582 research outputs found

    A Two-Degree-Of-Freedom Time-Optimal Solution for Hard Disk Drive Servo Problems

    Get PDF
    This paper deals with the hard disk drive (HDD) servo problems. A novel discrete time-optimal control solution is proposed in a two-degree-of-freedom (2DOF) structure, employing both the feedback and feedforward controllers. The time-optimal feedback controller, derived from a simple, double integral plant model, shows remarkable robustness and disturbance rejection in the presence of resonant modes, measurement noises and position and torque disturbances. It eliminates the needs for two separate controllers for track-seeking and track-following operations. The proposed feedforward controller in this 2DOF structure proves to be quite beneficial in reducing the seek time. It also allows the feedback controller to be tuned more aggressively, which helps to improve the quality of track following. The proposed control scheme offers a novel basic control structure for HDD servo, upon which numerous further improvements can be made. It is successfully tested in simulation on an industrial 13.0-kTPI HDD

    A Two-Degree-Of-Freedom Time-Optimal Solution for Hard Disk Drive Servo Problems

    Get PDF
    This paper deals with the hard disk drive (HDD) servo problems. A novel discrete time-optimal control solution is proposed in a two-degree-of-freedom (2DOF) structure, employing both the feedback and feedforward controllers. The time-optimal feedback controller, derived from a simple, double integral plant model, shows remarkable robustness and disturbance rejection in the presence of resonant modes, measurement noises and position and torque disturbances. It eliminates the needs for two separate controllers for track-seeking and track-following operations. The proposed feedforward controller in this 2DOF structure proves to be quite beneficial in reducing the seek time. It also allows the feedback controller to be tuned more aggressively, which helps to improve the quality of track following. The proposed control scheme offers a novel basic control structure for HDD servo, upon which numerous further improvements can be made. It is successfully tested in simulation on an industrial 13.0-kTPI HDD

    Harmonics in large offshore wind farms

    Get PDF

    Robust periodic disturbance compensation via multirate control

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Improved performance of hard disk drive servomechanism using digital multirate control

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Disturbance attenuation with multi-sensing servo systems for high density storage devices

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Design and characterization of a low voltage CMOS ASIC for medical instrumentation

    Get PDF
    The acquisition of biomedical signals requires analogue to digital converters of high resolution, low voltage of power and low consumption. The solution for this need is the use of new sigma delta conversion architectures such as the one tested in this Bachelor Thesis. This work covers the design of the instrumentation necessary for the operation of Application-Specific Integrated Circuit Sigma Delta Analog-to-Digital Converter (ASIC ADC) that is already manufactured and its integration into a Printed Circuit Board (PCB). It also includes the development of the necessary software that facilitates the accomplishment of the necessary tests and the analysis of the data that will allow to characterize the operation of the fabricated prototype. Finally, the results and conclusions of the project will be described. The ASIC to be tested in this Bachelor Thesis consists of a180-nm Complementary Metal-Oxide Semiconductor (CMOS) bandpass ADC developed to fulfil the specifications of a fully-integrated receiver for Magnetic Resonance Imaging (MRI). Integrating an integrated CMOS receiver into a single chip will help improve image quality by avoiding the use of many coaxial cables that are used to connect the Radio Frequency (RF) coils to the scanning hardware. The proposal made is a very simple Low-IF receiver characteristics in which a continuous time Low-IF bandpass ADC is the most efficient architecture. The circuit in continuous time replaces the classic filter only thus, an anti-alias filter would be necessary. In addition, the bandpass filter assists in the attenuation of the quantization noise in the bandwidth of interest, while at the same time the stability of the system is easily achieved due to the selected Low-IF.Ingeniería Biomédic

    Practical assessment of hardware limitations on power aware wireless sensor networks - An anti-windup approach

    Get PDF
    This work considers the effect of hardware constraints that typically arise in practical power-aware wireless sensor network systems. A rigorous methodology is presented that quantifies the effect of output power limit and quantization constraints on bit error rate performance. The approach uses a novel, intuitively appealing means of addressing the output power constraint, wherein the attendant saturation block is mapped from the output of the plant to its input and compensation is then achieved using a robust anti-windup scheme. A priori levels of system performance are attained using a quantitative feedback theory approach on the initial, linear stage of the design paradigm. This hybrid design is assessed experimentally using a fully compliant 802.15.4 testbed where mobility is introduced through the use of autonomous robots. A benchmark comparison between the new approach and a number of existing strategies is also presented

    Synapse: Synthetic Application Profiler and Emulator

    Full text link
    We introduce Synapse motivated by the needs to estimate and emulate workload execution characteristics on high-performance and distributed heterogeneous resources. Synapse has a platform independent application profiler, and the ability to emulate profiled workloads on a variety of heterogeneous resources. Synapse is used as a proxy application (or "representative application") for real workloads, with the added advantage that it can be tuned at arbitrary levels of granularity in ways that are simply not possible using real applications. Experiments show that automated profiling using Synapse represents application characteristics with high fidelity. Emulation using Synapse can reproduce the application behavior in the original runtime environment, as well as reproducing properties when used in a different run-time environments

    Energy aware approach for HPC systems

    Get PDF
    International audienceHigh‐performance computing (HPC) systems require energy during their full life cycle from design and production to transportation to usage and recycling/dismanteling. Because of increase of ecological and cost awareness, energy performance is now a primary focus. This chapter focuses on the usage aspect of HPC and how adapted and optimized software solutions could improve energy efficiency. It provides a detailed explanation of server power consumption, and discusses the application of HPC, phase detection, and phase identification. The chapter also suggests that having the load and memory access profiles is insufficient for an effective evaluation of the power consumed by an application. The available leverages in HPC systems are also shown in detail. The chapter proposes some solutions for modeling the power consumption of servers, which allows designing power prediction models for better decision making.These approaches allow the deployment and usage of a set of available green leverages, permitting energy reduction
    corecore