111 research outputs found

    Stability Analysis of Legged Locomotion Models by Symmetry-Factored Return Maps

    Get PDF
    We present a new stability analysis for hybrid legged locomotion systems based on the “symmetric” factorization of return maps.We apply this analysis to two-degrees-of-freedom (2DoF) and threedegrees- of-freedom (3DoF) models of the spring loaded inverted pendulum (SLIP) with different leg recirculation strategies. Despite the non-integrability of the SLIP dynamics, we obtain a necessary condition for asymptotic stability (and a sufficient condition for instability) at a fixed point, formulated as an exact algebraic expression in the physical parameters. We use this expression to characterize analytically the sensory cost and stabilizing benefit of various feedback schemes previously proposed for the 2DoF SLIP model, posited as a low-dimensional representation of running.We apply the result as well to a 3DoF SLIP model that will be treated at greater length in a companion paper as a descriptive model for the robot RHex

    Towards a Factored Analysis of Legged Locomotion Models

    Full text link

    Walking dynamics are symmetric (enough)

    Full text link
    Many biological phenomena such as locomotion, circadian cycles, and breathing are rhythmic in nature and can be modeled as rhythmic dynamical systems. Dynamical systems modeling often involves neglecting certain characteristics of a physical system as a modeling convenience. For example, human locomotion is frequently treated as symmetric about the sagittal plane. In this work, we test this assumption by examining human walking dynamics around the steady-state (limit-cycle). Here we adapt statistical cross validation in order to examine whether there are statistically significant asymmetries, and even if so, test the consequences of assuming bilateral symmetry anyway. Indeed, we identify significant asymmetries in the dynamics of human walking, but nevertheless show that ignoring these asymmetries results in a more consistent and predictive model. In general, neglecting evident characteristics of a system can be more than a modeling convenience---it can produce a better model.Comment: Draft submitted to Journal of the Royal Society Interfac

    A hybrid dynamical extension of averaging and its application to the analysis of legged gait stability

    Get PDF
    We extend a smooth dynamical systems averaging technique to a class of hybrid systems with a limit cycle that is particularly relevant to the synthesis of stable legged gaits. After introducing a definition of hybrid averageability sufficient to recover the classical result, we illustrate its applicability by analysis of first a one-legged and then a two-legged hopping model. These abstract systems prepare the ground for the analysis of a significantly more complicated two legged model—a new template for quadrupedal running to be analyzed and implemented on a physical robot in a companion paper. We conclude with some rather more speculative remarks concerning the prospects for further extension and generalization of these ideas

    Modular Hopping and Running via Parallel Composition

    Get PDF
    Though multi-functional robot hardware has been created, the complexity in its functionality has been constrained by a lack of algorithms that appropriately manage flexible and autonomous reconfiguration of interconnections to physical and behavioral components. Raibert pioneered a paradigm for the synthesis of planar hopping using a composition of ``parts\u27\u27: controlled vertical hopping, controlled forward speed, and controlled body attitude. Such reduced degree-of-freedom compositions also seem to appear in running animals across several orders of magnitude of scale. Dynamical systems theory can offer a formal representation of such reductions in terms of ``anchored templates,\u27\u27 respecting which Raibert\u27s empirical synthesis (and the animals\u27 empirical performance) can be posed as a parallel composition. However, the orthodox notion (attracting invariant submanifold with restriction dynamics conjugate to a template system) has only been formally synthesized in a few isolated instances in engineering (juggling, brachiating, hexapedal running robots, etc.) and formally observed in biology only in similarly limited contexts. In order to bring Raibert\u27s 1980\u27s work into the 21st century and out of the laboratory, we design a new family of one-, two-, and four-legged robots with high power density, transparency, and control bandwidth. On these platforms, we demonstrate a growing collection of {\{body, behavior}\} pairs that successfully embody dynamical running / hopping ``gaits\u27\u27 specified using compositions of a few templates, with few parameters and a great deal of empirical robustness. We aim for and report substantial advances toward a formal notion of parallel composition---embodied behaviors that are correct by design even in the presence of nefarious coupling and perturbation---using a new analytical tool (hybrid dynamical averaging). With ideas of verifiable behavioral modularity and a firm understanding of the hardware tools required to implement them, we are closer to identifying the components required to flexibly program the exchange of work between machines and their environment. Knowing how to combine and sequence stable basins to solve arbitrarily complex tasks will result in improved foundations for robotics as it goes from ad-hoc practice to science (with predictive theories) in the next few decades

    Vertical hopper compositions for preflexive and feedback-stabilized quadrupedal bounding, pacing, pronking, and trotting

    Get PDF
    This paper applies an extension of classical averaging methods to hybrid dynamical systems, thereby achieving formally specified, physically effective and robust instances of all virtual bipedal gaits on a quadrupedal robot. Gait specification takes the form of a three parameter family of coupling rules mathematically shown to stabilize limit cycles in a low degree of freedom template: an abstracted pair of vertical hoppers whose relative phase locking encodes the desired physical leg patterns. These coupling rules produce the desired gaits when appropriately applied to the physical robot. The formal analysis reveals a distinct set of morphological regimes determined by the distribution of the body’s inertia within which particular phase relationships are naturally locked with no need for feedback stabilization (or, if undesired, must be countermanded by the appropriate feedback), and these regimes are shown empirically to analogously govern the physical machine as well. In addition to the mathematical stability analysis and data from physical experiments we summarize a number of extensive numerical studies that explore the relationship between the simple template and its more complicated anchoring body models. For more information: Kod*la

    Symmetries and periodic orbits in simple hybrid Routhian systems

    Get PDF
    Symmetries are ubiquitous in a wide range of nonlinear systems. Particularly in systems whose dynamics is determined by a Lagrangian or Hamiltonian function. For hybrid systems which possess a continuous-time dynamics determined by a Lagrangian function, with a cyclic variable, the degrees of freedom for the corresponding hybrid Lagrangian system can be reduced by means of a method known as hybrid Routhian reduction. In this paper we study sufficient conditions for the existence of periodic orbits in hybrid Routhian systems which also exhibit a time-reversal symmetry. Likewise, we explore some stability aspects of such orbits through the characterization of the eigenvalues for the corresponding linearized Poincaré map. Finally, we apply the results to find periodic solutions in underactuated hybrid Routhian control systems.Fil: Colombo, Leonardo Jesus. Consejo Superior de Investigaciones Científicas; España. Instituto de Ciencias Matemáticas; EspañaFil: Eyrea Irazu, Maria Emma. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentin

    Simple models of legged locomotion based on compliant limb behavior = Grundmodelle pedaler Lokomotion basierend auf nachgiebigem Beinverhalten

    Get PDF
    In der vorliegenden Dissertation werden einfache Modelle zur Beinlokomotion unter der gemeinsamen Hypothese entwickelt, dass die beiden grundlegenden und als verschieden angesehenen Gangarten Gehen und Rennen auf ein allgemeines Konzept zurückgeführt werden können, welches in den Standphasen allein auf nachgiebigem Beinverhalten beruht. Hierbei wird auf der Ebene der mechanischen Beschreibung der Gangarten nachgiebiges Beinverhalten mittels des vom Rennen bekannten Masse-Feder-Modells abstrahiert. Zunächst wird eine vergleichsweise einfache, analytische Näherungslösung desselben identifiziert; in einem weiteren Schritt wird die charakteristische Geschwindigkeit des Gangartwechsels aus federartigem Beinverhalten erklärt; und schließlich wird ein zweibeiniges Masse-Feder-Modell für Gehen vorgeschlagen, welches die beobachteten Bodenreaktionskräfte dieser Gangart beschreibt. Auf der Ebene der neuromechanischen Beschreibung wird aufgezeigt, wie das mit einer mechanischen Feder abstrahierte Beinverhalten durch eine positive Rückkopplung der Muskelkraft dezentral und autonom innerhalb des Muskelskelettapparats erzeugt werden kann. Schließlich werden die Einzelergebnisse der Arbeit zusammengefasst, wobei die beiden fundamentalen Gangarten Gehen und Rennen innerhalb des zweibeinigen Masse-Feder-Modells vereinigt werden und die Bedeutung dieses, auf nachgiebigem Beinverhalten beruhenden Zusammenschlusses sowohl für die biomechanische und motorische Grundlagenforschung als auch für Anwendungen in der Robotik, Rehabilitation und Prothetik erörtert wird
    corecore