560 research outputs found

    Relaxed stability conditions based on Taylor series membership functions for polynomial fuzzy-model-based control systems

    Full text link
    © 2014 IEEE. In this paper, we investigate the stability of polynomial fuzzy-model-based (PFMB) control systems, aiming to relax stability conditions by considering the information of membership functions. To facilitate the stability analysis, we propose a general form of approximated membership functions, which is implemented by Taylor series expansion. Taylor series membership functions (TSMF) can be brought into stability conditions such that the relation between membership grades and system states is expressed. To further reduce the con-servativeness, different types of information are taken into account: the boundary of membership functions, the property of membership functions, and the boundary of operating domain. Stability conditions are obtained from Lyapunov stability theory by sum of squares (SOS) approach. Simulation examples demonstrate the effect of each piece of information

    A Polynomial Membership Function Approach for Stability Analysis of Fuzzy Systems

    Get PDF

    Stability analysis of polynomial fuzzy models via polynomial fuzzy Lyapunov functions

    Full text link
    In this paper, the stability of continuous-time polynomial fuzzy models by means of a polynomial generalization of fuzzy Lyapunov functions is studied. Fuzzy Lyapunov functions have been fruitfully used in the literature for local analysis of Takagi-Sugeno models, a particular class of the polynomial fuzzy ones. Based on a recent Taylor-series approach which allows a polynomial fuzzy model to exactly represent a nonlinear model in a compact set of the state space, it is shown that a refinement of the polynomial Lyapunov function so as to make it share the fuzzy structure of the model proves advantageous. Conditions thus obtained are tested via available SOS software. © 2011 Elsevier B.V. All rights reserved.Bernal Reza, MÁ.; Sala, A.; Jaadari, A.; Guerra, T. (2011). Stability analysis of polynomial fuzzy models via polynomial fuzzy Lyapunov functions. Fuzzy Sets and Systems. 185(1):5-14. doi:10.1016/j.fss.2011.07.008S514185

    A generalised integral polynomial Lyapunov function for nonlinear systems

    Full text link
    [EN] This work generalises the line-integral Lyapunov function in (Rhee and Won, 2006) for stability analysis of continuous-time nonlinear models expressed as fuzzy systems. The referred result applied only to Takagi¿Sugeno representations, and required memberships to be a tensor-product of functions of a single state; these are generalised here so that membership arguments can be arbitrary polynomials of the state variables; in this way, systems for which earlier results cannot be applied are now covered. Both the modelling and the integral terms appearing in the Lyapunov functions are generalised to a fuzzy polynomial case. Illustrative examples show the advantage of the proposed method against previous literature, even in the TS case.The authors gratefully to the financial support of Spanish ministry of Economy and European Union, grant DPI2016-81002-R (AEI/FEDER, UE), the CONACyT/COECyT Sonora scholarship 383252, and Project ITSON-PROFAPI-CA 2017-0088.Gonzalez-German, IT.; Sala, A.; Bernal Reza, MÁ. (2019). A generalised integral polynomial Lyapunov function for nonlinear systems. Fuzzy Sets and Systems. 356:77-91. https://doi.org/10.1016/j.fss.2018.02.005S779135

    Asymptotically exact stabilisation for constrained discrete Takagi-Sugeno systems via set-invariance

    Full text link
    [EN] Given a Takagi-Sugeno (TS) system, this paper proposes a novel methodology to obtain the state feedback controller guaranteeing, asymptotically as a Polya-related complexity parameter grows, the largest (membership-shape independent) possible domain-of-attraction with contraction-rate performance lambda, based on polyhedral lambda-contractive sets from constrained linear systems literature. The resulting controller is valid for any realisation of the memberships, as usual in most TS literature. For a finite complexity parameter, an inner estimate of such largest set is obtained; the frontier of such approximation can be understood as the level set of a polyhedral control-Lyapunov function. Convergence of a proposed iterative algorithm is asymptotically necessary and sufficient for TS system stabilisation: for a high-enough value of the complexity parameter, any conceivable shape-independent Lyapunov controller design procedure will yield a proven domain of attraction smaller or equal to the algorithm's output. (C) 2016 Elsevier B.V. All rights reserved.This work has been supported by grants DPI2015-70433- P and DPI2016-81002-R, from Spanish Government (MINECO) and grant PROMETEOII/2013/004 from Generalitat Valenciana.Ariño-Latorre, CV.; Sala, A.; Pérez Soler, E.; Bedate Boluda, F.; Querol-Ferrer, A. (2017). Asymptotically exact stabilisation for constrained discrete Takagi-Sugeno systems via set-invariance. Fuzzy Sets and Systems. 316:117-138. https://doi.org/10.1016/j.fss.2016.10.004S11713831
    corecore