = − d

d!
[µ(e|!)], (3.32)

where µ(!) = arg {A(e|!)}. A property of an allpass filter, which must have all its

poles inside the unit circle and all its zeros outside, is the unwrapped phase function

µ(!) monotonically decreases with ! for 0 ≤ ! ≤ ¼. Furthermore, this implies

µ(¼)− µ(0) = M¼, this make ¿(!) positive everywhere between ! = 0 to ! = ¼. For

an all pass filter the delay for a sinusoid with frequency !o is

Delay(!) = −µ(!o)

!o

=
1

!o

∫ !o

0

¿(!)d! (3.33)

This means that the delay at !o = ¼ of an order M allpass filter is equal to M

samples. For the case of the complex allpass filter, the above relation does not hold.
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The complex allpass function must have its zeros located at the reciprocal of the

poles, but neither the zeros or the poles need a conjugate. This translates into µ(!)

decreasing with ! and −¼ ≤ µ(¼)− µ(0) ≤ 0
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3.6 Complex IIR Design using Quasi Newton

The purpose of the complex recursive filter structure is to compensate for the

group delay distortion caused by the RF filter. The objective group delay response

is obtained through the RF filter characterization process, in the same way as the

amplitude of the RF filter is measured. It is assumed that the target group delay

response of the compensation filter is calculated from the measured response, as was

done for the amplitude distortion. The basic concepts presented in sections 3.4.3 and

3.5.1 can be exploited to find the coefficients for the complex recursive group delay

compensation filter. The same quasi-Newton algorithm may be used. The important

point here is that in the case of the coefficients for the FIR filter, there was no concern

regarding the stability of the optimized filter. In the case of allpass filter, which has

poles, it is vital to make sure the filter is stable; this entails performing optimization

under a constraint. The constraint is that the magnitude of the poles must be less

than unity. A practical value, due to round off error and with a safe margin, that

could be used is r ≤ 0.99. This will guaranty that during the optimization process

the poles are always inside the unit circle.

A good strategy for the coefficient finding algorithm is to start from a pre-defined

all pass filter with a flat group delay response. Starting with four poles located inside

the unit circle (and four reciprocal zeros outside the unit circle) yields a satisfac-

tory compensation group delay response in 10-15 iterations. The magnitude and the

phase of the poles change independently, whereas the zeros change as reciprocals of

the poles. For more clarification on the subject, the pole/zero configuration and the

group delay response of a typical allpass filter is shown in Figures 3.6, and 3.7 respec-

tively. The arbitrary group delay of the compensating all pass filter make it possible

to compensate for most of the group delay distortions. The starting point for the

optimization process is to define the objective function as the difference between the

predefined group delay with flat response and the measured group delay response

found during the RF filter characterization.
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Figure 3.6 Pole/Zero configuration for a complex allpass filter

Figure 3.7 The group delay response for the complex allpass filter with poles and
zeros as shown in Figures 3.6
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For the allpass group delay compensating filter, only the poles were considered inde-

pendent variables in optimization. The zeros were paired with poles as their recipro-

cals. Using the quasi Newton algorithm explained on page 50, the variable vector ai

is defined by the vector of poles of the allpass filter as ai = [p1p2 ...pi]. Also the vector

used to make the differential increase to the variable ai is the vector h = [h1 h2 ...hi],

applying the constraint on the magnitude of the poles pi = rie
|Ái such that ri ≤ 0.99

for stability concerns.

The group delay response of the allpass filter is calculated and compared with the

target group delay, using the L2 norm to measure the difference. The difference is

minimized by finding the gradient gk and the descent vector −Skgk, and moving in

that direction. Also, the matrix S and its positive definiteness is checked in each

iteration by calculating the eigenvalues of this matrix, and is forced to be positive

definite if needed. As explained earlier, S must be positive definite for −Sg to point

toward the descent direction in each iteration. To find the amount by which the

steepest descent vector needs to be scaled for the optimum step size on each iteration,

a line search is performed by minimizing the function f(ai + ®dk) versus ®, this

yields a reasonable step size for the next iteration. This process is repeated in an

iterative manner until the minimum of the objective function is found which makes

the error function as small as possible. The convergence speed depends on the step

size chosen for the differential increment h, the resolution of the line search to find the

parameter ®, the allpass filter order, the required accuracy, and the target response.

If these parameters are chosen with discretion, the optimization converges within

10-20 iterations. During the optimization process it was observed that the group

delay of the allpass filter converges to the target group delay in the band of interest

satisfactorily with small error. However, the norm square of the error is not as low

as what was obtained from the amplitude optimization. Increasing the filter order

reducing the step size of parameters h and ®, did not noticeably reduce the mean

acquired error. This is due to the structure of the allpass filter with magnitude of

the poles less than 0.99. Although the allpass filter does allow it to have arbitrary
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group delay, the phase is monotonically decreasing with ! and the group delay is

always positive. Another interpretation is that in the case of amplitude optimization

it is possible to define the amplitude response in terms of a set of linear combination

of orthogonal functions (cosine function), whereas for the group delay this is not

possible.

3.7 Implementation

3.7.1 Introduction

After finding the coefficients for the polynomials that determine the nonrecursive

and recursive compensation digital filters, a structure for these filters must be selected.

Some of the available structures are: Direct Form I, Direct Form II, cascade of second

order sections and polyphase. Each structure has advantages and disadvantages. Each

also has different sensitivity to finite register length effect. In this thesis however, the

advantages and disadvantages are not going to be treated comprehensively, rather

only a short discussion is included.

3.7.2 FIR implementation

The FIR filter structure can be categorized as:

1. Direct form

2. Cascade second-order-section form

3. Polyphase realization

Direct form

A well known structure to implement FIR filters is the direct form, in which,

the multiplier coefficients and the coefficients of the system function polynomial are

exactly the same. A filter with the direct form structure is also referred to as tapped

delay line or a transversal filter. The transpose of this form is known as direct form
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Figure 3.8 FIR Direct form I structure

II structure. Both direct forms are canonic in terms of delays, meaning the number

of delay lines is optimized and is minimum. A direct form I, FIR is shown in Figure

3.8.

Cascade form

A higher order FIR filter transfer function can be realized as cascaded second-

order FIR sections. In this regard, the system function H(z) can be factorized and

written in the form

H(z) = ℎ[0]
k∏

k=1

(1 + ¯1kz
−1 + ¯2kz

−2), (3.34)

where, k = (M − 1)/2 if M is odd, and k = M/2 if M is even, also ¯2k ∕= 0. Each

second order section can be implemented using direct form or transposed direct form.

The virtue of exploiting the second-order implementation is that the truncation errors

will not propagate through the whole FIR structure. Figure 3.9 illustrates the cascade

structure.

Polyphase realization

An interesting form of FIR realization is based on polyphase decomposition of its

system function, which produces a parallel structure [42]. The system function can

be expressed as a sum of two terms: one term containing the even index coefficients
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Figure 3.9 FIR cascade structure for sixth-order filter

and the other the odd index coefficients, as shown in Figure 3.10. That is to say:

H(z) = E0(z
2) + z−1E1(z

2) (3.35)

where

E0(z) = ℎ0[0] + ℎ0[2]z
−1 + ℎ0[4]z

−2 + ℎ0[6]z
−3 + ℎ0[8]z

−4,

E1(z) = ℎ1[1] + ℎ1[3]z
−1 + ℎ1[5]z

−2 + ℎ1[7]z
−3,

(3.36)

and ℎ[n] is the impulse response of the filter.

Equation (3.35) is generally referred to as a polyphase decomposition of the system

function. The sub filters E0(z) and E1(z) can be realized using any FIR implemen-

tation technique discussed earlier. The polyphase realizations are generally used in

multirate digital signal processing applications where the output is immediately down

sampled [42]. For some applications this structure is computationally efficient, but

for this application there is no computational advantage.

Figure 3.10 FIR Poly Phase realization of an FIR transfer function
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Finite word length effects

Another possible source of error that needs special attention is the effect of finite

word length, which encompasses the effects of truncating the output of multipliers

and adders as well as the effect of representing filter coefficients with a finite length

binary numbers. The coefficients of the compensating complex FIR filter, are assumed

to have infinite word length. However, in practice the coefficients are represented by

finite words, the length of which is dictated by the available hardware. The coefficients

have to be quantized to a certain resolution which introduces error. This error can

be treated as additive error. This quantization error generated due to the truncation

of the coefficients, can be modeled as follows:

Ĥ(z) =
M−1∑
n=0

ℎ̂[n]z−n =
M−1∑
n=0

(ℎ[n] + e[n])z−n, (3.37)

where Ĥ(z) is the system function of the filter that is implemented. This can be

rewritten as:

Ĥ(z) = H(z) + E(z), (3.38)

where

E(z) =
M−1∑
n=0

e[n]z−n. (3.39)

The error e[n] depends on the type of FIR implementation. For the direct form I FIR

structure, the error can be propagated through the filter. However, for the cascade

of second order sections structure the error will not propagate and this structure

produces a small error if not the minimum e[n].

3.7.3 IIR implementation

The basic IIR filter system function is represented by a rational function in the

z-domain, as given by

H(z) =
Y (z)

X(z)
=

p0 + p1z
−1 + p2z

−2 + ...+ pMz−M

d0 + d1z−1 + d2z−2 + ...+ dNz−N
(3.40)
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In the time domain, for a causal IIR filter, one can use the difference equation of the

form,

y[n] = −
N∑

k=1

dk
d0

y[n− k] +
M∑

k=0

pk
d0

x[n− k] (3.41)

From Equation (3.41) it is obvious that to compute the ntℎ output sample, the knowl-

edge of several past samples of the output sequence is needed. This means that the

realization of the IIR filter needs feedback from its output.

In general, the realization of an IIR filter with order N requires 2N + 1 unique

coefficients, this means, it requires 2N + 1 multipliers and 2N adders. As with FIR

filters, IIR filters have a direct form structure in which the multiplier coefficients are

exactly the same as the system function polynomial coefficients.

A possible IIR realization of this form can be obtained by decomposing H(z) into

H(z) = H1(z) ∗H2(z) where

H1(z) =
Y (z)
1

= P (z) = p0 + p1z
−1 + ... pMz−M

H2(z) =
1

X(z)
= 1

D(z)
= 1

d0+d1z−1+ ... dNz−N

(3.42)

It can be seen that the H1(z) is an FIR filter which can be realized using FIR direct

form technique as before. The H2(z), in the case of N = 3 can be looked at in the

time domain as

y[n] = w[n]− d1y[n− 1]− d2y[n− 2]− d3y[n− 3], (3.43)

Two structures can be connected in cascade and the resulting structure known as

direct form I, consists of an FIR form and an IIR form which is not canonic, since it

uses 2N delays to implement an N order IIR filter. After some manipulation of the

transfer function, the canonic form shown in Figure 3.11 can be derived. Different

types of IIR implementation techniques are as follows
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1. Direct form

2. Cascade of second-order-sections

3. Parallel Realization

One can refer to text books such as Mitra [41] for a comprehensive description of

various types of implementations for the IIR filter.

Stability concern

For a recursive digital filter, the main concern is how the stability of the filter is

affected by the truncation of the coefficients. The truncation error can shift poles

from inside to outside the unit circle, making the IIR filter unstable. The poles must

be far enough from the unit circle so that practical truncation resolution will not

move them outside the unit circle.

Figure 3.11 IIR Direct form II structure
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3.8 Summary

In this section, in order to explain how the coefficients for the complex lowpass

baseband filter are found, a brief mathematical representation of Discrete-Time LTI

systems in the time domain and the frequency domain was reviewed. During this

process, the system function in the z-domain for nonrecursive and recursive digital

filters was introduced. The concept of filtering and FIR and IIR structures was

described. As well, the concepts of linear phase and constant amplitude response

were discussed.

Since the aim of this chapter was to find the complex compensation filters, which

was done with an iterative computer search, a short review on the subject of opti-

mization was presented. This was followed by a brief review on the application of

some algorithm such as weighted Chebyshev, minmax algorithm, the Remez exchange

algorithm, also their mathematical formulations were studied. After the background

was established, the well known Quasi-Newton algorithm was described, this algo-

rithm proved to be well behaved, yielding a satisfactory accuracy for the amplitude

response of the amplitude compensation FIR filter.

The allpass structure was used for the group delay compensation filter. The coeffi-

cients were found using the same quasi Newton algorithm by adjusting the magnitude

and phase of the poles.

Finally, a brief description on the implementation techniques for FIR and IIR

filter structures and some issue related to the hardware restrictions was presented.

These issues included truncation error and techniques to alleviate artifacts of their

errors.
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4. Complex pre Equalizer Design

4.1 Introduction

In this chapter, the RF filter distortion is compensated using a filter located prior

to the pulse shaping filter that operates on the data prior to up sampling. Such a filter

is referred to as a pre-equalizer. The algorithm that determines the coefficients of the

pre-equalizer does not need a target response so does not require characterization of

the RF filter. A brief review of the equalization algorithms will be presented here,

then its application for finding the coefficients for a complex baseband compensator

will be discussed. For a more detailed description of the equalizer theory, refer to

Appendix F.

4.2 Statement of the Problem

The RF filter distortions in the IQ modulator of a CATV system will create Inter

Symbol Interference, and cause some impairments on the QAM signal attributes such

as signal to noise ratio, modulation error ratio (MER), and the received bit error rate.

These errors need to be dealt with by employing some compensation techniques.

In this chapter, the equalization method will be used to obtain a complex base

band compensator. The equalizer used to obtain the coefficients of the pre-equalizer

will be placed in the receiver after the matched filter. The equalizer adaptively char-

acterizes the channel response, employing the inherent statistical metrics embedded in

the received signal. Once the equalization is completed, the equalizer’s tap weights,

represents approximately the inverse of the RF filter response. These tap weights
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are used as the coefficients of the complex base band compensator which has a feed

forward structure. This will force the ISI of the whole system to zero, hence a flat

channel response with no distortion.

To be more precise, this process has two different modes. In characterization

mode, the compensator acts transparently and has no effect on the system, and

the equalizer characterizes the RF filter frequency response. In the second mode,

once the characterization is performed, the tap weights generated as a result of the

equalization, will be used as the coefficients of the complex pre-equalizer in the base

band that compensates for the distortions of the RF filter.

There are two types of equalizers: a symbol spaced equalizer and a fractional

spaced equalizer. A symbol spaced equalizer operates at the symbol rate and uses

the decision variable as input. The taps are updated on each symbol time Tsym. A

fractional spaced equalizer uses a higher rate input. The equalizer input is the output

of the match filter, which operates at a rate of at least twice the symbol rate. The

taps are updated at a fraction of symbol time, e.g. at half the symbol time, T/2.

In symbol spaced equalization, the equalizer input is after the down sampling of the

matched filter (SRRC) in the receiver, while in the fractional spaced equalizer, the

equalizer is immediately after the matched filter in the receiver, and before the down

sampling.

The fractional space equalizer has an advantage over the symbol spaced equalizer

in that it is less sensitive to timing error, the disadvantage is that it can not be used

to characterize the amplitude response in the region between the adjacent carriers.

However, For the application in hand, the equalizer used to find the tap weights is

in a receiver with no timing error, so the symbol spaced equalizer is used. The block

diagram of a CATVmodulator that shows the locations of the symbol spaced equalizer

in the receiver and the symbol spaced pre-equalizer in the transmitter is shown in

Figure 4.1. The tap weights for the pre-equalizer are determined without the pre-

equalizer in the circuit. The block labeled ”pre-equalizer” in Figure 4.1 shows the

location in which the pre-equalizer resides after the tap weights are determined. The
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Figure 4.1 The modulator with pre-equalizer placed before the SRRC pulse shap-
ing filter, followed by the test receiver containing equalizer block after
the match filter.

tap weights of the pre-equalizer are determined in the receiver of the system shown in

Figure 4.1. The receiver first demodulates the I and Q signals and then filters them

with a match filter which has an inherent down sampler. The down sampled signal

is then used as the input to the equalizer. The equalizer also receives the original

base band I and Q signals from the modulator on another input port called ”desired

input”. Using the statistical properties of the I and Q signals, also comparing with the

desired signal, the equalizer is able to characterize the channel frequency response,

which in turn will be used to generate the channel tap coefficients or tap weights.

These tap weights, if used as the coefficients of the complex base band equalizer in

the modulator, can compensate for the distortions caused by the RF filter.

4.3 Equalization Theory

4.3.1 Introduction

The aim of this section is to give some background on equalization theory. To this

end, the topics relevant to this research are covered. A more detailed description is

presented in Appendix F. More sophisticated treatment can be found in the literature:

Haykin [30], Farhang [43], Sayed [31], Proakis [44].
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4.3.2 Optimum Filtering

Generally, during an equalization process in the receiver, a reference data sequence

is used which is referred to as the desired sequence, trying to equalize the received data

sequence such that it becomes very similar to the desired sequence. The equalized

sequence is the result of the received sequence passing through an FIR structure with

certain coefficients. Optimum filtering refers to a process that finds the optimum

coefficients for this FIR structure (referred to as tap weights) in the equalizer that

minimize the error between the equalized sequence and the desired sequence. This

error function is also referred to as the mean square error which is the mean of the

square of the magnitude of the error between the desired and equalized sequences.

This function is represented by

²2 = d(n)− w(n)∗x(n)

where d(n) is the desired sequence, x(n) is the input sequence and w(n) is the coef-

ficients of the FIR filter. The filter coefficients that yield the minimum mean square

error, is referred to as Optimum or Winner filter. A block diagram of this filter is

shown in Figure 4.2.

The coefficients of this filter can be derived using the statistical properties of the

input and desired sequence, such as the autocorrelation of the input sequence denoted

by R, and also the cross correlation between the input and desired sequences, denoted

by P, then the optimum FIR filter weights can be computed using

wopt = R−1P

where wopt is the optimum filter weight vector, assuming the input/desired sequence

is a WSS stationary process 1 [45].

1An stochastic process is said to be stationary if its statistics do not depend on the time origin.
In addition, if its autocorrelation function only depends on the time difference (¿), it is Wide Sense
Stationary(WSS) as well.
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Figure 4.2 The block diagram for the optimum linear filter design

4.3.3 Adaptive Filtering

In the optimum filtering problem, a priori knowledge of the statistics (R and P) of

the input sequence is needed, however, in practice this information is not available. To

resolve this issue, an adaptive algorithm can be used which starts from an initial point

(with small amount of statistical information), and iterates using the information

embedded inside the input sequence to compute the next iteration coefficients. In

this way the algorithm converges toward the final coefficients that yield the lowest

mean square error and is very close to the optimum solution, contingent on the input

sequence being a WSS stationary process. The important parameter for this equalizer

is the convergence rate, which determines how fast the algorithm converges.

4.3.4 Linear LMS Equalizer

This equalizer uses a recursive adaptive algorithm in which the necessary statis-

tical information is obtained iteratively. the error function ²2 = d(n) − w(n)∗x(n),

where n represents the iteration number, is a convex function that has a local mini-

mum. This minimum point can be obtained using an algorithm referred to as steepest

descent [43]. The general formulation for this algorithm is:

w(i+ 1) = w(i) + ¹(P −Rw(i))

where i indicates the iteration number, R = x(n)x(n)H and P = x(n)d(n)H in

each iteration, w(i) represents tap weights in each iteration and ¹ is the convergence

rate. Although, R and P are not necessarily an accurate representation of the au-
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tocorrelation/ cross correlation function, but if computed and averaged over a large

number of iterations, they become very close to these functions, and the tap weights

converge asymptotically to the optimum minimum of the convex error function. Sub-

stituting for R, P and n for i, it yields

w(n+ 1) = w(n) + ¹x(n)e∗(n)

where ¹ is the convergence rate and determines how fast the algorithm converges.

Design consideration

It was mentioned earlier that the intention is to design complex base band com-

pensation filters exploiting the features of the equalization technique. The very funda-

mental question is: What is the appropriate equalizer for this application? To address

this question, the attributes of this application that must be taken into account are

listed as:

1. The characterization process will be performed in the lab, and the transmission

medium is coaxial cable, hence the effect of noise is negligible and the channel

is not time varying. Therefore, the test conditions are almost ideal in terms of

the channel additive noise or fading effects, etc.

2. In this application, the original I and Q signals will be provided for the equalizer

to be used as the desired signal during the equalization process.

3. The whole process needs to be software controllable.

4. The characterization of the amplitude and group delay response requires a cer-

tain amount of accuracy dictated by DOCSIS spec, hence the equalization al-

gorithm must meet the minimum of these requirements.

5. The characterization of the RF Filter should be done within a reasonable time

period, therefore the equalization convergence time must meet this requirement.
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In the above list, the first and second items alleviate the burden of dealing with noise

and channel variations for the candidate equalizer in that the channel is very well

behaved and does not indicate any unexpected variations. Also, the effect of additive

noise are to be excluded from the process. Moreover, the original symbols are provided

to the equalizer to be used as the desired signal, hence there is no concern about the

symbol timing errors or timing jitter and carrier recovery or synchronization errors,

which are common concerns during the demodulation process. The third item is also

assumed to be a given by default and the whole process is to be performed using

automatic test software.

Therefore, the main parameters contributing to the selection of the proper algo-

rithm seems to be items four and five. The accuracy needed for the amplitude and

group delay responses are specified by DOCSIS [32] standard for gain variation and

MER, i.e., the gain variation between any two adjacent carriers must be less than

0.2 dB, although this does not directly impose any requirement for the amplitude

variations within the QAM carrier, but this implies that the accuracy of compensa-

tion needs to be comparable to this limit. On the other hand, the amplitude/group

delay variation within the QAM signal bandwidth will have degradation effects on

the quality of the QAM signal itself, and there are performance metrics such as MER

that can be used to evaluate the accuracy of the equalizer in terms of amplitude or

group delay accuracy as was indicated in chapter two.

At the first glance, the linear LMS algorithm using the descent gradient method

appears to be a viable candidate as it converges reasonably fast, and also has reason-

able accuracy. however, there are two main concerns about this algorithm as

1. Finite FIR length

2. Noise enhancement effect

The FIR length concern arises from the fact that, the effect of the channel (in this

case an RF filter) can be considered as an FIR structure with its transfer function
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denoted as H(z). In the equalizer the effect of the channel will be compensated, which

implies that in the equalizer almost the inverse of the channel transfer function will be

produced, therefore the equalizer generates a transfer function of 1
H(z)

. This suggests

that ideally an IIR structure should be used in the equalizer, or an FIR structure

with infinite length, for a perfect compensation. This is not, however, realizable. A

finite FIR will be implemented and this imposes some error on the accuracy of the

resulting compensator. Furthermore, in the linear LMS algorithm method, since the

estimated channel is in the form of 1
H(z)

, any big notch in the channel will give rise to a

big amplitude peak in the compensator filter. The channel nulling on the amplitude

response occurs once the transfer function of the channel has a zero near the unit

circle. In case of the presence of additive noise on the channel, this noise will be

amplified or enhanced considerably, degrading the signal to noise ratio. This concern,

however, may not be important in this particular application since the transmission

medium is the coaxial cable and the effect of noise is almost negligible. In addition, as

it was mentioned in Chapter two, the variations of the RF filter amplitude response

are controlled by the component tolerances, thus such a big null in amplitude response

is not likely to occur.

The other concern is related to the accuracy of frequencies close to the Nyquist

range, this concern arises when a symbol spaced equalizer is used. Generally the sym-

bol spaced equalizers are prone to the timing jitter errors which causes the frequencies

close to Nyquist range to not exhibit an ideal accuracy.

Looking at the Figure 4.3 the frequency response of the matched filter (SRRC)

for a typical communication system is plotted indicating the frequency Rs/2 as half

the symbol rate. In the presence of timing error, the resulting frequency response

of the matched filer will be deflected from the ideal response. To investigate the

effect of timing error on the performance of the match filter, a simulation was per-

formed and the results for different timing errors as a portion of symbol time of

0.0625, 0.125, 0.250Tsym are shown in Figure 4.4. As a result, the amplitude response

degradation at near Nyquist rate are almost 0.25, 1.5, and 5 dB respectively. The al-
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Figure 4.3 The matched filter frequency response including the Nyquist range

ternative viable option would be to use a fractionally spaced equalizer. In this method

the equalization process occurs in a fraction of symbol time i.e., half or quarter of

symbol time, and the update rate of equalizer parameters is at frequencies higher

than the Nyquist rate. The fraction-based equalizer precedes the match filter and is

not sensitive to the timing error like the symbol based equalizer. This entails putting

the compensator after the match filter in the transmitter which implies running the

compensator filter at higher speed, meaning the whole operation needs to run much

faster than its baseband counterpart.

A reasonable solution is to use a symbol based equalizer that works in training

mode, this equalizer uses some known symbols (pilot) to characterize the transmission

channel (RF filter) and adjust the symbol timing, after the correct timing is acquired

the timing error vanishes, yielding adequate accuracy in the Nyquist frequency region.

As stated before, due to the ideal test condition the symbol timing jitter is not a

concern in this application. For the purpose of this thesis, a symbol spaced equalizer

with a LMS algorithm was chosen, and the simulation results prove that this technique

performs satisfactorily.

In terms of the FIR filter length used in equalizer, ideally the FIR length should

be infinite to represent an IIR filter with a transfer function 1
H(z)

, but it can be
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Figure 4.4 The matched filter frequency response, and its sensitivity to timing
inaccuracy close to the Nyquist range

estimated with a practical finite length that yields the required accuracy. The FIR

length depends on the extent to which the amplitude of the RF filter varies, and also

the required accuracy. To investigate this further, a simulation was set up in Matlab

and an RF filter with sharp transitions of about 25dB was characterized using an

LMS equalizer in training mode, this range of variations is much more than what is

needed in reality but it can prove the ability of this type of equalizer in compensating

large distortions.

The simulation was performed in Matlab using the actual parameters that will

be used in a typical QAM signal i.e., the symbol rate Rs = 5360537 sym/s, roll

off factor = 0.12. The simulation results indicated that an FIR structure with a

sufficient number of taps, in this case 69, achieves adequate accuracy for the whole

band, including frequencies in the vicinity of the Nyquist frequency, with a step size

of ¹ = 0.001.

Looking at Figure 4.5, the solid line represents the original RF filter amplitude

response, and the dotted line shows the equalized inverse amplitude. It is obvious
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Figure 4.5 The channel amplitude frequency response and its equalized inverse

that the inverse amplitude has an acceptable accuracy. Also, looking at Figure 4.6,

the solid line shows the RF filter group delay variations within the QAM signal

bandwidth and the dotted line shows the equalized group delay showing the inverse

of the RF filter group delay distortion with a very good accuracy. Figure 4.7, the

error function versus time (symbols), indicates that the error approaches zero within

5 msec (for Rs = 5360537 sym/s), which is a reasonably short time interval. The

un-equalized constellation is shown in Figure 4.8, and the equalized constellation

is shown in Figure 4.9. It should be noted that in reality the amplitude variations

within a QAM signal are much less than what was used in this simulation in the

order of 2-5 dB without a null in the band. In reality the number of taps needed for

the equalizer is much less than 69, and typically about 10-30 taps is needed, also the

convergence time is much less.

Given the above simulation results on the requirement of this thesis, the LMS

algorithm appears to perform satisfactorily and this algorithm was chosen for the

equalization process.
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Figure 4.6 The channel group delay response and its equalized inverse

Figure 4.7 The error signal versus time (symbol)

81



Figure 4.8 The QAM signal constellation before equalization

Figure 4.9 The QAM signal constellation after equalization
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Figure 4.10 The Complex Feed Forward structure placed before the SRRC pulse
shaping filter in the modulator

4.4 Implementation

The implementation of a symbol spaced equalizer involves using a pre-equalizer in

the form of a feed forward structure placed before the match filter in the transmitter.

The coefficients of this structure are determined during the equalization process as

the tap weights.

Since the distortion effects on the QAM signal are complex in nature, the resulting

inverse response is also complex, implying that the feed forward structure has to be in

complex form comprised of two real and imaginary sections. The real and imaginary

parts of the tap weights will be used for each part individually. Figure 4.10 shows

this structure in more detail.
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4.5 Summary

In this chapter, an alternative method was investigated for the purpose of com-

pensation of the RF filter distortion. After some equalizer theory review, some key

parameters of the equalizer were studied, an efficient algorithm in terms of conver-

gence and accuracy was evaluated, and its attributes such as convergence and mean

square error were characterized.

A particular type, so called symbol-spaced algorithm was studied. It has some

disadvantages such as sensitivity to the timing error, but one can overcome this error

by using a training mode equalizer to acquire accurate symbol timing.

In order to evaluate the performance of LMS equalizer for compensating large

channel distortions, a simulation was setup in Matlab. The simulation results indicate

that this equalizer is able to converge in a reasonably short time with adequate

accuracy. This type of equalizer was chosen, and in the next chapter its performance

will be compared with the first compensation method by using the complex low pass

filter to improve the MER at the output of the IQ modulator.
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5. Simulation Results

5.1 Introduction

The focus of this chapter is to determine the effectiveness of correcting distortion

of an RF filter using a low pass baseband filter. The results for the complex low pass

filter designed by optimization and equalization methods are compared. In addition

the sensitivity of optimization with respect to key parameters is discussed. The

performance measures of convergence and mean square error are both used. Finally,

the performance of the compensating filter is evaluated by simulation in terms of the

modulation error ratio (MER)1 in a typical CATV setting.

The test bed for the simulation is a CATV digital communication system using the

parameters dictated by DOCSIS. These parameters are: 16 QAM modulation with

a symbol rate of 5360537 sym/s, and roll off factor of 0.12. The simulation setup is

shown in Figure 5.1. The output of the IQ mapper is up sampled by 16 (this block

is not shown in Figure 5.1). Referring to this Figure, it should be noted that during

the compensation through the complex base band filter, the feed forward structure

is bypassed. Also during the MER calculation, the MER block is switched to the

output of the match filter (SRRC). During equalization the MER block is switched

to the equalized output of the equalizer block. Finally, the performance of these two

methods in tandem will be compared.

1For the definition of MER refer to the appendix D

85



5.2 Optimization results

5.2.1 Amplitude response

There is no universal method to determine the point in time that an algorithm

converges. In each iteration the descent gradient vector −Skgk, which is pointing in

the descent direction, needs to be calculated. Also, the parameter ®k is calculated

through a univariate grid search. The quantity −®kSkgk is the optimum step in the

descent direction. As the optimization proceeds in each iteration the magnitude of

−®kSkgk becomes smaller and smaller as the point of the minimum is approached.

There is a correspondence between the magnitude of −®kSkgk and the closeness

to the minimum point. Therefore, this parameter is used to indicate the point in

time that the algorithm converges. Once this parameter is smaller than a required

tolerance (tol), the optimization will be terminated. Moreover, the norm square of

error function (MSE), as the result of difference between the specified response and

optimized response, can be used as alternate convergence metric.

To examine the capability of the optimization algorithm in terms of optimizing

different amplitude and group delay responses, one can refer to the Monte Carlo

simulation results in chapter two, the range of variation of amplitude /group delay

responses is limited to ±2dB. In order to show the optimization performance, one

approach would be to show the evolution of the amplitude response in each iteration.

Figure 5.1 The simulation setup, FFF pre equalizer placed before SRRC filter, and
complex LPF placed after the SRRC filter in the modulator, followed
by the test receiver containing equalizer and MER measurement block
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However, this is not practical, therefore only the results of some selected iterations

are presented in Figure 5.2. It is obvious that the amplitude response is approaching

the target response iteratively. For this particular problem it takes some 17 iterations

to complete this optimization with (∣ − ®kSkgk∣ < 10−5). To better understand the

convergence of the optimization process, the variations of the pseudo optimum descent

vector pointing in the descent direction in each iteration is indicated in Figure 5.3.

Also the zero plot of the optimized filter is shown in Figure 5.4.

5.2.2 MER performance results

The improvement in MER is demonstrated with and without the compensation

filter present. Referring to the BER simulation results performed in Chapter 2, the

BER performance is more susceptible to parabolic and linear amplitude distortions.

In this simulation, different amplitude slopes were examined and the resulting MER

degradations for a CATV 64 QAM signal with a symbol rate of 530537 sym/s and

roll off factor of 0.12 are measured. The results are shown in Figure 5.5
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Figure 5.2 The evolution of optimized amplitude response in the 2nd, 6th, and
12th iterations toward the desired response.

Figure 5.3 Magnitude of descent gradient vector −®kSkgk(solid line), and MSE in
each iteration(dotted line)
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Figure 5.4 The zero plot of the compensation filter

Figure 5.5 MER without the compensation filter (solid line) and MER with the
compensation filter (dotted line) vs. amplitude slopes in the RF filter.
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5.2.3 Group delay response

The quasi-Newton algorithm is used to find the coefficients of the allpass filter

that compensates for the group delay distortion. The initial filter is a real allpass

filter with IIR structure. Since the poles and zeros are reciprocally paired to yield a

flat amplitude response, the poles were chosen as independent variables of objective

function and the zeros were considered as reciprocals of the poles. This objective

function is iteratively optimized so that the resulting group delay response approaches

the target response. This implies that an objective function will be formed which is

defined in the form of norm square of the difference between the specified response

and the response of the filter under optimization. This particular optimization is a

constrained optimization with the constraint being the magnitude of poles, ½pole <

0.99 to ensure stability. Another constraint is that the angle between two poles must

be greater than 0.01 radians/sample to prevent overlapping the poles. The group

delay optimization is accomplished only in the band of interest (pass band) not the

whole Nyquist band. From the optimization results, it is understood that optimizing

the group delay is not as efficient as the amplitude optimization. This is partly due

to the fact that the phase response in an allpass filter is monotonically decreasing

with frequency, and by changing the group delay response for one spot, the group

delay response of other regions will also change and is very sensitive to the pole/zero

variation. The group delay response is not well behaved and usually the gradient of

the error function with respect to the pole/zero variations yields very large values.

For the group delay optimization, like amplitude optimization, the descent gradi-

ent vector pointing to the descent direction is represented by −®kSkgk, when −®k is

being computed iteratively via a univariate grid search. Once the norm square of the

descent gradient vector is less than a specified tolerance (∣ − ®kSkgk∣ < 10−3), the

optimization will be terminated. For more clarification, the optimization result for

one group delay response of a typical RF filter is shown in Figure 5.6, followed by the

mean square error in Figure 5.7, and the norm square of the descent gradient vector

in each iteration in Figure 5.8.
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5.2.4 MER performance results

Since the optimization results indicated a moderate performance for the group

delay optimization process, one would intuitively expect that the MER improvement

as a result of this optimization is reasonably well. To further investigate this intuitive

observation, the same simulation setup was used and the RF filter with various group

delay slopes was plugged into the CATV system. The linear slope group delay distor-

tion has the most degradation effect on the BER. Thus this type of distortion which

outweighs all other distortions, was used during the simulation and performance test.

In Figure 5.9 this linear group delay and the optimized response is shown, it

is understood that the compensated response is very close to the desired response.

Various linear group delays with increasing slopes were generated for this simulation.

The results agree with the preliminary intuitive observation, indicating that the group

delay optimization has a modest performance for the small amount of group delay

distortions.

The results of MER simulation for a CATV 64 QAM signal with roll off = 0.12

and symbol rate = 5360537 sym/s are shown in Figure 5.10. Looking at Figure 5.10,

it is obvious that the amount of MER improvement for a group delay slopes of 0.2

and 1.8 nsec/MHz is 2dB and 14 dB respectively. In other words, the precision of

group delay optimization is about to 0.2 nsec/MHz for the symbol rate of 5360537

sym/s. One could increase this resolution by increasing the up-sampling rate.
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Figure 5.6 Group delay response of optimizations process, desired (solid line), and
optimized(dashed line)

Figure 5.7 The mean square error between desired and optimized response
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Figure 5.8 The norm square of descent gradient vector ∣ − ®kSkgk∣

Figure 5.9 The desired linear slope group delay (dashed line) and compensated
response (solid line )
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Figure 5.10 The MER without group delay compensation filter (solid line) and with
compensation filter (dotted line) versus the slope of the group delay
distortions.
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5.3 Equalization results

The performance of the equalization-based compensation is investigated using a

simulation setup similar to the one used for the optimization method. To perform an

exhaustive test on the performance of the equalizer, the worst case group delay type,

linear slope group delay, was generated with different slopes (nsec/MHz). In order

to obtain satisfactory results, the LMS equalizer parameters need to be optimized.

While running in training mode, it was empirically found that 19-30 taps will work

reasonably well for a range of group delay slopes from 0.27 to 1.9 nsec/MHz, provided

the reference tap is in the range of tap number 9 to 21. The step size, ¹, was chosen

to be 0.001 for all simulations.

The results with and without a pre-equalizer are shown in Figure 5.12. From this

Figure it is obvious that the equalizer has very good performance even at very low

group delay slopes, where the improvement in the MER is approximately 17 dB. This

method will add to the latency of the system, the typical latency for the equalization

method is about 15-21 symbol time.
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Figure 5.11 The MER results for the distorted amplitude (solid line)and equalized
channel(dotted line)for different linear slopes

Figure 5.12 The MER results without pre-equalizer (solid line) and with pre-
equalizer (dotted line) versus the slope of the group delay distoriton
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5.4 Performance Comparison

Finally in this section the performance of the complex lowpass compensation filter

is compared with the performance of the pre-equalizer in terms of their improvement

on the MER. The MER performance comparisons for compensating the amplitude

response distortions are presented in Figure 5.13. At 0.05 dB/MHz the complex

lowpass filter improves the MER by 12 dB, while the pre-equalizer improves the

MER by 20 dB. Clearly the pre-equalizer is better by at least 8dB.

The MER performance of both compensation methods with respect to group de-

lay is shown in Figure 5.14. The pre-equalizer offers 17 dB better improvement for

group delay distortions with slopes as low as 0.2 nsec/MHz. Clearly the pre-equalizer

is a better method by at least 15 dB for group delay distortions with slopes from

0.22 nsec/MHz to 1.9 nsec/MHz. However, in terms of the latency, the optimization

method adds less latency to the system (about 2 symbol time), whereas the equal-

ization method adds some 15-21 symbol time. In the applications that the latency is

very important the optimization method is preferred. Furthermore, the optimization

method compensates for multiple carriers at a time, whereas the equalization method

compensates only for single carrier at a time.
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Figure 5.13 The MER without any compensation (solid line), with the complex
lowpass filter compensation (dotted line+) and with pre-equalization
(dash -dot-∗) versus the amplitude distortions of the RF filter

Figure 5.14 The MER without any compensation (solid line), with the complex
lowpass compensation filter (dotted line o) and with pre-equalization
(dot-∗) versus the slope of the group delay distortions in the RF filter
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6. Conclusion

6.1 Summary

In a CATV system, the RF Filter amplitude and group delay distortions will

cause a reduction in the MER. In chapter two it was shown that these distortions

have a complex degradation effect on the QAM signal when translated into base band

frequency. Also the degree and shape of the distortion, which were classified as linear,

parabolic and sinusoid, affect the MER which directly effects the BER performance.

The distortion is corrected in two different ways. One is with a complex coefficient

filter whose amplitude and group delay responses are the inverse of the RF filter

response. The other method is to use a symbol spaced pre-equalizer that operates

on the data. In the former method, the coefficients for the filter that compensates

for the amplitude/group delay were found iteratively using the mean squared error

between the compensated and target responses. The total compensating filter was

broken into two filters in cascade: One compensating for amplitude and the other for

group delay. For compensating amplitude distortion, an FIR structure was employed

for the lowpass filter. For compensating the group delay distortion an IIR structure

in the form of an allpass filter was employed.

The Quasi-Newton optimization algorithm [24] was used to determine the com-

plex coefficients of these two structures. The very important feature of the group

delay compensation filter is the reciprocal relationship between poles and zeros. The

amplitude compensation filter has a similar relationship between the zeros inside the

unit circle and the zeros outside the unit circle. In each iteration, the steepest de-

scent direction vector with optimum magnitude, −®Skgk, is obtained to compute the
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coordinates of the next point. During this optimization, the optimum range of step

sizes for the gradient direction vector as well as the line search required to compute

the optimum magnitude of direction vector ®k was obtained that yielded the best

results. The resulting FIR filter required 32 zeros for acceptable performance. A

similar strategy was employed to design the allpass IIR filter with constant ampli-

tude and arbitrary response, but here the poles were used as independent variables

and zeros were chosen as their reciprocals. To ensure stability, the magnitudes of the

poles were constrained to be less than 0.99. For the allpass filter, an order of 6 to 20

was required to get acceptable performance. These two structures, were connected in

cascade and placed after the matched filter in the modulator.

The pre-equalizer method used a complex coefficients feed forward structure (FIR)

placed prior the pulse shaping filter in the modulator. A well suited equalization

algorithm with satisfactory performance in terms of convergence rate and accuracy,

was found to be the linear LMS algorithm. This algorithm when used with sufficient

number of taps and small convergence step size, yields satisfactory results for the

range of variations that are typical and shown through the RF simulation results in

chapter two. The equalizer was trained in a test receiver. Once the tap weights were

acquired, they were used as the complex coefficients of the pre-equalizer prior to the

pulse shaping filter in the modulator.

The simulation results presented in Chapter 5 suggest that the quasi-Newton al-

gorithm performs reasonably well for the amplitude compensation. Examining this

functionality, different amplitude responses with variations up to ±2.5 dB were tested,

and the developed algorithm was able to make the compensation filter response con-

verge to the target response, yielding a very good MSE error of within 0.02 dB.

For the case of group delay optimization it was shown that the group delay com-

pensation has modest performance for the subtle group delay distortions within 0.05

sample, this resolution translates to a group delay of 0.58 nanosecond for a symbol

rate of 5360537 sym/s.
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6.2 Results

The performance was verified for amplitude distortion that was proportional to

frequency, the slope of the distortion was varied from 0.05 to 0.85 dB/MHz. The

results indicated that uncompensated MER is between 34.7 dB and 13.3 dB for this

range of amplitude slope. Once the FIR amplitude compensator is used, the MER is

between 46.7dB and 31.4 dB, the improvement is between 12 and 18.1dB. This means

that the amplitude optimization method, improves the MER of distorted QAM signal

by at least 12 dB.

In the case of group delay optimization, the optimization result was verified by

simulating the effect of different group delay slopes on the QAM signal. The slope

ranged from 0.27 to 1.8 nsec/MHz. The uncompensated MER ranged from 38 dB to

21.3dB. Applying the IIR group delay compensator, the MER ranges from 39.7 dB to

35.1 dB, which is an improvement of 1.8 dB to 13.8 dB. This simulation indicates that

the group delay optimization algorithm offers smaller improvement on MER at small

group delay distortions. The MER improvement diminishes for subtle distortions as

predicted from the optimization results. This is mostly due to the fact that allpass

filter has a monotonically decreasing phase response and is not able to compensate

for certain shapes of group delay.

The equalization method, shows much better results under similar conditions. In

terms of amplitude slopes for the same range of variations, the MER with pre-equalizer

is 55.2 dB to 49.5 dB, which shows 20.5 to 36.2 dB improvement with respect to the

un-equalized QAM signal. This amount of improvement outperforms the optimization

method by 8.5 dB to 18.1 dB for different slopes. The superiority of the pre-equalizer is

more obvious from the group delay compensation stand point. When the pre-equalizer

is used for various group delay slopes from 0.27 to 1.8 nsec/MHz, the pre-equalized

MER ranges from 56.5 dB to 49.9 dB showing an improvement of 18.5 dB to 28.6

dB. This is better than the optimization performance by at least 16.8 dB to 14.8 dB.

This suggests that the equalization method has very good precision and can improve
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MER substantially, even for small group delay slopes.

Given the above simulation results, one can conclude that the equalization method

outperforms the lowpass filter method in both the amplitude and group delay com-

pensations by a least 8.5 dB and 16.8 dB respectively. However, from the latency

point of view, the optimization adds less latency to the system than the equalization

method, this can be very important is some applications. In addition, optimization

method can compensate for multiple carriers at a time, as oppose to the equalization

method which can only compensate for a single carrier at a time.

6.3 Future work

The important aspects of the DSP compensation was discussed in this thesis.

However, some topics such as finite word length for a practical implementation of

FIR/IIR structure was left for the future work. Here is a list of topics that will be

left for work to be done in the future:

1. Comprehensive mathematical analysis on the effect of distortions on the QAM

signal.

2. Implementation and filter structure effects such as overflow and finite length

word.

3. Detailed filter characterization process.

4. The effect of compensation filters on the latency of the modulator in the whole

CATV system.
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A. LTI Discreet-Time Systems Review

To get a better understanding of how complex low pass filtering works, it is helpful

to refer to the basic theory of the LTI systems, where the very basic concept of

filtering comes from. One can refer to text books such as Oppenheim, [35] Rice [46]

for a detailed description of Linear Time Invariant systems.

The input-output relation of an LTI discrete-time system with an impulse response

ℎ[n] is defined by the convolution sum of equation A.1 represented in the mathematical

form of:

y[n] =
k=∞∑

k=−∞
ℎ[k]x[n− k] (A.1)

Where, y[n] and x[n] are the output and the input sequences respectively. The input

sequence x[n], is in the form of complex exponential as

x[n] = e|!n, −∞ < n < ∞ (A.2)

Then from equation A.1 the output is

y[n] =
k=∞∑

k=−∞
ℎ[k]e|!(n−k) =

Ã
k=∞∑

k=−∞
ℎ[k]e−|!k

)
e|!n (A.3)

The equation A.3 can be rewritten as

y[n] = H(e|!)e|!n, (A.4)
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Where the system transfer function is

H(e|!) =
k=∞∑

k=−∞
ℎ[n]e−|!n (A.5)

Here the quantity H(e|!) is known as frequency response of the LTI discrete time

system providing the frequency domain behavior of the system. from equation A.5 it

is understood that to be more accurate, the H(e|!) is representative of the discrete-

time Fourier Transform (DTFT) of the system impulse response ℎ[n].

From the equation A.3 it is obvious that with a complex sinusoidal input sequence

x[n] with angular frequency !, the output is also a sinusoidal complex sequence with

the same angular frequency, but is weighted with a complex amplitude H(e|!) that is

a function of input frequency ! and the system’s impulse response coefficients ℎ[n]. It

can be shown that the H(e|!) completely characterizes the LTI discrete-time system

in the frequency domain.

In general, the discrete-time Fourier transfer function H(e|!) is a complex function

of ! and period of 2¼ can be represented based on its real and imaginary parts

H(e|!) = Hre(e
|!) + |Him(e

|!) = ∣H(e|!)∣e|µ(!)

Where Hre(e
|!) and Him(e

|!) are the real and imaginary parts of H(e|!) respectively,

and

µ(!) = arg{H(e|!)}

In the definition declared above, the quantity ∣H(e|!)∣ is called magnitude response

and the quantity µ(!) is known as Phase response of the LTI discrete-time system.

It should be noted that the magnitude and phase functions are usually real func-

tion of !, whereas, the frequency response is complex function of !. As it discussed

before, with a real impulse response coefficients ℎ[n], the magnitude is an even func-

tion of !, this implies that ∣H(e|!)∣ = ∣H(e−|!)∣, and the phase function is an odd

function of !,i.e., µ(!) = −µ(−!). In the same manner Hre(e
|!) is even, and Him(e

|!)
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is odd function.

A.1 LTI Discrete-Time system in Frequency-Domain

The input-output relation of LTI discrete-time system in the frequency domain

can be represented as

Y (e|!) =
n=∞∑
n=−∞

y[n]e−|!n =
n=∞∑
n=−∞

Ã
k=∞∑

k=−∞
ℎ[k]x[n− k]

)
e−|!n,

After interchanging the summation signs and rearranging it follows

Y (e|!) =
k=∞∑

k=−∞
ℎ[k]

Ã
n=∞∑
n=−∞

x[n− k]

)
e−|!n

It can be further simplified to

Y (e|!) =
k=∞∑

k=−∞
ℎ[k]

Ã
l=∞∑

l=−∞
x[l]e−|!l

)
e−|!k

It is obvious that the quantity inside the parentheses is X(e|!) which is the DTFT

of the input sequence x[n], a final rearrangement yields

Y (e|!) =

Ã
k=∞∑

k=−∞
ℎ[k]e−|!k

)
X(e|!) = H(e|!)X(e|!) (A.6)

In equation A.6 H(e|!) is the frequency response of the LTI discrete-time system

as defined earlier in the equation A.5, therefore equation A.6 relates the input-output

of the LTI system in the frequency domain. Further more from this equation one can

obtain the frequency response of the LTI discrete-time system as a ratio of the output

to the input in the frequency domain.

H(e|!) =
Y (e|!)

X(e|!)
(A.7)
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Generalization of the frequency response function H(e|!) gives rise to the concept of

transfer function which is more helpful for the realization of the digital filter. On the

other hand, considering the z-transform of the impulse response of an LTI system,

known as transfer function, is a polynomial in z−1, for a system with real impulse

response, this is a polynomial with real coefficients. Further more, usually the LTI

digital filter can be represented using linear difference equation with constant and real

coefficients. This will yield a real rational function of variable z−1 which is the ratio

of two polynomials in z−1 with real coefficients that is easier to handle for synthesis.

Therefore, using the development of input-output relation of LTI system, a dif-

ferent form of representation for the transfer function of the system can be derived.

One can describe this input-output relationship using the z-transform convolution

properties, for the input-output relation y[n] = x[n]⊛ ℎ[n], gives Y (z) = H(z)X(z).

This in turn yields

H(z) =
Y (z)

X(z)
. (A.8)

The quantity H(z) is z-transform of the impulse response sequence of the system

ℎ[n] and is referred to as transfer function. In a particular condition, if the Region Of

Convergence (ROC) of H(z) includes the unit circle, it can represent the frequency

response of H(e|!), in other words, the discrete-time Fourier transform of the impulse

response of LTI digital filter, by H(e|!) = H(z)∣z=e|! . For a real transfer function

H(z) the following expression is true

∣H(e|!)∣2 = H(e|!)H∗(e|!) = H(e|!)H(e−|!) = H(z)H(z−1)∣z=e|!

The inverse z-transform of the transfer function H(z) yields the impulse response

ℎ[n]. As an alternative, once H(z) is written in the form of the ratio of two polyno-

mials, the partial fraction expansion method can be used to derive ℎ[n].
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A.2 Filtering

The discrete-time LTI system can be used as a filter, that is, to pass certain

frequency components in an input sequence, while attenuating the other frequencies

possibly without introducing any distortion, such a system is called digital filter. After

filtering, the same input sequence can be recovered using the inverse discrete-time

Fourier transform in the form of Fourier integral given by

x[n] =
1

2¼

∫ ¼

−¼

X(e|!)e|!d!

In order to further investigate the concept of filtering, a real coefficient LTI

discrete-time system can be characterized by a magnitude function

∣H(e|!)∣ ≃
⎧
⎨
⎩

1, ∣!∣ ≤ !c,

0, !c < ! ≤ ¼
(A.9)

Where the !c defines the cut off frequency of filter which also known as pass band

frequency of the filter, the frequencies between !c and ¼ are in the stop band region.

If an input with two sinusoidal tones applied to such a LTI discrete-time filter

such as this input x[n] = A cos!1n + B cos!2n where 0 < !1 < !c < !2 < ¼, because

of linearity property of the LTI system, it follows that the output of the this filter is

given by

y[n] ≃ A ∣H(e|!1)∣ cos(!1n+ µ(!1)),

showing that the LTI discrete-time system performs as a low pass filter, the output

single tone with frequency of !1 has magnitude dictated by ∣H(e|!1)∣ and its phase

determined by the argument of H(e|!1).
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A.3 FIR Structure

The LTI discrete-time system can be classified based on its impulse response length

or the method by which the input-output relation is determined. If impulse response

has a finite length, i.e, ℎ[n] = 0 for n < N1 and n > N2 if N1 < N2 this is known as

finite impulse resonse (FIR) discrete-time system, and the convolution sum reduces

to the following form

y[n] =

k=N2∑

k=N1

ℎ[k]x[n− k]. (A.10)

Looking at A.10 which is a finite convolution sum, this equation can be used

to calculate the y[n] using simple addition and multiplication. The main advantage

of the FIR digital filter is its linear phase property. In an special case, with non-

causal and symmetrical impulse response, this filter yields zero phase filter, that is

the transfer function is completely real with no phase shift. However, due to the

non-causal property of zero phase filter, it is non realizable. To make it realizable,

one can shift the impulse response to the right (delay) by certain number of samples

to make it causal. The symmetry property of FIR filter implies that ℎ[n] = ℎ[n−N ]

for 0 ≤ n ≤ N considering filter order N even, it follows [47]

H(e|!) = e−|N!/2

⎧
⎨
⎩

N/2∑
n=0

a[n] cos(!n)

⎫
⎬
⎭

Where a[0] = ℎ[n
2
], a[n] = 2ℎ[N

2
− n], 1 ≤ n ≤ N

2
for N even.

Similarly for antisymmetry impulse response with N even, ℎ[n] = −ℎ[N − n] for

0 ≤ n ≤ N , implying a constant group delay of N
2

samples. The expression for

frequency response is

H(e|!) = e−|N!/2e|¼/2

⎧
⎨
⎩

N/2∑
n=1

c[n] sin(!n)

⎫
⎬
⎭
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Where c[n] = 2ℎ[N
2
− n], 1 ≤ n ≤ N

2
for N even.

The very important symmetry property of the impulse response of the linear phase

FIR filter, give rise to another important property of this type of filter which makes

the location of its zeros reciprocal, because the transfer function H(z) can be written

as

H(z) =
N∑

n=0

ℎ[n]z−n =
N∑

n=0

ℎ[N − n]z−n, (A.11)

Using the symmetry condition ℎ[n] = ℎ[N − n] and changing the variable m =

N − n, one can write the rightmost expression in equationA.11 as

H(z) =
N∑

n=0

ℎ[m]z−N+m = z−N

N∑
n=0

ℎ[m]zm = z−NH(z−1), (A.12)

From equation A.12 it is inferred that if z = »0 is a zero of H(z), so is z = 1
»0
.

Further more for an FIR filter with real impulse response, the zeros occur in complex

conjugate pairs. This implies that a zero at z = »0 is associated with a zero at z = »∗0 .

Thus, a complex zero that is not located on the unit circle, is associated with a set

of four zeros determined by z = re±|Á, z = 1
r
e±|Á.

However this is not true for the case of linear phase FIR digital filter with non real

coefficients. In such a case, each zero is paired only with its reciprocal in magnitude,

and there is no conjugate pair, which yields complex coefficients linear phase FIR

filter. The complex coefficient FIR filter is the one that will be useful in the application

in hand, in which a non symmetrical impulse response, and frequency response, is

desirable in order to compensate the non symmetrical distortions caused by RF filter.

The zero locations in z-plane for the real coefficient FIR filter (conjugate pairs) is

shown in the Figure A.1.

Further more it is understood that for FIR filter, from equation A.8, the denomi-

nator polynomial is one, and FIR filter is defined by only the numerator polynomial
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coefficients, implying that all poles located at origin, hence no stability concerns.

Figure A.1 Location of conjugate zeros and their reciprocals for real coefficient
linear phase FIR
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A.4 IIR Structure

In the infinite impulse response (IIR) filter, the impulse response length is not

finite, this implies that there is feed back from output to input of this structure, as

well as the feed forward path from the input to the output as it was for the FIR case.

Referring to the equation A.8, the transfer function of the IIR filter can be shown

as [41]

H(z) =
Y (z)

X(z)
=

p0 + p1z
−1 + p2z

−2 + ...+ pMz−M

d0 + d1z−1 + d2z−2 + ...+ dNz−N
(A.13)

This is a rational function in z−1 and is the ratio of two polynomials in z−1, multiplying

the numerator and denominator by zM and zN , respectively, the transfer function in

equation A.13 can be defined as a rational function in z

H(z) =
Y (z)

X(z)
= zN−M p0z

M + p1z
M−1 + p2z

M−2 + ...+ pM
d0zN + d1zN−1 + d2zN−2 + ...+ dN

(A.14)

Another way to represent the z-transfer function of the LTI discrete-time system,

is to factor out the denominator and numerator of equations A.13, it follows

H(z) =
p0

d0

∏M
k=1(1− »kz

−1)∏N
k=1(1− ¸kz−1)

(A.15)

Or for the transfer function in equation A.14, yields

H(z) =
p0

d0
zN−M

∏M
k=1(z − »k)∏N
k=1(z − ¸k)

(A.16)

Where in equations A.15, and A.16, the »1, »2, ..., »M are the finite zeros, and ¸1, ¸2,

..., ¸N are the finite poles of the transfer unction. If N > M , (N-M) additional zeros

located at origin z = 0, and if N < M , (M − N) additional poles located at origin

z = 0.

In an IIR structure the denominator coefficient is not equal to one, hence the

filter contains poles and zeros. If the poles and zeros appear in conjugate pair, the
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polynomial coefficients will be in the form of real numbers, hence real IIR filter.

Otherwise, if either of the pole and zeros appear in non conjugate pairs, the filter

coefficients will be in complex form. For the stability concerns, the magnitude of the

poles has to be less than one; in other words, the poles have to be located inside the

unit circle. This requirement can be discussed in different form, an LTI digital filter

is Bounded In, BoundedOut (BIBO) stable if its impulse response sequence ℎ[n] is

absolutely summable, i.e.,

S =
∞∑

n=−∞
∣ℎ[n]∣ < ∞ (A.17)

A.5 Stability of Complex IIR Filter

Since a complex coefficients IIR filter will be designed in this thesis, it is beneficial

to extend the stability criterion of the real coefficient IIR to the complex IIR form,

also using the proof for the real impulse response, one can establish the proof for the

BIBO condition for complex impulse response as follows:

∣y[n]∣ =
∣∣∣∣∣

∞∑

k=−∞
ℎ[k]x[n− k]

∣∣∣∣∣ <
∞∑

k=−∞
∣ℎ[k]∣∣x[n− k]∣, (A.18)

Since the input is bounded, hence 0 ≤ ∣x[n]∣ ≤ Bx, using equation A.17, it follows

∣y[n]∣ ≤ BxS, thus y[n] is also bounded.

To prove for the complex coefficient filter, one can use the reverse order from

output to input and show that if a bounded output is produced by bounded input,

the complex impulse response is bounded too. Consider the following bounded input

defined by

x[n] =
ℎ∗[−n]

∣ℎ[−n]∣
It follows:

y[0] =
∞∑

k=−∞

ℎ∗[k]ℎ[k]
∣ℎ[k]∣ =

∞∑

k=−∞
∣ℎ[k]∣ = S (A.19)
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The equation A.19 shows that for the bounded input to the LTI system with

complex coefficient, the output is also bounded, so the system is BIBO if and only if

∞∑

k=−∞
∣ℎ[k]∣ = S ≤ ∞
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Complex Filter implementation

In order for the compensation filter to be realizable, the system function of this

filter has to be converted to the real form with real coefficients. To derive a relation-

ship to satisfy this purpose, a single pole transfer function will be analyzed and the

results can be extended to any transfer function with any number of poles.

The impulse response of a single pole can be represented by ℎ[n] = pnu[n], also

the transfer function in z-domain can be written as

H(z) =
∞∑
n=0

pnz−n =
∞∑
n=0

(pz−1)n =
1

1− pz−1
(A.20)

If nominator and denominator of the transfer function H(z) multiplied by (1−p∗z−1),

this will yield

H(z) =
1

1− pz−1
=

1− p∗z−1

(1− pz−1)(1− p∗z−1)
=

1−ℜ{p}+ | ℑ{p} z−1

1− 2ℜ{p} z−1 + ∣p∣2z−2
(A.21)

Where, p∗ denotes the conjugate of the complex pole, ℜ{p} represents the real part of

the pole, and ℑ{p} represents imaginary part of the pole, and both are real quantities.

Therefore, the system function of a single complex pole, can be decomposed into two

real functions that are completely uncoupled. If the two uncoupled portions of a

single complex pole represented by Hre(z) and Him(z) , respectively, the following

expressions hold

Hre(z) =
1−ℜ{p} z−1

1− 2ℜ{p} z−1 + ∣p∣2z−2
(A.22)

Him(z) =
ℑ{p} z−1

1− 2ℜ{p} z−1 + ∣p∣2z−2
(A.23)

One can extend the single complex pole relationship in equations A.22 and A.23 to

the case of two complex poles as

H(z) = [Hre1(z) + |Him1(z)] [Hre2(z) + |Him2(z)]
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where

Hre1(z) =
1−ℜ{p1} z−1

1− 2ℜ{p1} z−1 + ∣p1∣2

Him1(z) =
ℑ{p1} z−1

1− 2ℜ{p1} z−1 + ∣p1∣2

Hre2(z) =
1−ℜ{p2} z−1

1− 2ℜ{p2} z−1 + ∣p2∣2

Him2(z) =
ℑ{p2} z−1

1− 2ℜ{p2} z−1 + ∣p2∣2

After some manipulation, it follows

H(z) = [Hre1(z)Hre2(z)−Him1(z)Him2(z)] + {[Hre1(z)Him2(z)−Him1(z)Hre2(z)]

(A.24)

The expression in Equation (A.24) shows a relationship by which the transfer func-

tion for two complex poles can be defined in terms of the uncoupled real filters with

symmetrical coefficients, the block diagram of this representation is shown in Figure

A.2. The expression in Equation (A.24) can be extended to a general form of complex

filter with multiple poles to derive the transfer function expression for any number of

poles as a composition of two real functions for the real and imaginary parts respec-

tively. This means that the complex filter comprising of complex poles is precisely

realizable utilizing individual real filters with real coefficients.

Similar reasoning can be used for the complex FIR case for a single complex

zero which is trivial, then extended to any number of zeros. Thus, any complex

recursive and nonrecursive filter can be realized using two separate real filters with

real coefficients. Therefore, in general, the following expression for the coefficients of

the complex filter holds

Ccomplex = Creal + | Cimaginary

Knowing that the complex coefficient FIR filter is comprised from two individual real

coefficient FIR filters that are completely independent, and referred to as uncoupled
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FIR filters, it is conceivable that each of these real FIR filters can be implemented

individually, using the techniques mentioned previously. 5

Figure A.2 Overall transfer function of Two complex poles represented by individ-
ual real and imaginary parts of each complex pole
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B. Optimization Algorithms

It was stated before that the optimization method is a viable option in order to

design the compensation filters. In this section a detailed description for the design

of non-recursive and recursive filters will be presented. The pivoting topic in this

section is the idea of optimization algorithm. Both the non-recursive and recursive

filters to be design in this section, has two common attributes, both may have a

complex coefficient, and they both use the notion of reciprocal zeros and poles.

In section 2.4 it was explained that the band pass distortions created by RF filter,

once translated into the base band, will manifest themselves as a base band complex

distortion effect, on the QAM signal. This complex nature of the distortions in base

band gives rise to the fact that the compensation filters are likely low pass filter

having complex response, and complex coefficients, hence complex zeros and poles.

For this reason each pole and zero in the positive and negative portion of the

z-plane has to be dealt with individually. For instance, during an optimization algo-

rithm, in the case of non-recursive FIR filter, the location of zeros in the positive and

negative portion of z-plane will be adjusted individually in an iterative manner.

It is obvious that in the case of complex filter, both the positive and negative

sides of the frequency response of the low pass complex filter are important, and has

to be taken into account during the optimization process. It is conceivable that the

main task of an optimization algorithm in this application is to adjust the position

of zeros and poles until the desirable response obtained, and the difference between

the frequency response of the filter under optimization become close to that of the

specified response.
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Furthermore, the minimum number of the required zeros or poles has to be deter-

mined adaptively. For the case of FIR filter, the important question is what would

be the initial layout for the zeros in the z-plane, to achieve the desired response

as quickly as possible. Since the amplitude response of the RF filter, after being

translated into the base band, are more or less close to a symmetrical response with

respect to the center of the filter pass band, a zero configuration that yields an ideal

symmetrical amplitude response would be a good starting point. Then adjusting the

magnitude/phase of zeros to achieve the desired response. The similar technique can

be used for the IIR filter.

Adjusting the location of the poles and zeros in an adaptive manner, can be done

using the optimization method. Two optimization methods Grid search and Gradient

algorithms, will be presented and their performance will be compared. In this context,

some fundamental concepts and parameters needs to be defined.

B.1 Background

This section is presented to give an overall background about optimization tech-

nique, One can refer to the text books for optimization [48] [36] [49] to acquire more

insight into this topic. Most of the topics presented here are inspired from these

references.

B.2 Objective function

The optimization algorithm seeks to minimize or maximize an objective or cost

function. This function is usually in the form of an error function as a difference of a

specified response and the problem in hand.

B.3 Convex set and function

Convex sets are used in the formulation of optimization problems [48]. A convex

set defines a vector space such that all points between the two end points located on
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a line are also included in this vector space. Its definition is:

x = ¸a+ (1− ¸)b, 0 ≤ ¸ ≤ 1

This expression defines a convex set S that any point between a and b, is also a

member of the set S including points a and b.

The convex function is important in that, usually the objective or cost function(or

part of it) is in the form of Convex or Concave function, and the optimization algo-

rithm is trying to find the minimum or maximum point of this function.

B.4 Mean Value Theorem

If f is a differentiable function in the closed interval [a, b], there exist a point (c)

in [a, b] such that

f ′(c) =
f(b)− f(a)

b− a

The mean value theorem implies that the slope of f(x) at point c has the same slope

as the line connecting between points a and b. This theorem also implies that if point

c is found, then no other derivative higher than f ′(x) would be required to evaluate

f(b), this concept can be extended to the higher order of derivatives assuming the

f(x) itself is the ntℎ derivative of another function. Then c can be defined as the

convex combination of a and b as follows:

c = ¸a+ (1− ¸)b, 0 ≤ ¸ ≤ 1

B.5 Minimum of Convex Function

The necessary condition for the minimum of a convex function f at point x0 is

f ′(x0) = 0. Moreover, the sufficient condition for this point, follows from approxi-

mating the function using the truncated Taylor series
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f(x0 + ℎ)− f(x0) =
ℎ2

2
f ′′(¸x0 + (1− ¸)(x0 + ℎ)) > 0 0 ≤ ¸ ≤ 1

Since ℎ2 is always positive, also from the continuity of f ′′(x0), if f
′′(¸x0 + (1 −

¸)(x0 + ℎ)) > 0 it follows that f ′′(x0) > 0 meaning the point x0 is a minimum point.

This conclusion was made assuming the f(x) and its first n derivatives are continuous,

then f(x) has a relative maximum or minimum if and only if n is even, where n is

the order of first non-vanishing derivatives at x0.

A generalization of the above formulation can be considered in an n-dimensional

case, where x̄ = (x1, x2, ..., xn) represents a point in an Euclidian space Rn, in this

context f(x̄) will represent f(x1, x2, ..., xn) and f(x̄) is convex over convex set X in

Rn if for any two points x1, x2 in X and for all ¸, 0 ≤ ¸ ≤ 1, there exists

f [¸x̄1 + (1− ¸)x̄2] ≤ ¸f(x̄1) + (1− ¸)f(x̄1)

Note that the sum of convex functions is also a convex function. Using the trun-

cated Taylor series and extend it over n-dimensional case, if f(x̄) is continuous and

has continuous first and second order partial derivatives over an open convex set X

in Rn, then for any two points x̄1, and x̄2 = x̄1 + ℎ in X, there exist a ¸, 0 ≤ ¸ ≤ 1,

such that for a quadratic function yields

f(x̄2) ≃ f(x̄1) + ∇̄Tf(x̄1)ℎ+
1

2
ℎTH[¸(x̄1) + (1− ¸)(x̄2)]ℎ (B.1)

In equation B.1, ∇̄f = ( ∂f
∂x1

, ∂f
∂x2

, ..., ∂f
∂xn

) and H is Hessian matrix of f(x̄), that is,

the square matrix of the second partial derivatives of f(x̄) evaluated at x̄1.

H =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂2f
∂x2

1

∂2f
∂x1∂x2

... ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

2
... ∂2f

∂x2∂xn

... ... ... ...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

... ∂2f
∂x2

n

⎤
⎥⎥⎥⎥⎥⎥⎦

(B.2)

125



In the case of multi variable function, for minimum at x̄ = x̄0, there is ∂f(x̄0)
∂xi

= 0

where i = 1, 2, ..., n

Assuming the existence and continuity of the second partial derivatives, ∂2f
∂xi∂xj

will

have the same sign of ∂2f
∂xi∂xj

[¸(x̄0)+(1−¸)(x̄0+ℎ)], therefore, if ℎTH[x̄0]ℎ is negative,

f(x̄0 + ℎ)− f(x̄0) will also be negative, which means the point x̄0 is minimum in this

multi variable convex function.

A quadratic form ℎTH[x̄0]ℎ is negative if and only if the Hessian is a negative

definite matrix. This criterion will be further used during the steepest descent opti-

mization algorithm for FIR filter design in section 3.3. For example, one method for

the negative definite test of the Hessian matrix, entails the calculation of the eigen-

values of the Hessian matrix [50] Once they are all positive, Hessian is said to be

positive definite, hence pointing to the minimum point in the convex function.

B.6 Multivariate Grid search

In multivariate grid search optimization method, there is a multi dimensional con-

vex objective function that could have several minimum or maximum points, among

them, one point is a global maximum or minimum, and the rest are local maximum

or minimums.

The goal is to minimize the convex objective function such that the difference

between the current value of the problem in hand and the specified value become

minimum, hence seeking possibly the global minimum point of the objective function.

In this method, the region of the variation of variables will be divided into a grid

structure or mesh. The objective function is to be evaluated at each node of this grid.

By moving from one node to the next point, the value of function can be increased or

decreased. Although this may not be an efficient way of optimization, however it is

simple and straight forward. The inefficiency grows specially when there are several

independent variables in the function. The algorithm can be defined as:
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1. Divide the whole region into a grid with grid size of △xi, i = 1, 2, ..., n in each

variable xi in the n-dimensional region. And for ai ≤ xi ≤ bi over which we

optimize the function f(x̄)

2. Choose a starting point on the grid

3. Evaluate function f(x̄) at 3n − 1 neighboring points.

4. Select the point for which the function f(x̄) has minimum value( for maximiza-

tion is reverse)

5. Repeat steps three and four until the central point become the minimum of

f(x̄)

6. For better accuracy after some number of iterations, reduce the grid size, i.e.,

by half until the error becomes less than the pre-defined tolerance.

A slightly different variation of multivariate search is univariate search which reduces

the computation burden, in that only one variable at a time will be changed and the

other variables remain fixed. Starting at some arbitrary point, one variable will be

changed until a maximum of f(x̄) in that direction is reached, then switch to different

variable to find the maximum of f(x̄) in the other direction, and repeat this process

on each of the n coordinates of the function. The algorithm is like this:

1. start at some point x̄0 within a reasonable interval

2. Find the maximum of f(x̄) in one direction using a line search, until reach next

point x̄1 , i.e., x̄1 = x̄0 + ¸1ā1 Where ā1 = [1, 0, ..., 0]T and ¸1 is an scalar such

that f(x̄0 + ¸1ā1) is minimized.

3. The step corresponding to the ktℎ variable is to find the next point x̄k performing

the maximization with respect to the first variable, i.e., x̄k = x̄k−1 + ¸kāk such

that f(x̄k−1 + ¸kāk) is maximized.

4. Find the ntℎ point by maximizing the function with respect to the ntℎ variable.
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5. repeat steps 2,3 and 4 until the ∣¸k∣ is less than tolerance.

B.7 Gradient Steepest Descent

The previous method grid/univariate grid search may not be as efficient as re-

quired, so an algorithm with much faster convergence rate is desirable. One good

candidate that widely used in the literature such as Himmelblau [36], would be the

gradient method using directional derivatives and calculating the steepest descent.

This unconstrained optimization method, can be traced back to the popular math-

ematician Cauchy. When dealing with multidimensional functions it is important

to know the direction of the maximum rate of change of the function. This can be

obtained using the concept of directional derivatives. The directional derivative of a

function f(x̄) at x̄0 in the direction ū is defined by

Dūf(x̄0) = lim
¸→0

f(x̄0 + ¸ū)− f(x̄0)

¸

The derivative of f(x̄) with respect to the direction ū can be written in terms of

partial derivatives as

Dūf(x̄0) = ∇̄f(x̄0)ū, ∣ū∣ = 1

Dūf(x̄0) =
n∑

j=1

∂f(x̄0)

∂xj

ūj, ∣ū∣ = 1

To find the direction ū by which the rate of change of f(x̄) at point x̄0) ia maxi-

mum, one has to maximize
n∑

j=1

∂f(x̄0)

∂xj

ūj

This is a constrained maximization subject to g(ū) =
∑n

j=1 u
2
j = 1, stating the
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Lagrangian function for this constraint maximization as

F (ū, ¸) =
n∑

j=1

∂f(x̄0)

∂xj

ūj + ¸

Ã
1−

n∑
j=1

u2
j

)
(B.3)

To maximize the equation B.3, one can take the derivative of this function with

respect to uj and ¸ and equate it to zero, after some manipulations it follows

ū =
±∇̄f(x̄0)

∣∇̄f(x̄0)∣

which gives the direction of maximum increase/decrease of the function. Plus sign

gives the direction of the maximum increase and minus sign gives maximum decrease.

Now that the direction of the maximum rate of changes is known, in other word, the

gradient vector in the direction of greatest local increase/decrease is determined. One

can proceed in the direction of steepest descent at point x̄k where the direction of

decrease is:

ˆ̄sk =
∇̄f(x̄k)

∣∣∇̄f(x̄k)∣∣
Where

1. s̄k is a vector in the direction of steepest descent.

2. ˆ̄sk is a unit vector in the direction of steepest descent.

3. ∇̄f(x̄k) is the gradient vector of f(x̄) at x̄k

Therefore, in the steepest descent algorithm the transition from one point to the next

point, i.e., from x̄k to x̄k+1 is defined by

x̄k+1 = x̄k + ¸k ∇̄f(x̄k)

∣∣∇̄f(x̄k)∣∣ (B.4)

In the equation B.4 it is beneficial to know what would be the best value for the

optimum ¸k in order to get to the minimum point with the least number of iterations.
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To answer to this question, one can take the derivative of f(x̄k) with respect to ¸ and

from the solution of

df(x̄k + ¸ˆ̄sk)

d¸
= 0

To be more specific, suppose that f(x̄) is a quadratic function, substituting (ˆ̄sk)

in equation B.1 for the ℎ, then ¸ can be expressed as:

¸k = − [∇̄Tf(x̄k)](ˆ̄sk)

(ˆ̄sk)TH(ˆ̄sk)

Now that the step size ¸ is known, the equation B.4 represents the solution to

the optimization problem using the gradient steepest descent method. This method

with some variation, will be used during the design of non-recursive, and recursive

compensation digital filters in sections 3.4.3 and 3.5.
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C. Modulation Error Ratio

The modulation error rate (MER) is an alternative definition for the signal to noise

ratio(SNR) in the digital complex base band sense and can be used interchangeably.

The MER is a direct measure of the quality of the modulated signal and it defines how

well each constellation point of the modulated signal presents an ideal constellation

point.

For example, consider a 16 QAM modulated signal in Figure C.1, the constellation

points indicated by a cross and vector in solid line, are the ideal constellation points,

and those indicated in dotted line are related to the modulated constellation points.

The difference between the modulated vectorsVm and ideal vectorsVi represent the

MER error for each point n as follow

ModulationError(n) = Vm(n)− Vi(n) (C.1)

If all these landing points for each symbol are plotted over time, there will be a

cloud of symbols around each ideal constellation point as indicated in Figure C.1,

then the modulation error ratio is the ratio of average symbol power to average error

power

MER(dB) = 10log10(
average symbol power

average error power
) (C.2)

131



Figure C.1 The ideal and modulated constellation points, along with the modula-
tion error vector

A more precise mathematical form of MER can be shown as

MER(dB) = 10log10

∣∣∣∣∣

∑N
j=1(I

2
j +Q2

j)∑N
j=1(±I

2
j + ±Q2

j)

∣∣∣∣∣ (C.3)

where I and Q represent the ideal constellation points, and ±I and ±Q represent

in-phase and quadrature parts of the modulation error vector. In this equation it is

assumed that a large number of symbols with equal probability of occurrence is used.
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D. Effect of distortions on bit Error Rate

In order to characterize the performance degradation of a typical CATV digital

communication system, it is necessary to specify a system performance measure. One

of the most commonly used performance measures in digital communications system

is bit error rate (BER). BER is a suitable parameter in order to characterize the

degradations caused by RF filer distortions, in that, these distortions cause symbol

dispersion and ISI error. Depending on the modulation scheme, this distortion can

result in significant Probability of error, Pe, versus S/N performance degradation,

hence BER performance degradation of the system versus amplitude and group delay

distortion.

Here some background theory for the calculation of the probability of error is

presented. In general, the modulated QAM signal can be presented by [9]:

s(t) = ℜ
[∑

(In + jQn) g(t− nTs) e
j2¼fot

]

where Re [ ] denotes real part

1. fo is the carrier frequency

2. 1/Ts is the symbol rate; for 256QAM, Ts = 8Tb

3. 1/Tb is the bit rate

4. g(t) is a pulse defined by
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And g(x) is the pulse shaping function defined as:

g(x) =

⎧
⎨
⎩
1, for 0 ≤ t ≤ Ts

0, for elsewhere

(D.1)

In and Qn = ±1,±3, ... ± 15 are the sampled values of in-phase and quadrature

components. For a particular white Gaussian noise power at the detector input, the

error probability of the I tℎ symbol for the in-phase channel is given by:

PsIi =

⎧
⎨
⎩

1
2
erfc( ∣S̄i−Tℎ1i∣√

2¾
), if Ii = ±15

1
2
erfc( ∣S̄i−Tℎ1i∣√

2¾
) + 1

2
erfc( ∣Tℎ2i−S̄i∣√

2¾
), if Ii = ±1, ...,±13

(D.2)

where Ii is the in-phase channel transmitted at Itℎ sample, S̄i is the magnitude of Itℎ

received in-phase channel sample,

Tℎ1i = ∣Ii∣ − 1

Tℎ2i = ∣Ii∣+ 1

and

erfc(x) ≜ 2√
¼

∫ ∞

x

e−t2dt

And obviously ¾2 is the received white Gaussian noise power at the input of the

threshold detector. The similar equations can be used for the quadrature component

QsIi from equation (D.2). In each I and Q channel, the average symbol error rate Ps

over a series of N symbols is as follows:

Ps =
1

N

∑ 1

2
(PsIi + PsQi )
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E. Minmax and Remez Algorithms

E.0.1 Minmax Algorithm Review

A widely used method for finding the coefficients of an FIR filter is known as

the weighted Chebyshev method. In this algorithm, an error function is formulated

for the desired filter as a linear combination of cosine functions, then the error func-

tion is minimized by using an efficient multivariable optimization algorithm called

the Remez exchange algorithm. Once the convergence is achieved in the optimization

process, the error function becomes equiripple as in other types of Chebyshev solu-

tions. The amplitude of the error function in various frequency bands in the pass

band is controlled by applying weighting to the error function.

The weighted-Chebyshev method is very flexible and can be used to design dif-

ferent type of filters, such as differentiators, band pass, low pass, and filters with

arbitrary amplitude response. Furthermore, this method is considered computation-

ally heavy, in that, it requires a large amount of calculations, however, as the cost of

computation is becoming cheaper, this disadvantage is not serious.

The fundamental concept of the weighted Chebyshev method was published by

Herrmann [12]. Improvements were made by Hofstetter, Oppenheim [13] and later

on by Parks, McClellan, Rabiner, and others [14–19]. The latter work led to the

popular computer program introduced by McClellan-Parks-Rabiner [20]. Finally the

work was further promoted by Remez, known as Remez Exchange Algorithm [21].

Here a brief review of basic concept of this algorithm is presented.
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A nonrecursive filter can be characterized by its system function

H(z) =
N−1∑
n=0

ℎ[n]z−n

where h(t) is impulse response sampled at nT, T is the time between samples. If N

is odd, the impulse response is symmetrical, and !s = 2¼. Because T = 2¼
!s

= 1second,

The frequency response can be stated as

H(e|!) = e−|!cPc(!)

where

Pc(!) =
c∑

k=0

ak cos k! (E.1)

and a0 = ℎ(c), c = N−1
2

, and ak = 2ℎ[c − k] for k = 0, 1, 2, ..., c. The important

assumption in this formulation is that the zeros of the filter is presumed to be in

conjugate pairs which yields the real polynomial, hence real filter coefficients.

If a desired frequency response is denoted by e−|c!D(!) and a weighting function

denoted by W (!), then an error function E(!) can be defined as

E(!) = W (!)[D(!)− Pc(!)] (E.2)

It is conceivable that the error function E(!) could be minimized such that ∣E(!)∣ ≤
±p, with respect to some compact sub bands in the frequency interval [0, ¼], so called

Ω, a filter is obtainable in which

∣E(!)∣ = [D(!)− Pc(!)] ≤ ±p
∣W (!)∣ for ! ∈ Ω (E.3)

In the case of the low pass filter with its amplitude response shown in Figure E.1, with

the pass band and stop band ripples ±p, ±s and pass band and stop band frequency
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edges !p, !s, therefore, the requirement is

D(!) =

⎧
⎨
⎩

1, 0 ≤ ! ≤ !p,

0, !s < ! ≤ ¼
(E.4)

with

E0(!) =

⎧
⎨
⎩

±p, 0 ≤ ! ≤ !p,

±s, !s < ! ≤ ¼
(E.5)

Thus, from equation E.3 and E.5, the weighting function will be obtained as

W (!) =

⎧
⎨
⎩

1, 0 ≤ ! ≤ !p,

±p/±s, !s < ! ≤ ¼
(E.6)

The design of such a filter using the optimization technique, entails the solution

of minmax problem

min
x

{max
!

∣E(!)∣} (E.7)

Where x = [a0 a1 ... ac]
T . The solution of minmax problem stated in equation E.7

can be achieved by utilizing the alternation theorem [51]. This theory states that if

Pc(!) is a linear combination of r = c+ 1 cosine functions of the form

Pc(!) =
c∑

k=0

ak cos(k!)

Then a necessary and sufficient condition that Pc(!) be unique, also best weighted

Chebyshev approximation to the continuous function D(!) on Ω, where Ω is a com-

pact subset of the frequency interval [0, ¼], is that the weighted error function E(!)

exhibits at least r+1 extremal frequencies in Ω, that is, there must exists at least r+1

points !̂i in Ω such that !̂0 < !̂1 < ... < !̂r and E(!̂i) = −E(!̂i+1) for i = 0, 1, ..., r−1

and

∣E(!̂i)∣ = max
!∈Ω

∣E(!)∣

137



referring to the alternation theorem and equation E.2, one can conclude the expression

E(!̂i) = W (!̂i)[D(!̂i)− Pc(!̂i)] = (−1)i± (E.8)

Where, i = 0, 1, ..., r and ± is constant. This system of equations can be presented in

matrix form

⎛
⎜⎜⎜⎜⎜⎜⎝

1 cos(!̂o) cos(2!̂o) . . . cos(c!̂o)
1

W (!̂o)

1 cos(!̂1) cos(2!̂1) . . . cos(c!̂1)
−1

W (!̂1)
...

...
...

...
...

...

1 cos(!̂r) cos(2!̂r) . . . cos(c!̂r)
−1r

W (!̂r)

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0

a1
...

ac

±

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

D(!̂0)

D(!̂1)
...

D(!̂r)

⎞
⎟⎟⎟⎟⎟⎟⎠

(E.9)

If the extremal frequencies are known, as well as the coefficients ak, hence the fre-

quency response of the filter using equation E.1 can be calculated. The (r+1)(r+1)

matrix is nonsingular [51], therefore, this system of equation always has a solution.
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Figure E.1 Amplitude response of an equiripple lowpass filter
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E.0.2 Remez Exchange Algorithm Review

Starting with the minmax problem formulation, the Remez exchange algorithm is

an optimization multivariate algorithm which is suited for the solution of the minmax

problem stated in equation E.7. This algorithm is based on the second optimization

algorithm proposed by Remez [21], the comprehensive and detailed description of the

algorithm is not declared here, rather an overall review will be given which includes

the following steps:

1. Initialize extremals !̂0, !̂1, ..., !̂r ensuring an extremal i assigned at each band

edge

2. Locate the frequencies !̂0, !̂1, ..., !̂r at which ∣E(!)∣ is maximum and ∣E(!̂)∣ ≥ ±.

These frequencies are potential extremals for the next iteration.

3. Compute the convergence factor

Q =
max ∣E(!̂i)∣ −min ∣E(!̂i)∣

max ∣E(!̂i)∣

where, i = 0, 1, ..., ½

4. Reject ½ − r superfluous extremals !̂i after finding an appropriate rejection

criterion and renumber the remaining !̂i sequentially, then !̂i = !̂i for i =

0, 1, ..., r.

5. If Q > ², where ² is the convergence tolerance repeat from step 2, otherwise

continue to step 6.

6. Calculate Pc(!) using the last set of extremals, then deduce ℎ[n], which is the

impulse response of the required filter.
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F. Equalization Theory

F.1 Introduction

The aim of this section is to give some background on equalization theory. To this

end, the topic relevant to this research are covered. More sophisticated treatment

can be found in literature Haykin [30], Farhang [43], Sayed [31], Proakis [44].

F.2 Optimum Filtering

A filter is linear if the output sequence of this filter can be expressed as the linear

combination of the input sequence. For the solution of linear filtering problem, a

statistical approach is used with the aid of a statistical metrics such as mean or

correlation of the noisy input sequence to minimize the effect of ISI/noise at the

output of the filter [30].

One approach to this optimization process for the design of linear optimum fil-

tering can be accomplished by minimizing mean square error signal defined by the

difference between some desired response and the actual filter output. For a more

straightforward solution, some assumptions can be made, i.e., if the input sequence is

presumed to be statistically stationary1 [45], then the solution is known as optimum

in mean square error sense, the resulting filter designed by this approach is referred

to as Winner filter. The error signal is a multi-dimensional function of the filter co-

efficients, if plotted against the filter coefficients, yields an error performance surface

1An stochastic process is said to be stationary if its statistics do not depend on the time origin.
In addition, if its autocorrelation function only depends on the time difference (¿), it is Wide Sense
Stationary(WSS) as well.
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in the form of a convex function which its minimum represents the Winner solution.

In this section a brief explanation on the design of optimum filter will be given, this

description involves some intuitive observations from the vector space point of view,

followed by some more rigorous treatment of the problem. Refereing to the Figure

F.1, the input sequence x(n) is applied to the filter input with the tap coefficients

!(0), !(1), ..., !(N), the resulting output y(n) is subtracted from the desired response

d(n) to generate the error signal e(n).

The goal for the optimum filter design is to obtain the filter weights !(0), !(1), ..., !(N)

based on the statistical properties embedded in the input sequence and the desired

response, such that the error signal e(n) be minimized in the mean square sense.

The input sequence x(n), the desired signal d(n), and the output sequence y(n) are

stationary with zero mean. This implies that the error signal is also a sequence of

zeros mean random variables. This allows the mean power of the error signal to be

used as the performance measure. That is to say the filter coefficients that minimize

the power in the error yields an output y(n) that approaches d(n).

The reason for this approach is that in real applications, the transmitted signal

is corrupted by noise or the channel distortions, causing ISI error on the signal. The

linear optimum filter is in fact a feed forward structure2that can be used to replicate

the inverse of the channel response (in absence of noise), compensating the destructive

effect of the channel on the signal. Using the original signal as desired signal during

the optimum filter design, the output of the filter will approach to the desired signal

minimizing ISI and noise.

Another way to look at the optimum linear filter design process, is from a ge-

ometrical point of view and vector space analysis. From this stand point, during

the optimum filter design, the desired sequence vector d(n) will be expressed based

2The transmission channel can be thought of as an FIR structure, and the equalizer is to generate
the inverse of channel response(1/H(z)) using a Feed Forward structure, this entails using an FIR
with infinite length. This, however is not realizable, hence a certain tap number will be used to yield
acceptable accuracy.
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Figure F.1 The block diagram for the optimum linear filter design

on the input random variable vector x(n) as a linear combination of its components

x(1), x(1), ..., x(N). In other word, using the random variables defined by vector x(n),

another random variable d̂(n) will be estimated, such that the difference between the

desired vector d(n) and estimated vector d̂(n) has a minimum norm square. Geo-

metrically this means that the vector d(n) will be projected on the multidimensional

coordinates defined by x(1), x(1), ..., x(N), the minimum error will be obtained, pro-

vided, the projection of vector d(n) on these coordinates is orthogonal. In other word,

if this vector projects orthogonally on the vector space x(n) the resulting error will

have minimum norm square. Furthermore, the error itself also is orthogonal to the

vector space defined by x(n), meaning that the correlation between e(n) and x(n) is

zero. This concept will be elaborated using mathematical expressions which follows.

The input sequence x(n) is a WSS random process, hence the output sequence

y(n) is also a WSS. The input sequence x(n) and the desired response d(n) are jointly

stationary process in WSS sense, that is, the second moment of x(n) and d(n) with

lag k , E[x(n)d(n − k)] only depends on the lag k [45] and independent of sample

(n). The autocorrelation function of input sequence is defined by Equation (F.1), and

the cross correlation of desired response d(n) and input x(n) is defined by Equation

(F.2).

Rxx = E[x(n)x∗(n)] (F.1)

P = E[d(n)x(n− k)] (F.2)
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For the zero mean random variable e(n), the power is given by the square of the

random variable over observation of N samples.

²2 = E[∣e(n)∣2] = E[∣(d(n)− y(n)∣2]
= E[{d(n)− !∗(n)x(n)} {d(n)− !∗(n)x(n)}∗]

(F.3)

In Equation (F.3), using the definitions from Equations (F.1), and (F.2), and after

some manipulation it follows

²2 = E[∣e(n)∣2] = ¾2
d − !Hp− pH! − !HR ! (F.4)

In Equation (F.4) parameter ¾2
d denotes the power of desired signal, ! denotes a row

vector containing the filter tap weights, and the autocorrelation and cross correlation

functions are denoted by R and P respectively. In minimizing the mean error power

²2 some properties of the error function parameters become helpful. The matrix R

is Hermitian and positive definite (full rank process) and P is a column vector, the

product of !Hp is first order term. The product of !HR! is a squared term in the form

of quadratic function. This suggests that the error function is a multi dimensional

function of the filter tap weights presented by vector !, and if plotted against the

tap weights, it yields an error performance function with a convex shape with its

minimum representing the optimal tap weights !opt. Therefore, the minimum of this

function can be found by calculating the derivative of this function with respect to the

vector ! and equate it to zero. Since all the vectors in the error function are complex,

a multidimensional derivative versus both real and imaginary parts is required

∇!²
2 = −2P + 2R ! (F.5)

where ∇! = [ ∂
∂!1

∂
∂!2

... ∂
∂!N

]T , by equating the derivative of error function to zero it

follows

!opt = R−1P (F.6)

The expression in Equation (F.6) represent the optimum filter coefficients based on
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the autocorrelation and cross correlation matrices. If these two matrices are known

the optimum Winner filter can be designed. However, often these two parameters are

not known, the matrix R, the cross correlation of input sequence x(n) is not known

and depends on the channel impulse response which is also not known. The parameter

P representing the cross correlation of the input x(n) and desired sequence d(n), in

the case of pilot training d(n) is known, but again x(n) is not known due to the lack

of information of the transmission channel. Thus, the filter coefficients calculation

can be accomplished using different approach called adaptive filtering. Furthermore,

for the optimum filter coefficient !opt, the error function e(n) can be expressed as [43]

e(n) = d(n)− y(n) = d(n)− !∗(n)x(n) = d(n)− P ∗R−1 x(n) (F.7)

To prove the error vector e(n) is orthogonal to vector space x(n), the expectation of

their product must be equal to zero

E[e(n)x∗(n)] = E[
{
d(n)− P ∗R−1x(n)

}
x∗(n)] (F.8)

where E[x(n)d(n)] = P and R = E[x(n)x∗(n)] it follows

E[e(n)x∗(n)] = P ∗ − P ∗R−1R = 0 (F.9)

Therefore, the vector e(n) is orthogonal to x(n).
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F.3 Adaptive Filtering

The requirement for the Winner solution entails some prior statistical knowledge

of the input sequence, such as the autocorrelation of the input signal and the cross

correlation between the desired response and the input sequence. Employing such

information, the optimum filter tap weights can be computed from the formulations

for the Winner solution.

However, usually a priori knowledge is not provided, therefore the design of the

optimum filter with optimum weights is not possible. In the case that the statistical

information of the input sequence is not available, one solution would be the adaptive

filter design. Adaptive filters use an iterative algorithm which starts from an ini-

tial point with the minimum available statistical information from the input signal.

Provided the input signal is stationary, it is possible that the algorithm after some

successive iterations converge toward the optimum Winner solution in some statis-

tical sense, this method, however, may not yield the perfect Winner solution since

the statistical data used during the optimization process were estimate of the actual

data.

The consequence of the application of the recursive algorithm in which the pa-

rameters of the filter are updated from one iteration to the next iteration, is that

the parameters will become data dependent. Some important attributes of the recur-

sive adaptive algorithms which play a pivotal role on the selection of the appropriate

algorithm for the design of adaptive filters are: Rate of convergence, misadjusting,

tracking, robustness.

In order to choose an appropriate adaptive algorithm, these parameters become

very helpful, depending the critical requirements of the application in hand. For

example, for the design of the complex compensator for the this application, since

there is no transmission channel involved, and the connection between the transmitter

and receiver is made by a coaxial cable, the robustness and tracking is not a concern.
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F.4 Linear LMS equalizer

F.4.1 Introduction

LMS equalizers use a recursive adaptive algorithm in which the necessary statis-

tical information is obtained iteratively. In order to describe such an algorithm, a

well know method for the minimization of the convex error function for finding the

optimum filter tap weights !(c) will be introduced [31] known as steepest descent

method.

F.4.2 Steepest Descent Method

The error function e(n) is a scalar quadratic convex function of complex vector

!(n), this implies that it has only one minimum which represents the optimum filter

coefficients !(n), the goal is to find this minimum point using the gradient of this

function. The sign and slope of gradient of the error function can be used to find

the direction of increase/decrease of the error function. For example, if the gradient

is positive, in the next iteration, some value corresponding to the gradient will be

subtracted from !(n). On the other hand, if gradient is negative, in next iteration,

some value corresponding to the gradient will be added to !(n). Repeating this in

an iterative manner, the minimum point will be found. The error function e(n) is a

function of complex vector !(n), therefore the gradient must be calculated for both

the real and imaginary parts of !(n) as follows:

wr(i+ 1) = wr(i)− ¹
2
∇wr(²

2)∣w=w(i)

wi(i+ 1) = wi(i)− ¹
2
∇wi

(²2)∣w=w(i)

(F.10)

where, ¹ represents the amount of increase/decrease proportional to the gradient

value, referred to as step size. wr and wi represent the real and imaginary parts of

the tap weight vector w(n) respectively. The expressions in equation F.10 can be

represented in the combined form as

w(i+ 1) = w(i)− ¹

2
∇w(²

2)∣w=w(i) (F.11)
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where ∇w represents the multivariate gradient operator with respect to w(n) defined

as

∇! = [
∂

∂!1

∂

∂!2

...
∂

∂!N

]T (F.12)

After substituting the parameters into the error function ²2 and some manipulations,

it follows

w(i+ 1) = w(i) + ¹[P −R!(i)] (F.13)

In Equation (F.13) the parameters P and R are not known a priori, therefore, in

each iteration start with the minimum amount of information available from the

existing values of input sequence x(n) and d(n), by computing a poor estimate of the

autocorrelation and cross correlation as

R = x(n)xH(n)

P = x(n)dH(n)
(F.14)

Although these estimations are not an accurate representative of R and P , however if

computed and averaged over a large number of iterations in real time, they approach

asymptotically to the minimum of the convex function. Substituting the pertinent

values of P and R into the Equation (F.14) and changing the variable i to n for the

real time iteration, yields

w(n+ 1) = w(n) + ¹x(n)[dH(n)− xH(n)!(n)] (F.15)

w(n+ 1) = w(n) + ¹x(n)e∗(n) (F.16)

Equation (F.16) represents the iterative algorithm by which the minimum point of

the convex error function e(n) can be calculated, known as LMS algorithm. The

detailed step by step procedure defined by LMS algorithm is

1. !0 = !init

2. For n = 1 to final

148



3. y(n) = !H(n)x(n)

4. e(n) = d(n)− y(n)

5. w(n+ 1) = w(n) + ¹x(n)e∗(n)

6. end.

F.5 LMS equalizer Convergence

In LMS algorithm, the optimum Winner filter weights can not be achieved, since

the starting point for the algorithm was an estimate of the parameters P and R not

their exact values. Therefore, the descent direction in each iteration is not quite

accurate, however, due to the stationarity property of the input sequence and the

error function, despite the instantaneous fluctuations of the filter weights !(n) in

each iteration, the mean value of !(n) will approach to the optimum filter weight

!opt [31] [43] [30].

It is conceivable that the final filter weights achieved by LMS algorithm differ from

the optimum filter weights. This differences denoted by Δ(n), can be represented by

the following expression

Δ(n) = !(n)− !opt (F.17)

Using Equations (F.16) and (F.17)

Δ(n+ 1) = Δ(n) + ¹x(n)e∗(n) (F.18)

After substituting the parameters of the error function into equation F.18 it follows

Δ(n+ 1) = Δ(n) + ¹x(n)
{
d∗(n)− xH(n)[!opt +Δ(n)]

}
(F.19)

Taking the expectation of both sides, and using E[Δ(n)] = v(n) yields

v(n+ 1) = v(n) + ¹[P −R!opt]− ¹E[x(n)xH(n)Δ(n)] (F.20)
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v(n+ 1) = v(n)− ¹E[x(n)xH(n)Δ(n)] (F.21)

In order to simplify the right most side of the Equation (F.21), some assumptions

have to be made. If the filter weights !(n) in each iteration, is statistically indepen-

dent3from the the input sequence x(n) and desired sequence d(n), the right most side

of the equation F.21 can be expressed as

v(n+ 1) = v(n)− ¹E[x(n)xH(n)]E[Δ(n)] (F.22)

with above assumption Equation (F.22) reduces to

v(n+ 1) = (I − ¹R)v(n) (F.23)

The parameter R is the autocorrelation matrix of input signal, hence it is Hermitian

and positive definite and can be expressed as R = TDTH with T being unitary.

Substituting Equation (F.23) into the Equation (F.22), denoting THv(n) = u(n)

yields

u(n+ 1) = (I − ¹D)u(n) (F.24)

The goal is

lim
n→∞

∣∣v(n)∣∣2 = 0 (F.25)

which entails

0 < (1− ¹¸i)
2 < 1 (F.26)

where, ¸i denotes the eigenvalues of R. Hence

0 < ¹ <
2

¸max

(F.27)

3This assumption does not hold completely, since the filter weights !(n) in each iteration is a
function of x(n), and most entries of vector x(n) in each iteration is correlated to those of previous
iteration, hence !(n) is correlated to the input sequence, however, one can argue that by choosing
the parameter ¹ small enough this correlation become very small and the assumption is loosely valid.
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or in practice

0 < ¹ <
2

tr(R)
(F.28)

The parameter ¹ has a critical role on the convergence and the performance of the

LMS algorithm. Had this parameter chosen without discretion, the algorithm may not

converge, the expression in Equation (F.28) defines an upper bound on this parameter

which guaranties the convergence of the algorithm.

F.6 LMS Mean Square Error

As it was stated before, in LMS algorithm the filter tap weights are fluctuating

in each iteration, and its mean value will converge toward the optimum tap weights

!opt. However, even after convergence, even though, after the mean value of the

!(n) is equal to the !opt, there is some variations in !(n), which is referred to as

the variance of !(n), the mean square of this parameter needs to be minimizes for a

better performance of adaptive filter. Therefore, a Mean Square Error analysis needs

to be performed. The starting point for this analysis is the expression for the error

function, which is

e(n) = d(n)− !∗(n)x(n) = d(n)− [!opt +Δ(n)]∗x(n) = eo(n)−Δ∗(n)x(n) (F.29)

where eo(n) represents the optimum error for the optimum filter taps !opt. Taking

the expectation of both sides, and more elaborations yields

E[e2(n)] = E[e2o(n)]− 2E[Δ∗(n)x(n)eo(n)] + E[Δ∗(n)x(n)2] (F.30)

In Equation (F.30), the term E[e2o(n)] represents the power of optimum noise function

and can be shown by ²2min, the second term on the rightmost side due to the statistical

independence of the error function to the input sequence and its orthogonality with

x(n) is zero, then this equation reduces to

²2 = E[e2(n)] = ²2min − E[{Δ∗(n)x(n)} {x∗(n)Δ(n)}] (F.31)
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again using the statistical independence of Δ(n) with x(n) after some manipulation4

the expression in Equation (F.31) can be written as

²2 = E[e2(n)] = ²2min − E[Δ∗(n)E[x(n)x∗(n)]Δ(n)] (F.32)

where E[x(n)x∗(n)] is the autocorrelation matrix R, more manipulation follows

²2 = E[e2(n)] = ²2min − E[tr(Δ(n)Δ∗(n)R)] = ²2min − tr(E[Δ(n)Δ∗(n)R]) (F.33)

substituting R = TDT ∗ and denoting E[Δ(n)Δ∗(n)] with k(n) and representing

T ∗k(n)T with k′(n)

²2 = E[e2(n)] = ²2min + tr(k′(n))D] (F.34)

The second term in the rightmost side of the Equation (F.34) is the additional noise

produced as the result of poor estimation of R and P in each iteration, and has to

be bounded for the convergence of algorithm. This value is called excess error and

is represented by (²excess = tr(k′(n))D). By using some statistical analysis manip-

ulations, assuming a very small convergence step size ¹, and using the statistical

approximations, this term can be further simplified to

²excess ≈ ¹ (F.35)

The precise value of excess error is already calculated in literature. A more sophisti-

cated treatment of the MSE and other performance parameters of the adaptive filters

can be found in the literature [31] [30].

4If two random variables x and y are independent i.e., fxy(x, y) = f(x)f(y) the following ex-
pression is true E[xy] = E[x]E[y] = E[xE[y]] [45]
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