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Modular Hopping and Running via Parallel Composition

Abstract

Though multi-functional robot hardware has been created, the complexity in its functionality has been
constrained by a lack of algorithms that appropriately manage flexible and autonomous reconfiguration of
interconnections to physical and behavioral components.

Raibert pioneered a paradigm for the synthesis of planar hopping using a composition of * *parts": controlled
vertical hopping, controlled forward speed, and controlled body attitude. Such reduced degree-of-freedom
compositions also seem to appear in running animals across several orders of magnitude of scale. Dynamical
systems theory can offer a formal representation of such reductions in terms of * *anchored templates,"
respecting which Raibert's empirical synthesis (and the animals’ empirical performance) can be posed as a
parallel composition. However, the orthodox notion (attracting invariant submanifold with restriction
dynamics conjugate to a template system) has only been formally synthesized in a few isolated instances in
engineering (juggling, brachiating, hexapedal running robots, etc.) and formally observed in biology only in
similarly limited contexts.

In order to bring Raibert's 1980's work into the 21st century and out of the laboratory, we design a new family
of one-, two-, and four-legged robots with high power density, transparency, and control bandwidth. On these
platforms, we demonstrate a growing collection of $\{$body, behavior$\ }$ pairs that successfully embody
dynamical running / hopping ** gaits" specified using compositions of a few templates, with few parameters
and a great deal of empirical robustness. We aim for and report substantial advances toward a formal notion of
parallel composition---embodied behaviors that are correct by design even in the presence of nefarious
coupling and perturbation---using a new analytical tool (hybrid dynamical averaging).

With ideas of verifiable behavioral modularity and a firm understanding of the hardware tools required to
implement them, we are closer to identifying the components required to flexibly program the exchange of
work between machines and their environment. Knowing how to combine and sequence stable basins to solve
arbitrarily complex tasks will result in improved foundations for robotics as it goes from ad-hoc practice to
science (with predictive theories) in the next few decades.
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ABSTRACT

MODULAR HOPPING AND RUNNING VIA PARALLEL COMPOSITION
Avik De
Daniel E. Koditschek

Though multi-functional robot hardware has been created, the complexity in its functionality
has been constrained by a lack of algorithms that appropriately manage flexible and autonomous
reconfiguration of interconnections to physical and behavioral components.

Raibert pioneered a paradigm for the synthesis of planar hopping using a composition of “parts”:
controlled vertical hopping, controlled forward speed, and controlled body attitude. Such reduced
degree-of-freedom compositions also seem to appear in running animals across several orders of
magnitude of scale. Dynamical systems theory can offer a formal representation of such reductions
in terms of “anchored templates,” respecting which Raibert’s empirical synthesis (and the animals’
empirical performance) can be posed as a parallel composition. However, the orthodox notion
(attracting invariant submanifold with restriction dynamics conjugate to a template system) has
only been formally synthesized in a few isolated instances in engineering (juggling, brachiating,
hexapedal running robots, etc.) and formally observed in biology only in similarly limited contexts.

In order to bring Raibert’s 1980’s work into the 21st century and out of the laboratory, we design
a new family of one-, two-, and four-legged robots with high power density, transparency, and
control bandwidth. On these platforms, we demonstrate a growing collection of {body, behavior}
pairs that successfully embody dynamical running / hopping “gaits” specified using compositions
of a few templates, with few parameters and a great deal of empirical robustness. We aim for and
report substantial advances toward a formal notion of parallel composition—embodied behaviors
that are correct by design even in the presence of nefarious coupling and perturbation—using a new
analytical tool (hybrid dynamical averaging).

With ideas of verifiable behavioral modularity and a firm understanding of the hardware tools
required to implement them, we are closer to identifying the components required to flexibly pro-
gram the exchange of work between machines and their environment. Knowing how to combine
and sequence stable basins to solve arbitrarily complex tasks will result in improved foundations
for robotics as it goes from ad-hoc practice to science (with predictive theories) in the next few
decades.!

1Video of thesis defense on Sep 20, 2017 [YouTube]
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CHAPTER 1 : Introduction
1.1 Motivation

More than three decades after “sense/think/act” was accepted as a roadmap for robotics research and
practice Asada and Slotine (1986), the robotics community has made large demonstrable advances'
in isolated “thinking,” with clearly defined inputs (e.g., Go board state) and outputs (e.g., allowed
Go moves). However, at the dawn of commercially-viable robotics, the “users” of new robotics
technology need further assurances that the machines will be prepared for interactions (both of
sensors and actuators) with an unstructured and unmodeled world.

The work in this thesis was inspired to a great degree by the success of Raibert’s MIT Leg Lab
in the 1980’s—demonstrating simple machines that blindly hopped, ran, and performed acrobatic
maneuvers Raibert (1986). Over three decades later, the performance of state-of-the-art machines
in the face of physical interaction is underwhelming to the public?. The DRC challenges were more
complex than those solved by Raibert’s robots, but it should give us (robotics scientists) pause that
years of preparation were insufficient to generate successful control strategies for a predefined set of
tasks. One of the fundamental reasons our robots are “stuck” is the lack of principled methodologies
for re-using and re-combining motor control algorithms such as the ones Raibert’s machines used—
why must we re-invent how to walk and run again and again?

There is no doubting the difficulty of the challenges: these robots are all complex, highly non-
linear and hybrid (smooth flows punctuated by discontinuous changes in the states—some selectable
by the controller; some imposed by the physics) dynamical systems, they all have > 20-dimensional
state spaces (most much larger), and dynamic legged locomotion systems are all statically unstable.’
An additional symptom of the complexity is the lack of breadth in robotics research (with many
efforts focusing only on mathematics, software/algorithms, or design/hardware*); an unfortunate
disconnection from the strongly interdependent nature of the challenge.

1.1.1 Compositions: a Scheme for Taming and Using Complexity in
Autonomous Robotics

The research described in this thesis involves the programming of autonomous dynamic behaviors
on physical robotic systems. The usage of “programming” naturally draws comparisons to computer
science, the parallels to which are on one hand fraught—the physics of energy-exchange precludes
success factors such as “re-use of library elements” Whitney (1996) from computer engineering,
and the physical world that the machines interact with is unpredictable and imprecise in a way that
electrical signals on PCB’s are not, necessitating structural stability against perturbations in states
and parameters. On the other hand, the analogy is enticing: steps toward mirroring the ability
in computer science of re-using primitives (“modules” or “functions”) between robots, or having
re-combinations in the same robot, would lead to rapid improvements in the capabilities of our
machines.

'Google’s AlphaGo Defeats Chinese Go Master in Win for A.I. [NY Times]

2The Hard Lessons of DARPA’s Robotics Challenge [IEEE], The DARPA Robotics Challenge Was A Bust [PopSci]

3Even though quasi-static stability can be attained by keeping the center of gravity within the base of support (e.g. foot),
this limits the machine to low speeds and renders it incapable of navigating rougher terrain where footholds cannot
be chosen precisely.

4Surprisingly, including in the afore-mentioned DRC, where many teams participated on a “simulation track.”


https://www.nytimes.com/2017/05/23/business/google-deepmind-alphago-go-champion-defeat.html?_r=0
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7164385
http://www.popsci.com/darpa-robotics-challenge-was-bust-why-darpa-needs-try-again

The work contained in this thesis has emphasized a strong integration of three efforts: mathemat-
ical foundations of compositions in legged robotics, design of a new generation of robotic systems,
and fielding abstract principles on systems in the real world. The specific task emphasized is the
synthesis of steady-state locomotion in the horizontal plane using a method that generalizes across
different morphologies (such as a hopping monoped, tailed biped, and a quadruped), at varying
speeds of up to 5 body lengths/second, while maintaining formally-verified (“correct by design™)
stability properties.

Desired programming paradigm

We pursue a paradigm of behavior programming that involves the following sequential steps:

Modular task specification Tasks are specified as a parallel composition of target dynamics;
e.g., a bounding quadruped should control the horizontal components of its center-of-mass
velocity to a desired setpoint, while ensuring its body roll angle is stabilized to zero, and
its body pitch angle oscillates in synchrony with front and hind steps. This thesis makes no
contributions to this step (which may be performed by a human operator, or perhaps by a
high-level autonomy program).

Composition of dynamic primitives Controllers on the coupled high-dimensional body attempt
to simultaneously instantiate the template behaviors while ignoring coupling interactions, thus
still having only sparse dependence on states and parameters.

In order to implement this paradigm, two logical components are required:

First, we need an expressive library of primitives® that can be used as a “basis” for task specifi-
cation. In the context of legged locomotion, these primitives are 1 or 2 degree of freedom (DOF)
mechanical systems exhibiting a desired limiting behavior, e.g., a vertically-constrained mass on a
springy, actuated, massless leg stably hopping to a desired height. These primitives include as sub-
components: (a) isolated template plants (usually 2-dimensional); (b) control strategies that need
few parameters and up to two states as input; and (c) a coordinate change from physical states to
model coordinates that we use for analysis (to be described in Chapter 3). We include a small library
of templates in Sec. 3.1.

Second, from a systems perspective, a tool for verification of correctness or a “correct by design”
formal synthesis tool (such as type theoretic guarantees in functional programming) is required for
the viability of this approach. The popular template/anchor framework Full and Koditschek (1999)
posits a formal relation (invariant attracting submanifolds with conjugate flows) which has only been
established/instantiated in limited instances in the literature. In our work, we find that mechanical
coupling interactions don’t allow for a classical anchoring relation for systems composed from tem-
plates, motivating the use of a less rigid equivalence such as a closed-loop-vector-field analogue of
approximate bisimulation Haghverdi et al. (2005), Tabuada et al. (2008). In Chapter 3 we formalize
for the first time the ingredients and algorithms required to automate the “composition” step above
in the context of a steady locomotion task.

In other words, we aim to create modules (templates) that are externally robust, with carefully-
defined interfaces built upon formal guarantees De et al. (2016) to address fragility to interconnec-
tion errors. This notion of “modularity” is related to complexity theory literature Csete and Doyle

50r “templates,” in the language of Full and Koditschek (1999).



(2004), popularized by Doyle’s “bow-tie”” metaphor.°®

Desired outcomes

From the perspective of the behavior programmer, the resulting compositions must have the follow-

ing properties (we list our formal claims in the next section):

Guarantees of stability In consequence of (the long-known Holmes (2005)) non-integrability of
most two (and higher) DoF mechanical systems no procedural strategy has been developed for
analyzing hybrid dynamical systems with greater than 2 degrees of freedom (DOF) represen-
tative of locomotion (LLS Schmitt and Holmes (2000), SLIP with torso, etc.). By providing
a principled means of approximating these generically non-integrable systems with “nearby”
integrable stand-ins, we believe our averaging approach (Sec. 3.2) may offer a route toward
such a procedural analysis of much higher dimensional locomotion systems than has hereto-
fore been possible, allowing us to reap the aforementioned benefits.

Efficient synthesis Depending on the approach, the complexity of traditional control synthesis
(as distinct from the problem of analytical guarantees) can grow unmanageably with system
size (the “curse of dimensionality”). Some approaches to mitigate this have included the
template-anchor framework Full and Koditschek (1999), (hybrid) zero dynamics Grizzle et al.
(2014), but there has been no prescription for successfully using low-dimensional controllers
(that don’t require knowledge of all states and/or parameters). In contrast, in our various
demonstrations (e.g. Sec. 3.4, 3.5, 3.7) the synthesis problem reduces to an assignment of a
few template controllers (Sec. 3.1) with few tuning parameters.

Behavioral complexity Since target behaviors are generated through arbitrary (verifiable) com-
positions of a known library of templates, there is a combinatorially growing expressible
behavioral complexity (while still maintaining low synthesis complexity). In consequent ex-
ploitation of this new expressive capability, the empirical work related to this thesis spanned
the creation of three entirely new robot platforms (more on design below), and the synthesis
of eight gaits on them (Chapter 4).

Robustness Due largely to the diversity (and immaturity) of these platforms, we prioritize gen-
eralizability, transferability, and robustness to plant modeling errors (since in real world ap-
plications, the robots’ dynamical and kinematic parameters will be changing dramatically
from task to task and it is impractical to imagine fielding precisely calibrated controllers).
We provide detailed numerical characterization of this kind of robustness in the context of a
vertically hopping biped in Sec. 3.5.6.

Granularity As we come to rely more heavily on robotic machines, it is concerning that the failure
modes of monolithic optimal or learned controllers offer few clues to the designer about how
to repair or reuse them. Conversely, the “behaviorally granular” composition construction we
suggest reveals debuggable and potentially swappable modules; we provide a suggestion of
an environment-dependent swap in Sec. 4.1.

6As articulated in other work by the author Carlson and Doyle (2002), a complex system will generically be robust to
large perturbations in its components or modules (the wide ends of the bow-tie), but highly sensitive to perturbations
at their interface (the neck of the bow-tie). This motivates a formal study of these interfaces and a scientific process
for defining and manipulating them, which we have pursued in the context of legged locomotion in this thesis.



1.1.2 The Need for High-Bandwidth Electromechanical Systems
Why are robots so much worse than animals?

Encouraged though we are with our progress on dynamic locomotion so far, we are constantly aware
of how far the robots lag the animals that helped inspire their designs. At interdisciplinary meetings,
engineers will often express our puzzlement about this topic: our actuators have higher power and
force density (when appropriately geared) than muscle does (modulo scaling and packaging), we
can make materials that are lighter and stronger, our robots don’t need to perform nearly as many
functions, but they still lag in sheer performance (jumping height, running speed, etc.). Even more
shockingly, our robots can poll sensors and change actuator signals several thousand times per
second, whereas animals typically face delays in the order of tens to hundreds of milliseconds in
their sensorimotor loops.

In this thesis, we hypothesize that the animals’ success is in part due to their large libraries of
known primitives (manifesting perhaps as synergies Bernstein (1967)), together with the ability to
re-use and re-combine them. In Sec. 1.1.1 we introduced a programming paradigm that emphasizes
the same requirement for our robots. Our hope is that a compositional view of control design as
outlined above will kick off a structured and profitable exploration of useful primitives.

However, there is an additional requirement for robot hardware components that allow for on-
the-fly embedding of these primitives. Perhaps counter-intuitively, this a strong departure from
biomimetic design: over time, animals have fine-tuned their control strategies, and indeed success-
fully distributed the control effort over their hardware (muscles, tendons, ligaments, ...) as well as
their software (reflexes, neural feedback pathways, ...). In fact, in many of the configurations we
study, the animals’ robust gait stability can be formally attributed largely (and sometimes entirely)
to natural stabilizing forces arising from intrinsic body morphology that have been termed preflexes’
in the biomechanics literature to distinguish them from feedback (reflex) endowed stability.

In contrast, even just in the context of robotic actuators, our creations cannot exhibit a continuum
of variable and active-tuned impedance profiles as animals can. The only remaining option is for
robot designers to instead pursue a systems-level design that enables accurate programming of feed-
back control laws into digital computers contained on the robots. This includes sensory, computing,
communications, actuation, and transmission design for high bandwidth sensorimotor loops, for
which we scrutinized the designs of robot components (Chapter 2), though much work remains to
be done:

Sensing Kenneally and Koditschek (2017) are presently working on fundamental limits on the
energy/information tradeoff in proprioception, so that we may have a good understanding of
rate limitations in one of the “fastest” sensing modalities our robots have.

Computation, communication, and drive electronics In the process of selecting new elec-
tronics for our robots, we designed an entirely custom new system since commercial off-the-
shelf motor controllers with sufficient power, force-control bandwidth, and ease-of-adoption
were not available. Additionally, usable models for these components do not exist, and much
work must be done in this space to understand fundamental tradeoffs in terms of their contri-
bution to system bandwidth. However, for the most part, electrical subsystems generally have

7Stabilizing forces generated through the interaction of the body mechanics with contact forces without any non-zero
work output from actuators Brown and Loeb (2000).



time constants that are at least an order of magnitude faster than mechanical signals,® and we
are justified in deferring further study of these components for the moment.

Actuation and transmission The electromagnetic motors and the transmission at their outputs
can very easily hamper system bandwidth in significant ways, as we described in Kenneally
et al. (2016)—motors from “reputable” motor manufacturers such as Maxon are not, in fact,
the best ones available based on physically fundamental limits, conventional geared series-
elastic transmissions needlessly sacrifice control bandwidth, etc. More work is needed to
develop useful models of motors, fundamental rate/energy limits in controlling their torque
output, and how their performance scales with various geometric parameters (some of which
we begin to describe in Chapter 2), so that we optimally select motors for tasks.

Based on improvements in these and several other areas (including custom design of every com-
ponent except the motors), we implemented a revised design paradigm following which a family of
direct-drive robots was created at UPenn Kenneally et al. (2016), the first of which was the tailed
bipedal Jerboa De and Koditschek (2015c), and the second of which was the quadruped Minitaur.

In this thesis, we place emphasis on developing (a) better models for these components, incorpo-
rating energetic flows and dynamics, but remaining analytical / numerically tractable, to accurately
incorporate design constraints such as mass, power, bandwidth, etc.; (b) better metrics to allow for
guided selection in a high-dimensional design parameter space.

Programmability

The X-RHex platform Galloway et al. (2010b), a descendant of the first outdoor running robot,
RHex Saranli et al. (2001), possesses “mechanical intelligence” that hides many of locomotion’s
challenges from the user: it is quite capable of running over moderately rough terrain, but neither
affords the designer high-fidelity control of the forces it exerts on the world, nor is it able to report
back the forces the world exerts on it. It was designed to be driven “open-loop” Saranli et al.
(2001), and despite its running prowess, it has been historically difficult to program new behaviors
for it Johnson and Koditschek (2013a,b).

In contrast, the robots mentioned in the previous segment proved to be particularly easy to design
dynamical gaits for (“program”), beginning from the abstract synthetic principles outlined in the
previous section: the first Minitaur prototype Kenneally et al. (2016), Minitaur (2016) went from
construction to bounding at 3 body-lengths / second in about one month. While we don’t yet have a
formal language for describing why some robots are easier to program than others, we suspect that
faithful embedding of template dynamics (as described above) plays an important role.

1.1.3 Commercially Viable Robots Must Be Work-Programmable

As commercial robots begin to proliferate into every aspect of our daily lives, the seemingly short-
sighted focus of this thesis on developing algorithms for steady-state locomotion in the plane begs
the question: isn’t locomotion a solved problem?

The celebrated success stories of robotics to date include (among others) (a) factory floor robots,
usually feedforward-programmed to stiffly (ignoring the possibility of unexpected contact forces)
and accurately track desired trajectories; (b) the Roomba, a vacuuming robot whose environment is a

8For example, even in “slow” electrical systems such as electric motors Maxon Motors (2010).



flat indoor floor; (c) Al systems such as AlphaGo, operating as a disembodied “brain” fed structured
input and producing structured outputs; (d) photography drones typically operating in wind-free
conditions devoid of unexpected perturbations, etc. A common thread shared by the systems listed
above is that they operate in very structured environments, and they perform very specific tasks,
somewhat blurring the line between what constitutes a robot and a machine (a philosophical question
we will sidestep in this thesis). A notable exception includes the general-purpose legged machines
produced by Boston Dynamics, whose inner workings have now been hidden from the academic
community for almost three decades. We observe that their primary focus remains (after three
decades) robust locomotion over challenging terrain.

Desired: structural stability, generalizable solutions

We argue that in order to fulfill the promises of robots truly assisting and relieving humans of tasks
that are mundane or dangerous, they must be capable of interacting with far less structured working
environments. For instance, we are motivated to build agriculture robots that can traverse through
miles and miles of crop rows and monitor their health (a mundane task), or exploration robots that
search in collapsed mines and disaster areas (a dangerous task). No robots commerically available
today can confidently navigate these unstructured areas. We hypothesize that placing emphasis
on structurally stable behaviors for robotic systems that reject perturbations from the messy and
unknown environment is a fundamental requirement for robots of tomorrow.

Additionally, due in part to the ever-changing environment, and in part to the unforeseen demands
of the robot’s user or operator, it is important that we have generalizable solutions. Our robots must
be programmed so that they can (perhaps autonomously) generalize what they know to changing
environmental, payload, and operating conditions.

1.2 Contributions and Organization

1.2.1 High-Level View of Contributions

Organized by order of impact that we believe the work has to the robotics community, our contribu-
tions in this thesis include the following:
1) We have developed a family of machines (Chapter 2) and behaviors (Chapter 3) exhibiting
dynamic steady-state locomotion that is
a) formally shown to be model-insensitive, in the sense that only a crude model of the
robot body is required for controller synthesis (Sec. 3.1);
b) numerically demonstrated to be robust to parameter perturbations, in the sense that sta-
bility survives large variations in design parameters (e.g. Sec. 3.5.6);
¢) empirically demonstrated to be robust to state perturbations, in the sense that stability
survives persistent coupling disturbances introduced due to composition (e.g. Sec. 4.2.4);
and
d) formally, numerically, and empirically demonstrated to be generalizable, in the sense
that component controllers can be re-used across different bodies (Sec. 4.1, 4.2), or
across different compositions on the same body (Sec. 4.1.1)
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Figure 1: An overview of some of the results presented in this thesis displaying a diversity of anchoring
compared to the component templates (Sec. 3.1) utilized for control synthesis. We also list the
analytical results as well as the empirical results that either demonstrate the analytical results, or
are suggested by them. In addition, in Sec. 4.1.1 we describe an alternate anchoring of the same
composition as in the tail-energized monoped. Our quadrupedal physical platform is the Minitaur
(2016), and our tailed monoped is the Penn Jerboa (Sec. 2.4.3).

2) Keeping in focus the goal of autonomous correct-by-design behavior synthesis from task
specification (Sec. 1.1.1), we contribute in this thesis an initial version of a conceptual syn-
thesis procedure using closed-loop components (Chapter 3).° To this end, we have developed
a new mode of analysis for 4+ dimensional nonlinear hybrid dynamical systems representa-
tive of legged locomotion, which

a) enables for the first time!?

(via an “averaged approximation”) a route for closed-form

solutions for fixed points, return map stability (Thm. 4), and return map approxima-
tion (enabling deadbeat control strategies e.g. Sec. 3.7.2) for a class of coupled non-

integrable dynamical systems; and

b) is a crucial component for the correct-by-design synthesis procedure (Fig. 40).

9The procedure also lays a foundation for autonomous behavior synthesis by suggesting two complementary avenues of
future research: composability-constrained controller synthesis (Sec. 5.2.2) and morphological reduction / computa-

tion (Sec. 5.2.3).

10See, for instance, Holmes (2005), for a survey of the challenges of analysis of non-integrable 4+ dimensional systems.



3) The combination of abstract and empirical results shown in Fig. 1 illustrates a conceptual
advance of the field, by

a) suggesting a new!!' approximate relation between composed mechanical systems and
their dynamical components (Sec. 5.2.5);

b) suggesting a general method of introducing template control strategies for anchor (body)
stabilization via principled approximation / simplification (e.g. vertical hopper control
for bounding and pronking Sec. 3.4-3.5); and

c) suggesting a prospective means for selection of control and design parameters (e.g.
analysis-guided mass / inertia restriction in assumption 10), leveraging closed-form sta-
bility expressions.

1.2.2 Claims Mapped to Organization

Next we map the high-level claims above into the contents of this document, which are organized in
order of logical dependency (hardware design — formal behavior design — empirical extensions).

Design of high-bandwidth legged robot systems (Chapter 2)

Our contributions toward addressing the desiderata in Sec. 1.1.2 include new custom hardware that
resulted in dramatically improved specific power!? in a family of new robots built at Penn, as well
as
e simple models for electromagnetic rotary actuators that expose their relevant energetic and
thermal properties as a function of their construction parameters, as well as metrics for motor
selection (Sec. 2.1);
e gearbox modeling criteria and selection based on a dynamic task specification exposing the
dynamic nature of the thermal dissipation problem (Sec. 2.2);
e manipulator design criteria and selection based on traditional manipulability measures as well
as some new introductions (Sec. 2.3);
e criteria and metrics for platform design, and application to the design of a 4-actuator tailed

bipedal robot (Sec. 2.4).

Correct-by-design compositions (Chapter 3)

In order to implement the synthesis paradigm described in Sec. 1.1.1, we have made the following
novel scientific contributions:
e In Sec. 3.2-3.6, we first show how classical averaging (Thm. 1) can be applied to problems
of robotics, and also develop novel theoretical results (Thm. 2—4) on the averageability of a
large class of coupled mechanical systems arising in legged locomotion.

Specifically, as a more widely-applicable version of the template/anchor relation Full and Koditschek (1999).

12The direct-drive 6 kg Minitaur has a power density of 377 W/kg, and a planned (single-state geared) 16 kg Minitaur
will reach 620 W/kg, compared to 228 W/kg in the 28:1 geared X-RHex Galloway et al. (2010b). DD Minitaur has a
continuous force density of 46 N/kg, single-stage 16 kg Minitaur will reach 117 N/kg, compared to 123 N/kg in the
28:1 X-RHex. Bandwidth and transparency, which are both expected to be far superior in the Minitaur robots is more
difficult to quantify, but is the topic of work in progress Kenneally and Koditschek (2017).



e [ everaging classical averaging, we propose a new approximate hierarchical relation between
composed systems and their constituent templates (linearization of averaged return map) as
a means of formal design and verification. '3

e An algorithmic procedure for synthesis (Fig. 40) that provides sufficiency conditions for cor-
rectness.'*

We first discuss template dynamical systems, controllers, and appropriate coordinate mappings
to “oscillator coordinates” in Sec. 3.1. Then we develop our first single-mode hybrid averaging
results for switching and event-selected systems in Sec. 3.2. In Sec. 3.3 we show how to apply our
single-mode result to a hybrid system with two modes using a symmetry factoring of the return
map.

In Sec. 3.4-3.5 we present an application of hybrid averaging to the hopping and phase regulation
of a 2DOF vertically-constrained virtual biped, with or without mechanical coupling between them.

In Sec. 3.6, we leverage time-reversal symmetry (first formally introduced in the legged locomo-
tion setting by Schwind and Koditschek (1997)) to greatly simplify the procedure by which aver-
ageable coordinates can be automatically found for a large class of hybrid dynamical systems. In
so doing, we show how symmetry properties greatly simplify the averaged dynamics, prominently
exposing how “odd” and “even” components affect energy dissipation and phase relations. We
use non-conservative 2DOF SLIP (a simple, but non-integrable system which precludes analytical
solutions) as an example for our presentation in this section.

Robust empirical robotics (Chapter 4)

As a consequence of the desiderata in Sec. 1.1.3, we have developed control strategies that have
successfully been deployed on (among others ')
e a 2.5 kg planarized tailed biped that hops on the plane using only two actuators (Sec. 4.1) and
leaps to heights of 15 cm while hopping;
e a 6 kg quadruped that bounds at 2 m/s (5 body lengths/s), leaps across gaps that are 1.5 body
lengths while running, and also pronks, trots, and paces (Sec. 4.2).
The gaits respect our task specification (Sec. 1.1.1) in the sense that appropriate projections of the
robot’s hopping trajectories match closely those of the templates, and they are robust (Sec. 1.1.3) in
the sense that they persist in the face of mechanical cross-talk arising from adjoining compartments
in the physical machine.

In both settings, we explicate, generalize, and extend Raibert’s pioneering work Raibert et al.
(1989): in the context of the tailed hopper, we show that compositional control techniques can
be applied to a distinctly different morphology than Raibert’s robots, and in the context of the
quadruped, we clearly articulate our empirical advances in Table 9.

13Some approximation seems imperative since the traditional notion of invariance and dynamical conjugacy Full and
Koditschek (1999) seems to fail even for a 2DOF SLIP composition (see our discussion in Sec. 3.8).

14 At present, it is possible for the algorithm to “fail” (with in an inconclusive result) before a stability test can be
evaluated. If, on the other hand, the stability test is evaluated, instability results can be obtained as well as stability
results.

I5We have also successfully deployed identical control strategies for planar hopping on a planarized monoped using 3
actuators (Delta hopper), and used similar techniques to design a feedback-driven walking gait for the quadruped.
These results will be reported in future publications and are not in the scope of this thesis.



The empirical work in this chapter is motivated and guided by our analytical results of Chapter 3,
even though the resulting deployments are in systems with far higher number of DOFs than the
analytical models.

1.3 Related Work

We logically organize this review based on the areas in which our contributions lie:

Design of high-bandwidth legged robot systems

Bandwidth and proprioception It is well known that the introduction of a feedback delay can
cause instabilities even in smooth linear systems Richard (2003). A possible alternative to using
digital computers to reproduce control signals is to use analog computers in the form of mechani-
cal springs, dampers, and variable impedance Pratt and Williamson (1995) into which our desired
impedance controllers are programmed at design-time. However, this approach leads to a lack of
run-time versatility. Animals can stiffen their leg springs when they run faster Arampatzis et al.
(1999); using fixed mechanical compliance hampers our robots’ ability to do the same.

In Chapter 2, we also pay particular attention to prioprioception as a sensing modality. There are
several advantages to relying on proprioception: it is free in the sense that no additional hardware
components are required, it is fast in the sense that the signal processing is all analog and performed
within the mechanical transmission and motor control hardware already present on the system—no
additional digital processing of the signal is required.!® We find that improving bandwidth simulta-
neously improves the quality of prioprioceptive sensing, for reasons that are still being uncovered
by ongoing research Kenneally and Koditschek (2017).

The presence of accurate high-bandwidth signal flows and “clean” proprioceptive signals together
encourage the implementation of feedback controllers on our hardware. As discussed in Kuo (2002),
the potential applicability of feedback (vs. feedforward) is enhanced by an improvement in the
quality of the sensory signals, and consequently, the application of feedback (as described in the
Introduction) enables better rejection external disturbances.

Component selection Choosing the appropriate motors for an autonomous legged robot (Sec. 2.1)
poses challenges not typically faced by designers in other domains of mechatronics and electrome-
chanical automation. The highly varied and fundamentally intermittent nature of a running, climb-
ing, or crawling machine’s interactions with its environment combined with the severe limitations
of contemporary actuator power density present a narrowly constrained set of design choices, whose
constraints are at the same time very hard to characterize. Currently, many designers rely heavily
on empirical trial and error; many versions of a robot are built with iteratively better motor/gearbox
choices.!” Another method is to pick a single speed/torque operating point and find a motor that

16We contrast this with (for instance) computer vision, which may require a large amount of digital processing, inducing
its own inherent delays and uncertainties.

17This design procedure was required for all the usefully working machines whose development we are familiar with—
EduBot, RiSE, DynoClimber Clark et al. (2007), and most recently X-RHex Galloway et al. (2010b)—and we strongly
suspect, most of the legged robots that have demonstrated capable locomotion in unstructured, outdoor environments
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can achieve this at continuous steady-state operation Kafader (2006). Other, more considered ap-
proaches to motor sizing employ dynamical simulations of the robot in question Clark et al. (2007),
Gregorio et al. (1997), Poulakakis et al. (2004), whereby a significant component of the empirical
“generate and test” cycle can be iterated in software. In this work we are motivated to develop a still-
more rational approach to motor sizing, attempting to develop mathematically generated (hence, a
priori formally guaranteed) guidelines while enforcing constraints that arise from the interaction of
motor dynamics and thermal behavior with the task assigned to the robot.

Rational selection of robot motors and gearboxes has traditionally been driven by industrial ap-
plications, in which a task typically consists of a known target trajectory Potkonjak (1989) (eg. a
robotic arm in an assembly line lifts and precisely maneuvers a specified part) accomplished by an
amply-sized actuator. However, in the realm of mobile, legged robots, motor capabilities (and dam-
age/failure conditions) and robot behavior (leg trajectories) can not be so neatly divorced. Hence,
we address two coupled problems: the representation of a motor operating regime, and a model of
the thermal consequences of that operational mode.

The motor selection methodology explored in Sec. 2.2 is motivated by the experience of itera-
tive motor selection for X-RHex Galloway et al. (2010b) and operating-point-based selection for
its predecessors. Specifically, coupling the electromechanical to the thermal models, we outline
a design methodology that selects the best performance from our actuator while avoiding thermal
damage (including selection of the optimal gear ratio). We run numerical simulations over the space
of commercially available motors and demonstrate how our algorithm produces results notably dif-
ferent from conventional motor sizing methods that typically either ignore thermal considerations
entirely or impose overly conservative current limits based upon the permissible ceiling associated
with continuous steady state operation.

Platform design Our family of direct-drive robots (Sec. 2.4), and indeed our ideas and contri-
butions on design were inspired by work that spans several decades, and we list them in roughly
chronological order:

Raibert’s Leg Lab machines: dynamic legged locomotion Dynamic legged robots first came
into being in Raibert’s Leg Lab. He used a very specialized hardware setup including (a) an
offboard power source giving his machines essentially unlimited power density'®, and (b) cus-
tom high-speed hydraulic valves unavailable to other practitioners, which both contributed
to his Leg Lab robots not transitioning “outside.” Koditschek and Buehler (1991) took the
analytical route to understand what Raibert was doing empirically, but also realized that a
bouncing pogo stick has deep connections to a bouncing ball Buehler et al. (1989), Rizzi and
Koditschek (1994).

Buehler’'s machines: the importance of specific power Martin Buehler is attributed with the
realization that specific power is indeed a scarce resource Gregorio et al. (1997), and he
subsequently went on to design SCOUT Buehler et al. (1998) a severely underactuated 3D
quadruped with just a single joint per leg. Despite difficulties in control and lack of versatil-
ity, SCOUT demonstrated dynamic locomotion while being completely power-autonomous.
Based on similar principles (single joint per leg), and incorporation of a “sprawled posture,”
RHex was born in 1998 and went on to become the first legged robot to run at high speeds

!8Necessary for the implementation of the discontinuous “thrust at bottom” hopping energization strategy (Raibert, 1986,
Chapter 2).
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Figure 2: Hypotheses about neuromechanical control architectures from (Revzen et al., 2009, Fig. 3). The
work presented in this thesis falls on the far left NCAO category, and in some respects is even
further simplified (more reactive) than NCAOQ (see the “control modules in biology” paragraph
below).

outdoors. Unfortunately, while RHex Galloway et al. (2010a) is very good at exerting forces
on the world, it is not good perceiving forces. Secondly, the compliant legs (essential for
running with RHex) also drastically reduce the available control bandwidth.

Asada’s direct-drive manipulators Asada and Youcef-Toumi (1987) lays out a number of rea-
sons that direct-drive is beneficial in the context of a direct-drive manipulator, though we must
add many constraints related to the mass, force and power limits of the mobile base in our
application domain.

Haptic devices Transparency (ability to perceive end-effector forces at the base of the robot) is
fundamentally important in haptics for user engagement; we are inspired by work on haptic
devices such as the Salisbury hand Salisbury and Roth (1983), and consider its relevance to
the legged application domain. Cable drive systems, a popular choice in haptic systems, have
the drawback of needing precise and frequent calibration Park et al. (2011).

MIT Cheetah: “proprioceptive” actuator design The design principles of the MIT Cheetah
Seok et al. (2012) influence many aspects of our own designs. The authors emphasize the
need for good actuator transparency, and also develop useful models to predict how to get it.
In addition, Wensing et al. (2017) characterize proprioception and bandwidth based on new
models in the context of legged locomotion and show that the low-reduction drivetrain has
superior performance on both counts.

Correct-by-design compositions

Raibert’s empirical compositions Raibert (1986) first demonstrated dynamic legged locomo-
tion using systematic compositions of simple one degree of freedom (DOF) feedback controllers
(and no feedforward signals). He further generalized the same technique to work on a planar
monoped, spatial monoped, spatial biped, and a spatial quadruped Raibert et al. (1989). From the
perspective of control architecture and experimental practice, our work is arguably most inspired by
Raibert, and we have included a careful comparison of specific aspects of our control strategies to
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Raibert’s where applicable in the following chapters (e.g. Table 9 for our quadruped work).

However, Raibert’s robots were plugged into the wall and had unlimited available power (un-
tenable for aspiring mobile robots), very specific (advantageous) morphologies, and his work left
open a number of intriguing research questions were inspired by Raibert’s work, some of which we
attempt to answer in this research. We provide a few examples below:

e Can we use these control strategies on other morphologies? We demonstrate tailed planar
hopping with an extension of Raibert’s planar hopper controllers in Sec. 4.1.

e Can we compose other component controllers? We demonstrate the application of new coor-
dination controllers to Raibert’s quadruped control ideas in Sec. 4.2.

o What is the relative importance of various design parameters'’ in the stability of the compo-
sition? We have shown formally for the first time why Raibert’s quadruped coordinated its
legs to bound without any coordination control, as well as the relation of morphology to this
coordination (Sec. 3.5).

e Can we predict how close the composed limit cycle will be to the product of the commanded
limit sets in each of the components?*’ Our analytical results show formally why the com-
posed limit cycle is not coincident with the templates’ (Sec. 3.2), as well as show how to
develop a far superior approximation for it (Sec. 3.7.2),

Control architectures in biology While we don’t make any contributions to biology in this the-
sis, we take inspiration from research in this area about how locomotion is synthesized in animals.
Biology points out that animals of even low levels of complexity such as invertebrate swimmers
Gazzola et al. (2015) exhibit very low-level rhythmic locomotor behaviors. In animals, these cyclic
motions have variously been attributed to central pattern generator (CPG) circuits, or to distal cou-
pled oscillator circuits. In this thesis, we explore how these cyclic patterns may be generated by
distal circuits (in the form of template dynamical systems), using feedback instead of feedforward
control (e.g. for quadruped gait control in Sec. 4.2).

We find it effective to contextualize our outlook on control architecture in the terms of some prior
work:

Fig. 2 from Revzen et al. (2009) describes a few model “control architectures” with succes-
sively greater “neural” involvement. The algorithms developed in this thesis fall to the extreme left
(NCADO) of this diagram, with no clock signal. In some instances, our algorithms pare down this
architecture further and forgo the need for sensing and reflexes—closed loops are instantiated with
our control strategies completely reactively, with no additionally introduced states.”!

Fig. 3 from Klavins et al. (2002) pictorially depicts an example structure of an oscillator-driven
legged system: notice that there is no external clock signal input to the structure. Legs one and two
generate their own oscillatory limit cycle (we design our own hopping controllers in a similar fash-

19Together with Ben Brown, Raibert designed his early robots very carefully. As we progress with our work, we find that
their specific morphology made a large contribution in the closed-loop system behavior. For instance, the presence
of a “balance beam” on the planar hopper Raibert (1986) ensured that the leg inertia was negligible compared to the
body’s, resulting in minimal perturbation to the body attitude when the leg was swung in aerial phase.

20Raibert (1986) noted that the attained fore-aft speed and height in his planar hopper did not quite match their com-
manded setpoints, though the resulting behavior was stable.

2IThis is in contrast to additional states being introduced that live on the various green arrows in the NCAO:; for instance
additional memory for storing computational results about the sensed environment, before generating motion plans in
the form of actuator outputs.
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Figure 3: Block-diagram architecture of a feedback-driven biped from the BBR model in Klavins et al.
(2002). Our work in this thesis uses similar CPG-less strategies for generating periodic gaits,
relying on analytically understood body dynamics (preflexes) or feedback coordination stragies as
required to couple various oscillators.

ion in Sec. 3.1), and these oscillators interact with the physical embodiment on one hand (‘“body dy-
namics”), and the neural controllers on the other (“coordination mechanism”). We show in Sec. 3.5
how coordination may arise without a coordination mechanism block, and only from the body me-
chanics. Klavins et al. (2002) numerically studied the coordination of two separate “bipedal” models
using both feedforward (“central pattern generator, or CPG”) and feedback schemes, finding that
the feedback-generated oscillators were more robust to environmental uncertainty. Motivated by
these results, we pursue feedback-only coordination here, and show analytically the stability of the
resulting limit cycles with desired phase relations. As articulated by Kuo (2002), the quality of
sensory signals on one hand, and the presence of external disturbances on the other, affect if the
robot should rely on feedforward or feedback control strategies. Anecdotally, we have found our
feedback-controlled gaits to be quite robust to perturbations of various forms?> (Chapter 4) using
body designs that provide adequate bandwidth and transparency (Chapter 2).

In many biological creatures, studies have identified the presence of synergies Bernstein (1967),
or patterns of muscle co-activation which serve a dimension-reduction-like function in the coordina-
tion of our complex bodies. We are motivated to consider these synergies the biological equivalents
of our templates; stabilized (in biology) using neural activation patterns working together with a
complex musculoskeletal system, or (in our robots) using feedback control laws. This connection
provides us with a biological inspiration for new templates to embed in our robots (extending our
current list in Sec. 3.1), and also suggests future exploration of the biological processes underlying
the composition of synergies.

Our quadrupedal control strategies are also inspired by biology: almost all biological quadrupeds
exhibit one or more effectively bipedal gaits wherein the legs are coordinated into two pairs that
seem to operate in synchrony Biewener (2003). Inspired by this phenomenon, engineers have for-
mulated the concept of a virtual leg Raibert (1986), Sutherland and Carlson (1983), whereby groups
of legs are “coordinated” such that the forces they exert on the body are equivalent to those that
would have been exerted by a single virtual leg. The details of this coordination vary by implemen-
tation (ours is detailed in Chapter 4), but the goal is that the dynamical behavior of the physical legs
collapse down from their full state to a lower dimensional subspace well-represented by a single-
leg system, i.e. that the physical legs anchor a monoped template in the terminology of Full and

22in the form of coupling forces from composition, model parameter variation, large external forces, etc.
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Koditschek (1999).

Multilegged coordination in legged systems Coordination of multiple limbs in legged sys-
tems is one of our most important application areas for compositional ideas. As discussed in the
preceding “biology” section, it is appealing to pursue the implications of control “modules”>? be-
ing located at the limb-level, in which case the limb coordination problem is related problem of
composition of limb control modules (the topic of our Sec. 3.4-3.5).

Past work in this area has modeled the legs as abstract oscillators. This point-of-view permits
ready formulation of gait coordination in terms of the oscillators’ relative phases, as in Golubit-
sky et al. (1998). The work of Klavins et al. (2000) additionally shows how to construct these
phase dynamics from some simple Hamiltonian mechanical systems, but that approach is more dif-
ficult to extend to non-Hamiltonian coupled dynamics required for implementation on the physical
mechanisms that we consider here. Proctor et al. (2010) shows how to use dynamical averaging to
simply the analysis of a network of coupled (identical) neurons, and we propose a generalization to
non-identical oscillators (necessary for our application domain) in Sec. 3.6.

Researchers in robotics have numerically studied coordination on simplified models of quadrupedal
behavior: the pair of papers Poulakakis (2005) and Poulakakis (2006) study bounding on Scout II: an
underactuated quadruped with fixed shank compliance and a single rotary actuator at each hip. Shah-
bazi and Lopes (2016) introduced a “Dual-SLIP” model of informationally-coupled, mechanically-
decoupled hoppers, and showed numerically that it was possible to coordinate them into pronking
and bounding limit cycles by directly specifying the desired touchdown and liftoff times for each
hip using a once-per-stride optimized controller. Our modeling paradigm is similar; the analysis in
Sec. 3.4 provably attains similar coordination between two (now vertically restricted) hoppers with
simple feedback laws. Gan et al. (2016) found periodic orbits in a planar quadrupedal Hamiltonian
model by optimizing body parameters, and relying on preflexive coordination.

Prior analytical work Our work is also related to analytical attempts at understanding the be-
havior of hybrid nonlinear systems pertaining to locomotion. Unfortunately, there seems in applied
dynamical systems no procedural way to analyze many 2DOF, and almost any useful 3DOF hy-
brid dynamical systems representative of locomotion. The work in this thesis is therefore related
to previous stability analyses of hybrid oscillators appearing in locomotion (e.g. for a single verti-
cal hopper Koditschek and Buehler (1991)), informationally-coupled, physically-decoupled vertical
hoppers Klavins and Koditschek (2002), Klavins et al. (2000), a 2DOF spring-loaded inverted pen-
dulum Ghigliazza et al. (2005), a horizontal-plane 3DOF running model (LLS) Schmitt and Holmes
(2000). In each of these cases, only with special “tricks” has it been possible to garner analyti-
cal insight into 2DOF coupled mechanical systems (e.g. SLIP Geyer et al. (2005), Schwind and
Koditschek (1995), LLS with decoupled heading dynamics Schmitt and Holmes (2000)), and not at
all for any systems with > 3 DOF (e.g. LLS with coupled heading dynamics Schmitt and Holmes
(2000), bounding model in Berkemeier (1998)).

Application of our hybrid averaging result (Chapter 3) in these “benchmark problems” in some

23We use this term informally and without definition; intuitively we relate it to the centralization / distributedness of the
control strategy, e.g. the vertical energization controller for preflexive bounding in Sec. 4.2 may be located at the hip
(i.e. it is distributed rather than centralized).
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cases yields a greater analytical simplification than has been possible before?*, and in other cases,
makes analytical headway possible when it was not before. For these reasons, our hybrid averaging
result makes a contribution to the field of applied dynamical systems as well as to robotics. For
classes of non-integrable, coupled, 4+ dimensional vector fields, our perturbation analysis yields a
closed-form solution for fixed points, return map stability, as well as return map approximation.

These analytical insights give us useful understanding about the (a) conditions under which our
proposed control strategies succeed, (b) indications about conditions under which they will fail to
work, and lastly, (c) information about the relation of the control strategy to the morphological
parameters of the robot body. In this thesis, we have provided several detailed examples of the
benefits of analytical insight.

For instance, Murphy and Raibert (1985) and Raibert et al. (1989) observed preflexive bounding
stability in their simulation and physical models; later Berkemeier (1998) provided a restricted
explanation of this stability.>> In Sec. 3.5 we are able to (using formal analysis) for the first time
(a) explain the mechanism of this preflexive bounding stability, (b) explain a second mechanism
for preflexive pronking stability, (c) explain analytically and not anecdotally the relation of the
morphological “non-dimensional inertia” parameter to both preflexes, and (d) use our analytical
insight to not just exploit but also countermand the preflexive tendencies on our quadrupedal robot
to achieve a highly robust gait stabilization feedback paradigm requiring very few tuning parameters
(see Sec. 3.5 for details).

Modularity in robotics The long-standing field of modular robots has made great strides in the
design and construction of robot hardware that can act as component modules Davey et al. (2012), as
well as in the development of algorithms that can enable efficient task assignment, reconfiguration,
and planning Sung et al. (2015), Tosun et al. (2015). Our contributions in this thesis are focused on
behavioral modularity (as distinct from hardware modularity), and specifically we list the following
distinctions in our motivations and approach:
Heterogeneity of modules Many modular robot algorithms typically assume that the compo-
nents are interchangeable (e.g. Sung et al. (2015)), while in our area of interest these behav-
ioral components are usually® distinct (e.g. control of hopping in three parts Raibert (1986)).
Complexity of interfaces In the context of hardware; connection interfaces can be carefully con-
trolled at design-time. E.g. popular communication interfaces such as USB, Ethernet can
be designed into device firmware, forward-compatible for future interconnections with other

24For instance, we show in our analysis that the nonlinear stance dynamics in our vertical hopper (Example 3) can
be reduced to an “averaged” continuous dynamics that appears as a phase-independent proportional controller on
the energy (3.47). While single-vertical-hopper stability results have been obtained before without averaging (e.g.
Koditschek and Buehler (1991)), the more complex latter instance (informationally-coupled vertical hoppers) has
heretofore only been analyzed in the context of a simplified integrable stance model (Klavins and Koditschek, 2002,
eqn. (20)). Integrable stance dynamics allowed for a discrete return map control strategy (Klavins and Koditschek,
2002, eqn. (26)), but cannot be extended to more general non-integrable dynamical templates such as the so-called
Spring-Loaded Inverted Pendulum (SLIP) Saranli et al. (1998). Hybrid averaging allows us to analyze with relative
ease this plant model obviating the need to integrate the time-varying flow and, rather, requiring only examination of
its reduced-dimensional, simplified, averaged approximant.

25Berkemeier (1998) computes approximate return maps of in-place bounding and pronking using Raibert’s (piecewise-
Hamiltonian) shank energization controller, and an e-perturbation analysis. However, a full stability analysis for ¢ # 0
was not possible due to analytical intractability.

26]dentical modules appear in the relatively limited context of coupled oscillators in locomotion Golubitsky et al. (1998).
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devices. However, the same is not true in the context of energy-exchange interfaces Whitney
(1996); e.g. adding a mass on top of an actively stabilized acrobot model system Tedrake
(2009) would likely cause its control system to fail.

Anchoring In our behavioral context, to ultimately implement our solution, the templates must
be embedded”’ on a body. While there is much literature on algorithms for synthesizing
compositions form a task specification Tosun et al. (2015), there is no common analogue
of the embedding constraints imposed by an “anchoring body” in the context of hardware
modularity. The synthesis algorithms we develop must therefore consider not just the template
libraries and the task, but in addition the body on which the composition is implemented.

Our work is also related to literature on modularity at a systems level. The work of Slotine (2003)
proposes contractiveness as a useful property invariant to several composition operations. However,
we find that naive contractiveness is too rigid and are unable to demonstrate this property on most of
our compositions. A deeper study of contraction in the context of averaged orbits is a topic of future
work. Even closer to our application area, Seyfarth et al. (2015) proposes the concept of “locomotor
subfunctions” as a behavioral decomposition of human running. The author states “In order to
resolve this issue, it would be extremely helpful if the tangential leg function could be accessed
independently from the radial leg function;” our agenda includes solutions that possess properties
exactly such as this (e.g. we demonstrate in Sec. 4.1 independent control of vertical and fore-aft
behavior, and in Sec. 4.2 independent control of leg coordination and horizontal plane locomotion
in a quadruped).

Robust empirical robotics

Despite our insistence on compositionality and modularity, we must acknowledge recent progress
on other approaches to dynamic legged locomotion. Both of the contrasting feedforward / feedback
approaches mentioned above in the “control modules” segment appear in empirical quadrupedal
demonstrations in the literature. Righetti and Ijspeert (2008) optimize parameters for a CPG whose
outputs are used to set the motor control signals. This technique is able to propel some quadrupeds
at speeds of 5—7 body lengths/second (see Fukuoka and Kimura (2009) and Sprowitz et al. (2013a),
though the latter results are from a 1 kg prototype without onboard power). However, purely open-
loop control signals are particularly sensitive to perturbations from the environment Klavins et al.
(2002), and also do not provide any analytical affordance since the body dynamics are invisible in
the gait design space.

Some researchers eschew the CPG and directly optimize some parameterization of the motor sig-
nals: Shkolnik et al. (2011) use pre-planned position trajectories using an offline planning phase for
a specific terrain which is assumed known a-priori. Pusey et al. (2013) use timing parameters which
are optimized by hand to demonstrate feedforward bounding at a given speed. Culha and Saranli
(2011) use an open-loop hip retraction scheme and passive shank to reduce the number of control
parameters, add a spine joint for thrust, and numerically optimize gait parameters using a Nelder-
Mead optimization step. However, in these purely open-loop implementations, the parameters are
sensitive to desired speed, and the stability basin (in the presence of perturbations from external
forces or rough terrain) is small.

27«anchored”, in the terminology of Full and Koditschek (1999)
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Model-based and optimization methods On the other hand, the noticeable trend in the litera-
ture is to utilize so-called “model-based” methods to synthesize controllers. As the name suggests,
these methods rely (to varying degrees) on an accurate model of the robot plant (necessitating its
precise calibration). A simple family of strategies used frequently in industrial settings is “com-
puted torque” or “inverse dynamics” Murray et al. (1994); however, they are unsuitable for our
mobile robots since (a) the robots are underactuated (and thus unable to cancel each component of
the natural dynamics); (b) cancellation involves terms that are squared in the joint velocities / body
orientation, and thus susceptible to noise in velocity estimates from encoders and IMUs; and (c) can-
cellation is often energetically wasteful. Other model-based techniques leverage various heuristics
to stabilize desirable subsets of the states, e.g. “operational space control” introduced in Hutter et al.
(2014).

Significant advances in optimization tools have provided researchers with numerical methods to
find control strategies if the task can be fomulated as an optimization (see Wieber et al. (2016) for
a summary). Optimization has recently surged in popularity in the literature—with the advent of
new tools Tedrake (2009) and the simultaneous boom in computing power—resulting in almost-
universal preference among competitors in the recent DRC (e.g. Kuindersma et al. (2016)). Either
the states and control inputs can be co-optimized, or only the control inputs can be optimized while
“simulating” the states forward in time. Unfortunately, solutions from optimization algorithms are
difficult to generalize and also tend to be fragile to modeling errors (e.g. Topping et al. (2016)).
Explicitly encoding robustness in the problem formulation often makes has large drawbacks in op-
timality Bertsimas and Sim (2004) as well as solubility. Additionally, very little is known about
composing the solutions of optimization problems in order to re-use prior libraries of solutions
Todorov (2009). Nonetheless, currently available computing hardware puts us on the verge of real-
time model-predictive control (MPC) running on-line on a mobile legged robot. The recent preprint
from Neunert et al. (2016) brings MPC to bear on a physical quadruped. These papers are represen-
tative of a trend of growing decision-space (and complexity) of optimization methods being applied
to gait generation. MPC-like methods alleviate some of the fragility problems of the previously-
discussed open-loop strategies as well as some of the infinite horizon optimzation strategies, by
optimizing online over short horizons.

Why not use deep learning? The success stories of deep learning are pouring in, and so are
the commercial and industrial dollars to further its proliferation in our lives. However, learning is
notoriously bad at addressing both the desiderata from the end of Sec. 1.1.3: structural stability and
generalizable solutions: learned solutions typically cannot be reused if the conditions are differ-
ent from the training conditions, and robustness must typically be learned by (resource-intensive)
training on perturbed / noisy trials.

Additionally, deep learning is generally only effective when the representation is well understood;
however there is no concensus on the correct internal structure. Some researchers have considered
the control module an isolated brain deciding what actuator signals to apply in direct response to
visual inputs Levine et al. (2016). Other attempts have been made instead at hierarchical learning
(including intermediate representations between sensors and actuator signals), with the hope that
generalizable primitives may be learned at a lower level than end-to-end solutions for more complex
tasks, e.g. Heess et al. (2016).

In contrast, the methods we develop in this thesis explicitly prioritize generalizability of solutions.
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However, there is also a large opportunity for leveraging some of these very powerful tools once
the ideal internal structure (like modules and their interfaces, as described in Sec. 1.1.1) are better
understood. For instance, learning, characterizing, and optimizing the primitives seems like a viable
step in conjunction with using our formal methods to ensure correct composition; we anticipate that
such a workflow could result in a far richer array of addressable tasks than we presently can with
our hand-crafted templates.
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CHAPTER 2 : Design of High-Bandwidth Legged Robots

In the Introduction, we justified our reasoning for the pursuit of high-bandwidth electromechanical
hardware, and in this Chapter we detail the progress we have made.

Some hardware features proved to be necessary to the process of synthesizing these behavioral
compositions. As shall be demonstrated later, high-bandwidth control of the forces between the
robot and the environment are important.

The Direct-Drive (DD) Extremum

Our interest in DD (direct-drive) architecture is motivated by a number of specific benefits first
understood in the context of manipulation Asada and Youcef-Toumi (1987). We review how the DD
paradigm presents advantages (and disadvantages) in the context of legged locomotion.

a) Transparency. DD actuation benefits robotics applications by avoiding backlash, achieving
high mechanical stiffness, and mitigating reflected inertia of the motor and coulomb and vis-
cous friction in the gearbox so that motor dynamics can be more quickly and easily influenced
by external forces acting on the leg Asada and Youcef-Toumi (1987).

b) Mechanical performance. Eliminating the gearbox results in improvements in: mechan-
ical robustness, since there are no gears to protect from impulses Hurst (2008), Pratt and
Williamson (1995); dynamic isolation of the body, since it is only coupled to the legs
through the motor’s air gap and inertially through the motor’s bearing; mechanical efficiency,
since DD machines experience no mechanical losses due to gear reduction whereas stan-
dard planetary gearboxes have a maximum efficiency of 60-90%Maxon Motors (2010), and
exhibit directional dependency Wang and Kim (2015); and control methodology since de-
creased mechanical complexity exposes Lagrangian dynamics, promoting behavioral strate-
gies relying on torque Asada and Youcef-Toumi (1987), Seok et al. (2012), impedance Hogan
(1985), Raibert (1986), and other “natural” (physically robust and mathematically well-founded)
control methods Koditschek and Buehler (1991).

c) High-bandwidth signal flow. Removing the gearbox enables advantages in: sensing, mit-
igating low-pass spring dynamics arising in SEA Pratt and Williamson (1995), as well as
filter dynamics in feeding back distal force/torque readings Loughlin et al. (2007) (slowing a
3kHz control loop down to 600Hz in the latter case); actuation, since avoiding SEA also re-
moves the low-pass filtering of actuation signals Pratt and Williamson (1995); hence tunable
compliance can be implemented at kHz timescales, the sort of reactivity known to play an
important role in animal negotiation of complex terrain Spence et al. (2010).

d) Specific power. Since a gearbox both increases mass and decreases power (because of its
associated losses), the peak specific power of DD actuators will be significantly higher than
their geared counterparts.

However, this paradigm comes with the following (interrelated) drawbacks as well:

a) Efficiency / thermal losses. Without a gearbox to amplify the output torque and decrease
the output speed, DD motors must operate in high-torque, low-speed regimes where Joule
heating is significant. Since winding temperature is the most apparent failure mode of a
conventional motor, this design constraint is important in ensuring continued operation of
the robot. Additionally, the actuators must mostly operate far from both their peak power and
peak efficiency, which both occur much closer to no-load speed Maxon Motors (2010). While
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Figure 4: A family of DD robots built at Penn between 2014-2016: Delta Hopper (left), Minitaur (center),
and Jerboa (right).

solutions such as active cooling may potentially aid the thermal problem, they fundamentally
cannot improve efficiency.

b) Specific force. Gear ratios in legged robots are typically in the range of 20:1 to 300:1 Gal-
loway et al. (2010b), Grimes and Hurst (2012), Hutter et al. (2013), Sprowitz et al. (2013b),
so by removing the gearbox, mass-specific torque (not power) becomes the first limiting re-
source in electromagnetically actuated robotsAsada and Youcef-Toumi (1987), Seok et al.
(2012). Adopting the perspective of locomotion as self-manipulationJohnson and Koditschek
(2013a), the force/torque resource becomes even more scarce as the machine’s payload must
now include the robot mass itself.

The design problems associated with actuator selection, configuration, recruitment, and leg kine-

matics must therefore address one central theme, namely how to mitigate the specific force scarcity.

Claims and Organization

In this chapter, we discuss

Better models Analytically / numerically tractable models enable predictive design for motor
selection (Sec. 2.1.1), gearbox selection (Sec. 2.2)

Better metrics Leveraging these predictive models, we propose new selection criteria for mo-
tors (Sec. 2.1.2), reinterpret metrics for leg design (Sec. 2.3), and develop new insights for
platform design (Sec. 2.4.1-2.4.1)

Resulting platforms Putting these ideas together, we describe the new platforms Minitaur Mini-
taur (2016) and Jerboa (Sec. 2.4.3).

2.1 Motor Selection and Design

2.1.1 Motor Modeling and Fundamentals

In this section, we present simple models that aid in motor selection for legged applications. We
first discuss traditionally known motor models, and then present some recent progress made in more
helpful models of motors based on their geometry.
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Traditional Motor Models

The salient characteristics of a particular motor used in a robot are heavily dependent on the gearbox
placed at its output. In this work we want to focus on the intrinsic properties of a motor which
affect its performance across operational regimes, so our approach will be to normalize the effect
by choosing the best possible gearbox for the motor to perform the task. The author of Potkonjak
(1989) investigated the gearbox-independent capabilities of motors for a known output trajectory;
we address a similar question for a specific motor and a known dynamical (“task’”) model.

A typical motor operating at its nominal voltage operates along a speed-torque curve determined
fully by the stall torque 7y and no-load speed wy Gregorio et al. (1997), Maxon Motors (2010) .
Whereas the corresponding stall torque and no load speed after gearing are both affected by the
reduction ratio G, the peak mechanical power,

TsWnl

P= :
4

2.1
is not.

We now assume that the angular displacement of the output shaft is proportional to vertical dis-
placement of the mass. This is equivalent to the introduction of a rack-and-pinion transmission with
selected pinion radius R . Our actuator, consisting of the motor and two-stage transmission, has a
no-load speed and stall force given by
4P

R
v = 220 and Fy = —— 2.2)
G Unl

These parameters define an output speed-force curve, along which the actuator operates.

We will choose (P, vy) as our motor operating parameterization. Note that the effect of varying
the reduction ratio is completely captured in the scalar parameter vy, and we optimize over all
possible values it can take in Section 2.2.2.

Actuator Dynamics Our task involves lifting a mass m (includes motor and payload) vertically.
If v is the vertical speed of the mass m, the relationship between vertical speed and upward force
on the mass can be written as

v F

—_ =1, 2.3
Unl F; 3

since any achievable pair (F,v) lies on the output speed-force line with intercepts at (Fy,0) and

(09 Ul'll)'
Accounting for gravity, the system dynamics are given by F = m(g 4+ v). Specifically, for the

initial condition v(0) = 0, we abbreviate the dependence upon the motor parameters by defining

ay(vp) = r:—fnl —gand asz(vy) = r:f . Using these substitutions, the system’s explicit solution can

nl

be written concisely:
a
v(t, V) = — (1—e™92), (2.4)
az

Taking the time derivative, v (z,vy) = aje 92,
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Thermal Model For thermal behavior, we use a second order dissipative thermal model excited
by the coil current DeWitt and Incropera (1996), Galloway et al. (2010b), Kafader (2006). We are
interested in the “thermal current” (which is the heat source as described in Galloway et al. (2010b)),

Reoitv2 F (1, vq1)?
2 2
KTa)nl

L(t, Unl) = iI%choil = , (2.5)

where K7 is the torque constant of the motor, iy, (¢) is the coil current, and F (¢, vy) is the force
applied to the mass. Note that R, as defined above, cancels out and does not appear in this equation.

Full Thermal Model The full thermal model can be written in state space as
p(1) = Ap(t) + B(t) + Bo, (2.6)

where p = (pcores ,ocase)T are the core and case temperatures,

1 0
B — [ C(')l i|’ and Bg = |: Pambient j|*
R>C>

where R1C; and R,C5 are the motor’s specified thermal time constants for core and case, respec-
tively.

Considered as linear time invariant control system with input ¢ and output p, system (2.6) admits
exact closed form solutions involving a convolution integral that depends upon the specific thermal
input profile, ¢(¢). We next provide a simplification which allows a qualitative understanding of
system behavior without explicit evaluation of this convolution integral for each specific thermal
profile ¢().

RMS Method For typical motors, (2.6) acts as a low pass filter, attenuating frequencies greater
than that specified by the lower system time constant (in this case, the smaller of the two real eigen-
values of A that evaluates to approximately 10~2 rad/s for the typical range of motors found in
the Maxon catalog Maxon Motors (2010)). For an intermittent input which is periodic in nature
the thermal excitation can be re-expressed as a Fourier series, respecting which an aggressive sim-
plification (motivated by this characterization of the thermal plant as a low-pass filter) suggests an
approximation based solely upon the DC term,

Rcoil fOT (im(l‘))2 dt
T b

2.7)

~1

where T is the time period. Note that this is the square of the RMS current, scaled by a constant.
Under these assumptions the equation (2.6) has a constant input, and we can calculate steady state
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Figure 5: Stator and rotor of a motor showing the critical geometric constants which are related to its perfor-
mance (shown using our models below).

values by setting p = 0 to obtain the steady-state temperature
A,5(:ore(vn1) = (Rl + R2) L, (2.8)

where the bar denotes that it is the RMS solution, and the A denotes that it is the difference between
the core and ambient temperatures.

New Motor Models

In selecting motors for near-DD operation, we are operating close to the edge of physically feasible
performance of motors. We rely on the well-known motor constant (torque production per unit
heat), which is invariant to details of winding (Prop. 1). However, we can go further and predict
limitations on the motor constant arising from the design parameters of the motor (Prop. 2).

Fundamental limits on the motor constant Additionally, we make the following assumption
about ideal motor construction

Assumption 1 (Motor construction). The motor is constructed such that
a) wire volume is a fixed percent of stator volume (aspect ratio of stator teeth is not varied as
the motor is scaled)
b) the stator is densely packed
c) motor mass is proportional to stator mass

We will pay attention to motor construction parameters (shown in Fig. 5), and
L Length of magnets
d Stator thickness
eap The radius of the air gap (interface between rotor and stator)
B Field strength of permanent magnets; assumed constant'
n Number of loops of wire in all stator teeth

Increasing B is indeed beneficial to torque density, but due to physical limitations, increasing B by choosing a different
magnet grade invariably results in worse temperature-related performance [Temperature and Neodymium Magnets].
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R Phase-phase resistance
[ Length of wire

p Radius of wire

m Motor mass

Proposition 1. The motor constant Asada and Youcef-Toumi (1987) only depends on the motor
dimensions,

K2 o rgapdL. (2.9)

Proof. From Asada and Youcef-Toumi (1987), the motor constant is defined as K2 = K?/R. Sim-
ple electromagnetic model

Ki =nBLrgy, = K, occn®L?rg, (2.10)
We know that the stator volume is V' = 27rgpd L X rgapd L. From our assumption about stator
aspect ratio, the total wire volume is also & rgade = JT,OZI . Thus, the resistance of the wire is
R o l/p? X repdL/p*.

Substituting this into (2.10), we get
,  mL2rg,pt _ n*Lrgpp*

K2 =
m Feapd L d

Now, the number of turns of wire can also be estimated from the available wire volume (based on
our assumption of dense packing). Thinking about a radial cross-section, n o d/p?. Substituting
above, we get (2.9). ]

Note that (2.9) above captures a very important fact: with the assumptions of ideal motor con-
struction (Assumption 1), the motor constant is only a function of the motor dimensions; specifi-
cally, it is invariant to the winding parameters (wire gauge).

Note however, that the torque constant does depend on the winding parameters, and van be used
to optimize the distribution of thermal energy between the motors and motor controllers optimally
(as we discuss in Sec. 2.1.2).

Proposition 2 (Specific force limitations). Specific Ky, follows the following scale relationships:
(a) with fixed length scale, deteriorates with mass scale: Ky, /m m~Y2, and (b) with fixed mass
scale, deteriorates with length scale: K, /m oc 71,

Proof. As shown in the proof of Prop. 1, the volume of wire in the stator is V' o rgopd L. Since
the density of copper wire is constant as the motor is scaled, and by our assumption of motor mass
being proportional to stator mass, we get m o rgapd L. Together with (2.9), we get

K2 om = Kpyocm'/? = Kp/mocm™V2, (2.11)

Additionally, if the mass is fixed and a lever arm of length / is attached, the specific force is simply
the specific torque divided by /, and so we get the second result. O
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Figure 6: Peak specific torque (limited by flux saturation; affects instantaneous performance) against gap
radius for a selection of legged robot actuators.

In the future we will incorporate a model for thermal dissipation based on different sources of
cooling (radiation, convection, conduction), which depend on the construction geometry in different
ways.

Relation to Drive Electronics We have not yet considered the interaction of the motor with
the drive electronics. Let us define the steady-state current capability i, and voltage V. of the
drive electronics. Our intuitive steady-state goal is to balance the current/voltage passing through
the system such that both the motor and the motor controller are operating at their thermal limits
(since, if not, there is “room” for additional useful output power to be produced). Work currently in
progress is formalizing this intuitive principle.

2.1.2 Quantifying Motor Selection

We first present older results Kenneally et al. (2016) for isolated motor selection (not benefiting from
the new modeling results above). At the end we present some newer results on coupled selection of
motor parameters with the drive electronics for optimal robot performance.

Motor Selection in Isolation

In the DD family, motors are selected to maximize specific torque at two time scales: instantaneous
performance (peak specific torque) limited by flux saturation of the motor’s core, and steady per-
formance (thermal specific torque) limited by the winding enamel’s maximum temperature.

One of the key motor characteristics that is not easily modeled (Sec. 2.1.1) is the peak specific
torque Seok et al. (2012),

o
Kpsi= =22 (in units of N2), 2.12)
m g

where K; is the motor’s torque constant (Nm/A), i, the peak current (A) before the core is flux satu-
rated, and m the motor’s mass (kg). The flux saturation effect is highly nonlinear, phase dependent,
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Figure 7: Thermal specific torque (limited by winding temperature; affects steady-state performance) against
gap radius for a selection of legged robot actuators. The dashed line indicates the mean of the
“inliers.”.

and there are not many useful analytically tractable models for it. Our new metric, thermal specific
torque,

Kt 1 . . N
K= — ] ——, ts of —%
is m \ RaR (in units o revoC

). (2.13)

where Ry, is the motor’s thermal resistance (in units of °C/W), and R is its electrical resistance (in
Ohms), conveys a motor’s desirable ability to produce torque at stall in contrast with its production
and dissipation of waste thermal energy caused by Joule heating. Thermal specific torque is similar
to the dimensionless motor constant K, (in units of N m/vW ) Asada and Youcef-Toumi (1987)
and is also winding invariant but takes mass and thermal dissipation into account. The incorpora-
tion of dissipation makes this metric analytically intractable (beyond Sec. 2.1.1), but heating and
cooling curves are relatively simple to determine empirically. As we see in Fig. 7, this measure is
genereally tied favorably to the motor’s gap radius Seok et al. (2012) resulting in better performance
for outrunners (rotor on the outside) compared to inrunners (rotor on the inside), and motors with a
large radius to depth ratio Asada and Youcef-Toumi (1987).

Figs. 6 and 7 show plots of K ,s and K; (respectively) against gap radius for a variety of motors,
many of which are used in the state of the art machines listed in Table 2, whose motors are specified
in footnote 16.

The plot of peak specific force against gap radius, r, in Fig. 6 demonstrates a very strong linear
trend (up to differences in framing mass and magnetic permeability of the core). Thermal specific
force (Fig. 7) is also quite linear in gap radius, but three important outliers become apparent: the 5
hub motor, T-Motor U series (used in this family of machines) and the custom motors made for the
MIT Cheetah Seok et al. (2013).

The new K;¢ metric (2.13) reveals that electromechanical DD design for legged locomotion en-
tails a degree of “inverse motor sizing,” whereby the robot’s length scale is constrained by the
availability of COTS motors with adequately good K;s (such as the outliers noted in Fig. 7) at that
scale. That is to say that this is a technological, as opposed to fundamental limitation. Here, the
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term “adequately good” is governed by the effect of K;s on the continuous thermally sustainable
torque in the a,,cy, measure detailed in (2.39), which must be positive for the machine to stand
indefinitely in the least favorable posture that keeps the toes directly below the hips. Ignoring the
three outliers in the K5 plot, a linear fit over the rest of the data gives Ky = 4.39r, with a coeffi-
cient of determination of 0.895. Using the standard thermal model Maxon Motors (2010), Rad et al.
(1993), actuators can incur a core rise of 100°C 2, and the robot’s design is assumed to achieve an
optimistic (Table 2) actuator mass fraction of 40%. Measuring the length of the first link in units
of r (gap radius) to cancel the r in the K plot, results in min(I'y) = % (2.35). For the linear fit
of most of the motors, ¢y > 0 implies the first link must be < 1.79r, whereas the 5 hub motor
can be < 3.60r, for the U8 < 4.34r is possible, and for the MIT Cheetah motors, < 6.02r can be
achieved. In other words, for all these “inliers” (the actuators with aggregate 4.39 slope in Fig. 7),
a DD legged platform would be uselessly “stubby” as the majority of the first link length would
be consumed by the motor’s radius, resulting in minimal usable toe workspace (see Section 2.3 for
more detailed explanation of the workspace of these mechanisms). The MIT Cheetah motors would
be very suitable for DD use, but the length scale of the machine would have to decrease significantly
compared to the existing Cheetah robot.

2.2 Drivetrain Design: Transparency and Gearbox Selection

From our Prop. 2, we see that scaling up direct-drive is physically impossible. This motivates a
study of gearbox selection, which is influenced by several factors:

a) Dynamic performance when paired with the motor. Dynamic task specifications (for hop-
ping, running, etc.) provide crucial information about gearbox sizing beyond steady-state
criteria which are common practice in industry. For instance, in Sec. 2.2.2 we show how a
very simple repetitive “climbing” task results in a unique optimum (for climbing speed) for
gear ratio based on thermal limits De et al. (2011) (see Fig. 9). We have recently begun to
use similar task specifications to estimate energetics of quadrupedal gaits, which again seem
to point toward an unique optimum (for battery life) for gear ratio.

b) Efficiency and friction. Gearboxes have input/output efficiencies that are difficult to model,
and even different properties depending on whether they are doing positive or negative work
Wang and Kim (2015). Their geometric properties (tradeoff between friction and backlash)
affect robot performance in important ways that we do not (at present) have tractable models
for.

c) Information rate. Kenneally and Koditschek (2017) shows that the proprioception capabil-
ities of an actuator (in terms of amount of energy required to get a single bit of information)
is highly correlated with the number of gearbox stages, and in order to maximize the sig-
nal/noise ratio of proprioceptive sensing, we must carefully consider the gearbox design.

In this section, we first go over some of the considerations that motivate a low gear ratio (Sec. 2.2.1),

and then present a numerical study of (ideal) gearbox selection using a dynamic task specification
(Sec. 2.2.2).

2This somewhat arbitrary criterion reflects our working practice safety margin with our lab’s various electromagnetic actuators since
the windings typically melt around 140°C
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2.2.1 Drivetrain Modeling

A simple linear dynamical model (consisting of static, kinetic, and viscous friction, and the actua-
tor’s reflected inertia), that is invariant to gear ratio, permits a quantitative comparison between DD
and conventional geared design. We thus characterize actuation bandwidth, for just as transparency
improves proprioception, high bandwidth is necessary for fast closed-loop response. Finally, these
relative advantages in our design are contextualized with respect to the family of machines presented
in this work.

Transparency measures The reflected inertia of the Maxon EC-45 is reported in Maxon Motors
(2010) and then scaled by the gear ratio (23:1 in this case) squared. The T-Motor U8’s rotor inertia
is over-estimated by assuming that the full mass of the rotor is located in an annular ring bound by
the outer and gap radii. The static friction (“stiction”) of the two actuators is found by attaching
25mm radius pulleys onto the output shafts, and adding mass until there is movement. Using the
same pulleys, varying masses are attached and allowed to fall for 2m, accelerating the motors. This
time series data is fit to a first-order system and the steady speed is extracted in each trial. This
experiment is performed at five different steady speeds for each motor (10-200 rad/s for the U8 and
5-20 rad/s for the EC45) resulting in a strong affine fit (coefficient of determination > 0.995), where
the vertical axis intercept and slope are the kinetic (“Coulomb” or “dry”) and viscous (“Rayleigh”
or “damping”) friction coefficients, respectively.

In each of the three measures shown in Table 1, the DD actuator (U8) fared significantly better
than the conventional geared alternative (EC-45, 23:1), representing a 96x decrease in reflected
inertia, 3.89x decrease in static friction, 3.83x decrease in kinetic friction, and 54.6x decrease in
viscous drag. This comes at the price of a 2.5x decrease in continuous and a 5.39x decrease in peak
specific torque. We leave the larger issues of this tradeoff to the existing analysis in the prior DD
robotics literature Asada and Youcef-Toumi (1987) because we believe the cost/benefit relationships
are general to the field whereas we are specifically focused here, simply on the achievability of DD
design for legged locomotion.

Reflected Inertia Invariance If motors are scaled by varying gap radius, r, then torque o 2 and
inertia o r3, and so torque/inertia o % If the motors are scaled isometrically, inertia goes o< r4, and

torque o< 13

, SO once again torque/inertia is & % Considering a gearbox with gear ratio G, torque
goes o G, reflected inertia oc G2, and so torque/inertia o é In both cases, to increase torque (either
by choosing a motor with a larger gap radius, or by increasing the gear ratio) the price in terms of

increased reflected inertia is the same, giving no advantage to minimal gear ratio or even DD.

Actuation Bandwidth Actuation bandwidth between the two motors of interest (EC45 23:1, and
U8) was explored by connecting the motors to a power supply at 12V, and limited to their thermally
sustainable currents representing a 100°C rise in steady state (3.25A and 9A respectively). The
motors were then commanded open-loop sinusoidal voltages at various frequencies, and the ampli-
tude of the output shaft of the motor (in revolutions) was recorded. The US8s performed significantly
better at this bandwidth measure, rotating on average 17.4x more than the geared EC45’s, as shown
in Fig. 8.
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Table 1: Comparison of specific conventional and DD actuators.

EC45-70W, 23:1 U8

Mass (kg) 0.35 0.25
Ky (e 0.188 1.67
Continuous Torque (Nm) 2.95 0.855
Peak Torque (Nm) 18.86 3.5
Max Continuous Power @15V (W) 12.18 35.63
Reflected Inertia (kg-m?) 0.0096 0.0001
Static Friction (Nm) 0.218 0.056
Kinetic Friction (Nm) 0.088 0.023
Viscous Friction ( riv é’; S) 0.0071 0.00013
Backlash (deg) 0.8 0
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Figure 8: Bode plot of amplitude response of the motor output (in revolutions) to sinusoidal voltage input at
various frequencies.

Relevance to Behaviors For the 2-5 kg machines in this family, the duration of stance phase is
on the order of 0.1 seconds, corresponding (roughly) to a spring-mass time constant of > 5 Hz for
each stance leg. This illustrates the importance of having good actuation performance at the time
scales depicted in Figure 8.

2.2.2 Gearbox Selection using a Numerical Dynamic Thermal Model

Problem Statement We apply our thermal-mechanical coupled motor models to a climbing
problem by positing a scenario in which the actuator must lift a constant mass vertically against
gravity, absent any friction.

We characterize the operating regime by substituting for the traditional library of typical task
trajectories a single dynamical model that generates—at least in caricature—the entire family of
speed-torque challenges likely to be encountered over the task domain. In this preliminary work
we commit to the very specific task domain described above, and limit the design choices to varied
control policies in the following manner: the motor can either be running continuously, in which
mode a constant voltage is applied to the motor terminals, or intermittently, wherein the motor
switches between operation at a constant voltage and being disconnected from the system (applies
no force). The continuous operation mode can be thought of as representing a robot with wheels
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rolling up a pole, while the intermittent operation mode corresponds to a legged robot that bounds or
leaps upward. Within this very specific task domain, we formally characterize the manner in which
legged robots (morphologically constrained to intermittent loading) pose a fundamentally different
set of requirements for motor selection than do wheeled robots (in which continuous power delivery
is acceptable).

We use a motor thermal model Galloway et al. (2010b), Kafader (2006), Zocholl (2007) to char-
acterize the thermal penalties of task achievement. By seeking optimal performance while satisfying
thermal constraints, we can evaluate motors based both on their ability to accomplish a given task
while incorporating some view of the performance quality they afford.

Analytical Results

Intermittent Operation Incurs a Thermal Penalty We consider, analytically, the simple,
constrained scenario arising from expending a fixed amount of mechanical energy in the shortest
possible amount of time. We will prove that a motor operating at a constant velocity introduces
less (wasteful) thermal energy than does a motor operating intermittently (with such operations’
requisite variation in velocity). Furthermore, this result is true irrespective of the gearbox used with
the intermittent motor, as long as the reduction ratio is chosen optimally in the continuous case.

Smoothing actuator power output is intuitively beneficial: thermal energy emitted by the motor
coil is proportional to the square of motor torque, while at a given speed, motor power output is
linearly dependent on output torque. Intermittent operation requires a motor to operate at slower
speeds and higher torques for part of each stride; these higher torques incur a large thermal cost
which, as we demonstrate, can not be outweighed by a refractory period.

On the other hand, we approach intermittent operation here with no assumption other than that
the motor is disconnected from the mass at some point during task execution. It is not immedi-
ately obvious that every possible intermittent control strategy of engagement/disengagement will be
thermally inferior to continuous steady-state operation, but we show that this is indeed the case.

We assume that, as is the case for a legged robot, intermittent operation is constrained morpho-
logically (eg. ground contact occurs only periodically), yet, as would be the typical case for a well
designed control policy,” within any given “on” period, we wish to maximize output power and
therefore apply constant (maximal) voltage to the motor terminals.

Comparing Cost of Mechanical Work Whereas in Section 2.2.2 we compare the performance
(vertical climbing speed) of different motors, in this section (for analytical simplicity) we are com-
paring the thermal cost of equal mechanical work in continuous and intermittent modes of operation
for the same motor. We will formally show that intermittent operation must result in a higher ther-
mal cost in this setting. As a corollary, if we lift the “equal work™ restriction and instead restrict
both continuous and intermittent systems to the same peak temperature, the intermittent system
must, necessarily, do less work.

3 We are not presuming that all actuation effort is aimed at producing the maximal positive work. For example, animal
locomotion typically does not support this presumption since muscles are as often used as “brakes” or “struts” as they
are as “motors” Dickinson et al. (2000). We merely presuppose that effort to either oppose or advance the direction
of mass motion, once recruited, will typically be as great as possible for its entire duration.
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We denote the force exerted on the mass as F¢(¢) and its velocity as v, (¢) for the continuous case,
and (Fj(¢),v;(t)) denote the analogous quantities in intermittent operation.

We assume that F.(t) > 0 for t € T, and the range of T is the maximum time interval of the
experiment. We also assume that F;(¢) > O for € A (“active” time interval), where A C T strictly.
This means that for the time in 7\ A the motor is switched off (hence intermittent).

Average Thermal Power Output The average thermal power output for continuous operation
(for example) is, from (2.7) and (2.3),

Reoil [ i2dt 2
C‘”lf—TlCoc/rCzdtoc/(l— vc) dt
|T| T T Unl,e

where the constants of proportionality are the same in both intermittent and continuous modes, so it
suffices to compare them with respect to the rightmost quantity. We are interested in the difference
in the average thermal power output between continuous and intermittent operation,

N2 2
D:/ (1— vi ) dt—/ (1— v“) dt (2.14)
A Unl,i T Unl,c

To compare the thermal effects, we will enforce the condition that the mechanical power output
is the same in both modes of operation,

/Fividt=[ Fevedt. (2.15)
A T

We can write the mass’s dynamics in the intermittent case as

/mz')i dt=[ F; dt—/ mg dt. (2.16)
T A T

Lemma 1 (Thermal power relation to applied force). The difference in the average thermal power
output between continuous and intermittent operation, D, follows

1 1
D = T — . 2.17
melT) (=) @1

Proof. Equal average mechanical power output implies (from 2.15)

/Fividt=/ Feoedt. (2.18)
A T

For steady state rolling, F, = mg. Suppose the height gained in continual operation is /. Then
the right hand side of (2.15) is equal to mgh.
Combining these with the motor kinematics (2.3), we get

Fs,i/ v; (1— vi )dt:mgh,
A Unl,i
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or

i v? h
f L LI P (2.19)
A\ Unli v 4P

remembering from (2.1) that Fy ; vy ; = 4P where P is the constant peak motor power (irrespective
of gearbox).
The discrepancy in average thermal power output is,

N2 2
D=/(1— o ) dt—/ (1— b ) d1
A Unl,i T Unl,c
2v; v?
=/ - dt—mg(l—
A Unli Vg ; Fs.c
In the mass dynamics from (2.16),

/mi)idt=/Fidt—/mgdt
T A T

— /Fi dt =mg|T)|. 2.21)
A

)/ dt. (2.20)
T

Uc
Unl,c

We assumed here that the net change in momentum of the mass over the interval is zero. This will
obviously happen if the intermittent motion is periodic and the time interval covers a whole number
of periods.

Using this in (2.14),

] T T
D:/ (1_ vi )dt_mgh_(mgl | mg(] Ivc))
A Unl,i 4P Fs,c Fs,c Unl,c

F; T
=[ PPN (2.22)
A Fsi Fs.c

where we used the notation |T'| = fT dt, noted that |T'|ve = h, Fs cvn,c = 4P, and used (2.19)
above. Now using (2.21), we get (2.17). ]

Lemma 2 (Comparing F; and F; ). The solution of (2.4) is increasing in a first-order manner
without overshoot, and is asymptotic to the constant Uy, (vy) = ay/az. We argue that it must be

the case that
dvmax

0. 2.23
dvnl ~ ( )

Proof. The reasoning is that, for continual operation, it must be true that we were thermally limited.*
Recall from (2.5) that the RMS thermal constraint gives an upper bound on vy If (2.23) were not

4If continual operation were not thermally limited, we could set our reduction ratio so as to harvest the peak motor
power for the whole interval T'. In this case, it would be impossible for intermittent operation to match it.
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true, in the continual operation case we could get better performance by reducing vy, which is a
contradiction because we assume we are already operating at the optimal vy;. O

Proposition 3 (Intermittent operation is thermally worse). With our dynamic task specification, the
average power consumed in intermittent operation is higher.

Proof. Using the Lemmas above, note that one of the following must be true:
a) If Unl,i = Unl,c» Vfiniter € T, v; (t) < Umax(vnl,i) = vmax(vnl,c) = VU¢ (t)
b) If vpi,i < vpie, using (2.23) we get Umax (Vn1,i) < Umax(Vnl,e). So V finite 1 € T, v;(f) <
Umax(vnl,i) < Umax(vnl,c) = vc(1).

¢) If vnii > Vnl,e, Vmax(Vnl,i) > Umax (Uni,¢), and it is possible that 3¢ € T s.t. v; (¢) > v¢(2).

In situations 1 and 2, it is not possible that fT vidt = fT vedt, and intermittent performance is
worse than continuous performance. Situation 3 is the only feasible one, i.e., the gear ratio must be
lower in intermittent operation for the same mechanical power output in both cases.

Intuitively, for both systems to have the same average speed, the intermittent system must travel
sometimes faster, and sometimes slower than the continuous system. Its vyax, and thus vy, must be
larger than that of the continuous system.

This means that

= < 1.
Fsc Unl,i

s

We can put this in (2.17) and see that D > 0. Intermittent operation necessarily produces more
thermal energy. O

This result represents a fundamental property of motors that cannot be affected by changing
the reduction ratio or control scheme.’ A number of designers have implemented passive energy
storage mechanisms Clark et al. (2007), Clark and Koditschek (2006) to allow for higher average
motor power output and this analytical result further corroborates that such mechanisms are well
motivated from a motor-thermal perspective.

Exposing Innate Motor Properties

Instead of tackling the coupled problems of motor and gearbox selection, the parameterization in
2.1.1 allows us to assess and select a motor independent of choice of gear ratio by determining the
optimal reduction for each given motor.

Optimization Without Thermal Constraints The motion equations (2.4) are parameterized
by vy1. In order to compare the motors independent of this reduction, we perform a one-dimensional
optimization over this parameter.

We will ignore the thermal constraints for this subsection only, and focus on relating our perfor-
mance metric to fundamental motor parameters.

In continuous operation and in steady state (F' = mg), (2.4) has the simple solution

mg Unl
Uc(vnl):l)nl(l_ g n)’

o (2.24)

>“Control scheme” here refers to the policy or rule that controls the on/off switching schedule in intermittent operation.
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which is quadratic in vy and is maximized when v, = %.

For intermittent operation we assume periodic operation (motivated by animals), and fix a “stride
length” appropriate in dimension to the pinion gear and mass being lifted by the robot, x,. The task
is to achieve the maximum average vertical climbing speed in intermittent operation (see Section
2.2.2 for definition). Note that the scalar parameter v, can be arbitrarily chosen for any motor by
varying the reduction G, and we will refer interchangeably to “varying vy~ and “varying G”.

Let us denote the vertical position of the robot, i.e. time integral of the velocity v in (2.4), as

x = s(t,vy), where s : RT x RT™ — R is obtained by direct integration as

s(t,vg1) = a (t + L (e7%" — 1)) )
az az
Note that the release time at which the motor temporarily ceases operation, ¢, = o (vy)) is defined
implicitly by x, = s(o(vn1), vn). It is easy to show via the implicit function theorem that o (vy) is
indeed a function. We numerically find an explicit form of ¢, by solving s(#,vy) = x,. Let us also
define v, (vy) := v(tr, vy).
We seek to maximize the average intermittent velocity,

vi () = ——% (2.25)

but unlike before, there is no easy calculus solution. This function is not explicit, but we can
numerically find an optimal solution (using eg. interior point methods).

With Thermal Consequences In 2.2.2 we found equations which generate our motor speed-
torque trajectories, parameterized by gear ratio G. By using a thermal model for our motor and
leveraging our freedom in G, we can dynamically generate trajectories of operation—ensuring ther-
mal constraints are satisfied—based on a more abstract task specification, using our thermal model
in the analysis itself.

We use the thermal model formulation of 2.1.1, where F(¢,vy) = mv(¢t,vy) in (2.5) is given by
the equations of motion in 2.1.1. For continuous operation in steady state, (2.5) and (2.7) give

Rcoil”ﬁ] (mg)2

te(t,vn) = > (2.26)
KFoy
while for intermittent operation with stride length x, as defined above, we get
Reoiiv2m? tr
1 = coil Tl (g +ale_“2t)2dt. 2.27)

KZoh(tr +v,/8) Jo

Using (2.26) or (2.27) in (2.8) we can compute the temperature rise and limit our optimization in
Section 2.2.2 to gear ratios that keep the core temperature under acceptable limits.®

Note that, intuitively, an arbitrarily large gear ratio will allow any force to be generated with very small motor currents.
Thus, there always exists a “feasible” gear ratio.
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Figure 9: Average climbing speed under periodic intermittent operation as a function of G for Maxon EC45
Flatmotor 251601 Maxon Motors (2010), showing the (lower) bounds on gear ratio imposed by
our proposed method, and following the continuously permissible current specification. The black
curve here is that obtained from the mass dynamics in 2.2.2, and as such over-estimates the climb-
ing performance obtained when restricting current to icp.

Simulation Results

In order to test our motor sizing method for use in practice, we performed numerical trials on all of
the motors in Maxon Motors (2010). We envision that these simulations will not only enable robot
designers to pick out exactly which commercially available motor to use for their robot, but also
give feedback about the type of gearbox needed as well as the performance to expect.

Comparing Motor-Sizing Methods A central contribution of this report is the use of a dy-
namical systems task model that yields a closed form family of trajectories over all possible intitial
conditions, and, hence, enables motor and gearbox selection over the entire family. Absent this
analytically determined design insight, the recourse would be to approximate the “typical” robot
speed-torque requirements across a range of “reasonable” example trajectories and iterate through
motor/gearbox combinations. Here we assume that the ideas of 2.2.2 are being used, and compare
the effect of including the thermal model of 2.2.2 in the design process.

We use our simulation to find the best possible vertical climbing (average) speed that can be
obtained by picking the gear ratio (a) without thermal considerations, (b) using the continuously
permissible current motor specification, and (c) with a dynamic thermal model (cf. 2.2.2).

For a specific motor, Fig. 9 demonstrates the nature of the objective function (2.25) as a function
of G, as well as the lower bounds imposed by our thermal constraint (cf. 2.2.2), as well as that
required to keep motor current under i.p. Note that the latter is more restrictive, while disregarding
the constraint entirely gives the best performance (albeit, unacceptably damaging to the motor).

See Fig. 10 for a scatter plot of performance exhibited by the motors in these cases. Note that
we have limited the motors displayed to those that can perform the task with a reduction G < 100.
This restricts our results to those motors for which the task parameters (mass and stride length) are
roughly appropriate’ to the size of the motor.

For our simulations of intermittent operation, we chose the periodic leaping motion defined by
fixing a “stride length” as described above.

7Situations like (for eg.) a nominal 1W motor attempting to cause a 50kg mass to leap result in extreme gear ratios
and/or performance figures that are difficult to represent (owing to plot axis scaling) and phyically impractical.
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Figure 10: A comparison of the best vertical climbing performance possible picking the gear reduction with
the method proposed here, and conventional methods (no thermal constraint, and using continu-
ously permissible current), in continuous (A) and intermittent (B) operation.

We compare our results with those obtained by limiting motor coil current to be under the “contin-
uously permissible current” motor specification, icp. In continuous operation, motor force F' = mg,
and we need to ensure

From the result in Fig. 10-A we see that in continuous operation, not considering the thermal
effects in the design process Wollherr et al. (2002) allows us to pick a gear ratio which promises
very good performance, but would result in thermal damage to the motor.® More interestingly, our
method allows us to achieve higher performance than is reachable by restricting motor coil current to
values below the continuously permissible current specification of the motor Clark and Koditschek
(2006), Potkonjak (1989).

For intermittent operation with a fixed voltage, note that the motor must start from its stall torque
(irrespective of the reduction ratio). This means that it is impossible to ensure that the coil current is
under the continuously permissible current spec. We chose a slightly less naive control strategy that
uses varying voltage to keep the motor current under ic,. Once the trajectory reaches the highest
speed-torque curve (voltage is equal to the maximum supply voltage), we use the same equations as
above.

From the performance results displayed in Fig. 10, we note that gearbox selection using a dy-
namic thermal model (cf. 2.2.2) results in average vertical speed improvement (mean =+ std. dev.)

8From the analysis of Section 2.2.2, the blue (*) points correspond to the fastest average speed that can be obtained
without overheating the motor core, so all the green (x) points that lie above blue (*) points indicate a gearbox
selection that will result in thermal damage.
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Figure 11: Optimal gear ratios for a subset of the motors, showing how adding the thermal constraints re-
quires a higher reduction. Note that there are fewer motors shown in B as several motors from
Maxon Motors (2010) required a much higher gear ratio due to the intermittence penalty described
in Section 2.2.2.

of 21.6% £ 19.0% (continuous) and 27.7% =+ 12.3% (intermittent) when compared to restricting
coil current to i¢,. The maximum improvement seen in intermittent operation was 57.6%. Thus,
by explicitly considering thermal behavior instead of simply restricting current to continuously per-
missible levels, we achieved notably better performance and correspondingly, higher average motor
power outputs.

The additional performance improvements from our optimization in the intermittent case are
attributable to taking advantage of the short “refractory periods.” While the torque-restricted climber
is limited to its continuously permissible current at all times, our thermal model permits us to select
a gearbox with the expectation of exceeding the continuously acceptable current and then “resting.”
These benefits would undoubtedly be amplified were we to consider thermal constraints over a task
with a finite completion time (eg. a specified number of strides), as the thermally optimal behavior
would expend a “thermal budget” over the duration of the task, an effect not seen here due to the
infinite task timeline.

Thermal Considerations and Gearbox Selection InFig. 11, we see the effect our thermal con-
straint has on the selection of vy, and thus G. Adding thermal considerations necessitates choosing
a higher G in order to keep motor torque (and current) lower for the same output torque. Thus, all
data points are to the right of the 45°-line in both parts of Fig. 11. Intermittent operation carries
an inherent thermal “penalty” (see Section 2.2.2), resulting in a further rightward shift of the data
points from Fig. 11-A to Fig. 11-B.

We envision that information similar to what is presented above will be useful to the designer
for (a) the identification of motors which can fulfil a given task without needing to recourse to a
physically unreasonable gear ratio, and (b) gearbox selection for a specific motor.
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Figure 12: Leg designs considered in Section 2.3.

Conclusion

We have outlined a principled approach (if not an algorithm) to tackle the coupled problems of
motor and gearbox selection from both mechanical and thermal dynamic perspectives. In so doing,
we introduce a novel concept of task specification and proceed by leveraging optimization, dynamic
simulation, and analysis tools. We achieve an analytical result, relevant to any task reasonably well
characterized by our simple vertical leaping dynamics, demonstrating the cost of intermittent motor
operation. Our result further justifies roboticists’ previous work on the introduction of passive-
elastic energy storage to enable more continuous actuator power delivery Clark et al. (2007), Raibert
(1981), and gives strong motivation to promote—through mechanical design—an approximately
constant motor speed.

To develop and demonstrate our method, we used as an example a 1-DOF vertical climbing robot
(with trivial dynamics). Even though this task appears restrictive, it generates motor trajectories
across a broad range of regimes in the (fixed-voltage) speed-torque operational plane. Even for
applications with strikingly different requirements, a computation such as outlined above can be
used to determine the set of motor characteristics that play a similarly crucial role in affecting the
execution quality of that task, as well as enable the development of motor-gearbox selection aids
akin to Figs. 10-11.

2.3 Actuator Recruitment via Leg Design

2.3.1 Leg Design Preliminaries

The legs of our DD robot family vary in the number of actuated DOF from one to three, and the
legs of the two machines with multiply actuated DOF (Minitaur, Delta Hopper) incorporate closed
kinematic chains (linkages). Because of the simpler kinematics, the 2-DOF case is analyzed in
detail, comparing a serial chain of two revolute joints, (2.28), (denoted by “O”), a parallelogram five-
bar, (2.29), (a linkage frequently used in DD robot armsAsada and Youcef-Toumi (1987), denoted
by “P”), and a the symmetric five-bar, (2.30), used in the Minitaur robot (denoted by “S”). The
Delta Hopper machine uses the 3-DOF generalization of the 2-DOF symmetric five-bar employed
in Minitaur®. The Jerboa, however, cannot benefit from such analysis of parallel linkages as it has

9The linkage in Minitaur consists of two RR chains closing at the toe, while the Delta Hopper linkage has three RR
chains that close at the toe. Assuming the same choice of link lengths, the leg kinematics in the two machines are very
similar, except that the Delta Hopper’s workspace is cut off at either extreme end of extension because the actuators
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only has 1-DOF/leg '°.
Given joint angles ¢ := (A1, 6,) € T? (see Fig. 12), the forward kinematics for the three candidate
leg designs are

_ [ cos6,
go(gq) = Rot(6) [11 + I sin 92} , (2.28)
gpr(q) = Rot(ay) (llRot(az)el + lzRot(cxz)Tel) , (2.29)

0
= Rot(— , 2.30
gs(q) ot(=a1) |:11 cosay + lzz—llzsin2a2i| (230)

where Rot : S — SO(2) is a rotation matrix, e; denotes the i standard basis vector, and the
a1 := (01 +62)/2, az := (01 — 62) /2 coordinate change (for the parallel designs) enables a helpful
factoring of the forward kinematics in each case

Proposition 4 (Invariance of Leg Design Measures to Leg Angle). The singular values of the Jaco-
bian of (2.31), Dg, are invariant to the leg angle, ;.

Proof. For each of the leg designs, there is a linear change of coordinates L : T2 — T2 from the
original joint angles such that if « = Lg, then «; is the “leg angle,” i.e.

g(q) =g(Lg),  g(a)=Rot(a)h(az). (2.31)

For the serial design (2.28), Ls = I, and for each of the parallel designs (2.29)-(2.30), Lp :=
% H _11 ] At first, we show that if L = I, the proposition holds: Using the chain rule on (2.31),

Dg = SRhel + RD#, (2.32)

where we drop the dependencies Rot(a), #(az) and Dh(a) for brevity, S := [(1’ ! ], and eq :=
[(1)] Now, multiplying and simplifying (2.32),

Dg'Dg =DhTDh + e1hT hey +DhT SheT + e hT STDh,

and observe that all dependence on « (in the form of Rot in (2.32)) disappears. Thus, Dg” Dg is
invariant to og.
Lastly, since DL = L is constant, and

Dg'Dg = LTDZTDZL, (2.33)

the linear coordinate change L does not affect this proposition, and the argument above for L = [
carries over directly. O

cannot be made coaxial.

10The Jerboa benefits from the two major design principles embodied by (2.13) & (2.39). Its inclusion here further serves
the important role of illustrating that the additional advantage conferred by the symmetric linkage - while beneficial
as manifest in the superior load bearing capabilities revealed by the a;,cy values of Table 3 - is not necessary to the
success of a DD design.
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Figure 13: In each of the subfigures (rows) the first column shows the workspace averaged measure of the
particular function of singular values, o, plotted against the ratio of minimal to maximal leg
radius, §. The remaining three columns provide a more detailed view of the particular o as a
function of both § : higher values yield greater proprioceptive sensitivity. B: Leg Jacobian max-
imum singular values: lower values indicate better minimum force production. C: Leg Jacobian
mean singular values: lower values indicate smaller thermal cost of producing force. In each
figure, the vertical dashed line indicates the linkage used in the Minitaur leg.

Now, if J := Dy g is the Jacobian of the forward kinematics, g, the joint velocities ¢, (Cartesian)
toe velocity p, joint torques 7, and toe force f satisfy

p=1Jq, r=JTf (2.34)

Remark 1 (Relation of Measures to Jacobian Singular Values). Let the (ordered) singular values of
the square matrix J be {Omax,Omin}- Observe that
a) The expression on the left hand side of (2.36) is the Rayleigh quotient for the matrix JJ T,
which is minimized by its smallest eigenvalue Horn and Johnson (1990). Additionally, J 7
and J have the same singular values, and so any measure depending on the singular values of
J or of JT is invariant to leg angle (Prop. 4).
b) Since the eigenvalues of (J T J)~! are the reciprocals of eigenvalues of J7 J, the singular
values of J appear in the denominator of (2.37).
¢) Since trace(JJT) = trace(J T J), the “thermal cost of force” metric is also independent of
leg angle.
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2.3.2 Metrics for Leg Design

Additionally, we define the vertical effective mechanical advantage, ', : T? > R2, as

Ty(g):=1[01]J(q)"T. (2.35)

We compute the singular values of J, o;, and then consider standard manipulability measures Mur-
ray et al. (1994) for each of the candidate mechanism designs. In each case the workspace is gener-
ically an annulus, it is fully defined by rpi, (the minimum radius) and ry,x (the maximum radius).
In each of the following subsections, we have fixed a constant rp,,x, and plotted a relevant measure
over two axes: (a) the design space, § := %, where rmin = |1 — 2|, Yfmax = 11 +[2 and

(b) the workspace variable, y representing the radial extension of the leg.!!

We propose the following metric

a) Omin := min; oj, proprioceptive sensitivity. This measure indicates the minimal speed of the

toe in any direction for given motor angular velocities Murray et al. (1994), shown in Fig.
13-A. More importantly in our problem domain, a very small o, indicates that some forces
at the toe are barely visible to the motor,

min 777 = min fTJJszanzl (2.36)

A =1 A l1=1

in’

and so higher values of oy, are favorable (cf. Remark 1a)). From Fig. 13-A, the two parallel
mechanisms have better proprioception through a larger portion of their workspace.

b) omax := max; o;, force production. At non-singular configurations, this measure indicates
the worst case force at the end effector for bounded motor torque,

. : -1 ,— 1
min f7f= min <TJ7 U T = 5
lzll=1 lzll=1 Omax

(2.37)

(cf. Remark 1b)). Intuitively, this expresses the degree to which an arbitrary external force
can be resisted by the (torque-limited) actuators, and so lower values of oy are favorable.
As shown in Fig. 13-B, the symmetric five-bar does consistently better than the other two
mechanisms, in spite of displaying a greater variation over its workspace.

C) Omean .= %trace(] J T), thermal cost of force. Fixing the motor constant, K, = 1, the ther-
mal cost of force production is a function of the infinitesimal kinematics (Asada and Youcef-
Toumi, 1987, pg. 55), given in NW'" As shown in Fig. 13-C (note that this measure is also
leg-angle-invariant; cf. Remark 1c¢)), the symmetric five-bar has superior design-averaged
performance compared to the parallelogram five-bar and series linkages.

2.4 Platform Design

In this section, we present what we know so far about platform design, including morphology and
construction. We first outline some general guiding principles (Sec. 2.4.1) in a relatively informal

1We show in Prop. 4 that each of these measures is invariant to the leg angle, making the extension the only relevant
workspace parameter.
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Table 2: Physical properties of the machines of interest (2.4.1).

Robot Legs DOF L(m) M (kg Mot. (%) G
Minitaur 4 8 0.2 5 40 N/A
Delta Hopper 1 3 0.2 2.0 38 N/A
Jerboa 2 4 0.105 2.5 40 N/A
MIT Cheetah 4 12 0.275 33 24 5.8
XRL 6 6 0.2 8 11 23
ATRIAS 2 6 0.42 60 11 50
StarlETH 4 12 0.2 23 16 100
Cheetah Cub 4 8 0.069 1 16 300

Table 3: Performance measures of the machines of interest (2.4.1)

Robot Vgs (M/S) Vg (LL/S) oty (m/S)?  amey [DD] (g) CoT
Minitaur 2 10 4.70 0.69 2.3
Delta Hopper - - 3.44 0.59 N/A
Jerboa 1.52 14.5 1.37 0.39 2.5
MIT Cheetah 6 21.8 4.91 1.33[-0.60] 0.51
XRL 1.54 7.7 4.17 1.14[-0.91] 0.9
ATRIAS 2.53 6.00 N/A 2.03 [—0.94] 1.46
StarlETH 0.7 3.5 3.09 0.37[-0.99] 2.57
Cheetah Cub  1.42 20.8 0.20 19.38 [-0.93] 9.8

way,'? and next we measure how well our designs hold up with respect to some clearly defined
metrics (Sec. 2.4.2). We have designed and build three different robot platforms (Fig. 4), but we
only discuss the Jerboa in detail (Sec. 2.4.3) in this thesis.

2.4.1 Simple Considerations for Platform Design
Platform Considerations for DD Designs

Mass Budgeting for Robot-specific Power and Force It has long been understood in the
legged locomotion design literature that a large fraction of the robot’s mass budget should be re-
served for actuation Rad et al. (1993). Our desire for DD designs pushes this notion toward its
extreme as the robots in this family all have approximately 40% of total mass taken up by the actu-
ators, compared to 24% for the modestly geared MIT Cheetah and approximately 10-15% for more
conventional machines (detailed in Table 2).

“Framing” Costs While increasing the number of active DOF/leg can improve control affor-
dance, distributing actuators incurs inescapable costs (paid in the scarce resource of specific force)

12Eyture work in this area aspires to formalize these notions.

43



associated with replacing a single larger actuator by multiple smaller ones. When considering how
a motor’s output torque scales as the characteristic length is modified, the designer must decide
which motor scaling is more representative of the actuator choices available namely isometrically,
or by assuming a constant cross section and varying the gap radius.'? For a constant actuator mass
budget, as the number of actuators, n, increases and the actuators scale isometrically, the specific
torque scales as oc n° if the motors are added in parallel and oc n~! if they are in series. If the
actuators are instead scaled by gap radius, the specific force goes oc n~! in parallel and oc n~2
series.!* This scaling argument represents the minimal characteristic rate of lost specific force pro-
duction incurred by adding motors whereas, in practice, the additional motors accrue additional cost
arising from the further increment of mass (and complexity) needed to frame and attach them. The
machines considered here all have one to three active DOF/leg (see Table 2) but humanoids such as
Asimo Sakagami et al. (2002) with 57 actuated DOF will incur significant cost.

in

Self-Manipulability as a Design Principle

Following Johnson and Koditschek (2013a), it is clear that a legged robot has many other available
hybrid modes available to it than (vertical) specific agility (which is restricted to measuring work
output in “stance”). In Fig. 14 we examine the relevance of these ideas in the simple example of se-
lecting between two competing morphologies (A: tail and 1DOF leg!?, versus B: a more traditional
2DOF leg). The morphology on the left enjoys more than just “stance” and “flight” contact modes,
3 of which we have found quite useful and list in Fig. 14.
Fig. 14 suggests that A, though unconventional, affords a greater possibility for the robot to
manipulate its CoM position and orientation over various contact modes.
Delving further into reasons that we are interested in tails, we must acknowledge the past litera-
ture in this area Libby et al. (2012). In addition, we observe that
a) the rank of affordances is higher (as mentioned above);
b) because of the higher duty cycle of operation (tails can be doing positive work in all contact
modes), the average power that can be derived from the actuator before hitting thermal limits
is far greater than if it were operating intermittently (Sec. 2.2.2);
c) the tail can do useful work regardless of which contact mode the robot finds itself in (as
contrasted with many robot designs that would be quite stuck when upside down).

2.4.2 Metrics for Platform Design

While there are many performance metrics proposed for robots, we suggest some new ones in
Kenneally et al. (2016), and summarize the performance of our robots using traditional as well as
some new metrics.

13The scaling choice depends on both the design objective and availability of COTS (or feasibility of making custom)
actuators.

14 Assuming constant density, the mass budget yields a volume budget, and so the volume of each actuator,v, will be the
total volume budget divided by 1, so n o< v™!. Scaling isometrically, mass o< /3 and torque o< /3 (as both the gap area
and radius contribute to torque production), yielding specific torque o< n¥ in parallel. In series, the torque at the end
effector is the minimum of the torques in the chain (assuming constant link lengths), so at best oc n 1. If scaling is
done according to gap radius, torque o /3 but mass o /2 resulting in specific force in parallel o< n~! and similarly in
series ocn 2,

15Modeled on the Jerboa (Sec. 2.4.3)
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Figure 14: In A: leg and tail, while B is a more conventional 2DOF leg. Next to each of the contact modes
we list the “rank” of available affordances, which should be intuitively understood as the number
of independently controllable accelerations that can be imparted on the CoM by the actuators.
The red and blue arrows depict these accelerations in cartoon form. The leg is assumed massless.

DD Performance Metrics

Table 2 provides physical properties and Table 3 performance measures for this family of DD robots
as well as examples of geared machines over a wide range of mass (1-60 kg).'¢

Wherever possible, the maximum experimentally observed forward running steady velocity (vs)
of the robots of interest will be provided in m/s, and maximum leg length per second (LL/s).

Specific agility as defined in Duperret et al. (2014) represents the “mass-normalized change in
extrinsic body energy [during stance].” Motivated by tasks such as ledge ascent, this measure will
be restricted, in this context, to jumps that have a significant vertical component, denoted vertical
specific agility (). Rotational and horizontal translational components of the energy will be
assumed negligible, such that

oy = hmax g, (2.38)

where hax is the maximal experimentally observed vertical jump height of the machine, and g the
gravitational constant.

Since specific force is the first limiting resource, a measure is necessary to understand whether a
given machine will even be able to support its own weight without thermal damage to the actuators.
The leg’s infinitesimal kinematics have significant influence; we consider the minimum continuous
vertical force that can be exerted by the machine, and normalize by the gravitational force acting on
its mass, then subtract one, yielding an estimate of the minimal continuous vertical acceleration

16Here, L is the mean leg length, Mot. is motor mass fraction, M the mass, and G the gear ratio. For the MIT Cheetah
(custom non-COTS motors), motor mass fraction was computed based on the high power actuators only, as the
motor mass of the “shape-change” (out of sagittal plane) motors is negligible in comparison, the largest recoverable
jump height was from direct correspondence with the author. The XRL (Maxon EC45, 70W, 23:1) vy, is actually
XRHex data Galloway et al. (2010b). ATRIAS Grimes and Hurst (2012) (Allied Motion MF0150010) vgs is from
www.youtube.com/watch?v=U4eBRPHYCAdA, and once again only the high power actuators are considered for the
mass fraction. The Star[ETH Hutter et al. (2012) (Maxon EC4-Pole, 200W, 100:1) jump height was taken from
Gehring et al. (2015) by counting pixels in the jump image since COM displacement was not reported. The Kondo
KRS2350 servos in the Cheetah Cub Sprowitz et al. (2013b) were assumed to have 1/3 motor mass, and “stall torque”
was assumed to correspond to 100°C rise, and jump height was also determined from discussion with the author.
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Figure 15: 48cm vertical jump of the Minitaur robot.

(amcv):
Amey \= iaid} (min I'y (q)) —1 (2.39)
mg q

whereby we assume that all legs have sufficient workspace for the links to be parallel. t, denotes the
thermally sustainable continuous torque (assumed to be a 100°C rise), and n; the number of legs that
can push vertically. This dimensionless number will indicate if the machine will be able to support
its own weight at any point in the leg’s workspace (> 0), and represents the instantaneous vertical
acceleration of the body in units of gravitational constant. For comparisons with other machines,
the measure is listed both as designed and also as if the machine’s gearbox were removed.

The cost of transport (specific resistance Ahmadi and Buehler (1999), Gabrielli and von Karman
(1950)) is computed using mean voltage (V') and current (i ):

CoT ;= —— (2.40)

Performance of the DD machines The family of DD machines here performs similarly or
better in conventional measures compared to more established, geared, machines. The Minitaur
robot has forward running speed (vg) of 2 m/s for a bound De and Koditschek (2016), and 0.8 m/s
for a pronk, competitive for machines around its length scale, and its vertical jump height (repre-
sented by «y,, and shown in Fig. 15) is the second best of all the machines considered. The specific
resistance of the DD robots is no worse than that of other machines of a similar scale (StarlETH
and Cheetah Cub), though the larger machines perform better (as expected). Our machines have
proven to be quite robust both mechanically and thermally and have each been run for tens of hours
as the gaits were developed. We believe that the true benefits of our DD machines will be realized
in tasks that fully exploit the increased proprioception, such as rapid transitions between substrates
or locomotion modalities, a topic we leave to future work.

Summary This section outlines a design methodology that brings the well known benefits of
DD robotics to legged locomotion. These benefits include significant improvements (3.8x—96x) in
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Tailed monoped

Figure 16: The Jerboa is a 2 Kg robot with hip-actuated legs and a 2DOF tail, pictured on the left as it
appeared in the experiments of Chapter 4. On the right is our model for the planarized 4DOF
system for comparison.

the constituent components (reflected inertia, and static, kinetic, and viscous friction) of a simple
actuator “transparency”’ model, as well as a 17.4x improvement in rotational bandwidth as compared
to a representative geared motor (Maxon EC45 flat, 23:1). The family of machines built with these
actuators in accordance with the design principles listed above has proven very competitive with
state of the art legged machines, according to a variety of metrics. The diversity of morphologies
and similarly competitive running and leaping gaits exhibited by the family of machines we describe
suggests that DD legged locomotion may be more readily achievable than its very sparse literature
hitherto might suggest.

2.4.3 Jerboa: a Tailed Biped with 4 Actuators

Inspired by the self-manipulability arguments in Sec. 2.4.1, we have built a tailed bipedal robot De
and Koditschek (2015c), which (when planarized) we model as shown in Fig. 44. The first two
subsections of this section discuss (in an informal manner) the design process of the robot platform
we have designed, built, and implemented the tail-energized hopping behavior on.

The Jerboa was designed with the goal of being a dynamic, agile robot with an inertial appendage.
We defer an in-depth discussion of morphological constraints and tradeoffs to future work, but
present the following basic design decisions here:

a) With an eye on power density constraints'’, the robot is underactuated. There are 12 spatial

DOF:s (6 for the body, 2 for each revolute leg, 2 for the tail) and 4 actuators. When planarized
with a boom and virtual constrains on the appendages (as we have done here), there are 6
planar DOFs: 3 for the body, 2 for the single leg and 1 for the pitching tail. Raibert showed
that an underactuated robot can be dynamically stable Raibert (1986), and in order to have the
best performance, we limited the number of actuators on the robot to the minimum number
that we believe is required to achieve a wide variety'® of behaviors.

17 Adding actuated DOFs parasitically increases mass, but it is not a direct consequence that a proportionate amount of
usable power will be added to the robot body by the extra DOFs.

18We have some preliminary empirical evidence that the Jerboa can quasistatically and dynamically balance, in order to
sit, stand, walk, hop, run, turn, leap, etc. Careful investigation of each of these behaviors is planned for future work.
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Table 4: Jerboa Physical Parameter values

Mass (with battery) 2.419 Kg Dimensions (without tail) 0.21 m (L) x 0.23 m (W) x 0.1 m (H)
Tail length 0.3m Tail mass 150 g

Leg length 0.105 m Leg motor stall torque 3.5N-m

Peak power density 376 W/Kg  Peak (vertical) force density = 46 N/Kg

Figure 17: The Jerboa tail is a 2DOF spherical joint controlled using coaxial motors through a mechanical
linkage. Though there are driven sprockets visible in this image, the version of the robot presented
here did not have this additional reduction stage.

b) The body has low inertia (due to the mass of the motors being concentrated near the CoM,
and the appendages being light), and the actuators are configured such that they can impart
correspondingly large accelerations to the body (with an eye towards “agility”). Future work
is planned to reconcile our inclination with emerging definitions of specific agility Duperret
et al. (2014), but intuitively it seems as if “integrated magnitude of body acceleration” is a
reasonable metric to aim for.

c) The hips are actuated, but the leg extension is completely passive. This particular form of un-
deractuated leg has been demonstrated to have great versatility in RHex Saranli et al. (2001),
for steady-state running as well as transitional maneuvers Johnson and Koditschek (2013b).

d) The robot contains an inertial appendage which is endowed with the same amount of power
as the hips. Recent research in biomechanics Libby et al. (2012) and robotics Johnson et al.
(2012) has demonstrated the utility of tails as inertial “self-righting” devices, and on the
Jerboa we promote it to a primary source of locomotory energy and control.

In the remainder of this section, we outline the electromechanical aspects of the construction of

the robot. A summary of important mechanical measurements is provided in table 4.
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Compression Extension

Figure 18: Left: Three leg designs considered for the Jerboa; the prismatic spring is “ideal” (in our model of
SLIP, the spring force is dominantly axial, and the actuator force is predominantly tangential) but
difficult to manufacture, and the four-bar designs only approximate the desired kinematics. Right:
Configuration-dependent Jacobians of the compression and extension spring designs, where the
displayed arrows map infinitesimal hip torques and spring extension forces to forces represented
by red and blue (resp.) arrows at the toe. Out of these designs, the pictured version of the robot
in Fig. 44 uses compression springs.

2DOF tail

The tail appendage is configured as a 2DOF spherical joint with a point mass at the distal tip. The
joint itself is constructed using a linkage (Fig. 17) such that identical motor displacements result
in a pitching motion, and differential motor displacements result in a yawing motion. The forward
kinematics map from motor angles /i1, j12 € T2 to the tail pitch and yaw angles, ¢5, Gyaw € T? has
a simple form when restricted to zero yaw (i.e. i1 = U2),

P2(11, 2)gyuy=0 = U1 = 2. (2.41)

For the behavior under study here, a virtual constraint ensures that ¢y, = 0. We leave a full
kinematic analysis of the 2DOF mechanism to future work.

Prismatic-compliant revolute-actuated legs

Even though we adopt the underactuated hip-driven legs from RHex, the legs are chosen to have
“toes” with point contacts instead of the rolling contact typical of RHex legs for the following
reasons:

a) Our template plant for fore-aft speed control is an inverted pendulum with a point contact,
and in particular, the toe-placement strategy for fore-aft speed control is only (currently)
well-understood for this leg structure.

b) The Raibert pitch controller Raibert (1986), which we use as part of our attitude control
depends on a “rigid” connection between the hip and the toe. With a series-elastic element
that may have torsional compliance (such as a C-leg), the ground reaction force would load
up the leg spring, introducing the spring dynamics as a “lag” in our pitch control strategy.

The left of Fig. 18 shows three leg designs that were considered for the Jerboa: 1. a prismatic
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Figure 19: Left: The selected actuator for the Jerboa is the T-motor U8, showing a thin profile and large gap
radius—desireable properties for legged applications Seok et al. (2012). Middle: Motor proper-
ties relevant to selection for legged applications for the Jerboa motor, and the X-RHex Galloway
et al. (2010a) motor. Right: A torque-current plot for the U8 when coupled with our custom
motor controllers of Fig. 20, showing flux saturation at higher currents and a dashed line for the
nominal torque (predicted by Kr).

Figure 20: Left: The physical dimensions of our motor controller when compared to the motors they are
driving. Right: Infrared image of of our actuation setup at stall, showing the controller reaching
higher temperatures than the motor coils.

mechanism with a nonlinear elastic element, 2. a compression spring in a four-bar mechanism, and
3. an extension spring in a four-bar mechanism. While the kinematic properties of the first design
are the closest to our model (the spring force at the toe is purely radial, and the motor force at the toe
is purely tangential), this design proved difficult to construct because of the linear bearing required.
The kinematics of the “approximate” leg designs are pictorially depicted in Fig. 18.

The experiments in Sec. 4.1 were all performed with the compression-spring legs. The compli-
ant element is an off-the-shelf shock absorber for RC vehicles with lightweight construction, but
considerable damping. We believe that the damping in legs was an important limiting factor in the
energy of the hopping behavior demonstrated in experiments.

Actuators

The power generated by electromechanical actuators tends to be at unusably high speeds for legged
applications, however at the same time, higher gear reductions are undesirable due to a multitude
of reasons Seok et al. (2012). To this end, we tune our actuator selection to maximize thermal
specific torque, Ki—the torque generated by the motor per unit mass per unit temperature rise.
This modification to the torque density criterion of Seok et al. (2012) allows us to incorporate
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the thermal implications of sustained motor activation'”. Fig. 19 contains a table comparing these
metrics for the chosen actuator, a T-motor U8, and the one selected for X-RHex Galloway et al.
(2010a), a Maxon EC-45.

Additionally, we developed custom motor controllers built around Infineon BTN8980 integrated
half-bridges and an STM32F373 microcontroller that are (a) lightweight (20 g), (b) commutate
using field-oriented control (FOC) at 25 KHz (adapted from Piccoli and Yim (2014)), (c) deliver
up to 55 A peak current and up to 40 V peak voltage, and (d) have built-in 12-bit rotor position
sensing. As a tradeoff for the high power-density of the driving electronics, they are limited by the
heat dissipation ability of the half-bridges. Based on some crude testing, we have found that we can
source approximately 10 A of steady-state current (thermally limited), corresponding to around 1
N-m of torque. Fig. 20 compares the physical dimensions and thermal performance of the motor
controllers to the motors we have chosen. We note the following consequences of our selection of
motor and driving electronics:

a) The high torque density of the chosen motors allows us to completely forgo any static gear-
reduction on the Jerboa (although the 2DOF tail makes use of a linkage to transmit power
to a spherical joint)—affording benefits of “transparency” and eliminating any transmission
losses Kenneally and Koditschek (2014), Seok et al. (2012).

b) Power dissipation (to heat) in the motors is not a limiting factor in the robot’s performance
with the current driving electronics.

c) By eliminating the need for gearboxes and judicious chassis design, we have been able to
reduce the “robot framing cost” to only 40% of the mass of the robot. To put this in context,
only 8% of the mass of X-RHex is motors Galloway et al. (2010a).

Lastly, we highlight some of the design aspects of the Jerboa that are particularly relevant to the

subject of Sec. 4.1 (tail-energized hopping via parallel playback of decoupled controllers):

Assumption 2 (Design for decoupled control). The design of the Jerboa specifically ensures (i) leg/tail
axes of rotation are coincident at the “hip,” (ii) the tail mass is small, i.e. my <K my, and (iii) center
of mass (approximately configuration-independent by the previous assumption) coincides with the
hip.

19We are assuming a thermal dissipation model for the motor, but not accounting for temperature effects on magnetic
flux density.
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CHAPTER 3 : Toward Correct-by-Design Compositions

The contributions in and organization of this chapter are strongly tied to our design paradigm listed
in Sec. 1.1.1. Our contribution to the first “task specification” step is that in Sec. 3.1, we describe
a small library of templates that we have found useful for our analyses of dynamic locomotion
systems (hopping and running in the plane).

The remainder of the chapter is concerned with the crucial second step: providing “solutions”
to dynamic steady-state legged locomotion tasks specified by a human operator. Our goal is the
development of a correct-by-design approach to synthesis; our contribution in this thesis culminates
in a sequence of algorithmic steps (Fig. 40), the outcome of which can be either (a) an analytical
stability test for the hybrid nonlinear limit cycle', allowing the user to select morphological / control
parameters for stability, or (b) a failure of one of the conditions in Fig. 40, indicating an inconclusive
result.

In case the procedure is conclusive, our desired outcomes of Sec. 1.1.1 are all satisfied: the
behavior is provably correct at design time, in the sense that—subject to any assumptions required to
apply Fig. 40 to the e-parameterized system under consideration—for small enough ¢, the physical
system has the same stability properties as the analytically found return map linearization. The other
benefits (efficient synthesis, ..., granularity) are all consequences of the design paradigm itself.

From our anecdotal experience®, some of the prevalent causes for the procedure being incon-
clusive include (a) incorrect assigment of states and actuators to templates (see next segment for
details); (b) inadequate template library (not rich enough to capture behavior of some body DOFs);
(c) reset map perturbs continuous dynamics too aggressively (see Sec. 3.7.2); etc. Future work will
focus on eliminating these roadblocks (we speculate on promising solutions in Sec. 5.2).

Conceptual procedure for correct-by-design synthesis

We begin this chapter by introducing the conceptual steps required for correct-by-design synthesis,
and formally describe these steps in Sec. 3.2, 3.3, 3.6 as referenced below. This conceptual proce-
dure is quite distinct from the algorithmic procedure for using our result (Fig. 40), but we introduce
it here as a guide to the reader for interpreting our contributions.

Model mechanical system as coupled oscillators We are interested in reinterpreting our
systems of interest as weakly coupled oscillators. Systems of coupled identical oscillators have
been analyzed in literature in many different contexts such as neural circuitry Proctor et al. (2010) or
multilegged coordination Golubitsky et al. (1998). Consider the e-coupled oscillators with coupling
functions y,

¥ =wl+ey(y.a)

Q=0 3.1

where ¢ € T™ (m-dimensional torus) are the “phases”, a € R” are the “energies”, and w; # 0 are
the frequencies (e.g. Proctor et al. (2010)). Note that conventionally, only the phases are considered
part of the state (which we have reflected by using trivial @ dynamics above). However, in our

I'To be precise, we compute the stability of an approximation of the physical system, such that the physical system is an
g-perturbation of a trivial model system that we describe in Sec. 3.2.
ZFurther work is required to formally characterize these algorithmic failures.
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case, the oscillators will generally (a) not be identical, and (b) their frequencies may depend on
energies, i.e. @ = w(a). Our generalized version of (3.1) is presented in (3.140). Our choices of
¥, a modeling coordinates in Sec. 3.1 reflect this conceptual outline.

One interpretation of this procedure of converting an arbitrary mechanical system to the form
(3.1) or (3.140) is that we are simply looking for a local diffeomorphism from the physical states
to (1,a). However, this process does not have a generally usable solution. For instance, one of
our motivating “model problems” introduced in Sec. 3.6.3 is a spring-loaded inverted pendulum, or
SLIP. SLIP with no dissipation in the shank is a Hamiltonian system, and generically Hamiltonian
systems admit action-angle coordinates Goldstein et al. (2013). However, to find these coordinates,
we must solve the Hamilton-Jacobi equations Goldstein et al. (2013). Additionally, since we have
chosen our shank forcing to have e-dissipation (3.5), it is tempting to pursue the stability analysis
as an e-perturbation about its action-angle representation. However,

e we need the equations of motion in these coordinates, and that the coordinate change persists
for weakly dissipative systems, and
e our key criterion is that this coordinate change must be both analytically and computationally
tractable (for our analytical and empirical results, respectively).
Thus, absent a generic method to obtain a closed-form coordinate change into action-angle, we
compromise and use a cross product of the template coordinate changes (from Sec. 3.1) to rewrite
the equations of motion (3.133). This offers the advantage of the coordinate change having a trivial
form for both analysis and implementation. The price of this “convenience” is that even a Hamil-
tonian system may need further approximation to be expressed in the form of (3.140); for instance,
assumption 8 is required for us to express SLIP in averageable form (3.143).

When composing the templates on a physical body, implicit in this step is a crucial assignment
problem: the body’s physical states and actuators must be mapped to those of the template plants.
Despite its importance, this step falls out of the scope of this thesis. Further research is needed to
formalize this assignment problem; in fact, one of frequent causes for an inconclusive outcome of
the algorithmic procedure of Fig. 40 is that the chosen coordinate changes are inappropriate.

Limit cycle stability as regulation and coordination After our (m + n)-dimensional mechan-
ical system is described by (,a) coordinates, we can reinterpret our limit cycle stability goal in
these coordinates. From the structure of (3.1) or (3.140) as ¢ — 0 (as well as our intuition), the a
coordinates stay relatively constant when the system is on its periodic orbit, but the ¥ coordinates
continue to oscillate. Conceptually, limit cycle stability consists of two parts: energy regulation,
and phase coordination:

Energy regulation intuitively relates to stabilization of the a coordinates to some desired enegy
set, a™.

Meanwhile, the m phases can be converted to m — 1 relative phases, and the coordination problem
intuitively relates to stabilization of the relative phases. There is a large literature on the study of
multilegged locomotion as a set of m coupled oscillators Golubitsky et al. (1998), Haynes et al.
(2012). Often the phases ¥ are assumed to directly correspond to some limb configuration, but
there is no coupling to separate energy-like coordinates. Raibert (1986) observed the concept of
“neutrality” in his hopping robots. We describe how our notion of coordination formally relates to
Raibert’s concept of neutrality in Fig. 39. We depict pictorially a hybrid limit cycle, and these two
“regulated” and “coordinated” manifolds in Fig. 21.
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R(9)

Figure 21: Visual depiction of the limit cycle, guard set, and the R (3.139) and N (3.149) submanifolds.

Averaging as a good approximation of coupled continuous flow From the structure of (3.1)
or (3.140), we can observe that these systems exhibit a separation of time-scales, i.e. dd_lZi = 0(e).
This topic has been the subject of much study in applied dynamical systems (e.g. Guckenheimer
et al. (2003), Hale (2015)), and we introduce for the first time dynamical averaging in legged lo-
comotion. Moreover, our prior conceptual decomposition of limit cycle stability into regulation
and coordination requires some analytical approximation such as this, since in general, neither the
“regulated” nor the “coordinated” submanifolds of the ambient space are invariant in general.

We first introduce dynamical averaging, and our generalization of it to switching systems, and
then event-based reset hybrid systems, in Sec. 3.2. These first results (Thm. 2-3) apply to switching
/ hybrid systems with a single continuous mode, followed by a reset (3.39) (expressed in the form
of a vector of slow coordinates x € R”*”~1 and a single fast coordinates o € S'). Sec. 3.3 shows
how the single-mode result can be applied to certain classes of systems with two non-trivial (but
symmetric) continuous modes.

Incorporating time-reversal symmetry The classes of systems we are interested in (represen-
tative of steady-state locomotion) are “close” to Hamiltonian systems since, while they typically
require dissipative forces in order to stabilize against perturbations, the limiting behavior should
have a periodic (and typically roughly constant) total energy.> Hamiltonian systems are deeply re-
lated to time-reversible systems Lamb and Roberts (1998). Altendorfer et al. (2004) first introduced
the benefits of time-reversal symmetry to legged locomotion.

In order to use Thm. 2-3 (introduced above), we must first find explicit “phase difference” coordi-
nates in order to express the system in the form (3.39). We have anecdotally found this procedure—
as well as verification of the other averageability conditions of Thm. 3—non-trivial even for rela-
tively simple 2 DOF systems (Sec. 3.4-3.5). However, incorporating time-reversal symmetry, we
can define a new class of systems (Def. 2) that possess certain symmetry properties.

As a consequence of asserting these new properties (which comparatively add little complexity
to the algorithm in Fig. 40, and also have not so far limited its applicability in any instance), we

3While this “almost-Hamiltonian™ notion intuitively helpful, our framework is unaffected if the total energy is not
roughly constant.
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get large simplifications in the averageability conditions, including “automatically” finding appro-
priate phase difference coordinates. We describe these advances in greater detail in the preamble
to Sec. 3.6. Our last result (Thm. 4) can then be applied with far greater ease than the prior result
Thm. 2/3.

Applicability and Results

Formally, our classes of applicable systems include any dynamical system expressible as a set of
coupled oscillators (3.140), and having a single continuous mode.* Since our contributions in this
thesis do not include a solution to the assignment problem described above, we are unable to present
a formal characterization of the class of applicable systems with our current results.

However, we have successfully applied these results for stability conclusions about planar me-
chanical systems pertaining to locomotion with up to 2 DOFs, with work currently in progress
showing promising applicability to planar systems of up to 3 DOF:

In Sec. 3.4 we analyze a set of two mechanically-uncoupled, informationally-coupled vertical
hoppers as a motivating model for the study of virtual bipedal coordination. The analysis informs
the development of a new type of coordination controller that not only applies to this 2 DOF model,
but also to a physical quadruped (Sec. 4.2).

In Sec. 3.5 we now analyze a set of two mechanically coupled vertical hoppers; in this instance the
conclusion enables an analytical resolution to a decades-old stability problem studied in the robotics
literature, which previously only had numerical solutions. However, the analysis of Sec. 3.5 poses
a great degree of difficulty in the step of finding the phase difference coordinate between two non-
identical coupled oscillators (the stance leg and the flight leg)—a required step in order to apply
Thm. 2/3.

In Sec. 3.7, we apply the new Thm. 4 to two systems (a 1.5 DOF subspace of SLIP, and the old 2
DOF coupled vertical hoppers), demonstrating the relative ease of application of Fig. 40.

3.1 Templates for Hopping and Running

In this section we present several 1DOF plant models, local diffeomorphisms to (¥, a) oscillator
coordinates for each of these models, and describe the template controller devised to stabilize them.
These template plant models, as well as the feedback controllers presented to stabilize their be-
havior, are inspired by prior research which we attribute where appropriate. However, the change of
coordinates to energy and phase (as detailed in the preamble to this chapter) is a novel contribution.
Pertinent templates serve the following categories of basic functions: control of the velocity of
the center of mass (CoM), and control of angular momentum.

CoM control is decomposed into vertical energy regulation in stance and flight (Sec. 3.1.1-
3.1.2)—qualitatively expressing how terrestrial running machines must intermittently use ground
reaction forces to restore vertical momentum that is constantly lost to gravity—and a template for
horizontal plane speed control (Sec. 3.1.3), which find application in control of fore-aft speed in the
planar models studied so far.

“4For all our applications, we integrate the flow in any trivial dynamic modes, such as ballistic flight, and incorporate
it as a reset map. Using this procedure, we have not found any obstructions to either monopedal hopping gaits (e.g.
SLIP in Sec. 3.7.2), or virtual bipedal gaits (Sec. 3.4, 3.5) leveraging symmetry factoring (Sec. 3.3).
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Vertical hopper (v) Ballistic flight (f) /\Compliant IP (cp)
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Figure 22: Plant models for the templates in Sec. 3.1.1, 3.1.2, and 3.1.3, showing the physical DOF of interest
as a black greek letter, as well as the available actuator input (or perturbative force) in red.

We include two relatively simple expressions of angular momentum control: “attitude control” of
a single rigid body introduced prior to its use in Sec. 3.4, a two-jointed planar body with insufficient
actuation accessing two hybrid modes (Sec. 3.1.4).

Lastly, in Sec. 3.1.5, we list a few other templates we have studied, but have not been utilized in
examples listed in this document.

Throughout this thesis, we use a mathsf subscript to denote the relevant template; for instance
¥, refers to the “vertical hopper.”

3.1.1 (Vertical) Hopper (v)

This template plant is qualitatively describes a “bouncing” mass, that recovers vertical momen-
tum using a spring-like energy return mechanism, and in addition actively injects dissipative forces
to stabilize its bouncing height. Our coordinate transforms here are inspired by Koditschek and
Buehler (1991).

Plant model The physical template plant (Fig. 22) is a unit-mass sprung leg in stance,

E=uy =i (p—0) + e, (3.2)

where ¢ is the physical leg length, w, > 0 is the chosen or enforced stance frequency, and the
nominal extension p € R4. We observe at the outset that the spring-like force can be generated by
a physical spring or a virtually instantiated spring. We assume that the toe-ground interaction is a
sticking contact (we do not consider a friction cone), and we ignore collisions between parts of the
leg/body other than the toe and the ground, thus making the terrain profile under the toe irrelevant.
We also assume there is no gravity, or that it is cancelled by forces in v, beforehand.

The actuator acts in stance, and so the template controller acts in the continuous dynamics. The
reset is trivial and there is no control affordance in the reset map.

Oscillator coordinates The coordinate change to model coordinates is based on the phase vector
) 2
p R =R~

p(L.0) = [(p —;)wv] : (3.3)
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The “square root of energy” coordinate represents the energy (only in stance, i.e. { < p), and we get
the following coordinate change:

Yy i=2pL0)eSt,  ayi=|pE0)| € Ry, (3.4)

Template controller The controller is based on an energization strategy’ from our previous work
De and Koditschek (2015b),

This controller is in the continuous mode. We can either operate with a body-fixed or virtually-
instantiated (a) Hookean shank spring (frequency w,), and (b) viscous damping (coefficient B,),
together with (c) an actively injected additive nonlinear tuned damping term (gain k,):

vy = (ky —ayBy) siny, 3.5)

When the spring is virtually instantiated, we refer to u, as the control signal, in which case the
w2(p—¢) term in (3.2) is simply added on to vy.

Closed loop dynamics The physical equation of motion in stance (from (3.2) and (3.5)) is
é: = Cl)\%(p—é')—f—gvv,
and rewritten in terms of y = p(¢, C ) are

V2 =8 =0} —p)+evy = w1 +ev, a6
)}1 = _éa)v = —)2Wy.
Using (3.4), a, = ||y ||, and from the equations above,
avay = yTy = ev,ys = evy(aysiny)
= ay, = gV, siniy,

where we used the polar transform of y, i.e. y; = aycosy,, and y» = a,siny,. For the i,
dynamics, note that

Y1 = —aysin Yy +ay cos P
Y2 = a,cos Iﬂvl,.ﬁv + ay siny,

SWe provide proof of stability using a new controller, but the specific form of the control signal seems anecdotally less
important (in our empirical trials) than its closed-loop stability properties. Further work is required to formally justify
that compositions are relatively robust to the specific control strategy employed; for instance, we posit that the SLIP
composition of Sec. 3.7.2 can display identical averaged dynamics (3.161) with different vertical controllers (3.5).
See Sec. 5.2 for a further duscussion.
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and note that y;y, — y2y1 = a\%zﬁv. Then,

. (36 1

Yy = a_z(w\%y%'i‘g‘)v)ﬁ"‘wvy%)
\"

= wy +ev,cosy /ay

since y% + y% = a2. Summarizing the above, we get

Y oy cos Yy vy /ay
|:dv |0 Te sinyyvy |’ 3.7)
where v, is given in (3.5).

3.1.2 Ballistic Flight (f)
The ballistic flight template (Sec. 3.1.2) is inspired by the juggling work of Klavins et al. (2000).

Plant model In this template we develop coordinates for a weakly perturbed ballistic mass. The
template plant is a unit mass at height ¢ > 0, with dynamics

¢ =—g+euy, (3.8)

where v should be interpreted as a “noise” or disturbance function.®
For the energy component of the flight coordinates, we use the square root of total energy, and a
simple notion of phase originally due to Klavins et al. (2000),

ari= 2 —p+ 8. yro= 2‘—; (3.9)

Note that ¢y = —1/2 denotes liftoff, and ¥s = 0 denotes apex.

Dynamics With these coordinate we get the flight dynamics (taking a time derivative of (3.9)),

. d a2 . . e 3.99
arir = - = gl +{{ = {E +9) "= —2earyor.

and from the second row of (3.4),

= Gar aoo g evi | (“2arys)(—2syrvr)

vi= 2as 2af2 N 2_af B 2_le 2af2
_ 8 eyl
2as 2as

The presence of a perturbation force acting on the mass is inspired by our prior work on the slot hopper De and
Koditschek (2016). In that instance, the perturbation enters through coupling with a different leg which is in stance.
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Inspired by the computation above, we define the flight frequency
wf ;= g/2as, (3.10)

and can put the above together to get

j £ ve(4y?—1)
[I(ff]z[zaf}rg e (3.11)
af 0 —2Ysvs
3.1.3 Compliant Inverted Pendulum Horizontal Motion (cp)

This template is inspired by longstanding research on the SLIP model (e.g. Geyer et al. (2005),
Schwind and Koditschek (1995)), though the control strategy we use to stabilize fore-aft speed is a
reprisal of Raibert’s strategy.

Plant model The physical template plant (Fig. 3.1.3) is of an inverted pendulum of length r > 0
(allowed to vary’), with leg angle § € S'. The continuous equations of motion are

rG = —2/-6 + evep. (3.12)

Oscillator coordinates Borrowing from our previous work (De and Koditschek, 2015a, Sec. 3.2),
we define (acp, Ycp) to capture the leg angle DOF in oscillator coordinates:

Yep =0 and acp:=r%6, (3.13)

where a, is the angular momentum about the toe and the leg angle is the proxy for phase. In these

coordinates, the dynamics are
fhcp _[acp/r? 0
|:de = 0 +eé rve | (3.14)

3.1.4 Two-link Planar Attitude Control: 2 DOF Hybrid Inertial Reorientation

This template was first introduced in De and Koditschek (2015b), which in turn was inspired by
1 DOF inertial reorientation Libby et al. (2015). Our decision to energize the hopping behavior
with a tail leaves introduces a new actuated DOF whose tight dynamical coupling to both the mass
center and the body orientation dynamics requires its careful control throughout the locomotion
cycle. Recent literature Johnson et al. (2012) has seen the development of a 1DOF “inertial reori-
entation” template for correcting the “shape” coordinate in a two-link body experiencing free-fall

"This template is a specific instance of a variety of models where we can use approximately-conserved quantities to
derive the fore-aft energy; for instance in fore-aft compartment of tailed hopping. We defer a full exploration of
Lagrangian-derived oscillator coordinates to future work, but observe the following here: If g; is almost-cyclic in the

0L 9L d 3L

Lagrangian £ (i.e. a0 = O(e), and Y; = O(e). 3, T didg = T;, then we set a; = gTLz Clearly a; = O(¢). The

corresponding phase, ¥/;, can then be found easily if £; = ‘112 (i.e. decoupled kinetic energy). Then a; = ¢;, and V;
can be ¢;, so that 1[/,- =a;.
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Figure 23: A hybrid 2DOF inertial reorientation template with two segments pinned at the CoM and no
gravity. Left: the net angular momentum of the system is constant. Right: the system can correct
the net angular momentum using reaction torques on the main body segment, but the tail DOF is
subject to an unmodeled disturbance, or v in (3.15).

(constrained by conservation of angular momentum). Raibert (1986) introduced a pitch stabiliza-
tion mechanism relying on reaction torques from hip actuation during stance. Here, we adopt the
approach of composing these templates for 2DOF stabilization of appropriately defined “pitch” and
“shape” coordinates of a two-link body/tail model.

Since in the physical system the tail actuator, 72, is unavailable for attitude control in stance
(because it is being “monopolized” as the destabilizing energy source for the SLIP subsystem), and
the Raibert pitch correction mechanism (using the hip actuator, 71) is unavailable in flight (due to
absence of ground reaction force), we present a hybrid inertial reorientation (HIR) template (Fig.
23) as the simplest exemplar body on which this 2DOF template is anchored.

We omit the Lagrangian derivation for this familiar subsystem Johnson et al. (2012), but exploit
the fact that when pinned at the CoM, the dynamics are second-order LTI with no Coriolis terms.
We perform a change of coordinates (inverting the constant inertia tensor) to obtain the (decoupled)
dynamics

[t6,vhir] T (stance),

e
[¢.8]" = 0.7e]7 (figho). (3.15)

where (¢, &) are the “pitch” and “shape” coordinates, respectively, and v, is an unmodeled distur-
bance term (explicitly added here with an eye toward the use of tail for spring energization in the
physical system). In (3.15) we have now represented HIR as two independent subsystems on which
two identical 1DOF templates will be anchored in parallel (albeit in alternating stages of the hybrid
execution).

Taking advantage of the direct affordance (by which we mean that both of the two decoupled
1DOF systems are completely actuated in, one and then other, of the alternating modes of their
hybrid dynamics), we employ a graph-error controller Koditschek (1987) as a type of reduction.
Our reference first-order dynamics for stabilizing each coordinate in turn are just ¢ = —k¢ (and
similarly for £). The independent closed-loop 1 DOF subtemplate vector fields, are defined as

¢ =—kg(p+kop)=—kekd—kgo. (3.16)

(and similarly for £), where the gain kg is understood to be high enough to make the transients of
the anchoring dynamics irrelevant.
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Hybrid Dynamical Model of HIR

Since the isolated model does not have any intrinsic physical mechanism for transitioning between
modes, we add an exogenous clock signal, ¥, € S! such that Y, € [0, 7] represents stance, and the
complement represents flight. Let its frequency be wy;, > 0. Here we sidestep the issue of phase-
synchronization for the various compartments, but simply use ¥, to ensure our gains our tuned
properly for the timescales of the coupled system (we ensure this upon its use in Proposition 8).

HIR stability

Let us denote vy [i] := f Vhirdt, the interval being over the stance phase of stride i. Also, define
v = max; Ve[t].
Proposition 5 (HIR Stability). Given arbitrary € > 0,

k> % log(l + l)hirmax/‘g)

results in the desired limiting behavior ||ynir|| = B, (0), a neighborhood of 0 of size €, where

Yhir - = [‘va]T

Proof. Simply integrating the first-order dynamics (3.16), we get the touchdown return map
Prir(¥hir) = ¢+ (@ + onir [ 9]) -
where ¢ := e *7/®hir (1 — k77 /wpiy). Tterating this return map, at stride n € Z.,
Yhirln] = &' ¥1ir[0] + (§" Onir [0] 4 -+ 4 & pie[n — 1] e, (3.17)

and using the triangle inequality,

w1617 ywielO0) 4+ vin ] (3.18)

1 . . ... .
Note that { < TFomye 1S 2 sufficient condition to ensure that ||yni[¢]]| < & asymptotically stable.

Some algebra reveals that
2whir vn‘:?x
k> 22 log (1 -+ i ) (3.19)
is, in turn, a condition sufficient to insure that previous inequality involving . O

3.1.5 Other Templates Studied

We have studied several other templates in the course of this research, some of which are introduced
in detail for the study of specific behaviors / bodies, and others of which were used in research not
contained in the thesis.
The following are utilized for various experiments on the Jerboa (Sec. 2.4.3), including those in
this thesis (Sec. 4.1):
e two-link spatial attitude control (for 3DOF tail-assisted roll control) Wenger et al. (2016);
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o tail-SLIP fore-aft energy (a modification of Sec. 3.1.3 based on the different Langrangian
structure induced by an added tail);

e energy pumping tail (in our usage the tail is driven in a phase-locked manner based on the leg
shank state, and so we introduce new coordinate changes intricately coupling the tail and leg
shank DOFs).

The following are utilized in the bounding quadruped (Sec. 4.2):

e rigid body attitude control (“attitude controller” introduced in Sec. 3.4);

e rigid linear inverted pendulum for horizontal speed control (“linear” version of Sec. 3.1.3,
inspired by Pratt et al. (2006))

3.2 Averaging Theory and its Application to Locomotion

The emergence of physically motivated and mathematically tractable hybrid models Burden et al.
(2015, 2016), Johnson et al. (2016) offers the prospect of extending classical ideas and techniques
of dynamical systems theory for application to new settings arising from the repeated making and
breaking of contacts endemic to robotic mobility and manipulation. Here we work at the intersec-
tion of a class of tractable hybrid legged locomotion models Johnson et al. (2016) with a class of
well-behaved hybrid limit cycle models Burden et al. (2015) to generalize an initial result De and
Koditschek (2015a) on the stability of “averageable” hybrid oscillators. Specifically, we extend a
classical smooth dynamical averaging technique to a class of hybrid systems with a limit cycle that
is particularly relevant to the synthesis of stable gaits.

Relation to prior literature Classical averaging (Guckenheimer and Holmes, 1990, Ch. 4.1)
yields a method of approximating (with error bounds) solutions of the 7' -periodic vector field using
the averaged vector field. As in the classical case, our new hybrid results guarantee equivalence
in stability type to a simpler approximant (named the averaged system) of the system of interest.
Specifically, we show that if the return map of the averaged system has a hyperbolic periodic orbit,
then so does the original system, and additionally the linearizations of the return maps are s2-close
(and thus share the same eigenvalues and eigenvectors to O(¢)).

This report is also related to previous stability analyses of hybrid oscillators appearing in locomo-
tion for a single vertical hopper Koditschek and Buehler (1991), as well as informationally-coupled,
physically-decoupled vertical hoppers Klavins and Koditschek (2002), Klavins et al. (2000). Ap-
plication of the hybrid averaging result in these instances yields a greater analytical simplification
than has been possible before. In fact, we show in our analysis that the nonlinear stance dynamics in
our vertical hopper (Example 3) can be reduced to an “averaged” continuous dynamics that appears
as a phase-independent proportional controller on the energy (3.47). While single-vertical-hopper
stability results have been obtained before without averaging (e.g. Koditschek and Buehler (1991)),
the more complex latter instance (informationally-coupled vertical hoppers) has heretofore only
been analyzed in the context of a simplified integrable stance model (Klavins and Koditschek, 2002,
eqn. (20)). Integrable stance dynamics allowed for a discrete return map control strategy (Klavins
and Koditschek, 2002, eqn. (26)), but cannot be extended to more general non-integrable dynami-
cal templates such as the so-called Spring-Loaded Inverted Pendulum (SLIP) Saranli et al. (1998).
Hybrid averaging allows us to analyze with relative ease this plant model obviating the need to
integrate the time-varying flow and, rather, requiring only examination of its reduced-dimensional,
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simplified, averaged approximant. Stability analyses of these kinds of models has not been achieved
thus far in the literature, leading past researchers to resort to numerical methods Poulakakis (2006),
Shahbazi and Lopes (2016). Further work is currently underway to use hybrid averaging in conjuc-
tion with observations on time-reversal symmetry Altendorfer et al. (2004), Razavi et al. (2016) to
provide stability analyses of higher dimensional models including fore-aft motion.

3.2.1 Classical Averaging (Background)

Following Guckenheimer and Holmes (1990), consider a time-varying® system
x =¢f(x,t,8); xeUCR” 0<exl. (3.20)

The averaged system is defined as

.1 (T _
y=87/0 f(y,t,0)dt =:¢f(y). 3.21)

Note that y is used instead of x to make clear that these vector fields act on different coordinates.
We describe the necessary coordinate change below.

Theorem 1 (Smooth Averaging Theorem Guckenheimer and Holmes (1990)). There exists a C”
change of coordinates x = y + ew(y,t,¢) under which (3.20) becomes

y=ef(y)+e>fiy.t.e). (3.22)

Moreover,
(i) If x(t) and y(t) are solutions of (3.20) and (3.21) with initial conditions x(0), y(0) respec-
tively, and |x(0) — y(0)| = O(e), then |x(t) — y(t)| = O(¢) on a time scale t ~ 1/e¢.
(ii) If f is periodic with period T, and if pg is a hyperbolic equilibrium of (3.21) then there
exists g9 > 0 such that, for all 0 < ¢ < &g, (3.20) possesses a unique hyperbolic periodic orbit
ve(t) = po + O(e), of the same stability type as po.

Remark 2. The statement (i) does not depend on the periodicity assumption made in Guckenheimer
and Holmes (1990); but only (ii). Further, we emphasize that we don’t directly compare the behav-
iors of (3.20) and (3.21); instead we change coordinates for the original vector field from x to y,
and then compare the behavior of the original system in the new coordinates, (3.22), to the “model
averaged system” (3.21).

Proof. We replicate the proof strategy of (i) from Guckenheimer and Holmes (1990). First we
compute the change of coordinates explicitly. Let

S 16 = f(x)+ f(x.1,9) (3.23)
be split into its mean, f, and oscillating, ]7 parts. Let

x=h(y):=y+ew(y,t,e), (3.24)

8We prefer to use autonomous systems with a phase coordinate instead of time; point ahead to Sec. 3.2.3.
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without yet choosing w. Differentiating the equation above and using (3.20) and (3.23), we have

0 — ~ 0
(I +eDyw)y =X—8a—1;) :sf(y+8w)+8f(y+8w,t,8)—sa—lf,

or (expanding in powers of &, and choosing w such that %—’f = f(1.,1,0)),°

_ _ ~ 97 _
y=e(I +eDyw)™! [f(y)+8Dyf'w(y,f,o)+f(y,l,0)+88—£(y,t,0)—f(y,l»0)+O(82)}

~

=¢&(l —eDyw) [70) +¢eDy f - w(y.1.0) +8%(y,t,0)} +0(e”)

~

_ — — 0
=ef(y)+¢ {€Dyf-w(y,l,0) —Dyw(y.2,0) f (y)+ 3—£(y,t»0)} +0(e%)

=ef(y)+ 2 fi(y.1.¢). (3.25)

as required by (3.22).

We use a version of Gronwall’s Lemma (see Guckenheimer and Holmes (1990) for details) to
compare solutions of (3.21) and (3.22). If y(¢) and y.(¢) are their respective solutions, the Lemma
says that if |y(0) — y-(0)| = O(e), then |y (t) — y(¢)| = O(e) for t € [0, %L]. Using the coordinate
change (3.24), we know

X(0) = ys ()] = sw(ys(1).1,8) = O(e),

and using the triangle inequality,

[xX(1) =y(O] = |x (@) = ye )]+ [ye(t) =y ()] = O(e),

and we obtain the desired result (i).

To prove (ii), we again follow the proof strategy of Guckenheimer and Holmes (1990), but provide
significantly more detail as well as correct some typos in the original. We also enumerate the steps
in order to better reference them in the following text.

(a) We consider the Poincare maps Py and P, associated with (3.21) and (3.22). Rewriting these

latter systems as

y=sef(y), b=1, (3.26)
y=ef(y)+e>fi(y.0.¢), b=1, (3.27)

where (y,0) € R® xS!, and S! = R/T is a circle of length 7. We define a global cross-
section X := {(y,60) : 8 = 0}, and the first return or time 7 Poincare maps Py : U — X,
P; : U — ¥ are then defined for (3.26), (3.27) as the flow maps associated with a time-7" flow
of each of the time-varying dynamics with initial condition t = 0, where U C X is some open
set.

(b) If pg is a hyperbolic equilibrium of (3.21), then f(po) = 0. Using (Hirsch et al., 1974,

Note that we evaluate at & = 0 since these terms interact with a Taylor expansion at & = 0 of ¥, as shown in (3.25).
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pg. 300), the spatial Jacobian of the flow around and equilibirum is that of a linear time-
invariant system, and so!%>!!

D Po(po) = e TP (P0) = [ 4 eTD f (po) + O(e2). (3.28)

(c) Note that P, is e-close!? to Pg since T is fixed independent of &, using the result of i).1
Next we show that D P (pg) = D Py(po) + O(g?). For this, consider the time-invariant vector
field corresponding to (3.27),

[yj] _ [s7<y> +e2 fy (y,e,s)]
0 1 ’

and define its time-¢ flow from initial condition (y, 8) as ®.(y, 8,t), versus the corresponding
flow @g(y,0,1) for (3.26). Note that, by definition, Ps(p) := my, ®¢(p,0,T), where m, is the
projection to the y-coordinates. Following (Hirsch et al., 1974, pg. 300) to compute the spatial
derivative of the flow, we get the linear time-varying system where A(z) := D®.(y(¢),0,¢),

A = |:8D7+(§2Dyf1 821)00f1]A(t)'

We can solve this linear time-varying system using the Peano-Baker series. Since we are only
interested in the top left block, we can compute it at po,

T
DP:(po) =1 +& [ DF(@u(po.0.1)d0 +0()
0
T
=1+e /0 [ D (@c(po.6.1)) ~DF (®o(po.8.1)) + D (@o(po.6.1) | d6 + 0(c?)

T
=1 +TD (o) +¢ | [DT@e(p0.0.0)=DF @0po. 0.1 ] 40 +062)

T
“ZDPo(po) +2 [ [DT(@s(p0.0.0)~DF @0po.0.1)] 40 +062)

where we used the fact that ©y(pg, 6,t) = py for step x. From (i), for 6 € [0, T'] we know that
[®e(po,0,1) — Po(po.0.0)|| = O(e) = @e(po,0,t) = Po(po.0,1) + O(e). Additionally,
D f is Lipschitz continuous and so D £ (®(po.6,1)) =D f (®o(po.0.1)) + O(g). Using this
in the block equation above, we have D Pg(po) = D Po(po) + O(£?).

(d) Consider the function {(p,é¢) := %(Ps(p) — p),'* such that D¢ = %(eETDf(P) — 1), and

limg 0D ,¢ = TD f(p). Note that zeros of ¢ correspond to fixed points of P, and that

10Typo in Guckenheimer and Holmes (1990); should have said D f (po) instead of D f(p).

This statement means that if pg is a hyperbolic fixed point of f, by definition, the eigenvalues of D f (pg) have a
non-zero real part. Consequently, the eigenvalues of exp(¢T'D f (po)) do not lie on the unit circle.

12Typo in Guckenheimer and Holmes (1990); not £2-close.

Bntuitively, the result of (i) holds over a time interval of O(1/¢). This statement says that since T doesn’t depend on ¢,
for small enough &, the O(1/¢) time interval over which (i) applies can be > T'.

14The 1/¢ in ¢ is there to maintain invertibility even as ¢ — 0, since limg_sgDPs — I.
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Dy¢(po.e) = TD f (po) is invertible. The implicit function theorem implies that the zeros
of D,¢ form a smooth curve (pg,¢) € R” xR. Thus p, are fixed points of P, and further,
pe = po+0(e).

(e) Putting together the prior steps, we see that

DPe(pe) = exp[eT (D f(pe) + Sszl (Pe))]
= exp[eTD f(po) + O(e?) + & TD f1(ps))] = exp[eTD f(po)] + O(),

or, DP¢(pe) = DPo(po) + O(?).

(f) Since both of the matrices above have eigenvalues (at least O(¢g)) away from the unit circle
(hyperbolicity of 7), and an &2 perturbation of the entries only perturbs the eigenvalues by
O(£?), the stability properties of D P, at its fixed point, p,, are the same as that of Py at its
fixed point, pg.

Thus (3.27) has a periodic orbit e-close to p, and via the change of coordinates (3.24), equation
(3.20) has a similar orbit. L]

3.2.2 Switching Systems
Averaging coordinate change

Even though not required for the proof of Thm. 1, we will find it useful to delve deeper into the
structure of the coordinate change (3.24). As pointed out in the proof of Thm. 1, w is a solution to
the PDE %—’f := f(y,1,0). From this we make the following observations:

e w does not depend on ¢;

e the base value of w at # = 0 is not yet constrained, so we are free to choose'?

w(y,0,e) =0 forall y,¢; (3.29)

e /1 in (3.24) is a good change of coordinates for sufficiently small ¢ > 0, since it is e-close to
the identity map; "

e since the right-hand side of 38—’;) := f(y,t,0) does not depend on w, and also since y is held
fixed while taking the partial derivative w.r.t. ¢, this PDE can be solved by simply integrating
overt,i.e.

t ~
w(y,t,s):=/0 f(y,0,0)do (3.30)

is a solution of (3.24).
We show in several examples below that (3.30) is indeed a coordinate change from (3.20) to (3.22).
The examples below can also be viewed in the Wolfram cloud (takes a few moments to load) here.
Example 1 (Explicit averaging coordinate change (vertical hopper)). Consider the system of the
form (3.20) with'® f(x,t,e) = (k1 — Bx)cos?(t) + ekpx?, with T = 7.
Using Mathematica!”, first we compute [ = %(kl — yB) according to (3.21). Next, we can find

I5Asin (Guckenheimer and Holmes, 1990, Example 1, Sec. 4.2).
16This is our vertical hopper template with ¢ € [0, ], and a feedforward second-order forcing k» added.
17We used Mathematica version 11, and specifically the functions D, Integrate, DSolve, Series.
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w(y,t,e) = %(kl — yB)sin(2t) using (3.30), where we see that there is no e-dependence. In the
next crucial step, we check that w accomplishes its role in the proof of Thm. 1, by computing

M} (3.31)

I+ EDyw)_1 |:s7(y +ew(y,t,¢)) —I—ef~(y +ew(y,t,e),t,e)—e o

=70+ (Katy? = 6Bl = yB)sintan) ) &+ 0(%) = 7 (3) + O2)

as required (compare to (3.25)).

Example 2 (Explicit averaging coordinate change (inverted pendulum)). Now let'® f(x,t,¢) =
gxcos(at) +ex3t, with 7" = 7.
First we compute f = é gy sin(amr) according to (3.21). Next, we can find

1 1
w(y,t,e) =gy (_Et sin(ar) + ” Sin(at))

using (3.30), where we see that there is no e-dependence. Next we compute (3.31) and get

— maty3a2 —g2mtyacos(ta)sin(mra) + g2ty sin® (ma) + g2n2yacos(ta) sin(ta) — g 2wy sin(wa)sin(ta) \ ,
efM+ 20 €
+0(e?)
=ef () +0(@?),

as required.

Lemma 3 (Endpoint behavior of averaging coordinate change). Att = T, the coordinate change w
has the properties

(i) w(y,T,e) =0, and

(ii)) Dyw(y,T,e) =0

Proof. We have

(3.24)

T~
w(y,T,e) = /(; f(y,0,0)do

(3.2 ) (3 21)

[ 10000170
by the definition of f. Similarly,
aa [T (3.23) T —
Dyw(y,T,e) = /0 yf(y 0,0)do /0 Dy f(y,0,0)do—TD, f(y)

- D, (/ f(3,0,0)do —T F(y ))(””

where in the penultimate step, we switched the order of the derivative and the integral. O

We remark here that the result of Lemma 3 is unsurprising: the intuitive purpose of f is to capture

18This is an inverted pendulum 6 =egsinf
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the “deviation” between the original vector field f (3.20) and 7 (3.21), and we should expect (from
the definition of the “average” vector field) that the deviation integrates to 0.

Switching systems (constant flow time)

Now suppose that instead of a smooth periodic system, we have a switching system with the flow of
(3.20) punctuated by a reset, R (acting on the original x-coordinates). We assume for this section
that the reset acts after a fixed flow time, T, of (3.20), and relax this assumption in the next section.

Theorem 2 (Switching Averaging Theorem). Given the “original” and “averaged” switching sys-
tems of the forms

% =ef(x,1,8), 6=1, x(T4) = R(x(T)), (3.32)
y=ef(), 0=1, y(T4) =R((T)),  (333)

where 0 is reset to 0 by the switching event, we assert the following hypotheses on (3.33):

(i) If the CT (for r > 2) reset R (allowed to vary with ¢) satisfies (a) DR(x) = So + &S1(x,¢)
(with constant So), (b) So is invertible, and its unity eigenvalues have diagonal Jordan
blocks'®, and

(ii) if there is a point pg such that (a) it is an equilibrium 0f7, (b) R(po) = po, and (c) the
averaged return map is hyperbolic at py,

then there exists 9 > 0 such that, for all 0 < & < gg, (3.32) possesses a unique hyperbolic periodic
orbit, of the same stability type as py.

Proof. First, we apply the C” coordinate change (3.24). As shown in the proof of Thm. 1(i), w
converts the continuous dynamics in (3.32) to take the form of (3.22). Define the reset after the
averaging coordinate change,

Ry:=h"'oRoh, (3.34)
and convert (3.32) to the switching system

y=ef()+e2f1(r.0,¢), 6=1, y(T4) = Ry (y(T)), (3.35)

where (y,0) € R" xS!, and S = R/ T is a circle of length 7. We know that the continuous flow
of (3.35) can be approximated by (3.21) after changing coordinates; but we need check how R, and
R are related using (3.34).

First, note that since Ry only acts on y(7’), and since the time dynamics in (3.35) are decoupled,
we only ever need compute Ry, (y(7)), and DR, (y(7T')). From (3.24) and (3.34),

Ry (y(T)) = R(x(T)) —ew(x(0),0,8) "=" R(x(T)) = R(y(T)), (3.36)

where we used Lemma 3 to observe that x (7)) = y(T) +ew(y(T), T, e) = y(T) for the last equality,
and where 7'y = 0 after the reset. Similarly, for the spatial Jacobian, first note that Dyw(y,0,¢) =0

19Equivalently, unity eigenvalues have algebraic multiplicity 1.
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from the assertion (3.29) for each y(0). Then,
DRy (y(T)) = DR(x(T))[1 +eDyw(y(T), T,e)] = DR(y(T)),

where we used Lemma 3 for the last step.

The remainder of this proof follows closely the proof of Thm. 1(ii), and we refer to those steps
when convenient. Consider the Poincare maps Py, P, and associated with (3.33) and (3.35). Define
asection X := {(y,0) : 6 = 0}, and the first return or time 7" Poincare maps Py : U — X, P.: U — X
are then defined for (3.33), (3.35) as the flow maps associated with a time-7" flow of each of the
time-varying dynamics, with initial condition # = 0, composed with their respective resets

Py :=RoQy, Py :=Ry 00,

where U C ¥ is some open set, and Qg, Q. are the time-T flows.

As shown in steps (b)—(c) in the proof of Thm. 1(ii), DQo(po) = exp[eTD f (po)], and D Q¢ (po) =
DQo(po) + O(¢?). Additionally, as shown in step (c), the fundamental averaging result Thm. 1(i)
shows that Q(po) = po + O(e). Now incorporating the reset,

DP;(po) =DR(Q:(po))-DQ:(po) = DR(po + O(e)) - DQ¢(po)
= (So +&S1(po +0(£))) DQ:(po) = (So +&S1(po) + O(e2)) DQs(po)
= (S0 +&51(p0))DQo(po) + O(e?) = DR(po)DQo(po) + O(?)
=DPy(po) + O(e?), (3.37)

where for the step *, we used the fact that S is Lipschitz continuous.

By the hypotheses in the statement of Thm. 2(ii), we know that Py has a fixed point at pg, but
we need to show that P, has a fixed point that is close. From the block equation above, D P;(po) =
So+e(S1+ TD?( P0)) + O(£?). By passing to the Jordan form, without loss of generality we assert

that So =V [I(’)” 8] V=1 (using the hypothesis that “1” eigenvalues have algebraic multiplicity 1

from Thm. 2(i)), where U does not have a unity eigenvalue. Now let E(g) :=V [1”6/ ¢ In(im:| VL

Define ¢(p,e) = E(¢)(Ps(p) — p). Note that ¢(p,0) = 0, and letting S~'1 =851+ TD?(po)

VD, (po.e)V =V E(DPs— 1)V = [’";)/8 In‘im] (V-IDPV — 1)

=[mfe 0 1% 91+ v 'Sy 1)

= [0 18 vt 1 +ev 15y,

In the limit € — 0, the top m rows have rank m, since S1 is full rank (hyperbolicity of the return map
D Py(po) asserted in the hypotheses). The bottom n —m rows evaluate to U — I,,_,; since U has
no unity eigenvalues, U — I,—,, is also full rank. For ¢ > 0, the argument is unchaged for the first
m rows. For the bottom rows, the entries of U — I,,_,, dominate those of ¢/ ! §1 V for sufficiently
small &, and so by continuity of eigenvalue with matrix entries, the right hand is full rank. Thus,
D¢ is full rank, and using implicit function theorem, we know there is a family of fixed points p,
for Pg, and p; = po + O(e).
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Figure 24: We define a class of hybrid averageable systems (Thm. 3) with a single domain, fast (x;) and
slow (x;) coordinates, with general conditions on the flow (dark orange), and requirements on
fixed points of the flow and the reset, x*. The calculations in Thm. 3 show how to construct a
new hybrid system with constant flow time (yellow, guard G := {x7} x X2) for any hybrid system
with variable flow time (purple, guard G = y~!(0)) by augmenting with a flow-to-reset map.

As shown in step (e) in the proof of Thm. 1(ii), we have DQ.(pe) = DQo(po) + O(¢?), and we
showed in the steps leading to (3.37) that DR(Q¢(po)) = DR(po) + O(?). Similar to those steps,
we can show that DR(Q¢(pe)) = DR(po) + O(¢?) Putting these together,

DPy(ps) = DR(Qs(pe))D Qs (ps) = (DR(po) + O(c%)) (DQo(po) + O(%))
=DPy(po) + O(e?). (3.38)

Following step (f) in the proof of Thm. 1(ii), we conclude the desired result. L]

3.2.3 Hybrid Systems (Event-Based Switching)

Hybrid systems arising in legged locomotion and other fields often encounter a discrete reset at a
state-dependent “event,” unlike the fixed flow time we assumed in the previous section. The event is
usually described as the intersection of the continuous flow with a guard surface, G, which triggers
a discrete reset of the system state. The time elapsed between these events generally varies with
initial condition.

Theorem 3 (Hybrid Averaging Theorem). Given the “original” hybrid system and “averaged”
switching system of the forms

x=¢f(x,0,¢), 6=1, y(x,0) =0 = x4 = R(x,0), (3.39)
y=ef(y), 6=1 o=T = yy =R(y), (3.40)
where R is constructed from R as we show in the proof. we assert the following hypotheses on

(3.39)-(3.40). If
(i) the guard set satisfies (a) assuming Doy = 1,° Dyy = O(¢), and (b)

20This can be done without loss of generality by scaling y as long as Dy y # 0, which we assert as a condition on the
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(ii) the CT (forr > 2)reset R (allowed to vary with ¢) satisfies (a) Dx R(x,0) = So +&S1(x,0,¢)
(with constant Sy ), (b) Sy is invertible, and its unity eigenvalues have diagonal Jordan blocks,
and

(iii) there is a point py and T > 0, such that (a) po is an equilibrium of f, (b) R(po) = po.
and (¢) T := ming=o{t : y oexp(tD f (po)) = 0}, (d) the matrix So + (U + V), where €U :=
eS1(x,T,e)—DyR-Dyy, V:=TD f) is hyperbolic at po,

then there exists 9 > 0 such that, for all 0 < & < &g, (3.39) possesses a unique hyperbolic periodic
orbit, of the same stability type as po.

Proof. We first provide a construction that enables us to locally transform a system with variable
flow time (3.39), to a system with constant flow time that has equivalent®! Poincaré (i.e., flow-and-
reset) dynamics. Let ®(x,¢) denote the maximal flow associated with the continuous dynamics of
(3.39) from initial condition (x,0 = T').?> Since 6 = 1, 1, ® = ¢. Any initial condition (x,0)
impacts the guard as

yo®(x,1) =0, (3.41)

where ¢ may be negative. Applying the implicit function theorem (IFT) (Hirsch et al., 1974,
App. IV)? to (3.41) with respect to ¢ at test point (x,0) yields a C! time-to-event map 7 : U — R
where U C X x R is a neighborhood of (x,0) (Hirsch et al., 1974, Ch. 11, Sec. 2) such that
yo®(x,7(x)) =0. Note that the image of t includes negative times. The derivative (i.e. gradient) of
7 can be computed at (x,0) by differentiating (3.41) with respect to x (recall that D, ®(x,0) = [(I)])

—Dyy

Dy - Dy®+D;®-Dt)=0 — Dt = ——F—,
y - (Dx o ) Dy f +1

(3.42)

since we assumed Dgy = 1 without loss of generality. Define the time-7'-flow equivalent reset
R: 7, U— X by

R(x) := Ro®(x,7(x)). (3.43)
Differentiating with respect to x using chain rule, and substituting using (3.42) we can compute

Dy R(x) =DR - (Dx®(x,0) +D,®-Dr)

o (-t o)

=DxR—DyR-Dyy + O(?), (3.44)

using the hypothesis that Dxy = O(e).

transversality of the flow and the guard.

2lwe use the term “equivalent” to denote a correspondence stronger than conjugacy; whereas the flows are indeed
conjugate, the return maps are identical.

22This initial condition corresponds to the nominal impact time, not the initialization of the continuous dynamics at
o = 0. Additionally, the reader should note that we keep “x” arbitrary for now, i.e. the following calculations hold
for any x.

2 Justified since Dy o ® # 0.
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Let &, now denote the flow of the continuous dynamics of (3.39) starting from initial condition
(x,0 = 0). Consider the switching system

X =¢f(x,0,8), =1, o=T = x+ R(x), (3.45)

and its flow-and-reset return map

Ro®,(x.T) "2 Ro®(®y(x.T). 70Dy (x.T)).

which corresponds exactly to the return map for (3.39). Additionally, note that Dy R = Sp + £U,
and that the averaged return map for (3.40) would be

DP(po) =DR(po)(I +eTDf)+ O(e?) =: So +&(U+ V) + O(e?). (3.46)

With the hyperbolicity of D P (o), all of the conditions of Thm. 2 are satisfied by the systems (3.45)
and (3.40), and upon its application, we get the desired result. O

To demonstrate the applicability of hybrid averaging to analysis of physical systems, we first in-
vestigate a 1DOF hybrid system. We consider one of the two hoppers depicted in Fig. 25: a unit
mass restricted to travel along its vertical axis with an attached massless leg. We choose this as our
first example for two reasons. First, despite its apparent simplicity, it serves as a template for ubiqui-
tous running and hopping behavior in robots and animals Blickhan and Full (1993). Variants of this
model have been analyzed extensively in the literature, e.g. see Koditschek and Buehler (1991) for
analysis of a one degree-of-freedom (1DOF) restriction of this planar point-mass model whose ener-
gizing input is inspired by the empirically successful strategies reported in Raibert (1986). Second,
the simplicity of the equations of motion mitigate the intricacies of the hybrid averaging, exposing
in particular the synergistic relationship of this method with symmetry, which we discuss further in
Sec. 3.6.2.

Informed by the structure of the preceding averaging results, we propose an alternative energiza-
tion scheme (intuitively similar but physically distinct from Raibert (1986)) and apply Thm. 3 to
establish an analogous stability result. The analyses in Koditschek and Buehler (1991) relied on
two simplified models that both admitted closed form return maps (Koditschek and Buehler, 1991,
eqns. (15), (17)). However, hybrid averaging allows a stability analysis without requiring inte-
grable?* stance dynamics (e.g. (3.99)). Recall that even the “simple” 2DOF SLIP dynamics Saranli
et al. (1998) are non-integrable, hence motivating an analysis tool that drops this requirement.

Example 3 (Single vertical hopper). Choose the coordinates o := ¥ + /2, and x := a;. We have
the system dynamics (3), amd so

dyn _gw—i—esinwlvl =:ef(ar, ¥1,e).

24*We remind the readers of the distinction between an integrable flow, and the averaging integral (3.21). In the latter
case, we integrate the vector field over a single “phase” parameter while holding the other states constant.
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Single stance:

Z2 21 Zl =—g+T
Zp =
L
Independent hoppers

Figure 25: Two decoupled unit mass vertical hoppers, shown here in a single stance mode.

The averaged vector field (3.21) is then (changing variables from o to 1)

— /2 d k—
f(ar) 2/ vicosyrdyn _ k=aif (3.47)
—n/2 Tw 2w
Clearly the point
ai =k/B (3.48)

is an equilibrium of the averaged vector field above?.
The guard set is defined by the physical liftoff event when the normal force at the toe-ground
interface during stance goes to 0, i.e.

1 ekar—p)

-~ ” (3.49)

y(ai.yn) =
scaled such that Dy, y =1 at /1 = /2. Clearly, Dg, y = O(¢).

The massless in-flight leg is reset to its nominal length, p. It follows from (3.4) that the touchdown
phase, V1 is identically —sr /2 since z; = p at the touchdown event. Noting from (3.4) that Z2; = —a;
at touchdown, and recalling that the mechanical energy a; is conserved in flight (3.4), we can solve
for a; at touchdown, yielding

R(ar.yn) = /a2 sin? y1 —2gay cosy1 /o —> DR "2V [1,g/w]. (3.50)

and so we can calculate U according the definition in Thm. 3,

gp?
S() - l,U - —m

Together with V := 7TD7 = —%, we get DP (3.46) at its fixed point is 1 — ¢ (ﬁ + ﬁ) < 1. We

w2 2w
conclude using Thm. 3 that this hopper is stable.

251n intuitive terms, we point out that the oscillatory control signal introduced in (3.5) has the special property that the
k-term possesses a particular symmetry with respect to ¥1. Consequently, after the averaging step, k persists in the
averaged aj-dynamics (3.47), whereas if vy contained a siny/; it would get integrated out. We explicitly show the
greater role of symmetries in averaging in Sec. 3.6.2.
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Figure 26: A depiction of the two kinds of hybrid dynamical limit cycles analyzed here. In the full (visualized
as two-dimensional) product domain, there are four possible modes corresponding to each of the
two legs being in flight or stance. We (locally) analyze two limit cycles (A): one with alternating
stances interspersed with aerial phases (blue), and one with “short” single stance periods. In the
former case, we use symmetry (Sec. 3.3) to factor the return map into two iterations of a “half
return map” (3.54) (B, C), integrate the trivial aerial dynamics, and get a single-mode hybrid
system (D). In the latter case, we assume that active toe extension control (Sec. 3.3.1) can be used
to eliminate the short single-stance periods and enforce simultaneous transition between aerial
and double stance modes (E, F), integrate the trivial aerial dynamics, and recover another single-
mode hybrid system (G). In Sec. 3.4.2 and Sec. 3.5.4 we analyze a limit cycle of form D, and in
Sec. 3.4.3, Sec. 3.5.5 we analyze a limit cycle of form G.

3.3 Symmetry-Factored Hybrid Averaging

We are able to directly use the single-mode result of Sec. 3.2.3 to demonstrate stability of a “monoped”
in the upcoming Example 3. We develop two small extensions to the theoretical result in the fol-
lowing two subsections that allow the result to be applicable in a broader class of “biped” systems
that we detail below.

The sagittal plane vertical hopper model we present in Fig. 25 can have four physical modes
(resulting from none, one of the two, or both legs in stance), and Fig. 26 suggests how the focus only
on in-phase or anti-phase limit cycles leads to a formal reduction to the “single mode with reset”
hybrid system (Thm. 3). For the in-phase case (bottom row of Fig. 26) the limit cycle of interest
passes through only two modes (double support and flight). In Sec. 3.3.1, we will observe that
our control affordance (each leg of the abstract “machine” analyzed here—and indeed the physical
machine Minitaur—has two independently actuated degrees of freedom) allows us to force operation
into this regime where integrating the aerial dynamics reduces the flight mode to a mere factor of
a single mode reset map (as we show in the single-leg example of Example 3). However, for the
anti-phase case (top row of Fig. 26), the limit cycle of interest passes through three modes and even
after replacing the flight flow with its integrated reset map, we must still extend the Thm. 3 result
to a class of hybrid systems with two continuous modes. We achieve this extension by imposing a
symmetry condition on the dynamics of the two alternating single stance modes as follows.

We begin by specializing the notion of a standard hybrid dynamical system as defined in (Burden
etal., 2015, Def. 1).

Definition 1. A K-symmetry-factored hybrid system is a tuple Hx = (X, F, G, R) such that
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(i) (X, F,G, R) is a hybrid dynamical system as defined in (Burden et al., 2015, Def. 1) with two
modes, i.e. index set J = {1,2} ~ Zy;
(ii) X1y and DC(Z) are isomorphic, and K : f)C(j) — DC(H_]) is an involutive symmetry, i.e. K?=id;
(iii) the vector field, guard, and reset respect the symmetry, i.e. (a) DK-F(ji1)0 K = F(j),
(b) yij+1° K = y(j), and (c) R(j+1) = Ko R(jyo K, where y(;y is any function such that
S(y = (v)) 7' (0); and
(iv) the resets map to the “next” domain, i.e. R(j)o S(J-) C DC(J-+1),

Remark 3. Note that we have made the following notational changes from (Burden et al., 2015,
Def. 1): (a) we append the subscript “: ¢ to make explicit that these elements are disjoint unions of
domains or maps specific to our K—symmetry conditions above, (b) we refer to the domain with the
symbol “Xg” instead of “D”, (c) we use parenthesized subscripts for the index set, for example,
Xk :=[]jes X(j), and (d) we make use of a (non-unique) implicit representation of the guard,

v() (S() =0.
Remark 4. Symmetry-factoring has been previously exploited to simplify return map calculations
in Altendorfer et al. (2004). In that case, time-reversal symmetry of Hamiltonian SLIP within a
single stance is utilized to factor a SLIP return map, whereas here, we utilize the symmetric steps
of a bipedal gait, in order to factor the full return map that represents a complete stride into a
“half-return map” (3.54) that only contains a single step.’® More generally, notwithstanding the
present-seeming special nature of these factorizations, we suspect that symmetry analysis of this
nature will play an important role in many more legged locomotion settings.

Here we exclusively analyze systems with two degrees-of-freedom (DOF). The reset map thus
has four dimensions®’, i.e. X ~ R*. The symmetry map (Def. 1(iii)) we use is

K:RY >Rt (ag). ¥()) = @G+ ¥G+1) (3.51)
and specifically, the (reduced dimensional) matrix
0
0
—1

K= e R3*3 (3.52)

S = O

1
0
0

is helpful in defining the reset maps in Sec. 3.4.2 and Sec. 3.5.4.

The first condition in Def. 1(iii) essentially states that F(;) are conjugate through the K; from
this we automatically conclude that

KoQ+1n=0@eoK, (3.53)

where Q ;) is the flow of F{;y till it intersects the guard surface y ).

26We envision that exploiting within-stance time-reversal symmetry as in Altendorfer et al. (2004) could augment the
method here, for further analytical benefit (as we pursue with work already in progress seeking to analyze the com-
position of in-place behaviors with the fore-aft motions treated as disturbances in Sec. 4.2.3, Sec. 4.2.4).

2TWe describe in each case which of these four coordinates is averaged.
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For such a limit cycle of the kind depicted in Fig. 26B,

PK = R(l) [¢] Q(l) [¢] R(O) [¢] Q(O)

=(KoR©oK)o Q(I)OR(O)O 0©®
(2 ko RO O(Q(O) oK)o R®o Q(O)

= (PO,
i.e. the full return map Pg = P(zl), where

P(l) =Ko R(l) o Q(l) (354)

is a “half return map.” It is clear from this that the stability properties of the limit cycle are fully de-
scribed by the half return map. Consider the single-mode hybrid system, H(1y = (X(1), F(1),9(1). K 0
R(1)). The return map of H(y) is simply P(y) for all limit cycles of the kind shown in Fig. 26B.

Thus, the symmetry properties in Def. 1 allow us to analyze the single-mode system H(q) and
make conclusions about limiting behavior of Hg. Accordingly, suppressing the single-mode sub-
script label, we return to the specialized structure of an averageable hybrid system (Thm. 3) and
consider the tuple H = (X, F, G, R,x*), where X := X(y), F := F(1), §:= S91), R := Ko R(y)
(again, we emphasize that we have dropped the subscripts since we need only analyze behavior
in the first mode), and x*. In the analytical results of Sec. 3.5.2, we prove in each case that H
is averageable at x*, and employ Thm. 2 or Thm. 3 for our stability analyses in Sec. 3.4.2 and
Sec. 3.5.4.

3.3.1 Near-Simultaneous Transitions

We now consider the in-phase limit cycle depicted in the bottom row of Fig. 26. Specifically, as
anticipated above, we bring its analysis under the sway of the restricted single mode framework of
Thm. 3 by enforcing transitions through the higher codimension guard set intersections where both
toe-touching constraints are active.

Assumption 3. In the limit cycles of type Fig. 26E—G, active control of the leg extension is used in
the aerial phase to execute simultaneous touchdown and liftoff.

Since the actuators only have to move the toes (small inertia), this action is almost devoid of any
energy cost.

We provide numerical and empirical justification for this assumption following the introduction
of more physically realistic models (Fig. 27A~C. In Sec. 3.5.6, we compare traces from simulations
with active toe extension control in aerial phase either enabled or disabled from a variety of initial
conditions Fig. 35 to illustrate how the resulting trajectories become nearly indistinguishable after
a few strides. Independently, even without imposing such active control on the physical Minitaur
robot, the relative frequency of single stance in empirical pronking is low, is 6.31% in Fig. 51, and
6.65% in Fig. 53, lending support to our “simultaneous transition” assumption for the pronking
analysis (Sec. 3.3.1). It is worth noting in passing that these empirical observations, revealing as
they do the rarity (even absent active control) of single stance in pronking, lend further support to
the suggestion emerging from the analysis of Burden et al. (2016) (motivated by the prevalence
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of virtual bipedal and monopedal gaits in biology) that such high codimension transitions might,
themselves, be preflexively attracting.

3.4 Application: Coordination of Independent Vertical Hoppers
(2DOF)

For the next two sections, we apply hybrid averaging the study of coordination of two vertical
hoppers, first mechanically uncoupled (this section), and then with coupling due to the connecting
body (Sec. 3.5). For the analytical results in these two sections, we list our models in Fig. 27, and
our assumptions in Table 5.

Consider a physical plant with a pair of vertically—contrained masses (of unit mass), suspended by
massless legs with nominal extension p € R4. The configuration variables of interest are physical
heights of the masses, z; € R4 . This model is depicted in Fig. 27A.

We get two modes, stance and flight, based on whether the height is less than the nominal leg
extension (as formalized below in (3.99)). The equations of motion for the two hoppers (indexed by
i €J:={1,2}) are

e+, zj <p.and
5, =) 8+l z<pan (3.55)
—g else,

where Y; is the shank extension force generated by leg i. We discuss scaling the morphological
parameters more in Sec. 3.5, but for this section we assume that the shank extension controller
compensates for the known dynamical parameters as

Y; =g +uj, (3.56)

where u; is the parameter-agnostic “template controller” signal derived from Sec. 3.1.1.

3.4.1 Oscillatory Energization and Phase Control

In order to express the dynamics of our plant models in terms amenable to application of hybrid
averaging, we use our intuition to find appropriate slow “phase difference” coordinates. This idea
is inspired by Proctor et al. (2010), where differences of phases of identical coupled oscillators are
shown to be slow, and a classical averaging application follows. We introduce the following local
(by this we mean that § is a smooth function of the physical states while in a single hybrid mode,
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Independent hoppers Slot hopper Sagittal plane biped Minitaur experimental

platform

Figure 27: Virtual biped models of increasing complexity. Building on our previous work on the coordination
of a pair of mechanically decoupled vertical hoppers (A) De et al. (2016), we now introduce the
slot hopper (B) as a new template for quadrupedal running. Its coordination stability analysis
(Sec. 3.5.2), guides the synthesis of preflexive and feedback coordinated gaits in the progressively
more complicated dynamics of the sagittal plane biped (C) and the physical Minitaur robot (D)
Kenneally et al. (2016), Minitaur (2016) (Sec. 4.2) that robustly anchor this template (in the sense
of Full and Koditschek (1999)) when properly compensated according to our controller designs.
Fig. 30 and Table 6 summarize the relationships between these models, our controllers, and our
analytical, numerical and empirical results.

but discontinuous across modes>®) definition for “phase difference”:

8 := 11 — 12, Where 3.57)

(Vi —n/2)/wy zj < p, and
(Vi —1/2)/ws(ai) else,

T =

Note that the coordinates above have the units of time (this is apparent from the definition above,
since ¥; are unitless (3.4), and w, (3.5) and ws (3.10) both have units of s7h.

The v; term in our vertical hopper control (3.5) contains the various nonlinearities responsible
for asymptotic stability and phase control. This includes a lumped viscous friction term (which is
assumed to come from unavoidable parasitic sources), as well as terms introduced by feedback:

v (x) ;= —Bz; —kgcos i +w;(x), (3.58)

where the second summand in the last equation is an oscillatory energization term De and Koditschek
(2015b) that can intuitively be thought of as “negative damping”?°, and the last summand introduces
a new feedback phase-control term. The phase controller expressed in the functional form of w; (x)

28The discontinuity of (3.57) across modes does not introduce any analytical issues: all dynamical models considered
here fall within the class of self-manipulation hybrid systems Johnson et al. (2016) and are thus guaranteed to have
unique and non-blocking executions. We further show, using the distinct strategies depicted in Fig. 26, that they
satisfy the averageability requirements, placing them within the class of “smoothable’ hybrid systems (Burden et al.,
2015, Thm. 3) —so that their executions are guaranteed as well to vary continuously with respect to initial conditions,
and be piecewise smooth. Because our coordinate transformations, e.g., (3.4) are written for convenience across the
distinct modes of the original physical coordinates of the self-manipulation system, they are not formally continuous
functions. However, as depicted in Fig. 26, both routes to the single mode averageable model subsume into its formal
reset map the erstwhile continuous flows through “uninteresting” (and integrable) modes of the physical coordinates,
so that (3.4) and (3.57) operate only in a single mode in which they are indeed smooth functions.

PFrom (3.4), —kqwcosy; = (gka/a;)z; (forcing in the direction of velocity, but normalized by a;).
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is discussed in Sec. 3.4.1.

Coordination controllers

We propose two kinds of coordination controllers. First, we introduce a phase controller’® with
phase control gain k; € R,

w;i (x) = (=1)" kg (21 — 22) siny;. (3.59)

Looking ahead, setting k; > 0 in Sec. 3.4.2 stabilizes an anti-phase limit cycle (the template for a
“bounding” gait, whereas setting k; < 0 in Sec. 3.4.3 stabilizes a limit cycle entraining the two legs
in-phase (the template for a “pronking” gait).

Second, we introduce an empirically-motivated attitude controller (only for pronk stabilization)
which adds a proportional control term to (3.59),

w; (x) = (=)' (kp(z1 —22) + kg (21— 22)), (3.60)

fori €J.

We verify analytically the efficacy of these controllers with respect to the mechanically isolated
hoppers of Fig. 25 in Sec. 3.5.2. In Sec. 3.5 we will show, first, that these stability results persist
for a weakly mechanically coupled instance of the hoppers Sec. 3.5.4 and then, turn to a similar but
more intricate analysis of what we will term “preflexive” stabilization wherein the influence of two
distinct modes of (first, stronger, and then much stronger) mechanical coupling substitutes in place
of any feedback control.

We remark here that (3.59) and (3.60) are both trivial to implement on a physical platform, since
the only sensory information required is of the coordinate z; — z,, and its derivative. For example,
on the physical Minitaur robot this information can be measured directly through the physical angle
¢ and its derivative (3.90).

A physical surrogate for abstract phase difference

In each of Sec. 3.4.2-3.4.3, a more straightforward proof involving algebraically simpler terms
could have been obtained by introducing instead of (3.59) a coordination term based upon the ab-
stract phase difference

w; (x) = (=1)""ky siny; sin(w$), (3.61)

as in (Klavins et al., 2000, eqn. (7)). This is because in both of the preceding averaging analyses,
§ is shown to be a “slow” coordinate (§ = O(¢)), and can be held constant while performing the
averaging integral in (3.67) and (3.81).

However, the analytically simpler alternative (3.61) requires computation of the abstract phase
difference § for implementation, which is quite involved (3.57), especially due to the discontinuities
in its definition across modes. In comparison, our globally well-defined phase controller (3.59) is

30Though the arguments of (3.59) seemingly involve only physical coordinates, we justify the use of the term phase
controller by exposing the strong relation between the energetically relevant “proportional / dissipative” form of
(3.59)—(3.60), and abstract phase control in Sec. 3.4.1.
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a simple function of the physical variables that can be easily measured with sensors. We observe
below that, notwithstanding its simplicity, the coordination controller (3.59) actually functions as a
physical surrogate for the abstract phase difference, behaving, in both the in-phase and anti-phase
cases, like a proportional phase controller in the averaged sense. We then discuss the numerical and
empirical utility of this simply implemented surrogate in Sec. 3.4.1.

Although a matter of considerable conceptual interest, we are not aware of an analogously equiv-
alent “abstract” version of the attitude controller (3.60) that is a function of the i; coordinates only.

Closed-loop phase-difference dynamics Though our phase controller (3.59) looks quite dif-
ferent from the abstract version (3.61),

a) an inspection of the last row of (3.67) reveals that § o -4, and
b) inspection of the sin(wd) factor in (or application of the Series function in Mathematica to)

G A8 2, .2 2
the last row of (3.81) reveals that § o¢ —§(ay +a3) + O(6),

avg . .. . .

where we use the & symbol and omit constant positive parameters, but include all functions of state
explicitly. In both cases, the closed-loop § dynamics take the form of a proportional control on § for
small &, which is identical to the (3.61).

Numerical comparison Fig. 29 shows a numerical comparison between the abstract phase con-
trol (3.61) and the approximation (3.59) for both positive and negative signs of the gain k,, respec-
tively stabilizing a bounding and a pronking limit cycle in a pair of independent hoppers.

The simulation in Fig. 30 shows our approximated phase control applied to coupled vertical
hoppers, and more importantly, trials on the physical platform show that (3.59) is able to overcome
preflexive stability and stabilize the physical platform leg phases to a desired limit cycle Sec. 4.2.3,
4.25.

3.4.2 Two Vertical Hoppers: Anti-Phase Limit Cycle (Bounding)

Here we present a local analysis of the anti-phase limit cycle with alternating stances of hoppers 1
and 2, the results of which are borne out in empirical trials in Sec. 4.2.

We appeal to Def. 1 with symmetry (3.51), and study the half return map with the continuous
dynamics F := F(;)—where mode “1” we now define as the one where hopper 1 is in stance,
hopper 2 in flight—and where the reset R := K o R(y), where R(;) maps states from liftoff of
hopper 1 to touchdown of hopper as depicted in the upper series of sketches in Fig. 26.

For this subsection and the next, we enforce the following assumption, whose justification is
referenced from the second row of Table 5.

Assumption 4. The stance duration (resulting from a weakly perturbed spring-mass oscillation) is
constant.

As described in the introduction of Sec. 3.5.2, our empirical trials display more-or-less constant
flow time, and we find that the further complication in algebra does not buy any new insight. Still,
we include a variable-flow-time version of the return map computation (and stability analysis) that
appears in Sec. 3.4.2 to demonstrate in a tutorial manner how an application of Thm. 3 would
proceed.
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Table 5: Assumptions made to facilitate analytical results. We list how they are utilized, and also point to

empirical or numerical justification.

Assumption (title) Application Benefit Justification
. . Simulation  comparison  in
f’rérsllSIiI:i)lLé;r)leOus gec. 355 343, Ef%};éir;gl;—m%?; hzy— Fig. 35; < 7% empirical single
ec. 2.0 gmng ’ stance (Sec. 3.5.6)
S Fig. 54 shows 6.5% devia-
4 (constant stance simplify reset map . . .
. Sec.3.5.2 tion despite perturbations (see
duration) (contrast Sec. 3.4.2) Sec. 4.2.4 discussion)
. . simplify single (3.94) . . .
5 (hnea.rlzed stance Sec.3.54.355 and double  (3.96) Flg,. 33 .trajectory comparison
constraint) . (with / without)
stance dynamics
6 (low initial pitch decouple . the CqM F}g. 53 shows relative mag-
enerey) Sec. 3.5.5 and pitching dynamics nitudes of a4 and a, (see
&y (3.114) Sec. 4.2.3 discussion)
: ) Only restricts analytical scope to
. . prove the time-varying low energy pronking; Fig. 37
7 (small flight time) Sec.3.5.5 ¢-reset (3.122) is a con- ’

shows stability for much higher

traction 5 (see Sec. 3.5.5).

Continuous dynamics For the following analysis, we choose the coordinates o := v¥; + /2,
and x := (a1,a»,6). The continuous dynamics (3.99) can be rewritten (derivation in Sec. 3.1.1) in
the coordinates defined in (3.4), so that

a; = —ecosyYvy, ar =0,

. & . . (3.62)
V1 =a)+a—s1n1//1v1, V2 = wr(az),
1

where the ¢ parameter appears in these positions due to our choice of e—magnitude nonlinearity
in the hopper control (3.5) so as to depend upon the anti-phase stabilizing version (k; > 0) of the
phase coordination term w; defined in (3.59).

Using the phase difference coordinate § from (3.57) (note that hopper 1 is in stance and hopper 2
is in flight for the analysis in this subsection), we notice that

d
8=Lsinw1v1,

— 3.63
dt wai ( )

i.e. by inspection, the presence of the “small” parameter, the factor ¢ in (3.63), reveals that the
chosen phase difference coordinate is “slow” (O(e) dynamics). The continuous dynamics in these
coordinates are

. siny1vq
C=w+e——
ai
—Ccos 1V (3.64)
X=¢ 0
sinyrq v
wail
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Consider the prospective anti-phase fixed point,

T=n  x*=[ki/B. ka/B. 0]", (3.65)
where
~ k ~ 4k
kg i=hg+ 84 F._pg_d (3.66)
2w 3

Though the last entry of (3.65) is zero, we emphasize that this denotes an “anti-phase” limit cycle:
observe in (3.57) that when hopper 2 attains apex, 71 = 1/2, then § = 0 implies that, simultaneously,
the hopper must be experiencing its “bottom” (most compressed) event.

Additionally, note from (3.65) that the the k; gain introduced through our phase controller (3.59)
moves the first two components, of the equilibrium, x*, a} = a5 = k4 /B, smoothly as a function of
that controller gain k;. The limiting k; = 0 case recovers the isolated vertical hopper equilibrium
point (3.48). Direct integration of (3.64), using (3.59) with k; > 0, yields

ko —aip
— Td 1
)= Zdo=—1] 0 (3.67)
o do 20 | gky
w?aj

which evaluates to 0 at xJ, satisfying Thm. 2(ii). Moreover, anticipating its use in (3.74), we can
calculate the Jacobian as

B
B -£ 0 0
D f(x2) = 0 0 0 . (3.68)
gkyé 0 — gka
203a? 2w3a;

Reset The touchdown condition is triggered by the event that hopper 2 touches down, or ¥, — 1
(3.4) crosses zero. Thus, using K as defined in (3.51), 1 0 K o R(1) = 0, satisfying Thm. 2(i), where
R(1) maps state from liftoff of hopper 1 to touchdown of hopper 2 (as in Def. 1), and is obtained by
integrating the trivial aerial dynamics, as detailed below.

Note that the a; are defined continuously through modes (3.4), and the a; are unchanged by
ballistic flight.

Define 11 o as the liftoff time (when hopper 1 is in stance, hopper 2 is in flight) and t1p as the
touchdown time (when hopper 1 is in flight, hopper 2 is in stance). In this reset calculation, to
avoid confusion, we will be explicit about which row of (3.4) is used in each appearance of ¥;: e.g.,
¥ = (a2—22)/2a2).

First, we integrate the aerial dynamics. Note that the time of flight is # is given by

1— Wf( 2 (10)

1ﬁf(z)(tLo)+a)f(az)tf =1 = =
wr(az)

Using this in wf(l)(lTD) = l/ff(l)(lLo) + ws(a1)ts, and noting from (3.4) that wf(l)(lLo) =0, we get
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the flight map

_ wx(a1)
wr(az)

v (1) (1 -y (t0) (3.69)

Now we must express the above in terms of §. Using the appropriate patches at f; o and ¢rp,

o) -n/2 v o) —1/2

3(tLo) = o ws(az) (3.70)
v ) -1/2 v Pm)—7/2 |
8(trp) = ——— E— '
wr(ay) @

Per our constant flow-time assumption (Assumption 4), we know that w\fl)(tLo) = 7, and combin-
ing with (3.70),

n PP (o) —1/2

§(tLo) = Y or(a3) (3.71)

Since the leg touches down at its nominal extension, by (3.4), W\SZ) (ttp) = 0, and combining with
(3.70),

v (tm)—1/2 =«

8(trp) = T o@) + 3w
aan ¥ () = 1/2 v (o) —1/2
= —— 4+ 8(to)+ ——— (3.72)
wr(ay) ws(az)
Substituting (3.69) into the above,
1 1 1
8(trp) = 8(fLo) — - +
2wi(az) 2wf(a1)  wr(az)
1 (az—ay)
= 8(tLo) + — = —_—
F0 T 0r(a)  2w(ar)
All together, the slow-coordinate reset is
(41
R(a1.a2.8) =m0 Ko “
a
§+(az—a1)/g
— (ar—ay) T
zK[al, as, 5+“2g—“1] . (3.73)

From the above, we observe that DR has a constant O(1) part, satisfying Thm. 2(i).
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Application of switching averaging Using (3.52), (3.68), and (3.73) and evaluating at (3.65),
we get the averaged return map

DP :=DR-(I +enDJ)

0 1 0
=& 0 0 , (3.74)
¢ 1 egkyB
?1 T ‘ 1+ 2ka(a1)3
where
(= 1—%, (3.75)
2w

only depends on constant parameters. The block lower triangular DP has eigenvalues = j \/é‘_l
from the upper left block (the upper block has complex conjugates hence the determinant is their
magnitude squared), and —1 + ;i’;‘é} ‘2 from the scalar lower right block, which is within the unit
circle for small ¢ > 0.

This computation reveals a condition on allowable parameter values; in (3.59), k4 must be small
enough such that 8 > 0. Assuming our gains are set appropriately, for small ¢ > 0, |{;]| < 1, and
also the other eigenvalues are within the unit circle since their product is {7, and the averaged return
map is stable. Additionally, the return map is hyperbolic, and applying Thm. 2, we conclude that
the pair of independent hoppers has a stable anti-phase limit cycle e—close to (3.65).

Variable flow-time (event-based reset) analysis

This section contains a “tutorial” description of how Thm. 3 can be applied (without requiring
Assumption 4) to the bounding analysis of Sec. 3.4.2. We point out specific departures from the
constant-flow-time version of the analysis below, and end by juxtaposing the return map lineariza-
tion (3.77) against its constant-flow-time counterpart (3.74).

Guard set First, the guard set is defined by the “normal reaction crossing zero” event as in (3.49).

Reset Next, the reset map is modified in two of its entries:

a) Note that a; is constant through flight, but we need to convert its stance coordinates at the time
of liftoff (depending on when the guard surface (3.49) is intersected) to flight coordinates.
Thus, the a;-reset is replaced instead by (3.50) (see (3.76) below).

b) Additionally, the phase difference reset calculation is modified. We replace (3.71) with the
guard (3.49), and get

tan~! (eka/(@a1) = B) ¥ (to0)—1/2

8(tLo) = o or(da)
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Using this together with (3.72), we get

1 w—tan"!(eky/(way) — B)
2wi(az) 2wi(ay) * 20

8(ttp) = 8(tLo) +

Putting these together, and applying the symmetry operation (3.51)

\/a%cosz Y1 —2gaysiny /o
Ray(x.y1) = ar : (3.76)
5+ (112;111) + n—tan"(eléz)/(wal)—ﬂ)

ka/B\ _ w[ka/B] _ [kalB
R ([ka/ﬂ]) =K [ka/ﬂ] = [ka/ﬂ} :
0 0 0
satisfying R(x*) = x* in Thm. 3(iii). Next, we use (3.44) to find DR. Using the guard (3.49) and
the reset (3.76), and evaluating at the fixed point (3.65), we get

Note from (3.65) that

1—2882 o ¢
_ " kqw
DR1)(x™) = 0 1 0]
-1/g 1/g 1

which has a constant O(1) part. We also note the similarity between the top left entry and Example 3.
Repeating the steps in Sec. 3.4.2, we obtain the averaged return map

0 1 0
J— 2
DP=| & —éifai 0 L (3.77)
1 &g
3 3 ‘ —1+ 2kai;3

Note that the eigenstructure of this matrix is similar to its constant-flow-time counterpart (3.74). In

2
fact, since {1 — % < ¢ < 1 for small &, the eigenvalues for the block lower triangular matrix above
a

are within the unit circle.

3.4.3 Two Vertical Hoppers: In-Phase Limit Cycle (Pronking)

In this section we show that phase control (3.59) (albeit now with k; < 0) can be applied to the
same independent hoppers model as in the previous subsection (Fig. 25) but now used to stabilize a
different limit cycle.

As depicted in the lower succession of sketches in Fig. 26, we think of this limit cycle as having
a single continuous mode (double stance) followed by a reset (aerial phase), assuming simultaneous
transitions as discussed in Sec. 3.3.1. With this assumption in force, we now show, in counter-
point to the previous section (where the introduction of a symmetry operator (3.51) achieves a
re-factorization of the three physical modes depicted in Fig. 26B into the “half-stride” paired modes
depicted in Fig. 26C), how these different hybrid dynamics can directly be modeled as executions
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of a single-mode averageable hybrid system.
In this instance, we again use the switching theorem (Thm. 2) and ignore the small variation in
the flow duration.

Continuous dynamics As in (3.62), but this time, since both legs are in stance, for i € J we get
(3.99) for both legs. Use the phase difference § in the double stance patch from (3.57), and notice
that

d P (vz sin(wd — 1) n U1 sinl/f1)

==
dt w? az ai

= f(x), (378)

i.e. the phase difference is “slow” analogously to its counterpart (3.63) in the anti-phase limit
cycle analysis of the preceding Sec. 3.4.2. Once again as in Sec. 3.4.2, we use the coordinates,
o =1vY14+n/2and x := (ay,az,8), and see that

oc=w+ isinwlvl
a
—Ccos Y1V 3.79)
X =¢| —cos(wéd—yq)vs |,

J5(x)

where fg(x) is defined above in (3.78). Recall we are using the same phase controller (3.59) as in
Sec. 3.4.2, but now with k; < 0. Introducing the prospective in-phase fixed point,

T=n, x* = [ka/B.ka/B.0]7, (3.80)

we point out here that the equilibrium phase difference above is very different from the one in (3.65)
despite the visual similarity, due to the different definition of § (which is, as before in Sec. 3.4.2,
local). For recall, once again, that in Sec. 3.4.2 we considered hopper 1 to be in stance and hopper 2
to be in flight, whereas now both hoppers are assumed to be in stance. Consequently, (3.57) shows
that ¢ is zero iff both hoppers attain “bottom” simultaneously.

Note that using (3.80) in (3.79) and integrating (we used the Integrate function in Mathematica
10.2 to perform this integral),

(ka—a1B) _ 2kq(ai1—asc)

(ka—azB) . 2kg(@r(cns?)—azed)
—” a—a a CcC™—S§ —danc
f) = |5 = |, (3.81)
—2kds(2a%+a1a2s2+2a%c)

3rw3aiar

where s := sin(w{), and ¢ := cos(wd). Despite the complexity, we observe the following about the
averaged vector field (3.81):
a) the preflexive k; = 0 case recovers the isolated vertical hopper a;-dynamics (3.99) for both
hips (first summand in each of the first two rows);
b) when § =0, and a; = a,, we also recover isolated vertical hopper dynamics in the first two
rows, suggesting that behavior close to the equilibrium resembles that of independent vertical
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hoppers;
c) in 3.4.1 we provide an interpretation of the last row as a proportional controller on the phase
difference, §.
The averaged vector field (3.81) evaluates to 0 at x*, satisfying Thm. 2(ii). Moreover, we can
calculate the Jacobian and evaluate at x* to get

- —82—83 {3 On 1
O _ d
3rw3

where we define the new constants ¢, := % and {3 := 32]];—21)

Reset The touchdown condition is the touchdown of hopper 1 after its flight phase, or when 1 —1
(3.4) crosses zero. As in Sec. 3.4.2, a; are not modified by the aerial dynamics. To integrate the
aerial dynamics, note first that since the touchdown event is at the zero of 1 — wf(l), and wf(l) (tLo) =
0, the time of flight is simply # = 1/wf(a1). In this time, hopper 2 must finish its stance phase,
complete its flight phase, and proceed through its stance phase (where some of these times may be
negative):

_ ﬂ—lﬁ\sz)(lLo)_i_ 1 n \SZ)UTD)‘

Ig (3.83)
o wr(az) ®
—v®@ (
To express in terms of §, note that §(f o) = %ZULO),S(ITD) = —@. Using the above in
(3.83), we get
8(tLo) —8(ttp) + !
= 0)— _—
wr(ar) - 7T wr(az)
Rearranging, using (3.10), and putting together with the energy coordinates, we get
7] 2(az—ai) T
R(@az.8) = a1, a, 6+20220 ] (3.84)

Just as in Sec. 3.4.2, x* in (3.80) when substituted into the equation above yields R(x*) = x*,
satisfying Thm. 2(ii), and also we note that DR has a constant O(1) part, satisfying Thm. 2(i).

Note that unlike the reset map for the anti-phase limit cycle (3.73), K does not appear here, since
we only have a single-mode hybrid system in consideration for the in-phase limit cycle.
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Figure 28: (top) displacement of vertical hopper in physical z coordinates (thin vertical lines separate stance
and flight); (middle) abstract energy coordinate a (3.99) in purple (dashed: flight), and, in gold,
the equivalent continuous dynamical system (3.47) over several hops. (bottom) residual error in
the a coordinate between trajectories of the averaged and original systems.

Application of switching averaging Using (3.82), and (3.84) and evaluating at (3.80), we get
the averaged return map

DP :=DR-(I +sxDf,)

1—¢(32+¢3) el3 0
= g3 1—e(82+¢3) 0 , (3.85)
2(1—e(52128)) _ 2(—e(62128)) ‘ | _ £8kg
g g 3rw?2

where {; are as defined in Sec. 3.4.3. This lower triangular matrix has 1 — ’922" as one of its

eigenvalues, which is within the unit circle for small ¢ > 0. The symmetric upper left block has the
simple eigenvalues {1 — (>, 1 — el — 23}, which are also within the unit circle for small ¢ > 0.
Moreover, DP is hyperbolic, and using Thm. 3, we conclude that the pair of independent hoppers
has a stable in-phase limit cycle e—close to (3.80).

3.4.4 Numerical Results

In this section we present simulation results of the model systems discussed here. In Sec. 3.4.4 we
display overlapping traces of “unaveraged” and “averaged” dynamics on an isolated vertical hopper,
showing the correspondence that is formally established by Thm. 1. In Sec. 3.4.4, we demonstrate
the efficacy of the new coordination controllers introduced in Sec. 3.4.1 on a pair of informationally-
coupled, mechanically-decoupled vertical hoppers.

We would like to remind the reader that Sec. 3.5.6 and Sec. 4.2 contain a much larger swath of
not just numerical but also empirical results benefitting from the theoretical contributions here.
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Pronk desired: k; > 0 (3.59), kyy <0 (3.61)
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Figure 29: Comparison of coordination through pure “abstract” phase (3.61) vs. its perceptually direct
surrogate (3.59). Simulation runs of a pair of independent vertical hoppers with z = (z; 4+ z2)/2
(Fig. 25) where, comparing no phase control (dashed black), the abstract phase control (3.61)
(blue), and our new phase controller (3.59) (red) which introduces complexity in our analysis
here, but leads to more simple and robust physical implementation in De and Koditschek (2016).
Note that the sign of ky is the same for both limit cycles due to our local definition of &, as
discussed after (3.66).

1DOF vertical hopper

Using parameters @ = 50 rad/s, k = 0.4 N-s/m?, B = 10 N/(m/s) and & = 2, numerical simulations
of the vertical hopper with Mathematica 10, using NDSolve and WhenEvent show that
a) the fixed point of the averaged system is approximately 0.15 mm away from the original
system’s fixed point (Fig. 28 middle, difference between purple a and dashed gray a*), and
b) the residual error between trajectories of the averaged and original systems are an order of
magnitude smaller than ¢* = k /B = 0.04 m (Fig. 28, bottom).

Remark 5 (approximating continuous control with discrete steps). Note that the averaged vector
field (3.47) has the form of a proportional controller on total energy. Thus Thm. 1 enables us to
conclude that the cumulative control effect on body height from multiple isolated steps through a
second-order ODE is approximately equivalent to that of a first-order ODE acting on body height
(as shown in Fig. 28(middle)): the gold traces in the middle plot correspond to the averaged system,
and “snipping away” the resets recovers a smooth energy dynamics corresponding to (3.47).
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Pair of vertical hoppers

In Fig. 29 we illustrate numerically the analytical results just derived in Sec. 3.4.2-3.4.3. The
physical model we use is the pair of vertical hoppers of Fig. 25, and we demonstrate that our new
phase controller (3.59) can stabilize both anti-phase and in-phase limit cycles by changing the sign
of the scalar parameter k.

We provide empirical demonstration of the phase controller on a physical platform as well as
empirical application of the attitude controller (3.60) in Sec. 4.2.3.

We also show in 3.4.1 how the phase controller (3.59) behaves in closed loop like an abstract
phase control such as previously analyzed in Klavins et al. (2000). The empirical benefit of (3.59)
is that it is a smooth function of data ¢, ¢ measured from sensors on the robot, whereas the abstract
phase difference (3.57) is not only an involved calculation, but also a discontinuous function of the
physical state.

3.5 Application: Coordination of Coupled Vertical Hoppers
(2DOF)

Contributions

Fig. 27B introduces the “slot hopper” model (inspired by in-place biped models in prior literature,
such as Berkemeier (1998), Burden et al. (2007)), wherein we add a notional mechanical coupling
between the two independent vertical hoppers (Fig. 27A), taking the form of a connecting bar piv-
oting freely around a vertically-sliding pin. The central contribution as stated at the outset is the
proposal of the slot hopper as a template for all “virtual bipedal” quadruped gaits, a stability anal-
ysis of the target limit cycles that encode them in that model, and the empirical demonstration of
their anchoring in the physical Minitaur quadruped (Fig. 27D). The analysis and data presented here
to establish these claims is summarized in Fig. 30 as follows:

Analysis We provide the first correctness proofs for in-place dynamical virtual bipedal gaits by
adapting the hybrid averaging analysis of De et al. (2016) to the three distinct (overlapping)
physical regimes of the slot-hopper template determined by its “non-dimensional inertia”
(3.86) as depicted along the abscissa of Fig. 30.

Preflexive stability Inso doing, we show how these regimes elicit preflexive stabilization for both
in-phase (pronking) and out-of-phase (bounding) quadrupedal hopping behavior by interpret-
ing the stable limit cycles of the slot-hopper template (whose relative phase is plotted by the
black dots in Fig. 30) as being anchored by closely matching periodic motions of the appro-
priately loaded preflexively stable physical Minitaur (corresponding to the green and magenta
vertical lines in Fig. 30).

Implementation Using only shank extension actuators and the same three template controllers
(3.5)—(3.60) with few parameters’', we can demonstrate all in-place virtual bipedal quadruped
gaits on Minitaur, as shown Table 6. We show how the preflexive behavior can be robustly
either countermanded or reinforced by simple sign adjustments to the coordination control
law gains introduced in (3.59)-(3.60) when applied to the slot-hopper template (plotted as
blue and red dots in Fig. 30), to achieve correspondingly enhanced or disrupted pronking or
bounding on the anchoring physical Minitaur (plotted as colored open diamonds in Fig. 30).
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Figure 30: Phase locking at non-extreme k. Stable steady-state relationships between leg phases for simu-
lation and physical runs of the models depicted in Fig. 27 in relation to the inertia parameter «
(3.86). Solid round dots represent the limiting relative phase between the two legs of the slot
hopper model (Sec. 3.5.1, Fig. 27A). Each translucent dot is the result of a single trial (5 trials
are plotted at each « value, though in many of the trials, the dots overlap and appear as a single
dot of increased opacity) which is #,.x = 5 seconds long, and the phase offset is calculated at the
end. The gray dots refer to a preflexive control only (k; = 0 in (3.59)), whereas, in contrast, the
blue and red dots contain trials with some phase control (3.59). The hollow diamonds are data
points representing Minitaur’s preflexive and feedback-stabilized gait coordination behavior in
the physical world (Sec. 4.2.2-4.2.3). Please see Sec. 3.5 for our contextualization of the major
claims in terms of this figure.

Template composition We empirically compose these vertical hopping coordination controllers

with fore-aft and yaw controllers to get useful and robust locomotion performance (Table 7).
The stability results propose for the first time a formal explanation for the preflexive in-place coor-
dination, extending the results of Berkemeier (1998) to include the stabilization effects of the & 7 0
dynamics, showing that the preflexes are effective for a vastly different shank energization strategy,
as well as then showing that these results bear out on a physical platform.

We apply a dynamical systems method for coupling hybrid oscillators De et al. (2016) to achieve
formally specified, physically effective and robust instances of all virtual bipedal gaits on a quadrupedal
robot. Gait specification takes the form of a three-parameter family (kg, k , and k4 to be introduced
in (3.58)—(3.60)") of coupling rules used to entrain an otherwise independent pair of virtual vertical

31For example, for 3D bounding—in—place in Fig. 32, in addition to the two “morphological” parameters per (identical)
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leg hopping controllers.

3.5.1 Linearized 2 DOF Slot Hopper

In prior literature, there are several instances of a 2DOF vertically-constrained biped (Fig. 27B),
such as Berkemeier (1998), Burden et al. (2007). We include a complete Lagrangian derivation of
its equations of motion3? below, and also derive a simplified analytically tractable version subject
to an assumption that we present below (similar to the small-angle assumption made by Berkemeier
(1998)).

Define the “non-dimensionalized inertia” parameter (originally due to Murphy and Raibert (1985))

which we shall henceforth refer to simply as the “inertia parameter”,
=t 3.86
K= nd? (3.86)
where my is the body mass (without loss of generality, we set to mp = 1 kg, and we justify doing
so in Sec. 3.5.1), d is half the hip-to-hip distance and i}, is the rotational inertia about the center of
mass.

The configuration variables (including those for massless limbs) are q := [r1,72,2,¢]" , where
ri € Ry are the lengths of the legs, z € R4 is the height of the center of mass, and ¢ is the “body
angle.” Despite the four entries, the number of dynamical DOFs accounting for constraints and
degeneracies is only two, as shown below. The kinetic and potential energies are respectively

]T

. 1, 1.
T(q.q):= Embzz + 51b¢2, V(Q) :=mpgz.

Actuation enters this model only through the stance legs, i.e. T; € R are the forces acting on the r;
prismatic joints. The model has two possible contacts—the two toes located at

a;(q) :=z+(—=1)""'dsing —r;. (3.87)
The following assumption allows us to derive simplified equations of motion for the slot hopper,

Assumption 5. To derive the constrained slot hopper dynamics (3.94), (3.96), we substitute the
linearized version,

a(q) =z+(D)""dp—ri, (3.88)
of the exact constraint in (3.87).

As a plot of bounding data from the physical platform shows (Fig. 54), the oscillation in the body
angle for Minitaur bounding is in the order of £0.3 radians, where the small angle approximation

virtual leg (which only require rough guesses, cf. Fig. 36), the required parameters are k, in (3.5) (which controls
vertical hopping height), and k, and k; in (3.60) for roll control. If preflexive coordination is insufficient (e.g.
bounding—in—place on SC-Minitaur in Fig. 52), we compose a phase controller (3.59) (with one additional parameter).
These parameters only require very rough guesses as shown in Sec. 3.5.6.

32The reader may note the close correspondence between (Burden et al., 2007, eq. (1)) and the double stance equations
of motion we find for the slot hopper (3.96).
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error is less than 1.5%. Secondly, since our proofs only provide sufficient (not necessary) conditions
for stability, we often find that the basin of stability is much larger than the scope of the analysis
(whether it be in relation to Assumption 5, or the magnitude of the perturbation parameter). We
compare the behavior of this simplified model to a higher fidelity hybrid system simulation as well
as data from Minitaur in Fig. 32 to corroborate the validity of this assumption.

Lastly, define the virtual leg index set J ~ Z,, where the members i € J are “1” and “2”, but we
use “1 —1” and “i + 17 to refer to the other element in the set. Also, define z; € R, the heights of
the hips, as

zii=z+(=1)""1d¢ (3.89)
(anticipating the imposition of assumption 5). Clearly
2d¢p = 21 — 23, (3.90)

which we use to change coordinates in Sec. 3.5.1. In the following, we will think of an abstract
“hopper i” being located at height z;.

The continuous dynamics vary according to which constraints from (3.88) are active (physically
corresponding to one or both toes contacting the ground). The different “modes” are thus: “double
stance” (both a; active), “single stance” (only one active), and “aerial” (no constraints).

Controller parameter scaling We endeavor to apply the same scalar control feedback signals
developed for vertical hopper control Sec. 3.4 (recorded in (3.5)—(3.60)) to the slot hopper analy-
ses (Sec. 3.5.2), simulations (Sec. 3.5.6), and Minitaur experiments (Sec. 4.2.1). This “template”
controller feedback law, u; : X — R, is related to the physical input signal Y; € R (Sec. 3.5.1)
through

i (x) := oo+ o1ui(x), 3.91)

where o; € R are constant parameters that we modify according the physical parameters of various
plant models considered here (Table 6). The formal effect of this affine transform (i.e., its role
in facilitating the proofs of Sec. 3.5.2) is to cancel extraneous constant terms in the equations of
motion (effectively mass and gravity-like parameters) and reduce to a form close to (3.99). This is a
kind of morphological reduction as defined in Libby et al. (2015), however the details and physical
implications of the reduction map are beyond the scope of this report.

Lagrangian setup For the derivation of the equations of motion, we use the notation of Johnson
et al. (2016). In each hybrid mode (subsections below) we define (a) the configuration variables
q, (b) the unconstrained (aerial) inertia tensor M(q), (c) the Lagrangian constraint a(q), whose
rows are comprised of the exact “toe pinned” constraint (3.87), and (d) the input vector Y. Let
A := Dga(q). Note that the gravity-like potential is the same in each case, and so the gravity-like
forces are N(q) = DqV(q) = Dq(mpgz). Lastly, the unconstrained inertia tensor happens to be
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constant in each case below, and so as in Johnson et al. (2016), we get the equations of motion from

M AT[q YN
IR 652
where A are the constraint forces at the toe. Lastly, in each case below, we use a text color to high-
light terms in the equations of motion that are present without Assumption 5. When Assumption 5
is used, these terms get simplified as sin¢ > ¢, cos? ¢ ~ 1, and ¢> — 0. Note that we prefer to
impose the “small angle”” approximation before taking derivatives (following Assumption 5) rather

than after (which requires making the substitutions described in this paragraph and the following
subsubsections). We include the dynamics sans Assumption 5 below for completeness.

Single stance

Without loss of generality, we consider the case where hopper 1 is in stance, and hopper 2 is in
flight. The toe of hopper 1 is pinned to the ground, and so only constraint 1 is active in (3.88), or

a(q) =ai(q).

Without small angle In single stance, we have q = [r, z, ¢]

M(q) = diag[0, mp, kmpd?],
a(qQ) =z +dsing—r
T="

We can solve for ¢ by inverting the block matrix on the left of (3.92) (which is non-singular as long
as there are no massless free DOFs or kinematic singularities Johnson et al. (2016)),

—g+ ,;E—ll)(l +cos2 ¢ /i) —d singgp?

4= —g+Y1/mp . (3.93)
T cosd
dmpk

Even though the system has two dynamical DOF, we have three rows here, since the three (originally
unconstrained) variables r,z, ¢ are now related through the toe—ground constraint. Additionally, to
get the second row of (3.94), we use (3.89) with the first two rows of (3.93), and so the cos ¢ in last
row of (3.93) does not need to be approximated.

With small angle Using the change of coordinates from center-of-mass (z,¢) to “hip height”
z; coordinates in (3.89), we get mpZ = —mpg + Y1, and mpZ; = —mpg + (1 +1/k) T1. As per
Sec. 3.5.1 and as listed in Table 6, we substitute (3.91), and get

11—«

Z1 =uz, Z =TI <Mn (3.94)

which can be compared to the exact version (3.93). We outline in Sec. 3.5.1 how the control input
u1 1is set as a function of the robot state.
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Figure 31: Center of percussion. From Symon (1971): “The point O’ about which a blow must be struck in
order that no impulse be felt at the point O is called the center of percussion relative to O. If the
body is unsupported, and is struct at O’, its initial motion will be a rotation about O”.

The physical implications of different values of « are noted in Table 6, and an intuitive interpre-
tation of « is that it moves the center of percussion (see Fig. 31), where the net force on the hip over
the stance duration plays the role of the “impulse.” As (3.94) shows, a k = 1 configuration results in
a complete lack of coupling interaction, equivalent to the “rotation about O”” condition of Fig. 31.
In Table 6, we depict the location of the mass concentration as well as of the CoP as « is varied.

Double stance

Without small angle Using q = [r1,72,2,¢],

M(q) = diag[0, 0, mp, kmpd?],

_|z+dsing—r
a(a) = [z—dsinqﬁ—r}

=[x

g+ Tt (T ,:Z)Kcm 2 —dsing$?
T1+T2 (Y2—"1)cos* ¢ 51 h2
et n 20 +d sing¢ ' (3.95)

q: g+T1+T2

(Tl—Tz)COS¢
dmpk

in (3.92),

Even though the system has two dynamical DOF, we have four rows here, since the four (originally
unconstrained) variables r1,72,z,¢ are now related through two instances of the toe—ground con-
straint. Additionally, as above, the cos¢ in the last row does not need to be approximated when
Assumption 5 is in place:

With small angle After replacing Y; as in Table 6, using Assumption 5 we get:

mpZ =-—mpg + 11+ V2,
S P e
¢ = A
mpk
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Using Table 6 and substituting in (3.91), we get

g =12 (3.96)

P + Uz
B 2dk

2 ’

which can be compared to the exact version (3.95).

Aerial

In this case, Assumption 5 makes no difference. Using q = [z, ¢], no constraint a, and no input T,

M(q) = diag [mb, Kmbdz],

we get the equations
f=—g,  $=0, (3.97)
and using (3.90) we can reinterpret these in the z; coordinates,

Z1+Zp,=-2g, 21—2,=0 = Z; =0, (3.98)

that is, the aerial phase is identical to the flight of two independent vertical hoppers (De et al., 2016,
(3.99)).

Decoupled case

First consider the stance dynamics of the decoupled (« = 1) slot hopper. In double stance, using
(3.89) in (3.96), and also setting ¥k = 1, we get

5=%+dd =ui,
and in single stance, setting ¥ = 1 in (3.94), we see that
21 =Uui, 52 =0.

In aerial phase, (3.97) is already decoupled. All together, we see that the decoupled slot hopper has
the equations of motion (for each i € J)

5 = —g+u; (st.ance) (3.99)
—g (flight).

Limiting value of k — 0

The first row of Table 6 refers to a degerate condition, where all the mass of the body is concentrated
at its center. In this configuration, the ¢ degree of freedom is degenerate (since i, = kmpd? = 0).
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Thus, we are effectively reduced to a 1DOF vertical hopper without any physical relevance, since
the model in Fig. 27B posseses a body whose orientation now cannot be controlled.

Phase differences and phase control

In the present case, the two coupled hips of the slot hopper are not identical oscillators, and we
rely on intuition in each different non-degenerate regime in Sec. 3.5.2 to construct a modified phase
difference coordinate (compared to (3.57)), such as (3.102) in Sec. 3.5 433

In addition to the feedback coordination controllers (3.59)—(3.60), the slot hopper exhibits pre-

flexive phase control terms, i.e. their more complex equations of motion contain terms qualitatively
resembling w; in (3.58) even without any feedback control. The specific form of w; in these cases
is more difficult to express via a single equation, but we provide at the outset an intuitive description
of the stability mechanism that is borne out by our analysis here. Following the last two rows of
Table 6,

a) the weakly coupled hoppers are stabilized through an interaction between the continuous
dynamics of a, (3.103), and the reset map (3.108), resulting from a confluence of the stance
influence of the phase difference on the energy level of hopper 2 (description after (3.105)),
and the reset influence of the energy level of hopper 2 on the phase difference (description
after (3.108));

b) the strongly coupled hoppers are stabilized through the leg damping acting as a phase con-
troller (cf. Sec. 3.5.5).

3.5.2 Slot Hopper Analytical Results

First in Sec. 3.5.3, we discuss the k &~ 1 “decoupled” regime of the slot hopper (as an extension
of the k = 1 case idenified in Sec. 3.5.1). In Sec. 3.5.4-3.5.5, we set the input w; = 0 in (3.58))
of (a) out-of-phase hopping at k < 1 (which we term in the weak coupling regime in Table 6), and
(b) in-phase hopping at k¥ > 1 (which we term the strong coupling regime).’* In Sec. 3.5.5 we
reintroduce phase control (3.59) and attitude control (3.60) through w;, and show that it is possible
to augment preflexive pronking with feedback. We present many more numerical and empirical
instances of feedback augmentation / disruption of preflexive stability in the next section.

3.5.3 The “Decoupled” « =~ 1 Case

We saw that the return maps for bounding (3.74) and pronking (3.85) are hyperbolic with eigen-
values O(e) within the unit sphere. From the slot hopper dynamics in (3.94), (3.96), and (3.97),
we see that the dynamics (specifically the coupling forces) depend smoothly on k. Now suppose
k = 14 O(e?). Then, coupling forces of O(¢?) magnitude appear in the continuous dynamics in
(3.62) or (3.79), and are consequently ignored in the averaging step in (3.67) or (3.81). Thus, the

33We wish to emphasize that our present understanding necessitates in each physical regime a different intuitive choice of
the “correct” phase ¥; and the appropriate phase difference §. Work currently underway is making progress towards
replacing this intuitive step with a uniformly defined and algorithmically implemented procedure.

3Note that despite this nomenclature, in some sense the nature of the coupling “changes sign” as the decoupled regime
lies at an intermediate x-value (Fig. 30).
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Table 6:

Behavioral regimes and analytical results. As the inertia k (3.86) of a slot-hopper (Fig. 27A) is
varied (mass concentration depicted as red disks) along the abscissa of the plot in Fig. 30, we observe
the following systematic changes in its morphological, analytical and behavioral features which are
echoed by the sagittal plane biped (Fig. 27B) and Minitaur robot (Fig. 27C) in close correspondence:
(a) the center of percussion (CoP, Fig. 31, depicted as blue disk) moves (cf. Sec. 3.5.1), (b) the
preflexive control stabilizes different limit cycles (cf. numerical results in Fig. 30 with superimposed
markings locating the corroborating in-place empirical Minitaur experiments of Sec. 4.2.2-4.2.2),
and (c) we are able to prove stability of five of these limit cycles (corresponding to either preflexive
or feedback stabilization of both relative phase targets) as listed below.

. Relative Coordination . Numerical/empirical
R 391 391 Anal
cetme phase control oo ( ) ol ) fatysis demonstration
Reduces to single
k=20 leg
“Degenerate’
N geI%e;)we - my, Proof in Minitaur bounding
nn P (3.108) 1+1/k I+1/k  Sec.3.5.4 (Sec.4.2.2)
e inphase  Atitude (3.60) Minitaur  — pronking
P ' (Sec. 4.2.3)
o ghg‘sge) X Proof in Fig. 29, SC-Minitaur
antrphase 027, § Sec. 3.4.2 bounding (Sec. 4.2.3)
kg >0
Phase Proof .
in-phase  (3.59), g 1 Sr003 43 mn Fig. 29
kd <0 €C. 0.4.
in- : Fng mp, Proof in SC-
in-phase  Preflexive (3. 11755 2 Sec. 3.5.5 Minitaur pronk (Sec. 4.2.2)
. . Proof in
.' -ph Attitude (3.60) 72& LS
I fphase itude (3.60) 73 2 Sec. 3.5.5
“SC” antiphase L nase (3.59), Suggested by  Minitaur pacing
P kg >0 Sec. 3.4.2 (Sec. 4.2.5)
anti-phase Retraction Suggested by Ex-  Minitaur trotting
p (Sec. 4.2.5) ample 3 (Sec. 4.2.5)
Table 7: Empirical extensions via template composition. Parallel composition of the new slot-hopper tem-

plate with the existing SLIP template De and Koditschek (2015b) can be directly embedded into the
Minitaur dynamics to achieve stable running and leaping, while relying on the analytically supported
vertical energization and coordination strategies in Table 6.

Regime Controller(s) composed Empirical demonstration
Stepping  fore-aft  controller Bounding at commanded velocities up to 5 body

% (4.17), yaw controller (4.19) lengths / second (Fig. 54)
5\76(31” Increased vertical gain k, (3.58) Leaping from and returning to steady state bounding /

for a single stride pronking (Fig. 55, Fig. 56)

averaged return map is perturbed by O(e?), and the stability conclusions in Sec. 3.4.2, 3.4.3 still

hold.
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3.5.4 Weak Coupling: Preflex Anti-Phase Stability

In this subsection, we use ¢ as a perturbation parameter perturbing both (a) the dissipation in the
shank forcing controller (3.5), and (b) « (3. 86) by setting x = Wwe can reparame-

terize the dynamics (3.94) in terms of ¢ = 1 T X to get

Z1 =uy, Z =—(1+e¢eg—euy; (3.100)

so that there is now a weak coupling interaction between the two hoppers for small & > 0.3

As in the prior bounding analysis, we capitalize on step-to-step symmetry and use the “half return
map” analysis as depicted in the upper series of sketches in Fig. 26, but supress the parenthetical
subscripts, F:= F(1), R := Ry for ease of reading.

Continuous dynamics

From (3.94), the stance dynamics of hopper 1 are free of any influence from hopper 2, and so @1, ¥
can be computed as for an isolated vertical hopper De et al. (2016). However, there is coupling from
hopper 1 into the dynamics of hopper 2, suggesting (for reasons to be motivated directly below in
the discussion of (3.102)) the following coupled phase definition as a replacement for v, in (3.4):

eapcosyy

Vo= Py (3.101)

2612

Owing to the new mechanical coupling, here we must define the following modified § (specifically
in the patch where hopper 1 is in stance and hopper 2 is in flight):

~_Y1—7/2  Ya—1)2
o (1+¢e)wr(az)

(3.102)

Again, this definition is motivated by the aim to find a “slow” coordinate, %g: O(e), which is in
equilibrium on the limit cycle.?® With these new definitions, using the flight energy coordinate from

35Note that for purposes of analysis, we merely require the coefficient of 1 above to be O(g), but for the sake of not
introducing a new constant into our perturbation analysis around ¢ = 0, we choose the equality above.

361ntuitively, in the averaging of a single vertical hopper in De et al. (2016), the introduction of the even function
(with respect to the half-orbit center angle 77/2), siny;, in the coordination term, w; (3.59), leaves a proportionally
stabilizing § term in f. However, now with w; set to 0, the odd function (cos ;) arising from the vertical energization
term in v; (3.58), can have no effect on relative phase (intentionally, since we prefer the vertical energization control
not affect phase relations) and integrates out of the averaged vector field (3. 105) The determination of the “right”
phase coordinate 1//2 (3.101) is, in this light, informed by the computation of —8 as to not “disturb” the odd factor v;
in (3.104).

Research is currently under way to facilitate algorithmic generation of slow and fast coordinates for averaging.
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(3.4)in (3.94),

axay = iz(g+2z) = —eza(u1 +g)

3.4

) ear(1-292)(u1 + )

= —ear(1—2vy)(way siny + g) + O(e?)
= a, "2 —e(1—=2y)(way sinyy + ) + O(e?).

Using (3.102) to replace Jz withz we get

_ ge(w8 =2y + 1) (way sinyy +g)

ar = (3.103)
2way
To calculate, %3: first we calculate %Jz. From (3.4), x'pz = —25722 + % Using (3.100) and
(3.103), :
g glgtun)@ya—1)Qw—2y1 +7)
Vo= —+ 8( 3
2a, 4was
g+ui 2
+5 ) 406,
2a2

and then using (3.5) and the newly defined phase coordinate (3.101),

d ~ . eaywsinyy 5 g
= ——— P 9 =S
. Vo =Y 2 +0(e%) 2a2+
eg ((2w2—1)(2w5—21(/;1 +n)(@ais1+8) | 2a2)
3 +O(e?).
da;

Now we move on to using this to calculate %E Using (3.102) and also substituting in U1, we get

dg_esinyivr 4 g2y
dt wai

Now we can complete the continuous dynamics for o := V1, x := (a1,a2,6),

. e .
0 =w+ —sinyv;

ai
_ —cosYivy (3.104)
[ —gQRwd—2Yy1+n)(wa;siny;+g)
- 2was ’
sinyr1 vy
wai

where v is defined in (3.58) but now time with a silenced active phase coordination term w; = 0.
The form of (3.104) yields Z—g = O(e) as required by Thm. 2. Comparing to the dynamics of the
independent hoppers in De et al. (2016), we notice that &,d; are identical (a consequence of the
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lack of coupling from hopper 2 to hopper 1 in (3.94)), and second, in sharp contrast, that the a»
dynamics (3.103) are intricately coupled with the phase difference 6.

Anticipating an anti-phase limit cycle, we consider the same x* as for the independent hoppers
(3.65), and and averaging with respect to the fast variable y; after substituting in (3.58) gives us

ka—ai1B
~ 2w

f(x)=| —gdlez+2a10) | (3.105)

arntw

0

which evaluates to 0 at x*, satisfying Thm. 2(ii). Note that § has an averaged effect on the energy
level of the flight hopper (second row above). This departure from the mechanically decoupled
hoppers De et al. (2016) contributes to the preflexive stabilization of the bounding limit cycle.
Intuitively, if the flight hopper is leading in phase (§ < 0), a; is increased, and vice versa. This
effect over stance interacts with the reset (see text after (3.108)). Moreover, we can calculate the
Jacobian at the fixed point,

— . -£0 o
Df(x™)=| 0" 0—gts | (3.106)
0 0 O
where
_ 8B 2
b=+ 5 (3.107)

is a scalar only depending on constant parameters.

Reset

Since the aerial dynamics are the same as for isolated hoppers, the reset for the a; components are

the same as in (3.73). We now calculate the reset for the last coordinate §.
We use the explicit superscripts . or .f to denote which coordinate patch (case of (3.4)) is being
used. We use “c;” as shorthand for cos w{ in this calculation. At liftoff,

_ Yilo)—7/2  Y5(io)—1/2

8(tLo)

w ws(az)
(3101 Yi(to)—m/2 _ Ya(to)—1/2 4 faa
® ws(asz) g
GLF (’g_’_ ciay W{([LO)_”/Z).
g ®

Similarly, but bearing in mind that at the touchdown patch hopper 1 is in flight and hopper 2 is in
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stance, and accordingly modifying (3.102), we get

Yim)—1/2  yi(m) —7/2

8(ttp) =
we(ay) w
(3.101) Vi) —1/2 _ Vi) —7/2 _ ECaan
ws(ay) ® g
Gl (*8*_ a2 | Vi (tm) —”/2) _
g ®

Using the boundary conditions w{ (tLo) = 7 (constant flow-time assumption in Table 5), and w; (ttp) =
0 (initial condition for the flow of Thm. 2) in the equations above,

8(tLo) =f(§l+8 (ﬁg’— ‘;—1 - %) ,

8(ttp) =§+8 (’Sv— 2—2 - %) .

Substituting this into (3.73), and dividing through by (1 + ¢),
8(t1p) = 8(tL0) + e

Putting everything together,
— ~ ~ wr—a1T
R(al,az,S):K[al, as, 8+%] . (3.108)

We see that x* in (3.65) when substituted into the equation above yields R(x*) = x*, and DR has
a constant O(1) part, together satisfying Thm. 2(i).

The influence of the energy levels a; on the phase difference Fg(apparent in the last entry above)
results in a coupled interaction of a, and § through the continuous dynamics (3.105) and the reset
(3.108). Intuitively, following along the example in the discussion after (3.105), if the flight hopper
is leading in phase (§ < 0), then a5 is increased during stance (as discussed before). From (3.108),
the flight hopper now has a shorter flight period, and so § is increased.

Stability test

Using (3.106) and (3.108), we can compute the averaged return map and evaluate at x* (3.65),

B 0 1 —egla
DPGH)=| & 0 0 , (3.109)

ts/g —1/g | —(1—¢ts)

where ¢4 is defined in (3.107), and

tsi=1-28 (3.110)
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Now we calculate the eigenvalues of (3.109). The characteristic polynomial is

me(X) =A% =22 (—1 +el4) — {s(1 —ela)A — s
=: A3+ c2(e)A +c1()A + co(e). (3.111)

The roots are an e—parameterized family of scalars p : R>9 — C. The eigenvalues at ¢ = 0 are the
roots of mg(A) = A3 +12—1—1=(A2—1)(1+ 1) (noting that &5|s—¢ = 1 from (3.110)), which
are {—1,—1,1}, and thus p1(0) = —1,02(0) = 1, p3(0) = —1.

Now we consider two cases: as € > 0, either the eigenvalues remain all real, or two of them move

into the complex plane as a complex conjugate pair:
i) pi € R: To do this, we find p}(0). Note that the characteristic polynomial is alternatively
expressed as

me(A) = T;_; (A= pi(e)) = 1> + (=p1 — p2 — p3) A+
(12 + p1p3 + P23)A — P1P2p3.
Using the chain rule, we equate Dgc(g) = Dyc(e) - p'(¢) and evaluate at ¢ = 0. However, the
matrix Dyc(€)|g=0 is singular, indicating that not all the eigenvalues remain real as & > 0.
ii) p1 € R, pa,p3 € C: We reparameterize pz,p3 = ¢ £ j7, and define {g := Eé + (%. The
characteristic polynomial is now
me(A) = T;_ (A= pi () = 1° + (—p1 —26) A+
(2p186 + {8)A — p1s.

We can equate the coefficients with (3.111), and differentiate with ¢ on both sides to get

—286—p) = 5.
g —286p) +2Cgp1 = C7.
—pi s —p1ty = ¢y,

where ’ denotes e-derivative. Now evaluating both sides at ¢ = 0, we get a linear system of
equations

-1 0 =27 [p}(0)

2 1 2 ||&o) | =c0),

~1 -1 0 |[Z©

and £g(0) = —%. Thus the first-order Taylor

_B
4w’

which is readily solved to yield p} (0) =
expansion of the roots is

pr=1-2£ L 0@?),
lp2? =|psl* =1— % +0(e?),

and we are guaranteed that all the roots move inside the unit circle for small ¢ > 0.
So, the return map is hyperbolic, and so we can apply Thm. 2 to conclude that the weakly coupled
hoppers have a stable anti-phase limit cycle e—close to (3.65); we tabulate this result in Table 6.
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Disruption with feedback

The preflexive stability we just proved is demonstrated in empirical results in Sec. 4.2.2, 4.2.4. We
also demonstrate (though we do not analyze) the disruption of this preflexive stability using the
phase controller (3.59) in Sec. 4.2.3. As argued in Remark 3.5.3, we expect the hyperbolic phase-
controlled limit cycles to persist in a sufficiently small neighborhood of « around 1. In interests of
space we omit a full analysis of the weakly coupled slot hopper as detailed in this section with w;
set according to (3.59) (which would proceed almost identically to the proof presented here, with
the incorporation of the feedback as shown in De et al. (2016)).

3.5.5 Strong Coupling: Preflex In-Phase Stability

In this subsection we consider the “strongly coupled” mass-parameter regime « > 1 (last row of
Table 6), where the body’s mass concentration beyond the hips moves the center of percussion
far from the mass center, thus diminishing the moment associated with differences in the ground
reaction forces of one leg vs. the other. Unlike in Sec. 3.5.4, where we used an explicit analytical
relation between k and ¢ made in (3.94), k and ¢ are unrelated in this section. The regime of
operation here is one of “large «,” but still “small £.” As in De et al. (2016), we instead now
interpret ¢ as the magnitude of the (naturally ocurring) dissipative forces along with the underlying
hopping energization terms (second summand in (3.58) originally introduced in De and Koditschek
(2015b)) applied to the vertical hopper according to (3.5).

Because of the strong coupling, we find it helpful to work in the physical (z,¢) coordinates
(center of mass location and body angle), subject to Assumption 5 as in Sec. 3.5.1. First, we
introduce an assumption on the initial “attitude” energy:

Assumption 6. The initial conditions lie within the “low ag” set L :={x 1ay/(kaz) = O(e!/?)).

Our justification for the assumption is listed in the next-to-last row of Table 5; specifically, we
show empirical evidence of its applicability in Fig. 53. It allows us to decouple the vertical and
attitude dynamics (Sec. 3.5.5). Next, we show that the vertical dynamics are stable (Sec. 3.5.5),
which is unsurprising since the decoupled dynamics resemble that of an isolated vertical hopper.

Then, in Sec. 3.5.5-3.5.5, we tackle stability of the “attitude” coordinate, ¢p. First, we rigor-
ously prove in Sec. 3.5.5 that the continuous—time orbits of ry followed by its resets render £ (of
Assumption 6) positive invariant, subject to the following additional assumption:

Assumption 7. The flight time is bounded above: t; < enf\/d /K |w>.

This assumption (and the contraction proof it enables) is necessary because the stability of the ¢—
dynamics depend on the flight time of the slot hopper, thus rendering the ¢—return map time-varying.
However, numerical and empirical exercise of all these models shows that the time-variation in
the return map is indeed insignificant; we offer evidence that Assumption 7 is unnecessary both in
simulation (Sec. 3.5.6), as well as in data taken from the physical Minitaur experiments summarized
in Fig. 51. In Sec. 3.5.5, we discuss an assumed time-invariant version of the ¢—stability analysis,
exposing the relation of the shape parameter « to the behavior of ¢, not subject to Assumption 7.
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Coordinate changes

Similar to the map p in Sec. 3.1.1, we define the “¢—phase”

poi=d[-p. —po] . api=Ipyll, (3.112)

as in (3.4). Unlike the complete polar transformation for the shank coordinate in (3.4), in this in-
stance we only need the body angle energy a4 for analysis. This is because in this subsection, the
desired limiting behavior is a point attractor for ¢ (not an oscillatory behavior), and consequently a
“¢-phase” v is neither well-defined nor required for analysis. In contrast, because vertical oscil-
lations of the mass center are of key interest, we will need to define the vertical hopping energy and
phase,

az :=|p(z.2)l, Yz i=4p(z,Z) (3.113)

as in (3.4) respectively. Note that the vertical energy coordinate a, has units of m/s as before in
(3.4), and the new attitude energy coordinate a¢ also has the same units (since in (3.112), d is a
length, and ¢ is an angle).

Decoupling

Substituting our controllers (3.5), (3.58) with the attitude controller (3.60)*7 into the double stance
equations of motion (3.96), we see that in closed loop,

? =w?(p—z)—eBfz —ecky(cosyy +cosin)/2,
Kk = —d(@*+kp)p—d(e +kq)p (3.114)
—éekg(cosyry —cosyn)/2.
Now we simplify the sum and difference cosines in the equation above. Define the variables p; :=
p(zi,Zzi) (Where the map p is as defined in Sec. 3.1.1), and p, := p(z,z). From (3.98), note that
P1 = pz + pg, and po» = p, — py, Where py is defined in Sec. 3.5.5. To approximate cos; in
(3.114), we need to approximate 1/|| p;||:
1 B 1
lpz+pgll>  pIpz+pg po+2pT Py

¥ (e oz )
Ipz1? \1+ (ag/a)> + pI py/a>

where note that from assumption 6, (ag/a)? + pZT po/a? = O(e). Taking a square root, we get

1 _ 1
Tt pal = Tpa1 —8+/2) +0(e),

3Note that setting k p = kg = 0 recovers the preflexive case which we again remind the reader will be treated in
Sec. 3.5.5-3.5.5, before returning to investigate the effect of coordination feedback in Sec. 3.5.5.
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where we define 84 := (ag/a)? + pz Pe/a’. Similarly, we can calculate

1 1
Tre=pal = Tpan (1 =0-/2) +0(e),

where §_ := (ag/a)? — pZT Py/a?. We can now use these to calculate
cosyy +cosyp = el (”ﬁ—:" + ﬁ)
T
1 I ((pz + pp)(1=0+/2) + (pz — py)(1 _5—/2))

(12
To-T <PZ (2 - #) — Po 8*58‘) +0(e)

cosy (2+ O(e?)) + O(e) = 2cos ¥ + O(e), (3.115)

=N N

since ag /a appears in the pg term (use Assumption 6 again). Similarly,

cos Y —cosyn
eT —
_ WIZII <p¢ (2_ 8+42r¢3_) _p28+28_) +0(e)
= 0(e) —cos Y (p; pg/a®) = O(e), (3.116)

using Assumption 6 again. Using (3.115) and (3.116) in (3.114),

?=w?(p—z)—efz —ekycos s,

) s , (3.117)
kp =—d(@” +kp)p—d(ef +ka)o,

where V¥, = Zp(z,Z). Again, we emphasize that it is Assumption 6, empirically justified in the last
row of traces in Fig. 53, which allows us to decouple the z and ¢ dynamics in stance to O(¢).

Additionally, note that the aerial dynamics in (3.97) are decoupled already, enabling completely
isolated analyses of the vertical “z” DOF (in Sec. 3.5.5) and the attitude “¢”” DOF (in Sec. 3.5.5—
3.5.5).%

CoM vertical dynamics stability

The z continuous dynamics (first row of (3.117)) are exactly the same as of a single “virtual” leg
located at the center of mass Raibert (1986), Saranli and Koditschek (2003). The analysis of this
subsystem proceeds identically to the analysis of a single vertical hopper De et al. (2016), and we
obtain the same stability result.

381 astly, we point out that this decoupling of the vertical and pitch oscillations is in some sense necessary for a limit
cycle analysis: as the last two rows of Fig. 37 show, the body angle oscillations generally occur at a different time
scale than the stance/flight vertical hopping cycle of z, without any sign of phase-locking.
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Attitude continuous dynamics: preflexive

For Sec. 3.5.5-3.5.5, we examine preflexive stability by setting k, = k; = 0 in (3.117). First we
reparameterize the ¢ equation in (3.117) with

wp =wdjk,  Byi=2L Jd/x, (3.118)

to yield ¢ = —a)qzb(l + ,Bé)¢> —2wy ,8¢¢) Using the linear coordinate change
| we 1485 Bo/ \J1+BS | [@
Ve = > . (3.119)
0 1/ J1+82 | [
from (Koditschek and Buehler, 1991, A.1), we get
Vo = (—wpBpl —wpJ) Yy, (3.120)

where J := [(1’ _01] is the skew form of a rotation in the plane. Directly solving this linear system,
we get the time—#; flow of the vector field (3.120),

04 (yg:1) = e Po®o! Rot(—wytr) g, (3.121)

where Rot : §1 — R2*2: - exp(6J) is the rotation matrix on the plane.
The reset for the ¢ coordinates (from the decoupled ¢ = 0 aerial ¢—dynamics) is a “time of flight”
ti—parameterized map,

Ry(y¢) = (I + wytsN) yg, where N := [8 (1)} : (3.122)

Attitude stability: preflexive

Since the ¢p—dynamics are decoupled from the z—dynamics to O(e) in both the flow (3.117) and reset
(3.122), we can analyze the ¢—stability separately. Direct computation yields the return map

Py (yp) = Ry o Q¢(ye:tr)
= e_ﬂ¢w¢tf([ + wgts N)Rot(—wgts) yg. (3.123)

We next prove that Py is a contraction subject to Assumption 7. First, we need a Lemma:

Lemmad. For y >0, eX > 14 y2/24+ x /14 (x/2)2

Proof. First, note that

d x> / 2 _ 2+x°
H(l‘f‘j‘f‘x 1+ x /4)—X+ [+ 12

2 2
< HEE = E <,
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whereas the last expression is the derivative of eX. Since both expressions equal 1 at y = 0, and the
derivative of eX is pointwise greater for y > 0, e* is the larger expression for all y > 0. O

Let us define 6f := wyts, and 0f := wgpts. To check if Py is a contraction, we need to check
that the largest eigenvalue of P¢T Py lies within the unit cycle, since this is the largest value that

yT PJ Pypy/y Ty can take. The largest eigenvalue is

Amax < 6_2/23([791’ 2+ 01:2 +6s+/4+ sz) < e—2ﬂ¢9f+0f’

where we use the Lemma above for the last inequality. Since the exponential is monotonic, we only
need check

—2/3¢9f+9f<0 — Zf—% '2d/K<0

which is ensured by Assumption 6. Thus, Py is a contraction. The continuous ¢ dynamics already
(3.117) strictly contract ag, and so £ is positive invariant.

In summary, the decoupling described in Sec. 3.5.5, the proof of vertical stability of the CoM in
Sec. 3.5.5, and the proof of ¢—stability in this subsection together guarantee stability of the in-phase
limit cycle; we list this result in Table 6. We continue below to make further observations about the
behavior when Assumption 7 is not made, or in the presence of feedback.

Attitude stability: time-invariant, preflexive

Making instead the approximation that both the stance time # and flight time #; are constant (justified

by observing their small variance in empirical trials such as the one in Fig. 51), we now have a time-

invariant ¢—return map (3.123), and we can look at the eigenvalues of Py to discern stability.
Define F(p := (I 4+ 0N )Rot(—0f) such that Py (ys) = e Pabr F¢y¢. Note that

detF¢ =1, trﬁqg = 2cos 6 — B sin 6.

Next, we prove and use the following Lemma:

Lemma 5. [f det F¢ =1 and |tr F¢| <2, then I,-, the eigenvalues of Py, are complex conjugate
with unit magnitude.

Proof. Since the determinant is identically 1, 4; = tr/2 + /(tr/2)2— 1 =: &y & j£;, and [4;]? =
E+E=1 O

Note from (3.118) that wg oc 1/ ﬁ, and so when « is made arbitrarily large, |tr F¢| — 2. The
eigenvalues of Py are A; = e Po%);, and so (using the Lemma above) A; lie within the unit circle.
We conclude that the return map Py is stable, without requiring the restrictive Assumption 7.

We show numerically (in Sec. 3.5.6) as well as empirically, by mechanically reconfiguring Mini-
taur to have two different « values (in Sec. 4.2.2), that this condition on « is important, and that in-
stability of the in-phase limit cycle results when « is not large enough. In other words, the “weakly
coupled” body of Sec. 3.5.4 (as well as our physical platform Minitaur arranged with its “native” in-
tended body mass distribution) does not possess a stable in-phase limit cycle, and requires feedback
control (which we discuss next) to render it attracting, thereby eliciting a pronk.
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Attitude stability: feedback

Now, we augment the preflexive stability to reinforce the in-phase (pronking) limit cycle by rein-
troducing feedback through positive k, and k4 in (3.60). From (3.117), we have enough control
affordance to stabilize the ¢ dynamics to a point within a single stance phase as follows.

First, we reparameterize the constants k , and k4 in terms of a new parameter, kg > 0, such that

d(w>+k,) _ d(eB+ks) _ k5

’

Using this in the second row of (3.117), we get
¢ =—ked—k3p/2. (3.124)
Now define the “graph error” Koditschek (1987) ey := b+ kgy¢. Using (3.124), we get
p = —2kgey = ep(t) 1= e Kol ey(0), (3.125)

and so kg can be made arbitrarily large to get ey (?) arbitrarily small in stance. Consequently, in
arbitrarily small time, the flow collapses to the e;l (0) submanifold, where by definition of ey,

¢ =—kop = ¢(1) = e F1$(0), (3.126)

and with large k¢, both ¢(¢), $(t) are also driven to zero arbitrarily fast. Denote this deadbeat stance
map as

O¢.FB: (9, $) > “arbitrarily close to 0”. (3.127)

Choosing a Poincaré section at liftoff, we get the return map

Py.re ([i]) = Q¢.F8 ((I +1N) [j]) (3.128)

In summary, despite the flight destabilization, the deadbeat nature of the stance stabilization guar-
antees stability in the return map sense. We list this result in Table 7.

Though this discussion of feedback stability is for the strongly coupled plant (3.114), we employ
this controller on the physical platform Minitaur, and empirically find that even in the “weakly cou-
pled” regime (1 —k ~ 0) it is able to overcome preflexive bounding stability and exhibit a pronking
gait (Sec. 4.2.3).

3.5.6 Numerical Results

In this subsection, we use numerical simulation (all created using MATLAB R2016a with ode45) to,
first, test the efficacy of our slot hopper model and justify the various assumptions that were made
for our analyses (Table 5) in Sec. 3.5.6-3.5.6. In Sec. 3.5.6, we use numerical study to get a global
view of the closed-loop behavior when subject to a k—sweep (3.86). An exhaustive k—sweep would
be impractical with the physical platform, though we present empirical results at two interesting
values as suggested by our analysis (Fig. 30).
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Figure 32: Projecting Minitaur and sagittal plane biped trajectories onto the slot hopper DOF. Top: A
comparison of empirical data from Minitaur bounding in place (Fig. 27C) with simulations of
a high-fidelity sagittal biped model (Sec. 3.5.6, Fig. 27B) and the more abstracted slot hopper
model (Sec. 3.5.1, Fig. 27A). Note that the x DOF only appears in models B—C, and its velocity
is displayed here (third plot of traces) for a full account of the physical machine’s behavior as it
bounds in place (see Sec. 3.5.6). We provide a “zoomed-in” version on the right so that some of
the almost-overlapping traces are visible (e.g. the z coordinate in the first row is almost overlapped
by the red/yellow traces). Bottom: Snapshots of WC-Minitaur bounding in place (taken at rear
stance, aerial, and front stance) from this experiment.

2DOF slot-hopper as a model for Minitaur

We posit the 2DOF slot hopper model (Sec. 3.5.1) as a template—analytically tractable and effec-
tively representative of the locomotion tasks of interest Full and Koditschek (1999)—to be anchored
in a physical platform possessing far greater dynamical complexity. Even assuming massless limbs,
and considering operation in only the sagittal plane, a physically realistic Lagrangian model re-
quires working with at least SDOF kinematics, suggesting the sagittal plane biped (Fig. 27B) as an
intermdiate model.

In this section, we present plots comparing the template and appropriately projected numerical
and empirical body trajectories that establish: (i) the accuracy of a linearized approximation (As-
sumption 5) to that template; (ii) the precision with which the sagittal plane biped model (Fig. 27B)
anchors that template; and (iii) initial empirical data suggesting the efficacy of that intermediate
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Figure 33: 2DOF slot-hopper as a template anchored by the Sagittal Plane biped. Numerical comparison of
steady state behavior in the sagittal biped (Fig. 27B, Sec. 3.5.6) and in the slot-hopper (Fig. 27A,
Sec. 3.5.1) models presenting error between the corresponding state trajectories from a variety of
initial conditions. Left: time trajectories from two different initial conditions in the two columns.
Note that the last traces on the left are non-existent for slot-hopper and only show that the sagittal
plane biped settles down to zero-net horizontal velocity. Right: a frequency domain comparison
of the resulting ¢ and z oscillations obtained from 100 initial conditions (10 along each axis; see
Sec. 3.5.6 for details). Even though the phase lag can be quite large, it converges to a constant
which is generally small (as shown in the right hand sweep, and which, in any case, does not
diminish the qualitative match), and the error in oscillation magnitude is bounded above by 3.5%
(as discussed in Sec. 3.5.6). With the exception of the added x—DOF, the primary distinction
between these two models is our Assumption 5; the qualitative similarity in the limiting behavior
of the two models thus justifies the assumption.

model as a description of the sagittal plane behavior of the Minitaur robot (Fig. 27C) at steady
state. We reserve for Sec. 4.2.2 a more extensive empirical study detailing the utility of the template
model’s preflexive and feedback-based stability analyses for commanding and executing useful run-
ning behavior in the physical machine.

This intermediate numerical model of the anchoring sagittal plane system (Fig. 27B) can be
derived using the self-manipulation modeling paradigm of Johnson et al. (2016). As shown in
Fig. 27 (third column), the body is allotted 3 DOF’s, and each leg is modeled as a massless revolute-

prismatic joint, suggesting
T
=[61, r. 62 12, x, z, ¢] .

and the kinetic and potential energies are respectively

) 1 ) ) 1, .
T(q.q) := Emb()C2 +2%) + Elb¢2, V(q) :=mpgz.
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Additionally, we consider two possible active contacts at the massless toes,

NE: i cos¢ [ —sin(6; —¢)
a;(q) = [z} +(=DT |:—sin¢] A [ cos(6; — ) }

and depending on which contacts are active, one or both constraints are activated, and appear as
rows in a(q). We omit a full hybrid system description of this model, but we follow the modeling
procedure of Johnson et al. (2016).

In Fig. 32, we plot data from Minitaur and data from both the sagittal biped simulation and the
slot hopper simulation. Since the body inertia i is not known accurately for Minitaur, we tuned
that parameter from the simulation; ¥ = 0.77 proved to be a good estimate. In the last row, the
speed of the robot from raw motion capture data is plotted alongside a filtered version (obtained
by truncating the Fourier transform at 3 Hz—approximately the stride rate of bounding Minitaur).
We believe that the speed oscillations are caused in part because of the motion capture rigid body
CoM being located vertically above the actual CoM, and also because the body speed x does indeed
oscillate in a manner that averages out over a stride due to imperfect tuning of the nominal leg angles.
The leg angles and fore-aft behavior are out of the analytical scope here (though we describe our
implementation in Sec. 4.2.4).

The sagittal biped simulation’s speed is also plotted, but note that the slot hopper model does not
even have an x degree of freedom. The fore-aft energy can be considered a “perturbation” to the
slot hopper model we have analyzed here, and the persistence of the expected vertical oscillations
and phase relationships testifies further to the robustness of the analytical results.

All in all, Fig. 32 indicates that at least for bounding in place, both models provide good agree-
ment in the z and ¢ degrees of freedom (to each other and to empirical data), over the region of
state space most pertinent to the bounding task. A comparison of the slot hopper and sagittal biped
models over a much larger region of state space (more trials than is practical to run on the physical
platform) is shown in Fig. 33.

The left panels of Fig. 33 show time trajectories for some relevant coordinates comparing the
sagittal biped simulation to the slot hopper simulation. The simulations are started with both models
in aerial phase, with different initial ¢(0), x(0) conditions, but from the same z(0). Note from
Fig. 32 and Fig. 54 that the initial ¢» on touchdown for bounding seems to be within |¢| < 0.4 radians
empirically. The range of speeds chosen was small since this simulation does not implement the
fore-aft control necessary to stabilize large speeds (in Sec. 4.2.4, we describe a controller used for
this purpose on the physical platform).

The leftmost columns show time-trajectories of the resulting hybrid executions, and even though
the two models are drastically different in dimension and complexity, the resulting behavior is a
charateristic z and ¢ oscillation in either case. The only discernible qualitative difference is a phase
shift in the resulting steady-state oscillation

In the top right column of Fig. 33, we compare the resulting oscillations in the frequency domain.
Suppose 1z (M) is the z-oscillation magnitude at the predominant frequency, where M € {A,B}
(referring to the model from Fig. 27), and a similar quantity is defined for ¢. In Fig. 33 (top right)
we plot the quantity

1eB)/1g(A)] 11
H[MZ(B)/MZ(A)}_MH (3.129)
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Figure 34: Comparison of slot hopper simulation to SC-Minitaur. The empirical data (in contrast to the
numerically computed dotted traces) for this plot is from Fig. 51 and Fig. 52, and we have now
used the value of « in (4.16). Note the different z—scales in the two sets of plots. See the last
paragraph of Sec. 3.5.6 for further discussion.

as a metric of the normalized dissimilarity in the ¢, z oscillations in the two cases. Note that
each entry of the vector inside the || - || above is a “% error” in the oscillation of the ¢, or z trace
(respectively), and we plot the norm of this vector in the top right of Fig. 33. As the legend reveals,
the error is less than 3.5% over the range of initial conditions considered.

In the Fig. 33 (bottom right), we compare the phase offset of the resulting ¢—oscillations,

Zp(B)—Z(A) (3.130)

showing a larger range of phase lags between the two simulations (generally more strongly related
to ¢(0) than x(0)). These discrepancies in steady state phase as a function of initial condition don’t
affect qualitative behavior on the limit cycles, hence, the stabilizing effects of body and feedback
parameters proven mathematically for the slot-hopper (Sec. 3.4.2, 3.4.3, 3.5.4, 3.5.5) achieve corre-
spondingly stabilizing results in the qualitative behavior of the sagittal biped and physical robot as
we will detail in the next section.

In addition to the numerical and empirical comparisons in Fig. 32-33, we include in Fig. 34
another comparison of the slot hopper’s preflexive and feedback—stabilized behavior at a different
k value (4.16) to data from SC-Minitaur. The top two rows demonstrate preflexive (pronking)
behavior, and with the same « value, we apply the phase controller (3.59) to both simulation and
physical platform, and plot the results in the bottom rows (bounding in both cases). The ¢-traces
in the top row, and the z—traces in the bottom row both exhibit small amplitude variations, where
various perturbation sources in the physical world cause apparent discrepancies between physical
data and simulation. However, there is a very close match in the more pronounced z, and ¢—
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Figure 35: Qualitative effect of active toe extension for simultaneous transitions. Simulation runs of the slot
hopper (Sec. 3.5.1, Fig. 27A) testing the simultaneous transition assumption (third row of Table
5) with some plots of executions from different initial conditions (in columns). In the traces with
dashed lines, active toe extension control in aerial phase (see Sec. 3.5.6) is enabled, whereas for
the solid lines it is disabled. The resulting qualitative behavior is almost identical in either case.

oscillations that are observed in the top and bottom rows respectively between the simulation and
the empirical data. This provides more evidence that the template and the analytical conclusions
garnered from Sec. 3.5.5 and Sec. 3.4.3 are representative of Minitaur’s behavior in the real world.

Near-simultaneous transitions

As Sec. 3.3.1 describes, an assumption on active toe extension control is required for the applica-
tion of the single-mode hybrid averaging theory De et al. (2016) to our analyses in Sec. 3.4.3 and
Sec. 3.5.5 (to ensure simultaneous transitions between aerial and double stance modes as intuitively
illustrated in the lower series of Fig. 26). However, in practice, the resulting hybrid executions of
the four-mode system (allowing for single stance) are quite similar.

In Fig. 35, we compare simulated executions of the slot hopper model (Sec. 3.5.1) from three
different initial ¢»(0) conditions (z(0) = 0.4 m in each case), with executions of a version of this
model modified as follows. In the aerial phase, we apply the following acceleration to the toe
(though the mass is non zero)

i i=kp (p+ (=1 pd —ri) —kafi,

for i € J, where r; is the extension of the toe in flight. Though the model assumes massless toes,
this imposed feedback results in simultaneous touchdown as long as |¢| < w/2. In Fig. 35, the
solid lines correspond to executions going through all 4 hybrid modes, and the broken lines are with
simultaneous touchdown.
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Figure 36: Robustness to parametric inaccuracy. Simulation of the slot hopper model (Fig. 27A) testing the
effect of poorly chosen physical mass and inertial matching parameters, ¢; in Sec. 3.5.1. Despite
the large and varied discrepancies between assumed (applied in the control (3.91)) and actual ¢;
captured in the bottom plot, there is a stable limit cycle everywhere except for a region contained
within the yellow polygon. The colors in the top plot correspond to the applied parameters desig-
nated by the “*” in the bottom row. The “correct” parameters (Table 6) are at the blue “*” (i.e.
there is no parameter mismatch); we chose the green “>*” to be deliberately close to the yellow
“failure region” (the lowered energy results in almost no aerial phase, causing the z—oscillations
to be deminished; cf. Sec. 3.5.6), and the red “*” in a disparate region of the parameter space.
The percentage errors in the last row measure the relative discrepancy between the intended re-
sponse to “correct” (blue) control parameters vs. that achieved by the actually applied parameters
as described in (3.131) and the text following.

As expected, the larger |¢(0)| results in the most disparate behavior®®, but in all cases, the asymp-
totic resulting behavior is identical, with small phase shifts in the z—oscillations. This supports our
analytical Assumption 3 of simultaneous transitions in Sec. 3.4.3 and Sec. 3.5.5, even though we do
not enforce it on the physical platform (Sec. 4.2.1) when employing the controller (3.5) with v; as
in (3.58). Still, as referenced from Table 5, the relative frequency of single stance periods observed
in pronking trials is quite low (< 7%).

Robustness to parametric inaccuracy

The simple form our controller takes (3.5), (3.58) is relatively robust to parametric inaccuracy. In
Fig. 36, we numerically explore the results of a mismatch in the two parameters «; in (3.91) of
Sec. 3.5.1. In the wide range of parameters shown in the bottom row (g € [—10,40] m/s?> and
one order of magnitude of variation in the assumed body mass m)*’, the qualitative behavior still

39Because larger ¢ results in longer unmodeled single stance periods when the active policy of Sec. 3.3.1 is not applied.
40Even non-physical g < 0 values result in observable hopping since the spring-like forces in (3.5) dominate the constant
term in (3.91).
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Figure 37: Strongly coupled in-phase stability vs. k. Simulations of a slot hopper (Sec. 3.5.1, Fig. 27A)
testing the convergence of an in-phase limit cycle as the parameters wg (equivalently, « through
(3.118)) and the flight time #¢. The “convergence metric” is an estimate (described in Sec. 3.5.6)
where negative values indicate stability. We chose the pink and green parameter vectors on either
side of a posited stability “boundary” supported by the findings of Sec. 3.5.5, and the red point to
illustrate that the behavior for small-wgy is convergent (albeit slow due to the small wg) despite
the dark patch surrounding it. The plots in the bottom row are discussed in the text.

displays a stable limit cycle for almost*! the entire region. We chose « = 0.9 for each simulation in
this subsubsection.

The top rows of Fig. 36 plot executions from three different parameter sets (shown in the bottom
row with a “*” corresponding to the color of the solid line in the top row). The bottom row of
Fig. 36 displays the discrepancy

100 (i (@) / i (e*) — 1) (3.131)

in the resulting ¢ and z oscillations for some parameter vector o = [otg, 1] relative to the result with
the correct parameters, o™ (blue “*” in Fig. 36), for three different “measures” u; chosen for the
three columns along the bottom row of Fig. 36: the magnitude of the ¢—oscillation (left), frequency
of the ¢—oscillation (center), and mean of the limiting CoM height z (right).

We can see from the contours on the bottom row that excluding the yellow region*! that in each
case, even large parametric mismatches in (3.91) result in less than 30% error as compared to the
designer’s intention.

41Except the region within the depicted yellow polygon, where the applied radial force (3.91) is insufficient to overcome
gravity and sustain oscillations.
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Strongly coupled in-phase stability vs. «

In Sec. 3.5.5, we showed that the assumption of constant flight time permits a conclusion that “high
enough” « (consequently, “low enough” wg in (3.118)) results in preflexive pronking. In simulation,
we test a range of values of wg across an order of magnitude to explore its interaction with a primary
destabilizing influence absent this assumption. Intuitively, a greater excursion of pitch in flight
should disrupt the sagittal plane gaits and, indeed, recall from the return map expression (3.123),
the flight time # provides a destabilizing effect. Motivated by this, in Fig. 37, we plot a metric of
stability (which we describe below) on a wg—t* plane. The flight time is not constant, however we
provide the vertical hopper with a desired energy a* = gt/ /2.

The bottom rows of Fig. 37 display both the physical ¢ coordinate, as well as values of a4
(3.112) sampled at successive transitions into aerial mode (liftoff). The slope of the solid line*?
in the bottom row is the “convergence metric” we use in the top row of Fig. 37. We use this
unconventional metric since (as the green time-series plot shows), in large parts of this “ungoverned”
region of the parameter space, the behavior is somewhat chaotic (as apparent from the a4 plot), and
conventional numerical estimates of the return map eigenvalues return uninterpretable or inaccurate
results. Nonetheless, negative values indicate “convergent” behavior, and positive values correspond
to divergence.

The plot results agree with our analytical result in Sec. 3.5.5 even without a time-invariant as-
sumption: for each #*, there is a “low enough” wy that results in convergence to the in-phase limit
cycle, and for smaller 7 allows for a larger range of wg that result in stability. These findings
are corroborated by empirical results in Sec. 4.2.2; in particular, Fig. 51 shows a stable empirical
preflexive pronk obtained by simply modifying the k of the physical platform with no feedback—
generated control signals (i.e. w; = 0 in (3.58)).

Phase locking at intermediate «

In our analysis of the case ¥ < 1 in Sec. 3.5.4, we showed the anti-phase limit cycle is preflexively
stabilized, whereas in Sec. 3.5.5 we argued that there is a preflexive stability for the in-phase limit
cycle when k > 1. These analyses motivate an inquiry into the behavior of the system for interme-
diate values of « (i.e., comprising a range of values around the third row of Table 6). As previously
argued in Sec. 3.5.3, we expect the phase control to be effective in a sufficiently small neighborhood
of k around 1; numerically and (as we show in Sec. 4.2.3) also empirically, we are able to explore a
much larger neighborhood.
Fig. 30 shows the limiting (after # = 10 seconds of execution) “touchdown offset”,
cos(27s), where’s := w (3.132)
S; — Si

forleg i €7, s; is the latest touchdown time of leg i, and s;” is the previous touchdown time. This
calculation essentially returns’s = 0 for the in-phase limit cycle, and’s'= 1/2 for an anti-phase limit
cycle.

42The solid line is obtained as a least-squares degree-1 polynomial fit. While in a linear system we would expect an
exponential trend, due to the chaotic nature of the section data, in our experience a degree-1 fit proved relatively more
reliable.
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The black dots in Fig. 30 summarize simulation runs that corroborate the analytical results of this
section for the slot-hopper model (Fig. 27A) at the left and right extremes of the plot (Sec. 3.5.4
and Sec. 3.5.5, respectively), and strongly suggest that there is a sharp “phase transition” in a tight
neighborhood of k¥ = 1 regarding which our analysis is silent absent the specific sensorimotor feed-
back policies analyzed in Sec. 3.4.2-3.4.3. Looking ahead to the empirical study of the next section,
the superimposed vertical green and magenta lines correspond roughly to the values of « exhibited
by Minitaur without weights (see Sec. 4.2.2 reporting reflexive bounding via an anti-phase fore-aft
oscillation) and with weights (see Sec. 4.2.3 reporting preflexive pronking via an in-phase fore-aft
oscillation) added to distribute the mass center. Their correspondence with this section’s analysis of
the slot-hopper model further attests to our hypothesis that its dynamics are anchored by preflex in
the physical machine.

In contrast, we use colored dots in Fig. 30 to depict the capacity of the sensorimotor feedback
policy (3.59) to override the preflexive coordination patterns as proven in Sec. 3.4.2-3.4.3 for the
case k = 1 and shown in Sec. 3.5.3 to apply in the “approximately decoupled” k = 1 regime (de-
picted in gray along the abscissa of Fig. 29). Specifically, the red dots summarize the simulated
results of applying (3.59) with k; < 0 (commanding an anti-phase limit cycle) while the blue dots
correspond to the case k; > 0 (commanding an in-phase limit cycle) for the slot-hopper model
(Fig. 27A), with a range of coupling values including the effectively decoupled situation of k¥ = 1
illustrated in Fig. 25. While the phase control is insufficient to overcome the preflexive stability
at extreme values of «, the figure shows regions near k = 1 where the feedback control is able to
stabilize near-independent hoppers to a desired limit cycle. The disruptive influence of feedback is
also empirically demonstrated in the Minitaur in Sec. 4.2.3.

3.6 Time-Reversal Symmetry and its Relation to Averaging

Our previous mathematical formulation (Sec. 3.2, De et al. (2016)) has brought classical dynamical
averaging theory to bear on a (restricted) class of hybrid systems: averageable single-mode hybrid
systems (HAS). However, the difficulty in applying our previous result (Thm. 2/3) is threefold:

a) A HAS as listed in conditions of Thm. 3 must have a single “fast” mode (3.39). Our interest in
compositions generically take the form of coupling several oscillators together (as in a tailed
biped that translates while hopping De and Koditschek (2015b), a composition of two virtual
legs in a virtual biped (Sec. 3.5, De and Koditschek (2016)), coupled oscillator formulations
of multilegged coordination Righetti and Ijspeert (2008), Owaki et al. (2013), etc. Thus in
order to apply the theorem, coordinate changes to appropriate slow phase differences must be
constructed. While phase differences are easily constructed for identical coupled oscillators
Proctor et al. (2010), they must be hand-crafted in the case of non-identical oscillators , as in
Sec. 3.5.4.

b) The equilibrium condition of Thm. 3(iii) is non-trivial to verify, especially since it is heavily
related to the coordinate change to phase-difference coordinates.

c) The linearization of the averaged return map is difficult to compute in some cases (e.g.
Sec. 3.5.4) without any prior simplifications.

One of the major contributions here is to simplify the conditions for hybrid averaging by relaxing

the need for a single fast coordinate, and simultaneously to ease the application of the averaging
theorem. Exploiting time-reversal symmetry aids us on both counts, and helps alleviate difficulties
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Figure 38: A spring-loaded inverted pendulum (SLIP).

(a)—(c) as shown below:

a) There is no need to either hand-craft the coordinate changes for phase differences (as in
(3.102)), or explicitly define the slow vector field in the form of (3.39). The newly-introduced
coordinate change Def. 4 is proven to transform a general network of coupled oscillators
(3.140) the form of (3.39) in Lemma 6).

b) There is no need to check the equilibrium condition in Thm. 3(iii), since the correctness of
(3.159) as an equilibrium is proved in Lemma 8.

¢) The averaged return map (3.163) is subject to symmetry-induced algebraic simplifications,
expressed by the simplifications in (3.163) (Lemma 9).

These simplifications (which we detail in Sec. 3.6.3) allow us to present stability analyses of higher-
dimensional systems with relative computational ease in Sec. 3.7.
In Sec. 3.7, we present two applications of the results in this section.

3.6.1 Motivating Example: SLIP (2 DOF)

We analyze SLIP (Fig. 38) as a composition of the vertical hopper (Sec. 3.1.1) and compliant in-
verted pendulum (Sec. 3.1.3) templates. We show through the use of examples in this section how
each of the benefits a)—c) apply to this particular system.

Continuous Dynamics Referring to Fig. 38, the SLIP model consists of a massless leg with
length r (nominal length p), attached to a mass mp. We assume that there is a shank actuator which
can apply an axial force Y, € R in stance. The angle of the leg from the vertical axis is 6 € S!.

In stance (toe pinned), the kinetic and potential energies are

KE = %(fz—i-rzéz), PE = mypgr cosb.
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Using the Lagrangian, the continuous dynamics in physical coordinates are

i =",/my—gcost +rb?
= Tr/mp g cos (3.133)
0 =gsinf/r—2r0/r.

We use the vertical hopper feedback control strategy u, with the following affine transformation
(related to the “mass” and “gravity” parameters),

Y i =mp(g +u;). (3.134)

Guard Set As presented in De et al. (2016), the constant flow-time assumption is reasonably
justified®}. By enforcing that assumption, the physical liftoff event is now {r = p,7* > 0}. From
(3.3)(3.4), we get

Yy(¥) = ¥r —m/2. (3.135)

Reset Map The leg angle during flight is reset according to a “stepping” strategy, as discussed in
Sec. 3.1.3.
3.6.2 Averageability of Coupled Oscillators

Prior work Altendorfer et al. (2004) introduced the formal role in locomotion of a time-reversal
symmetric system, which we use below. Suppose we have a dynamical system on space Y :=
T+1 x R” partitioned into “phase” and “energy” compartments* as 'y = [y,a]”, with dynamics
represented by the e-parameterized vector field,

y = Fy(y.e). (3.136)
Additionally, let Gy be a time-reversal symmetry (Altendorfer et al., 2004, Def. 2), such that
Gy: (Y = —Y,aa). (3.137)

Without loss of generality, Fy can be split into “odd” and “even” parts based on the involution Gy
(3.137),

Fy=F0 + FY, (3.138)
F?:= (Fy— (DGy- Fy)0Gy)/2,
F¢ := (Fy+ (DGy- Fy) 0 Gy) /2.

where

where we have nominally used Raibert’s notation (Raibert, 1986, Ch. 5) for the components, and
demonstrate later our justification for using superscripts denoting “odd” and “even” for these mul-

43 A comparison of analysis with and without the “constant flow time” assumption for a similar vertical hopper is included
in (De et al., 2016, A.5.3).

4Note that m = n for non-critically-damped autonomous Lagrangian mechanical systems. Accordingly, we define the
projections in Def. 3.
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tivariate quantities. It is easy to check that the two formulae just above uniquely solve (3.138) and
the desired symmetries

F0oGy=-DGy-F?,  FfoGy=DGy- Ff.

As shall be apparent from examples that follow, F can be thought to comprise forces added that
are dissipative (and hence includes both perturbative forces which are destabilizing along with the
compensating forces that we add using our available control authority to be restorative), while the
conservative forces are represented in Fy" .

In the upcoming Def. 2 describe a generalization of (3.1) to non-identical coupled oscillators
(representative of a large class of mechanical systems), and provides an explicit coordinate change
to averageable (Sec. 3.2.1). The embedding of the periodic orbit in Y can be thought of as being the
intersection of the “regulated” set

R:={yeY:a=a"}, (3.139)

where a* is a specific energy level stabilized by the dynamics (as formalized below in Def. 2(ii)),
and the “coordinated” set, which we define later in (3.149).

Definition 2 (Weakly-coupled almost-reversible continuous dynamics). (3.136) satisfies the follow-
ing:
(i) the vector field is of the form

Fy(y.e) = [F"éa)] +eFi(y.e); (3.140)

(ii) the first element of Fo > 0, and Fy is odd;
(iii) there is a* such that Ff(R) =0 (see (3.139)).

Remark 6 (Intuition behind Def. 2). Note that our requirements above are a strict generalization of
(3.1) (i-e. (3.1) automatically satisfies Def. 2). Instead of constant wg, we allow the phase dynamics
to be a function of the state. In the first part of (ii), we are setting up conditions for the first element
of ¥ defining the “master” phase, and the a* that satisfies (iii) essentially defines R (3.139).

Example 4 (Oscillator coordinates for SLIP). From the second-order equations of motion (3.133),
we use the coordinate changes from the previous section (3.4) and (3.13) to rewrite (3.133) in our
model coordinates y := [, wcp,av,acp]T, where we choose, for SLIP, a., to be the angular mo-
mentum about the toe (first option in (3.13)). However, in order to do so, we require an assumption,
which we formalize by relating ¢ to the important physical scale variables.

Assumption 8 (SLIP). We assume
a) the gravitational force in stance (relatively to the leg extension force) is O(¢), i.e. we can
substitute g = €% in the stance dynamics;*

b) the leg stiffness is O(¢72), i.e. we can substitute w, = @, /¢.

4SWe are positing the spring potential as inserting much greater forces than can gravity. We retain the original gravity
parameter, g, in flight since (as the only force acting on the body in flight), its effect is non-negligible.
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Intuitively, the £ = 0 system is a restricted version of SLIP which has no gravity*® and an infinitely
stiff spring (purely pendular swing) in stance. Using (3.134) in (3.133), we get /' = u, + g(1 —
cosf) 4+ r6?2. Using Assumption 8b), we can simplify

2 2 2
. a a 3aZ (r —
r92(3é3)%:%_ cp(4 p)+O(V—p)2
r o P
2 2
34) d 3eaZ a,cosy
2 T T L oG?).
o Wy p
Using this and the template controller (3.5), we get
a2
P =w2(p—r)+ 0, 4 O0(e?), where p:= p + %,
wZp
— — 3a2, a, cos
Ty 1= vv+g(1—coswcp)+%. (3.141)
v

2 2
However, note that using Assumption 8b), waz—jz_g = 825‘12—23, and so p = p+ O(¢?), and we may

rewrite the above as
o2 ~ 2
F=wy(p—r)+ev,+0(e).

Comparing to the closed-loop equations of motion of the template (3.2) in physical coordinates, we
see that subject to Assumption 8, the SLIP radial dynamics are an e2-perturbation of a decoupled
vertical hopper (3.99).

Now turning our attention to the angular dynamics, using Assumption 8b) again as above,

. (3134 a 2&dacpay COS
Jop O e _ ep | 2EApACOSYy | g2 (3.142)
r 0 Wy p

Using Assumption 8a) as well as 8b) in a.p, we have
Qep = EGTsINYep, = £gpsine, + O(e?).

With these, we get the system dynamics

y = Fo(a) +eF1(y,e), where (3.143)
Wy w,a, COS vav
2 2acpaycosyy
Fo = an/p , F1 = av,03~ + O(e).
0 sin ), Uy
0 gpsinyp

46This approximation has been previously employed in the literature either directly Schwind and Koditschek (1995) or
in a relaxed form by aligning it with the leg angle Geyer et al. (2005).
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where U, was defined in (3.141). Using (3.137), we can find

B v g(1—cep) 3ac2 e\ ]
(f)_v ( a, =+ &3\,;4 ) CvSy.
2acpavcy w‘(’)a"
FY = oyp’ 5 , F{ = (ky—ayp) 2 | (3.144)
~ 3aZcy
(g(l_CCP)'i'T;zt) Sy (\)/
L ?pscp _
where we use the shorthand ¢, := cos ¢, s, := sin,,. Clearly, with
ay =ky/B, (3.145)

we can define R as in Def. 2 and have F{(R) = 0.

Changing to averageable coordinates

We define some new coordinates that intuitively change slowly near the limit cycle. As a prelimi-
nary, we define the following new notation:

Definition 3 (Projections of state space). Define the following projections of arbitrary ve Rm+Tn+1;

ngv:=[1,0,...,0]veR;
7oV = [Opxm+1), In]v € R".

Definition 4 (Slow coordinates). Given the parameter vector w € R™, y = (0,V¥1,...,V¥m,d1,...,dn) €
Y, define the o-varying coordinate change h : R"T" x R — R™+"
X =he ([”"”y} ,0) = ["1 N A(a’)”‘sy] , (3.147)
Tay Tay

where A(v) is a diagonal matrix with diagonal entries v.

Remark 7 (Intuition behind Def. 4). For each o along the limit cycle, we define a set of coordinates
x = (§,a) where § is a vector of phase differences. We show in the following how to find the relative
frequencies w. The reader may intuitively relate the x variables to concepts in the literature such
as transverse coordinates Hauser and Chung (1994), and floquet coordinates Guckenheimer and
Holmes (1990). However, as we shall show, we can explicitly define the coordinate change & and
use it for analysis.

Remark 8 (Properties of 1). Note that the “inverse” of this coordinate change (at a given o) is

hol(x,0) = [A(“’)_l(“l_”s"))} . (3.148)

Mg X

Now we define the “coordinated” set, N, (as anticipated in the preamble to this chapter) contain-
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ing orbits of (3.136) that maintain a specific relation between the different phase variables, i.e.,
N:={xeX:msx =0} (3.149)

For instance, in the 2DOF SLIP system, the bottom right cartoon in (De and Koditschek, 2015b,
Fig. 5) depicts a neutral orbit (in N), but the other two cartoons depict orbits which have a different
phase relation between the vertical and angular DOFs. Thus, the limit cycle is an yg-cycle, with
constant x at

x* =[0,a*T e X, (3.150)

i.e. intuitively the system has achieved the steady state energies and all the phases are locked in
their steady state delays relative to the “master phase,” V.
Using x from (3.150) in (3.148), the condition in Def. 2(iii) is ensures that

Ffoh™l(x*) =0. (3.151)
Finding the relative frequencies We have not yet defined w € R™ as it appears in Def. 4. We
posit the form w(a) = wg(a) + cw(a), and we define each of the summands in the following.

Lemma 6 (Slow dynamics). Choosing
wo = e FoA(mg Fo) 1, (3.152)

and defining Ho(a) = [8 —A(()an) OmOXn:|, Hy(a.y) = [(1) —A(()a)o) —A(n}sny)Dwo} the dy-

. . d
namics of the X variables are 5> = ¢f (x,0,¢), where

_ HoFo+ H:iFy

f(x,0,6) = ohl(x,0)+ O(e), (3.153)
JTO—F() 0

and A(-) denotes a diagonal matrix with diagonal entries given by its argument.
Proof. Differentiating (3.147), we get

X=Dyh-y+Dgh-6

(1 —A(w) A(msy)Dow || msFo+ emg F1
_[0]”"F+[ 0 I enta Fy

= [(1)] o Fo— [A(a)o())n(g F0i| +e(HoFo+ Hy Fy) + 0(£?)

=0 by defn. of wg
Dividing by ¢ = 75 F = 7g Fo + O(¢), we get (3.153). O

We observe here that Lemma 6 does not rely on the symmetry properties of Def. 2; it relies on
our judicious coordinate change (Def. 4). We leverage symmetry to show how to simplify stability
calculations in the upcoming subsubsection.
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Figure 39: Asymmetric monoped trajectories (Raibert, 1986, Fig. 2.11) that would be assigned 6., < 0 on
the left (note at 0 = 0, the leg angle would be ahead) and é., > O on the right.

Remark 9 (Convergence rates to the limit cycle). As apparent from (3.153), in our modeling, the
“regulation” and “coordination” aspects of stabilization both occur at the same O(g) (relative to
phase) rate. For contextualization, the reader may want to juxtapose against isochrons Gucken-
heimer (1975), where regulation is posited to occur at a faster timescale than coordination, resulting
in a reduced-dimensional phase-coordination problem (of the kind studied in, e.g. Golubitsky et al.
(1998), Haynes et al. (2012)). In contrast, we consider both regulation and coordination aspects of
stabilization simultaneously (non-negligible in highly-dynamic settings such as hopping and run-
ning).

Example 5 (SLIP slow coordinates). Continuing from Example 4, we can explicitly compute the
change to averageable coordinates. We emphasize here that the steps in this example are not
required for a stability test (which we distill into the form of an algorithm in Fig. 40). However,
we expose all the details in these examples for the benefit of readers.

From (3.152), we get

wo(a) = w\,pz/acp. (3.154)

We can directly use the coordinate change (3.147) and (3.143) to get

_Cvsvﬂ _ Widep + 36\,261?'_.) c\,§ _ ccpcvg cvkysy _ 2¢cywyay gscpp:;wv]/fcp
wy 02 oto,o, = wa, yay wyay pwy aZ, 5
X = & ~ ~ 3CvSvaZ ay + O & .
gsv—ccpgsv+kvs3—s3ﬁav+ p4—a~)vp (&%)
gScpp
(3.155)
i i . 0—w 00
Alternatively, using our formula (3.153), we can compute the matrices, Ho(a) = [0 0 0 0],
0 0 00
1 —wo 0 chﬂzwv
Hi(a) = 0 o 1 agp . Then x = e(HoFo + H{ F1) + O(¢?). Comparing the result to the
0 0 0 1
block equation above, we get identical O(e) terms.

Averaging the continuous dynamics

We have showed in (3.153) that the dynamics are in the averageable form (Guckenheimer and
Holmes, 1990, eq. (4.1.1)). Next, we observe that the reversibility properties in the original y
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coordinates (3.137) can be interpreted very simply as ¢ —> —o reversal.*’
Lemma 7 (Master phase reversal symmetry). For any x € N (3.149), and any w,
(i) h~1(x,—0) = Gyoh™1(x,0);
(it) if f ate =0 (3.153) can be decomposed into “odd” and “even” parts

H0F0+H1F10 HlFle

h_l ’ b ¢ b =
ol (o), fxo) = I

fo(x,0) = ohyl(x.0).  (3.156)

then f = f°+ f€ and f(x,—0) = —DGy f°(x,0) + DGy f¢(x,0).

Proof. Let us start with arbitrary y = (0, V¥1,..., ¥m.a1,...,a,) € Y. Applying (3.138) to (3.148),
we get

TaX TeX

Gyoh™' (x.—0) = Gy (|:A(a))_1(—01 —n,gx):|) _ [A(w)_l(al + 7T5X):| ’

which is equal to 271 (x,0) iff mgx = 0 (from (3.148)), i.e. for x € N (3.149). As a corollary,
h(Gy(y),—0) = h(y,o), using the fact that Gy is idempotent.
To prove the second part, note from (3.153) and the first part of this Lemma that
HoFo+HFy | _,
f(X, —U,O) = T Ohwo (X,—U)
@.140) (HoFo) 0 h) (x,0) 4 (H1 F1) 0 ) (x,—0)

g Foo hc‘o(} (x,0)

since Fy is odd. Additionally, looking at each component of F; separately,

(H1F?)oGy = |:1 —A(wop) A(n(gy)Da)oi| [1 _Ii| Fo

0 0 1,
_ 1 —A(wo) —A(msy)Dwo Fo
0 0 —1I, L

ie. wg(H{F{)oGy=ms(H1F}),and my(H{ F{) oGy = —ma(Hy FY). Similarly, we can compute
and find that s (H1F{) o Gy = —ms(H1FY), and mq(H{ F{) o Gy = ma(H1 F{). Putting these
together, we get the desired conclusion. O

Using o, the master phase as, “time” in classical averaging (Sec. 3.2.1), the averaged vector field
is defined as in the classical definition (Guckenheimer and Holmes, 1990, eq. (4.1.2))),

7= [ fx.o00do. (.17

where f, the slow vector field, was defined in (3.153), and we use T :=[-T/2,T/2].

47 As Altendorfer et al. (2004) shows, reversible systems of the kind (3.137) possess certain time-reversible orbits. As
shown in Lemma 7, in our coordinates (Def. 4) this property corresponds to a N-restriction.
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In order to pin down the value w; (the missing component of (3.152)), we first remind the reader
of the intuitive aim of the averaging method. As described in our prior averaging work (as well
as in classical texts, such as (Guckenheimer and Holmes, 1990, Thm. 4.1.1(i1))), the averaging
method uses as its approximant the behavior of the averaged system from (3.157) at its equilibrium,
ie. f(x*) =0. Thus, we use as “constraint” that with our proposed (Def. 4) w-parameterized
coordinate change, (3.157) must have a zero at the equilibrium state (3.150).

The pair of propositions below contain the main contribution of this section: simplified analytical
expressions for the averaged properties of the system (3.136).

Lemma 8 (Averaged properties). Choosing
w1 (a) := A(mg Fo) ™! / (6 F11 — A(wo) s F1 — A(rtsy)Dwo g F1) o hiy ' ([0,a],0)da, (3.158)
T

the averaged vector field (3.157), when evaluated at the equilibrium (3.150), satisfies
f(x*) =0. (3.159)

Proof. In order to prove (3.159), first we observe that for the bottom n rows in (3.157)

- T/2
Trg f(x)= /;naf(x,o, 0)do = /0 (mq f(%,0,0) 4+ 74 f(x,—0,0)) do,

where we have simply split up the integral into two pieces using a trivial change of variables. Now
observe that at x*, using Lemma 7, the second integrand turns into 27, f ¢ (x*,0)do. By Def. 2,
Ffo h;g (x*,0) = 0. Thus the integrand above is pointwise zero, and the 7, integral is zero.

For the top m — 1 rows, symmetry does not help directly; instead we leverage our choice of w;
(3.158). Averaging the first m — 1 rows of (3.153),

g F11 = A(wo) s F1 — A(wr)7ws Fo — A(rsy)Dwo g Fi
Tl'gF()

Trs f(x*) = / o h;& (x*,0)do.
T
Now recall that w5 Fy does not depend on o (3.140), and can thus be pulled out of the integral.
Our definition of wj(a) (3.158) exactly cancels out the remaining terms for any x = [0,4], i.e.
—0
75 f ([0,a]) = 0 for any a, and in particular, also for a*. O

Example 6 (SLIP averaged system equilibrium). Continuing from Example 5, we can divide (3.155)
by s Fo = w, (from (3.143)) to get %.

First, note that g h;; (x,0) = (Yy —8cp)/wo, which we replace ¥, with. We can now integrate
at §cp = 0 over T = [—m/2,7/2] to get

o 1 /2
f([0,a]) = — f([0,a],0,0)do (3.160)
T J-m/2
wiac 3ag 20> 25wy /T—Cwacp) 27 4a, 28p%ce
- p2va + 2p4w§6\, + a3, =+ Twla, T ompw, n(p*wZa,—aZa,)
_ ko—Ba, . (3.161)
2wy
0
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where ¢, := cos(it/(2wy)), Se = sin(w/(2wp)). Clearly, the lower rows are zero at (3.145). For
the upper rows, first compute w; according to (3.158) to get

1 /2 3
wi(a) = (g F1 —woms F1 — Y pDwo - 714 F1) ohw(} [0,a],0)do
s Fo —m/2
02— 2¢0,F 0wy 1 203wy (20250 0 —TCwacp 4 3maZ, 28 4w.a,
p4a)v2a\,—aczpa\, agp 20%w,@, ' wvay pwy
= , (3.162)
Tacp

substituting which into the preceding block equation correctly ensures f (x*) = 0.

Lemma 9. Evaluated at the equilibrium (3.150), the averaged vector field (3.157) satisfies

— s | Dsms O (x*) 0
Df(x*) = {DMJO &%) DaraF* (X*)}, (3.163)

where the odd/even components are as defined in Lemma 7.

Proof. First, we calculate the right hand block columns, i.e. Da7. Note that for these columns, § is
evaluated at 0, and so we can use Lemma 7 to see that the top right block is nJ"([O, a]) = 0 by our
definition (3.158) (as shown in the proof of Lemma 8). In the bottom right block, we use Lemma 7
to see that (as in the proof of Lemma 8)

7o f(x*) = % [T 7a fE(x*,0)do = Danaf =Danaf (x*).

For the left blocks, we cannot use Lemma 7 since § # 0. However, since we can evaluate a at a™,
note that f¢([8,a*],0) = 0 (from Def. 2), and so only f¢ appears. Consequently, differentiating
the respective blocks with §, we get (3.163). O

Remark 10 (Symmetry-induced algebraic simplification). The computation (3.163) benefits greatly
from symmetry: note the block structure of D f where there is a zero in the top right block in
(3.163). Further, we have shown that an explicit form for w; (3.158) is not required; we only need
to compute wq (3.152), 7, ¢, f° for (3.163) from the vector field.

Example ‘1 (SLIP averaged system linearization). Continuing from Example 6, we can explicitly
compute D f from our f by brute force, getting

0 0
— —cwgacz —
D (") = | mpicrwcz 70, ©|- (3.164)
=285 P
2Tl

Note immediately that the top right block is 0, as we proved in Lemma 9. Now we instead use
our formula in (3.163) to compute D . First we compute f© and 7, [€ = [(kv_ﬂ“ov)sv2 / “’V]. Then
averaging these quantities over o = v, we get the same result as (3.164).

128



3.6.3 Averageable Symmetric Hybrid Systems (HSAS)

Building on Def. 2, we are now ready to define an averageable single-mode symmetric hybrid
system (HSAS), which we view as a specialization48 of a HAS (introduced in Sec. 3.2.3), and a
specialization of a symmetric hybrid system (SHS) Razavi et al. (2016) (see Sec. 3.8).

Compared to our prior Thm. 2 or Thm. 3, this next result directly applies to systems with multiple
phases (a network of coupled oscillators), instead of requiring a system already in coordinates with
a single fast mode.

Theorem 4 (Coupled Oscillator Hybrid Averaging Theorem). Given the “original” hybrid system
satisfying Def. 2,

y = Fy(y.e), () =0 = y+ = Ry(y), (3.165)

and with o as in (3.152), define (a) R(x,0) := hy (Ry (hy' (x,0)).—0), and (b) y(x.0) = yyo
hl(x,0). If

(i) Doyy = 1% §2 = O(e) for eachi > 1,

(ii) with R(X) defined from (R,y,T) as in Thm. 3, the CT (for r > 2) reset R (allowed to vary
with ¢) satisfies (a) DR(x) = So + €U(x) (with constant So)°°, (b) So is invertible, its unity
eigenvalues have diagonal Jordan blocks, and

(iii) there is an X* such that (a) R(x*) = x*; (b) with V := TD f (x) (3.163), the matrix Z :=
So + & (U+SoV) evaluated at x* has no eigenvalues on the unit circle,

then there exists o > 0 such that, for all 0 < & < &g, (3.165) possesses a unique hyperbolic periodic
orbit with stability determined by eigenvalues of L.

Proof. Our coordinate change of Def. 4 is used throughout to convert (3.165) to a hybrid system of
the form (3.39) (for which we have already developed a stability result in Thm. 3).
Now, consider the hybrid system

% —¢f(x,0.8), o&=1, y(x,0) =0 = x4 = R(x,0). (3.166)

Lemma 6 shows that the x-dynamics appear as in the left column of (3.166). Based on the hypothe-
ses on Dyyy,
Dy =Dyy, [9]Dsh, ! (x,T/2)

satisfies the hypotheses for Dy in Thm. 3, and based on hypotheses on DRy, S + €U satisfies the
conditions on the reset in Thm 3. In particular, the Lipschitz condition on DR can indeed be verified
from Sg.

Lemma 8 shows that x* is an equilibrium of £, and the theorem statement assures us that it is a
fixed point of R.

48 Although the specialization to systems with some symmetry conditions (Def. 2) precludes application to some classes
of systems, the explicitly constructed coordinate change (3.147) to directly address multiple fast modes (a ubiquitous
feature of the high-DOF systems we are interested in) greatly expands the applicability of hybrid averaging.

49This can be done without loss of generality by scaling vy as long as Dy yy # 0, which we assert as a condition on the
transversality of the flow and the guard.

50The O(1) part comes from Dy Ry and is constant by hypothesis, and the O(e) terms are contributed by both the state-
dependent part of Dy Ry as well as Dg Ry - Dyy [9] where Dyy [9] = O(e) by hypothesis.
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C1) Find template CC, check that system dynamics can be written in the form y = Fy(y,e) = |:F00(a)] +
eF1(y,¢) (3.140).

FY = (F,—(DGy- Fy)oGy)/2,

C2) Compute odd and even parts of components of Fy using
Fy = (Fy+ (DGy- Fy)oGy)/2

(3.138), and check that Fj is odd;
wola) < 7o FoA(rts Fo)~'1 (3.152),
compute § wy(a) <« A(msFo) ™! [5 (e F11— Awo)ms Fy
—A(75y)Dwora F1) ohy' ([0,a],0)do (3.158).

C3) Check the existence of a* such that for each y : mzy = a*, Ff (y) = 0 (Def. 2).

—A@1) Omn HoFo+H\F? , _
) Defining 10@ < L0700 5] [ox0) « = ol (x.0)
) Defining o 1 —A(wo) —A(zsy)Dap |» . mre D,
1@y) <y %% " fe(x,0) <« g ohyl(x,0)
o,
compute V < T D‘S”“io(x*) o, .| G.163).
Dsmg f (X*) Dgma f (X¥)

C5) Scale yy such that Dy yy = 1. Check that Dy, [(I)] = O(¢e) (Thm. 4(i)).

C6) With » = wg + cw; (3.152), compute R(x,0) < hy, (Ry (hy'(x,0)).—0); compute R (Thm. 3);
check R(x*) = x*; compute So + £U(x) < DR(x).

C7) Check that Sy is constant, invertible, and its unity eigenvalues have diagonal Jordan blocks
(Thm. 4(ii)).

C8) Check that the eigenvalues of Z = Sg + £(U + Sp V') are hyperbolic to O(¢), for small & > 0. If they
are all within the unit circle, Thm. 4 guarantees stability.

Figure 40: A computational recipe for stability analysis: We repeat parts of previous definitions, but also
include references for the reader, in order to keep this section self-contained. We apply these
steps systematically to the examples in Sec. 3.7.1-3.7.2. We posit that some of these steps can be
simplified in special classes of systems; we leave an exploration of this to future work.

Lemma 9 gives us a formula for D £, using which we can compute the averaged return map in x
coordinates, which equals Z. By the hypothesis in the theorem statement, it is hyperbolic to O(e),
and so using Thm. 3 we conclude that the original hybrid system has stability properties given by
7. O

The conditions of Thm. 4 are ensuring that the hybrid properties of the system are synergistic with
the symmetry in its continuous dynamics (Def. 2). Note that conditions (i)—(ii) together assert that
the set R is invariant to the reset event, although N (3.149) is not necessarily s0.>! This mechanism
of modifying the coordination properties through the reset is key in the functioning of the stepping
control of horizontal speed for a monoped (e.g. Sec. 3.1.3).

Additionally, (ii) stipulates that the limit cycle of the averaged system, NN R, has rgx = 0, i.e.
using Lemma 7, the orbit is G, -invariant, coinciding with the definition of a symmetric orbit (Al-

31To see this, note that it is possible that the pre-reset state is y € N'\ R, such that 7, Ry(y) # may (the energy is changed
by the reset), and due to the now-changed definition of w(a), s Ry(y) # 0, i.e. Ry(y) ¢ N.
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tendorfer et al., 2004, Def. 3). We emphasize though that the original system is only approximated
by the averaged system, and the orbit in the original system may not hold the sets N or R invariant,
nor may it be symmetric in the sense of Altendorfer et al. (2004).

In summary, the main contribution of this section was to present constructively a judicious change
of coordinates (3.147) that converts a network of coupled oscillators to a hybrid averageable system
(HAS) that we defined in Thm. 3. We summarize a “computational recipe” for stability analysis in
Fig. 40.

3.7 Applications of HSAS

In this section, we present two applications for the results of Sec. 3.6.3 (specifically in the algorith-
mic summary form of Fig. 40).

We first present an application to the weakly coupled slot hopper of Sec. 3.5.4 in Sec. 3.7.1,
chosen specifically to convey the simplifications enabled by incorporating time-reversal symmetry
(including the algorithmic generation of a phase difference coordinate, as opposed to the hand-
generated definition of (3.102)). By contrasting with Sec. 3.5.4, we hope the reader can get a clear
idea of the contribution made by the coordinate change introduced in Sec. 3.6.3.

We next present an application to a 1.5 DOF version of SLIP, chosen specifically as a continuation
of our examples throughout Sec. 3.6.3, which demonstrated the benefits of our coordinate change
(Def. 4) in simplifying the coupled continuous SLIP dynamics into an explicit linearization of its
flow (3.164).

Additionally, in the context of SLIP, we also show below how our new analytical tools help obtain
anew superior approximation (3.168) to the “neutral point” (essentially a return map approximation)
initially suggested by Raibert (1986).

However, we are unable at this time to present a full 2 DOF stability proof since the SLIP reset
appears to be unaverageable with two existing reset strategies. This “case study” demonstrates the
seemingly crucial dependence of averageability (a tool employed to approximate the continuous
dynamics) on the reset map in a hybrid system.

Nonetheless, work in progress now suggests applicability to certain systems up to 3 DOF—such
as hopping on a 2.5 DOF tailed SLIP system (model for the empirical trials in Sec. 4.1), bounding
on a 3 DOF sagittal plane biped of Fig. 27C—with relative ease.

3.7.1 Slot Hopper (2 DOF)

We revisit the slot hopper model of Fig. 27B, however, now we apply the steps in Fig. 40. The
reader may choose to contrast the analytical work in Sec. 3.5.4 to the algorithmic procedure below.

We apply the vertical hopper (Sec. 3.1.1) coordinate change to the stance leg’s vertical height, z1,
to get its energy-phase coordinates, (ay, ¥ ), and the ballistic flight (Sec. 3.1.2) coordinate change
to the flight hip height, z», to get (as, ¥¢). Lety := (WY, ¥f,ay, as).
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Hybrid averaging
C1) Asshown in Sec. 3.5.1, we get the single stance equations of motion (3.100)
Zi=uy, Ir=-g+e(—g—uy),

where u,, = wya, cos Y, + e, is the template control signal based on z;’s states. Since the z
dynamics are decoupled, a., ¥, are the same as in (3.99). For the flight dynamics, we follow
Sec. 3.1.2, with vf = —g —wya, cos ¥, + O(¢), to get

cos Yy vy
Wy w,a,
- (—g—wya, cosY,) (42 —1)
y=|29 | +¢ 2ar +0(e?).
0 sin vy
0

—2Y¢(—g —wyay, cos )
C2) We find that

Fo = |:O, (—1+4y2)(g + way cos P)
2as

T
,0,2v5(g + wyay cos w\,):|

Ff = (ky—ayB) [cos Y siny/(ayw,),0,sin* ¥y, O]T

and wg = 224
C3) Clearly, using a;; = k,/p satisfies this.
0 0 o0
C4) Computing using the provided formulae, we get V = 0 - ;fv 0].
—g(ng;rzilivwv/ B) 0 0

C5) Using the constant flow time assumption (as in Sec. 3.5.4), we have yy = 0 — /2, which is
already scaled correctly. Also, Dyy [(1)] =0.

C6) For the reset, we use symmetry factoring of the return map as described in Sec. 3.3, intro-
ducing the map K as a pre-multiplier of the map taking liftoff of hopper 1 to touchdown of
hopper 2, i.e. Ry = K o Ry(y).

The duration of the aerial phase, #r, (before leg 2 touches down) is calculated from ¢ +

%ftf = % Integrating the trivial aerial dynamics Z; = O forward for this duration, we get
Ry = [—% —% — M%W,af,av] (after applying the symmetry factoring map K). Using
(3.147) and (3.148), we get R = hg(Ryohy'(x,7/2),—m/2), and can compute
-1 /g -w/g 0 ¢ —¢
DR=So+eU+0(*H)=|0 0 1 |[+€|0 0 0 |+0(?),
0 1 0 00 O
X 2k w2 . .
where { := — 22 é is a constant independent of ¢.

C7) We observe above that Sy is indeed constant and has the requisite spectral properties.
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C8) Now we can compute the averaged return map

1—¢ 2+ ]vaaf/ gé-_i_ wv_Zﬂs/z _8g§g+wv

DPg, = (So+eU)(I +¢V) = | —&lenbizbo) 0 1 . (3.167)
0 18 0

2w,

e
4w,

The eigenvalues of DPg, are {11,A},1— 522} + O(¢?), where A} is the complex conjugate

of A1. We can check the magnitude of the complex conjugate pair: ;AT = 1— % +0O(e2).
Thus, all the eigenvalues are within the unit circle.
Applying Thm. 4, we concluded that this antiphase limit cycle of the slot hopper is stable (as in
Sec. 3.5.4).

3.7.2 SLIP without Leg Angle (1.5 DOF)

We have already formulated the SLIP dynamics and described its averageability in detail in preced-
ing examples throughout Sec. 3.6.3 However, in this section, we use the procedure in Fig. 40 for a
SLIP stability analysis from the perspective of a “user” of the Thm. 4.

Averageability of SLIP reset strategies

For SLIP, the control affordance available is the freely selectable touchdown leg angle, 64. Though
many strategies for selecting 6yq have been empirically successful, it has generally not been easy to
show analytically that the resulting hybrid limit cycle is stable with the exception of a few isolated
cases Ghigliazza et al. (2005), or with simplified models De and Koditschek (2015b), Geyer et al.
(2005), Schwind and Koditschek (1995). By using this well-known model as an initial “test” for
our new analytical tools, we hope to better contextualize its strengths and weaknesses.

For stepping strategies, we showed in (De and Koditschek, 2015a, Sec. 4.2) that given a touch-
down angle 6i4(y) (usually chosen as a function of state), the energy reset (with a := [av,acp]T)
follows

—/2
Ry(y) = 6w (y) , where (3.168)
Ra (y7 etd)

Ra(y.0w) =" ,]Rot(Yep + Oa) [l/p 1](1

and Y, is the lift-off leg angle, since y is on the guard set (3.135). With (3.168), we can evaluate
several stepping strategies in terms of their satisfaction of the conditions of Thm. 4 below. For
this section, we assume the flow time is fixed, i.e. Dyy [(I)] = 0, and consequently, we know that
o(ttp) = —n/2, and o (tL0) = /2 (from (3.4)).

Proposition 6 (SLIP reset fixed point). The reset equilibrium condition of Thm. 4(iii) is equivalent
10”2 the condition 0i(y*) = ﬁ’;*).

52We would like to evaluate the averageability of different stepping strategies, and so a necessary condition lets us prune
infeasible ones.
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Proof. First, note that at a*, the argument of the rotation in (3.168) must be zero to get R, = id
(necessary for Thm. 4(iii)). Thus a necessary condition is that

o (3.148) /2 —=5(t "
0 = Vep (1L0) + Ba(a™) L8 T2=000) | gy —

T *
w(alino)) 20(an) @)

evaluating at a(t o) = a*,8(tLo) = 0 acccording to (3.150). So, we see that the condition above
is necessary. Additionally, note that Rg = §(t1p) = —7/2 — Byw(a(ttp)), and when evaluated at
(3.150) we get

* —_Z_ -7 * _
Rs(x™) = 7 (Zw(a*)w(a )) =0,

and so it is sufficient for satisfying the reset fixed point condition in Thm. 4(iii) as well. O

Reduction to 1.5 DOF

The reader will note that the 2 DOF SLIP mechanical system has 4 dimensions; however, we show
next that with our assumptions, both the continuous and reset dynamics are equivariant with respect
to the leg angle, 6. This justifies a “quotient space” analysis excluding the leg angle DOF, which
is formally justified in the averaged system.>* To this end, define the reduced averaging coordinate
vector, ¥ := [, ay,acp)” -

Continuous dynamics are invariant to 6,-translation First, in the continuous dynamics, note
from our coordinate change (3.148), and the previously calculated wg (3.154),

—§
10 =0cp| _ matep +0(e) (3.169)

Vel = = = 5%
which is O(e) since w, = O(1/¢) by assumption 8b), i.e. because of the stiff leg, the leg angle
remains small during stance. Consequently

a) combining with assumption 8a), we have gsiny/¢, = O(e?), and

b) cosYep =1+ O(g?).
Using these simplifications, note that the continuous dynamics (3.143) become

. Wy wvlav cos Y, Uy
Y=1|0 |+e| sinyd | +0(?), (3.170)
0 0

in which ¥, = 6, does not appear.

S3However, a stability conclusion about 2 DOF physical SLIP would now require a conjecture about the leg angle DOF
being appropriately stabilized in the unaveraged system.
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Reset dynamics are invariant to 6,-translation We choose to employ>* the modified scissor
strategy De and Koditschek (2015a):

Ba(y) := —Yep+ 8ucp(a)» (3.171)

where up(a) is a simple servoing function such as ucp(a) = kep(acp —a:p). Note that at the equilib-
rium, using the Gy symmetry of Def. 2, the reset satisfies Prop. 6. Additionally, applying to (3.168),

we see that
. —1/2
Ry = [diag(l,p)Rot(sucp(a)) diag(1, 1/p)i| ’ (3.172)

which again is independent of V/¢p.

Hybrid averaging
C1) We have listed this above in (3.170).

2 2 2 : T
3acp cos< Yy 3acpa\, cos Yy sin iy

. T
C2) Wefind Ff = | 295 Ve ooy ,o} .and F¢ = (k,—a,p) [%,gnz wv,o]
There is no wg, since m = 0 in this instance.
C3) Clearly, a} = k,/p satisfies this.

0

C5) Using the constant flow time assumption, we have yy = 0 — /2, which is already scaled
correctly. Also, Dyy[?] =0.

_7B
C4) Using the given formula, we get V = |: 2wy O:|'

C6) From (3.172), we can directly compute the reset in x = a coordinates (trivial due to the ab-
sence of any phase difference coordinates). Evaluating at the equilibrium (setting ucp(a :p) =

0 _a:pu::p//oj|.

0 kupul,/B

C7) From the expression above, we can verify the requisite properties of Sp.

— -8 _ea*u /p
C8) We can directly compute DP = (Sg 4+ eU)({ +¢V) = 2wy P , whose
0 1 +¢ekypuc,/p

eigenvalues can be read off the diagonal. For sufficiently small ¢ > 0, and k, > O,u’cp <0

0, wegetS0+8U=12+8[

(both of which are controller tuning parameters), we are guaranteed that D P is stable.
Using Thm. 4 we conclude that 1.5 DOF SLIP has a stable limit cycle in the y coordinates.>

Averageability of 2 DOF SLIP

Our theoretical result Thm. 4 is capable of addressing the issue of multiple fast modes (the leg shank
phase and the leg angle in SLIP); however the current obstruction to its averageability is the reset
dynamics. We next describe (in the hope that it communicates to the reader effectively our current

54We show the analytical result of using a neutral point controller at the end of this subsection.
3 See footnote 53.
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understanding of averageability of hybrid systems) the obstructions with two strategies we have
used with past empirical success.

Modified scissor reset strategy We used this strategy for our 1.5 DOF stability proof; however,
the obstruction to its application for a 2 DOF proof (including the leg angle) is that the resulting
averaged return map is not hyperbolic to O(e).

In the 2DOF calculation, we get V from D7, which is given in (3.164). We now use the full reset

—/2
Ry = —Vep + EUcp(acp) (3.173)
diag(1, p)Rot(eucp(a))diag(l,1/p)

instead of (3.172). We can convert to x coordinates, and calculate

_ (2p2w\,—npa\7)uép

S U= -1 0 00 2/a::"p
o+teU= 0 I +elo 0 acpucp/p
*, ./
0 0 —paguc,

Lastly, we can compute the averaged return map:

_ (20w, —npal g,

—1 0 2af,
— 5,2
DP = —ngacpc _ enB ’
oy (p*oZ—al) 1 2w, aCPucp/p ’
—2¢egs P
o, 0 1 —pajug,
. . Ta . . .
where ¢ and s stand for the cosine and sine of zpz‘;’)’ . This matrix has eigenvalues {1 — % 1—
v %

*, ./
EpayUcy,

Thm. 2 only assures us that the original system has stability properties O(g?) close to the averaged
system.

—1} + O(£?) which does not satisfy the structural stability needed for our result, since

Raibert’s neutral point strategy This stepping strategy is also due to Raibert, although we can
now present a superior neutral point approximation (as we show with numerical results below). Let
us define

-

Ou(y) = +eucp(a), (3.174)

2w(a)
———
=:9np(a)

where the first summand should be interpreted as the “neutral point” function. Raibert (1986) ap-
proximated the neutral point by a linear function of forward speed; using our averaging tools we
now present a closed-form expression that is (as we show below) a more accurate representation of
the neutral point.
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Figure 41: Demonstration that the “neutral point” approximation found using our averaging method (3.175)
(in red) outperforms the classic Raibert approximation (blue) Raibert (1986).

From (3.174), clearly Prop. 6 is satisfied. Unfortunately, we get

wa,
—ng)v 0 0
DR=|_% | of,
3w,
v
pwy

which is not constant in its O(1) terms, violating Thm. 4(ii). At present, this places the neutral point
stepping algorithm outside the class of averageable systems.

Neutral point approximation using averaging

Using both (3.152) and (3.158) we can compute a closed form expression for the “neutral point”
(3.174),

e cos(;;;c;v) 2gp | 4ay 4 7o 9 (T 2mgp’ag COS(ZZgCﬂ?v) 3rag,
—2p7ag, otofa—waZa, T wiay T o T o, | T48p7sin (202wv) N wy o7
Oup (@) = . (3.175)
" 4p%aZ,
T oy = 5% 4 3.176
= — E) = £l . .
2wo(a) © 20,0 @) ( )

where for the cruder approximation in the second row, we used only wg(a) and left out the contri-
bution of ew;p in (3.152).

In Fig. 41, we show a numerical comparison of our averaging neutral point approximation to
the one in Raibert (1986). For this simulation, we used the crude approximation (3.176) when the
horizontal frequency (proportional to ac, as shown in (3.143)) is low, since the expression (3.175)
is singular when the oscillator frequency is close to 0.°°

We believe that the closed form return map approximations obtainable using averaging (as demon-
strated here) is one of the key benefits of this analysis mode. Once a closed-form expression such

56This singularity is clear from our initial coordinate change (3.147)—future work will focus on a modification to the
coordinate change to allow for oscillators with close to zero frequency without numerical issues.
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as (3.175) is obtained, it can then be approximated to a desired level of precision and deployed on
robots. In this particular example, it results in superior speed control (compared to an implementa-
tion Raibert (1986)), and for more complex models, a closed form return map approximation would
make online reactive planning (e.g. Arslan and Saranli (2012)) a possibility.

3.8 Discussion

We have presented in Thm. 4 and its “corollary,” Fig. 40, the most generally applicable version
of hybrid averaging so far. We have sucessfully applied this result to various mechanical systems
appearing in legged locomotion with up to 2 DOF in Sec. 3.7, and work in progress suggests appli-
cability to some 3 DOF systems such as Fig. 27C.

Relation to other coordinate systems for limit cycle analysis Our main advance in Sec. 3.6.3—
3.7 (over the hybrid averaging results in Sec. 3.2) can be summarized as the development and ap-
plication of a judicious coordinate change (Def. 4). In a similar vein, we may now juxtapose this
contribution against other coordinate systems suggested in the literature to study limit cycle stability.

Transverse coordinates Hauser and Chung (1994), Manchester et al. (2011) are a set of local
coordinates about a periodic orbit typically used to view the linearization of the limit cycle dynamics
in a special {tangential, transverse} moving coordinate frame. The reader may compare averageable
coordinates (3.20) to (Hauser and Chung, 1994, eq. (5)) or (Manchester et al., 2011, eq. (9)—(10)) to
see that in our averageable systems, the “master phase” o relates to the “tangential” dynamics, and
the “slow variables” x relate to the “transverse” dynamics of the approximated averageable system.

However, note that an explicit description of the orbit is required for analysis using traditional
transverse coordinates (for example, (Manchester et al., 2011, eq. (27))). Typically, an explicit
description of the periodic orbit is non-trivial to obtain. In comparison, in our approach, we have re-
stricted ourselves to using the template coordinate changes from Sec. 3.1, and an explicit description
of the orbit is only required in the (trivial) & = O case.

Secondly, for a stability analysis, in the linearization theory one needs to compute linearization
terms using the actual orbit (and Coriolis terms from the moving coordinate frame appear when
changing from physical to transverse coordinates along the flow), whereas we can provide a rela-
tively simple analytically tractable closed-form version of the final spatial flow Jacobian (3.163).
Our analyses in progress are beginning to address 3 DOF dynamic systems, whereas the application
of transverse linearization to a 2 DOF system already presents significant computational challenges
Manchester et al. (2011).

Floquet coordinates De (2010), Revzen (2009) are a special form of moving orbit-coincident
coordinate frame such that the transverse dynamics are that of an LTI system; they come with the
same analytical tractability drawbacks as transverse coordinates.

Phase response curves (PRC’s) Brown et al. (2004) are used in the study of neural circuits; they
describe the phase response of the oscillator to perturbations in various states that couple into the
phase dynamics. There are no general analytical tools for PRC computation, and results so far
use numerical tools for their computation. In contrast, it would be possible to derive a first-order
approximation to a PRC from an averageable system in the same way we approximated the SLIP
neutral point in Sec. 3.7.2.
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Relation to prior usage of time-reversal symmetry in legged locomotion Razavi et al.
(2016) utilizes a special class of “symmetric hybrid systems” (SHS’s) with time-reversal symmetry
for development of bipedal gaits. As in Altendorfer et al. (2004), a SHS requires strict conditions
on symmetry, lack of dissipation in the continuous dynamics, and conditions on the reset. Unfor-
tunately, these Hamiltonian systems are not structurally stable, resulting in practical difficulties to
their empirical fielding (since perturbations are not dissipated). Control strategies such as Raibert’s
neutral point stepping algorithm would be inadmissible in an SHS scheme as well.

The authors add a slight generalization with scalar dissipation of kinetic energy. However, a
specific desired limit cycle (such as desired hopping height, running speed) cannot be freely selected
and stabilized using this strategy from a far away initial condition.

Because of these reasons, we find it prudent to incorporate dissipation in our model, which adds
the O(¢) terms in the dynamics of (3.140).

Relation to other “anchoring” notions Two conceptual notions in the literature of “anchoring”
or dynamical dimension reduction are (a) the classical notion of invariant attracting submanifolds
Full and Koditschek (1999), and (b) (hybrid) zero dynamics introduced in Westervelt et al. (2003),
intuitively a two-step anchoring process Ames et al. (2014).

In contrast, in our experience, these conventional notions of anchoring are too rigid to allow
for the kinds of compositions we would like to describe. For instance, our desire to express SLIP
(from Sec. 3.6.3) as a composition of a vertical hopper and a fore-aft component would require a
dynamical decoupling of the two DOFs in order to apply classical anchoring Full and Koditschek
(1999). This is known to not be possible, as evidenced by long-standing SLIP research. In contrast,
the averaged vector field (3.161) displays decoupled average vertical and fore-aft energy dynamics.
Our interpretation is that in Fig. 21, neither of the N nor R manifolds are invariant in the unaveraged
continuous flow, but they are invariant in the averaged continuous flow.
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CHAPTER 4 : Empirical Compositions

As shown in Fig. 1, some of our empirical results are extensions suggested by our analytical work
in Chapter 3, and we list them separately in this Chapter. Raibert (1986) pioneered the kind of
empirical composition we explore here. We take inspiration from Raibert’s work, but also extend
it (a) controlling a planar hopping machine with an asymmetric (tailed) body design and no shank
actuator (Sec. 4.1); and (b) controlling a physical quadruped with the same gaits as Raibert et al.
(1989) but with fewer actuators (Sec. 4.2).

Though the empirical demonstrations in this section go beyond the scope of our analytical results,
they are each distinctly relevant to the topic of compositions: (a) fore-aft quadrupedal bounding
(Sec. 4.2.4) and tail-energized hopping (Sec. 4.1) demonstrate robustness to persistent periodic per-
turbations from coupling interactions with the fore-aft DOFs; (b) horizontal-plane quadrupedal yaw
control (Sec. 4.2.4) demonstrates the utility of the coordination controllers developed in Sec. 3.5 as
well as the attitude controller used in the roll plane when subjected to aperiodic perturbations when
turning; (c) quadrupedal leaping and return to steady motion (Sec. 4.2.4) demonstrates the robust-
ness of the (preflexive or feedback) coordination controller to large instantaneous perturbations in
the relative phase of the two legs. Further, in Sec. 4.2.5, we show how the various regimes (Table 6)
of the simple 2DOF slot hopper model introduced in this paper also pertain to trotting and pacing,
covering the full gamut of virtual bipedal quadruped gaits.

4.1 Tailed Planar Hopping (4 DOF)

In the previously introduced Jerboa (Sec. 2.4.3), we have built a 12DOF, passive-compliant legged,
tailed biped actuated by four brushless DC motors. We anticipate that this machine will achieve var-
ied modes of quasistatic and dynamic balance, enabling a broad range of locomotion tasks including
sitting, standing, walking, hopping, running, turning, leaping, and more. Achieving this diversity of
behavior with a single under-actuated body, requires a correspondingly diverse array of controllers,
motivating our interest in compositional techniques that promote mixing and reuse of a relatively
few base constituents to achieve a combinatorially growing array of available choices. Here we
report on the development of one important example of such a behavioral programming method, the
construction of a novel monopedal sagittal plane hopping gait through parallel composition of four
decoupled 1DOF base controllers.

For this example behavior, the legs are locked in phase and the body is fastened to a boom to
restrict motion to the sagittal plane. The results cited here were reported in De and Koditschek
(2015b), with the exception of the preliminary hip-energized numerical results in the introduction.

Contribution: Empirical Hopping on a New Underactuated Legged Morphology

This section contributes both to the theory and practice of dynamical legged locomotion. The prin-
cipal new theoretical contribution is an invariance proof (modulo a restrictive assumption 9) of the
parallel composition of Raibert’s Raibert (1986) stepping controller with our new energy pump
4.1).

The empirical contributions of the paper are the the physical demonstration of the new oscillatory
spring-energization scheme for vertical hopping using a tail actuator, and experimental evidence
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supporting the hypothesis that our final parallel composition of the four isolated controllers does
indeed anchor the corresponding templates in the Jerboa body (Fig. 48).

While the idea of parallel composition is appealing, the difficulty of such a composition arises
from the natural transfer of energy between different compartments Eriksson (1971)! in a mechani-
cal system operating in a dynamical regime. In our setting, some degree of coupling across compart-
ments is crucial to the underlying design concept of driving the leg spring through torques generated
“far away” in the tail. Thus, a naive approach of looking for exactly decoupled body dynamics is
not fruitful”. Instead, we analyze stability properties of (hybrid) closed-loop templates—which are
not specifically associated to any body—without paying attention to the input structure. In agreement
with intuition, we find (Sec. 4.1.3) that minimization of cross-template transfer of energy—through
either the flows or the reset maps—results in a successful composition.

Superscripts on each of these symbols denote the hybrid template that it is a part of, e.g. for
controlled vertical hopping (Sec. 3.1.1). The layout of the paper roughly reflects the template-anchor
hierarchy depicted in Fig. 42. Namely, there are two intermediate 2DOF templates—the SLIP, and
the inertial reorientation—-that comprise the tailed monoped. They, in turn, are comprised of the
vertical, and fore-aft, IDOF templates, and respectively, the shape, and pitch, IDOF templates. We
endow the 1DOF templates at the lowest level with an exemplar plant, with respect to which we will
develop controllers for the four template plants, in isolation.

SLIP, and Sec. 3.1.4 present the 2DOF templates that are directly anchored in the robot body, and
within them contain descriptions of the subtemplates (e.g. Sec. 3.1.1, 3.1.3)—as simple exemplar
1DOF anchoring bodies and corresponding control laws—that comprise in isolation the constituent
desired limiting behaviors that we seek to embody simultaneously in our physical system. Each of
the template controllers in this suite is necessarily simple by dint of its origin as a feedback law
for a highly abstract IDOF task exemplar. We hypothesize that this combination of algorithmic
simplicity and task specialization may lend robustness in the empirical setting since control policies
are not sensitive to, and certainly avoid cancellation of, forces arising from dynamical coupling in
the anchoring body.

We emphasize that these coupling-naive feedback laws (summarized in Sec. 4.1.2) are simply
“played back” (modulo scaling) in the 6DOF body with all its complicated true dynamical cou-
pling. We show formally through various propositions in this paper that nevertheless the stability
of the templates and subtemplates persists through composition for the distal segments of the tree
(Fig. 42)—SLIP as a composition of vertical hopping and fore-aft speed control, and attitude sta-
bilization as a composition of inertial reorientation and Raibert’s pitch control. We provide some
preliminary suggestions about the composition of SLIP (s) with attitude (a) compartments (center
of Fig. 42), but a full analysis is left to future work. However, we offer empirical data in Sec. 4.1.4
showing how this idea has resulted in promising qualitative behavior on the Jerboa robot (Fig. 48,
video attachment).

As depicted in Fig. 42, the platform’s locomotion is powered by the hip motor that adjusts leg
touchdown angle in flight and balance in stance, along with a tail motor that adjusts body shape in
flight and drives energy into the passive leg shank spring during stance. The motor control signals

'We use this term here to stand for subsystems (here, disjoint subsets of the physical degrees of freedom) that exchange
aresource (here, energy).

ZFor instance, for hopping with the tailed monoped, the tail actuator and hip actuator seemingly work on differently
“binned” tail and leg DOFs, but we energize the robot body with the tail through the leg spring.
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Figure 42: Control of a tail-energized hopping behavior expressed as a hierarchical composition of closed-
loop templates. Notionally, the grey arrows represent directed template—anchor relations. Cen-
ter: A model of the tailed monoped physical platform on which we implement tail-energized
planar hopping, labeled with configuration variables (black), actuators (red), and model parame-
ters (blue).

arise from the application in parallel of four simple, completely decoupled 1DOF feedback laws that
provably stabilize in isolation four corresponding 1DOF abstract reference plants. Each of these
abstract 1DOF closed loop dynamics represents some simple but crucial specific component of the
locomotion task at hand. We present a partial proof of correctness for this parallel composition of
“template” reference systems along with data from the physical platform suggesting these templates
are “anchored” as evidenced by the correspondence of their characteristic motions with a suitably
transformed image of traces from the physical platform (Sec. 4.1.4).

We present, at the outset, the assumption we make in order to simplify our theoretical invariance
result.

Assumption 9 (Pendular stance). During stance,
(i) the effects of gravity are negligible’ compared to spring potential / damping forces,
(ii) radial deflections are negligible,
(iii) time of stance is constant, and
(iv) the angle swept by the leg admits a small-angle approximation.

4.1.1 Two Solutions: Tail-Energized vs. Hip-Energized

For this simple planar hopping task, specified simply as a composition of a vertical hopping and
fore-aft speed control template for the CoM, we observe that even the 4DOF (planarized) Jerboa
body offers “multiple solutions.” This reveals for the first time one of the great benefits of mod-
ularity: if an autonomous robot has a solution for flexibly anchoring combinations of templates
(motivating our Chapter 3 work), changing environment and task conditions can be used to trigger
more suitable anchoring choices in order to improve performance or efficiency.

In this thesis, we only motivate these potential benefit with anecdotal findings, and our detailed
presentation in this section only pertains to the tail-energized solution.

3We suspect that the less restrictive Geyer approximation Geyer et al. (2005) is sufficient, but leave this generalization
to future work.
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Figure 43: Simulation traces of tail-energized (blue) and hip-energized (red) hopping on the Jerboa. Both
simulations used a composition of simple controllers, one of which (tail-energized) we describe
in detail in Sec. 4.1.2. Both simulations ran for 15 hops, though the hip-energized simulation took
a shorter time because of its higher step frequency.

However, we present in this short subsection a single numerical trial (Fig. 43) in which we overlay
results from two different strategies. We discuss below how Fig. 43 clearly suggests the benefits of
the tail-energized composition on rougher terrain, and of the hip-energized composition for higher
speed on more predictable terrain.

Tail-energized In this mode, we can see that the simulated robot generates far greater hopping
height, as well as greater normal force. The larger hopping height is clearly desirable when the
terrain gets rough and obstructs the swing path of the leg (toe stubbing), and similarly, the greater
normal forces produce a bigger friction cone in order to maintain traction in unpredictable, loose,
or slippery terrain.

Hip-energized In this mode, we can see that the robot attains almost twice the speed (with the
same speed command as the tail-energized version). However, the hopping height is much lower,
increasing vulnerability to stubbing if implemented on a physical platform.

Our preliminary attempts to implement this strategy on the physical platform failed due to insuf-
ficient traction causing the toe to SLIP before any successful hops.
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Table 8: Jerboal control parameters (all scalars unless noted)

ky Tail gain (4.1)

kp Raibert speed controller gain (4.2)

k Inertial reorientation generalized damper gains (4.4)
kg Inertial reorientation graph error gain (4.4)

B.w Dissipation, frequency of spring-damper (Sec. 3.1.1)
& Saturation parameter for tail controller (4.1))

&r Arbitrarily small orientation error (Proposition 5)

myp,ip  Mass, inertia of robot body (Sec. 2.4.3)
p1,p:  Leg, tail link lengths (Sec. 2.4.3)
ks Hooke’s law leg spring constant (Sec. 2.4.3)

Figure 44: Snapshots from apex to apex of tail-energized planar hopping implemented on a new robot
platform—the Penn Jerboa (Sec. 2.4.3).

4.1.2 Implementation Details

We use the following controllers,

Tail energy pump (Sec. 3.1.1)  u,(x) = ks cos(/x) 4.1

Raibert neutral point (Sec. 3.1.3)  ucp(x) = B* (%) +kp(x —x™) 4.2)

Pitch correction  uate, (a1,a1) = —kgkay —kga 4.3)

Shape reorientation Johnson et al. (2012)  wua, (a2,d2) = —kgkar —kgas 4.4)

applied to generate the torque signals for the tail, hip, hip, and tail actuators respectively.

4.1.3 Modeling for Planar Hopping

Raibert’s planar hopper Raibert (1986) empirically demonstrated stable hopping using a rigid body
with a springy leg, and in this paper we pursue the same idea, but instantiate vertical hopping by
coupling the 1-DOF leg-spring excitation controller (physically acting through the tail). In flight,
the tail actuator grants us a new affordance that we only use here to regulate the added “shape”
DOF. Our physical model is shown in Fig. 44. The system has a single massless leg with joints
6 = (01.6,) € S' xRy, arigid body (x,z,¢;) € SE2, and a point-mass tail with revolute DOF ¢,
such that the full configuration is q := (61,62, x,z,¢1,¢2) € Q.
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Assumption 10. We make the following design-time assumptions® relating to the physical construc-
tion parameters of the robot:
(i) leg/tail axes of rotation are coincident at the “hip;”
(ii) tail mass is small, i.e. m; <K mp;
(iii) center of mass (configuration-independent by the previous assumption) coincides with the
hip; and
(iv) body, tail have high inertia, i.e. ip,i; — 00.”

Equations of Motion

Using the self-manipulation Johnson and Koditschek (2013a) formulation of hybrid dynamics, the
inertia tensor is

T
M M, } . 4.5)

0
M= |: Mb]’ where My, := |:Mo M,

Note that M; = (mp +m;)I and M, = [i”i"t"" Z ] are constant, and M, contains the critical cross-

compartment interaction, by way of which we can use our tail actuator (formally acting on an
attitude DOF, ¢») for energizing the shank DOF, 6.
Let the forward kinematics of the leg be g : @ — R?. The constraint in the stance contact mode is

@) = | £] - Rgnz®) @6

such that A;(q) = [RDg I JRg O]. In flight mode, a>(g) = 0. As in Johnson and Koditschek
(2013a), the dynamics can be expressed as

M AI[d] _[r-N] _[C].
A 0 |{A|T] o AT
Define the linear coordinate change h: Y = 8 x A — Q, and H := Dh such that

|:(91 +¢1,92,x,z)T:|
, 4.7

and the projections 7y := [I4 0]h™!, 7 :=[0 I]h~!. The equations of motion are generated

4These assumptions were informed by analytical simplifications in the dynamics which follow.
SEven though the dynamic task here is quite different from free-fall, in the language of Johnson et al. (2012), the tail
should be light but effective.
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in the new coordinates, y = H-!MT(T —N) —H~!(MfC + AT A)Hy. In stance,

.. 266, .
o) [ s e T ) ws

So ks(01—02) )2 pPtMp [ —cos
K o + 629_; é:

i= [_T”], (4.9)

Tt

where £ := 6] — ¢ (the tail-leg angle), and the right summand in (4.8) is quite clearly the distur-
bance caused due to the added attitude degrees of freedom. With the same choice of H, we can
similarly recover weakly decoupled flight dynamics:

Xl _ [0 o | sin(¢1 +¢2)

HE A R waie | @10
. 0
a = |:‘E;i|. “4.11)

“Physical” Decoupling and Anchoring

With the highly restrictive assumption 10 (allowing for infinite tail inertia), the tail motion is essen-
tially negligible. Under these conditions, we show the emergence of the beginnings of a classical
anchoring relation Full and Koditschek (1999), via a natural (weak) decoupling of the 6DOF dy-
namics into “point-mass” and attitude compartments.

Proposition 7 (Jerboa flow anchoring). Under assumption 10, in each hybrid mode, (i) the sub-
manifold U = {Tqe€ TQ: T¢; = T, = 0} is invariant under the action of the closed-loop flow,
and (ii) in each hybrid mode, the closed-loop flow restricted to U is a cross-product of the template
vector fields,

Jimlu = fslip O Tslip X Jatt © Tate,

where 1s)ip, and T4 represent projections to the SLIP and attitude components of q respectively.

Proof. Applying assumption 10.(ii) to the equations of motion, the plant dynamics pm(7T'q, (t, 7))
are

[ o 26,4, '
B #;622_0_22 e [smé/@z}
sance = | %2, 2 | " P | —cosE |
| T 0205 g
.. —_T
a|stance = .L_th:| ’
P o — 0 4 o sin(¢1 + ¢2)
5 | [ight = g pimp | —cos(¢py +¢o) |’
. —0
a|ﬂighl = ft] ) (412)
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We can check that we have available affordances through our two actuators to assign (scaled
versions of) our template controllers in Sec. 4.1.2, (i) tj|stance = —Uatt, (@1,d1) to control a1, and
Th|flight = Ucp(X) to control X, and (ii) 7¢ |fight = Uatt, (@2.d2) to control az, and 7y [sance = —pr2myp -
uy (%) to control hopping height®.

Under assumptions 9.(iv) and 10.(iv), we show that the highlighted terms in (4.12) vanish inside
U:

a) My — 00, so in the dynamics equations d = 0. Restricted to U, a = 0. This proves part (i) of

the claim.

b) Froma =0 and (4.4), Th|stance =T |ﬂight =0.

¢) Since ¢pp =0, £ = —¢p1 &~ 0 (from assumption 9.(iv)).

By comparing the thus-restricted plant dynamics (4.12) to the SLIP equations of motion (3.133)
and (3.15), we obtain part (ii) of the result. ]

We observe here that this stronger invariance condition of Prop. 7 requires the restrictive assump-
tion 10. Future work will apply our averaging approximation of Sec. 3 to instead seek an averaged
invariance that will hopefully obviate the need for such a restrictive assumption.

Proposition 8 (Jerboa return-map anchoring). The set U is invariant under the return map Fym (T q|1),
and restricted to U, Fym = Fslip 0 Tslip X Fatt © Tatt.

Proof. We first define the return map Fi,, by instantiating a “cross-product” hybrid system with
domain, vector field, and return map (Dtm., ftm, Rtm) as (2) Dim 1= Dyglip X Datt, (b) Rim 1= Rlip X
Ratt, and () fim as defined in Proposition 7, where Dy, := T'S? x S! for each i (ensuring 9D ¢t =
@) and Ratt; : Datt; — Datt; ., is defined

Ra, [Tm] > [ Tar ] . (4.13)

Vatt i mod 27

With these modifications, the ¥4+ dynamics (3.16) are ignored, and the clock of the HIR subsystem
is being driven by the SLIP subsystem’. This ensures that the conditions of Proposition 5 still hold,
1.e. att © Fim = Fatt © Tatt.

Additionally, the decoupled nature of fim[y (Proposition 7) allows us to conclude that g, 0
Fim = Filip © gjip, SO that

Fim = Tlslip © Fim X ot 0 Fym = Fslip O TTslip X Fitt 0 mates
which concludes the proof. O

We leave to future work (using results from Chapter 3) a proof that U is attracting, which is a
requirement for demonstration of anchoring Full and Koditschek (1999).

5We observe that by assumption 9.(ii), 62 ~ py is roughly constant, so the scaling need not be configuration dependent.
TThis coupling interaction importantly invalidates the w¢;-dependent bound on & (3.19). Our solution is to scale the
input such that k is high enough for the shortest feasible transition time in vertical hopping.
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Figure 45: Two datasets corresponding to different tail masses: The blue traces use the m; = 150 g (as in
Table 4), but the red traces use m, = 100 g. Note that the tail displacement is larger for the lighter
tail mass, although vertical behavior is largely unaffected.

4.1.4 Experimental Results

In this section we present empirical data obtained from the Jerboa (Sec. 2.4.3). In the first three
subsections, we present data from a few “nodes” of our composition tree (Fig. 42). Finally, a crucial
examination of our idea of composition of templates, when implemented on the Jerboa, is presented
in Sec. 4.1.4.

Effect of Varying Tail Mass on Vertical Hopping

The first empirical result we present corresponds to the top left leaf of Fig. 42—empirical vertical
hopping. In order to facilitate the analysis in this paper, in assumption 10 we stipulated an ideally
effective Johnson et al. (2012) tail, with negligible mass and infinite inertia. We connected the robot
(Fig. 44) to a boom and constrained the body pitch as well as the fore-aft DOF. By varying the tail
mass (with a fixed tail length given in Table 4), we obtained two vertical hopping datasets plotted in
Fig. 45.
We observe the following:
a) Increasing tail mass results in smaller tail displacements. Taken to the limit, this sheds some
light on assumption 10: a large tail mass would indeed render the tail motion negligible.
b) The hopping height remains relatively unchanged in spite of this physical variation. From (4.8),
the force acting on the leg-spring depends only on the (feedforward) tail torque, 7; (as in
Sec. 4.1.2).
Consequently, we see that the tail mass is a tunable design parameter that allows us to trade
off the conditions of assumption 10 (negligible mass versus large inertia—both affecting coupling
interactions) without affecting the vertical behavior.

Empirical Validation of Attitude-Decoupling Change of Coordinates

An important foundation of our attitude control strategy is the decoupling of the two attitude DOFs
(Sec. 3.1.4), such that a; is controlled in stance, and a, is controlled in flight (3.15). However, the
body pitch and tail angle are clearly coupled in flight®. To resolve this, as shown in (4.7), we use

8Since the tail actuator is attached between the body and the tail, tail torques are felt by the body.

148



00 05 10 15 20 25 3000 05 10 15 20 25 30

Time (s) Time (s)

Figure 46: Testing our decoupling change of coordinates from the physical body pitch, tail angle coordinates
(¢1,¢2) to our chosen attitude coordinates (a1,a;) by suspending the robot about its CoM (see
Sec.4.1.4).

M;l as a decoupling change of coordinates.

In terms of implementation this strategy requires the estimation of a single scalar parameter that
defines M up to scale (see the text just after (4.5)). To test our the change of coordinates empiri-
cally, we suspended the robot about the CoM and applied a feedforward sinusoidal 7; signal. The
resulting traces for the physical attitude coordinates are shown in Fig. 46.

Recall from (4.11) that in flight, d; = 0. In practice, we observe from the right of Fig. 46 that
there are small a;-variations are at a much slower time scale than a,-variations. The reason that ¢
is not zero is that we were unable to suspend the robot at precisely the CoM, and so gravity exerts a
net moment on the body—appearing as a slow aj-oscillation. Other than this minor deviation of our
physical platform from assumption 10, it appears as if the attitude-decoupling change of coordinates
is indeed effective.

Trading off Forward Speed and Hopping Height for “Leaping”

The “stepping” fore-aft control using the touchdown angle as a control input essentially allows us
to trade off vertical and fore-aft energy—appearing as a pure rotation. Even though for steady-state
behavior we choose the touchdown angle to stabilize forward speed, it also allows for transient be-
haviors such as a one-shot “leaping” motion (term coined by Raibert Raibert (1986)). In particular,
choosing a larger (in magnitude from vertical) touchdown angle than that dictated by the neutral
point controller results in added vertical height and reduced fore-aft speed.

The results of an empirical test of this one-shot leaping strategy are showing in Fig. 47: we can
indeed get a large increase in apex height using this strategy. This kind of “asymmetry” Raibert
(1986) or deviation from steady-state may have important applications in behaviors that require
rapid changes in the body energy, and we plan to explore more such behaviors in future work.

Empirical Validation of Composition

By physically constraining some of the DOFs, we test our hierarchical composition (Fig. 42) at as
many “nodes” of the composition tree as possible. Note that it is infeasible to isolate the fore-aft or
the closed-loop pitch correction templates in a physical setting. The results are summarized in Fig.
48. Five strides are averaged within each category, and aligned with ground truth knowledge of the
touchdown event. We observe that
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Figure 47: Top: Snapshots of fore-aft hopping behavior in a trial where we test a “leaping” motion Raibert
(1986)—the robot stubs its toe at the last touchdown in order to gain a boost in vertical height at
the expense of forward speed (see Sec. 4.1.4). The red line shows the CoM-trajectory of the robot.
Bottom: Corresponding traces showing near-steady-state behavior in the fore-aft compartment
(leg angle, 81 and vertical height, z are plotted) before the “stubbing” event (red overlay). The leg
angle shows the “neutral angle” with a thin horizontal line, and in order to leap; note that a much
larger (in magnitude from vertical) touchdown angle is chosen in order to leap. The leg height (z)
plot shows the robot getting around 50% larger apex height in the subsequent flight phase.

a) there is a vertical limit cycle that retains its rough profile and magnitude through three an-

choring bodies,

b) the hip angle roughly satisfies f; = 0 in stance and the stance duration is roughly constant

(corroborating assumptions 9(ii)-(iii)),
c) the shape coordinate is destabilized in stance and stabilized in flight, and the pitch-deflections
are small in magnitude over the stride, and in agreement with (3.16).

Qualitatively, the “tailed point-mass hopper” configuration attained stable forward hopping at
controlled speeds upwards of 20 strides, only limited by space. The fully unlocked system has
so far hopped for about 10 strides at multiple instances before failing due to accumulated error
causing large deviations from the limit cycle. We believe the prime reason for this is that the CoM
is significantly aft of the hip (violating assumption 10(i)). We attempted to compensate for this
effect with a counterbalance visible in Fig. 44, but an unacceptably large weight would have been
required to completely correct the problem.

4.2 3D Virtual Bipedal Running (6 DOF)

Moving beyond our previous results on correct-by-design in-place preflexive and feedback coordi-
nation, we now present empirical results of composition with other templates including horizontal
plane speed and yaw control, as well as running leaps.
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Figure 48: A single stride (stance with shaded background followed by flight), where each column corre-
sponds to some representative time series from each of the relevant 1DOF templates from Sec. 3.1,
and the traces (mean and standard deviation) correspond to different “bodies” realized by variably
constraining the robot—red: tailed vertical hopper (i.e. (61, x,¢1) locked), green: tailed point-
mass hopper (i.e. ¢, locked), blue: tailed planar hopper (all free)—in which these templates are
being anchored.

Our empirical results are from a physical platform: Ghost Robotics’ Minitaur (2016), a mp = 6
kg direct-drive quadrupedal robot introduced in Kenneally et al. (2016). Each of Minitaur’s legs has
two actuated degrees of freedom capable of independently controlling toe extension and hip flexion,
with no ab/adduction joints and no passively compliant elements. The distance from the center of
mass to each hip is d = 0.2 m. Minitaur is equipped with encoders on each of its motors, as well
as an inertial measurement unit (IMU). No exteroceptive sensing is required for the experiments
reported here. The computationally simple controllers (leg extension controller (3.5) as well as
other controllers mentioned below) are implemented on a STM32F303 microcontroller running at
72 MHz.

In Sec. 4.2.1 we provide details of our implementation for all the gaits demonstrated on the
physical platform, and empirical results in Sec. 4.2.2 onward. All of these experiments are also
included in the video attachment.

4.2.1 Implementation Details

In this paper we primarily view Minitaur as a composition of two hoppers in the sagittal plane (with
exceptions in Sec. 4.2.5). The various aspects of implementation and control are described in this
subsection, and the experimental results are presented in the following subsections.
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Table 9: Comparison to prior virtual leg management. We refer to Raibert et al. (1989) for baseline prior
practice, as it remains the most complete reference to Raibert’s pioneering ideas that continue to
dominate most experimental quadruped work, including our own. The analytical insights reported
here afford similar behavioral results from less prescribed (event-based) compensators requiring
fewer actuated degrees of freedom.

Name Raibert et al. (1989) Our implementation Possible benefit / discussion
Independent hips with

State ma- Prescribed alternating stance event-based (non- Robustly handles unex-

chine / flight (Fig. 6-6), cf. note 12 prescribed) mode switch- pected perturbations.“)

ing’

Virtual leg
flight control

Virtual leg
event  syn-
chronization
Virtual
leg  stance
control

Identical hip-relative
horiz plane displacement:
egs. (6.5)-(6.6)

Actively enforced simultane-
ous touchdown

Equal axial
eq. (6.7)

leg forces:

Same as Raibert
(Sec. 4.2.4)
Simultaneous touchdown

not enforced

Each leg indepedently ap-
plies (3.91)

Minimal qualitative effect
(Sec. 3.5.6), not reliant on
flat ground (Sec. 4.2.1)
Shank actuators control
both height and roll/pitch
(see below and Sec. 4.2.1)

Vertical con-
trol
Fore—aft
speed
trol

con-

Pitch/roll
control

Yaw control

Increased “rest length” at
bottom

Positioning flight toe at “neu-
tral point:” egs. (6.1)—(6.2)

Hip torques (flex-
ion/extension and
ab/adduction): eqgs. (6.3)—
(6.4)

Positioning flight toe using
ab/adduction:  eqgs. (6.9)—
(6.10)

Negative damping (3.5)

Same as Raibert
(Sec. 4.2.4)
Coordination  controllers

(3.59)—(3.60)

Fore/aft hip joint torques in
stance (4.19)

Smoothly defined through
stance

Hip actuators not needed
(Sec.4.2.1)

Ab/adduction joints not

needed (Sec. 4.2.4)

Template control implementation

The overall implementation proceeds as follows (and is further detailed throughout this subsection):
(a) a virtual leg grouping is selected; (b) physical touchdown and liftoff detection is implemented;
(c) the controller (3.5) (and recursively, (3.58), and when applicable, (3.59) and/or (3.60)) is used
to formulate the stance control signal; (d) this control signal is applied to the stance leg through the
process described in Sec. 4.2.1; (e) to additionally move the in-place-hopping robot in the horizontal
plane, the fore-aft (4.17) and yaw (4.19) controllers are applied.

In this paper we assume control authority over the radial leg force for implementation of (3.5).
On Minitaur, this force can be controlled at a very high bandwidth using the microcontroller and
drive electronics documented in De and Koditschek (2015¢), Kenneally et al. (2016), and the motor
encoders enable 12-bit measurements of the motor position and velocity. The accumulated losses
from motor back-EMF and bearing friction are represented in the lumped damping term in (3.5).
Whereas there is no torsional control asserted for the in-place gaits discussed in this and the next two
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Bound, pace, pronk

Figure 49: State machines utilized to implement the various gaits. Our work is inspired by Raibert, and this
figure is meant to elicit connections to (Raibert et al., 1989, Fig. 6-6, 6-11). However, unlike
Raibert’s implementation (we summarize in Table 9 our departures from Raibert’s implementa-
tion, and provide further details in Sec. 4.2.1 as well as Sec. 4.2.5), our scheme enables bounding,
pacing, and pronking with independent virtual legs and fewer actuators (only using radial leg
extension), whereas Raibert’s reported pace and trot results used the more aggressive sequenced
coordination of (Raibert et al., 1989, Fig. 6-6), as well as two additional actuators at each hip.

subsections, 4.2.2 and 4.2.3, please see Sec. 4.2.1 for an account of additional controllers introduced
to coordinate other actuated and unactuated DOFs.

Touchdown detection

A major design consideration for Minitaur was drivetrain transparency, as described in Kenneally
etal. (2016). In flight, we set the toe extension using a PD controller with low gains, and on physical
toe-touchdown, the vertical force on the toe manifests as a deflection in the motor angles (through
the well-conditioned leg Jacobian Kenneally et al. (2016)). An above-threshold deflection (corre-
sponding exactly to an above-threshold toe force) causes the TOUCHDOWN event to be triggered.
This scheme allows for touchdown detection in as little as 6 milliseconds with no additional sensors,
as shown in (Kenneally and Koditschek, 2017, Fig. 4, 5). Further research is underway to estab-
lish which behaviors on the Minitaur machine are crucially dependent upon this high bandwidth
proprioceptive capability.

Virtual leg groups

As (Raibert, 1986, Ch. 4) describes, we use the term “virtual leg” in this paper to refer to a group
of physical legs (on Minitaur) coordinated to operate in synchrony as per the three rules detailed
below. In each case, we first present our implementation, and then highlight below the similarities
and differences between our implementation and that of (Raibert, 1986, pg. 92). We point out here
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Figure 50: Virtual bipedal gaits on a quadruped. Sec. 4.2.1 discusses the feedback coordination needed for
these “groupings.” On the left, the solid lines are grouped together into a single virtual leg, and
the dashed lines into a second one. The solid arrow connotes the “projection” of the dynamics
manifesting formally as a dimension reduction of the state space considered in the analysis. The
nominal leg numbering we use is also depicted in the figure, and is helpful for interpreting the
empirical data in Fig. 54-59.

that though we use the simulation paper Murphy and Raibert (1985) and book Raibert (1986) as
the main expository sources of Raibert’s insights, some of the implementation details pertaining to
the quadrupedal gaits demonstrated by him and his collaborators are only present in the technical
report Raibert et al. (1989). We consider the latter as the definitive representation of “prior art”
when juxtaposing with our own implementation, but refer to the book Raibert (1986) on occasion
when the requisite descriptions are missing from the technical report.
a) Event synchronization.
Our implementation. As shown in Fig. 49, each virtual leg has an independent mode,
STANCE or FLIGHT. Transitions between these modes are triggered by events: TOUCH-
DOWN (described in Sec. 4.2.1) and LIFTOFF (elapse of 7/ seconds since TOUCH-
DOWN, following the constant flow-time assumption (Table 5). The specific STANCE and
FLIGHT controllers are presented next.
Comparison to Raibert. This part of our implementation is a simpler version of the “Syn-
chronization” rule in (Raibert, 1986, pg. 93). Our justification for this is our comparative
numerical work in Sec. 3.5.6 showing that the qualitative effect of active toe extension is rel-
atively minor. Additionally, feedback synchronization in flight relies heavily on the ground
being particularly flat.
b) Mean—difference coordinates in stance.
Our implementation. Our analytical result of Sec. 3.5.5 showed that using only shank ex-
tension actuators, (3.60) can be applied to two stance legs to feedback-stabilize the body
orientation for the in-phase (pronking template) limit cycle. Noting from (3.60) that the two
legs receive equal and opposite control signals, we introduce the following “mean-difference”
input coordinate change:
For a desired virtual leg radial force T; (given by (3.91)), suppose the physical radial forces
commanded of the within-group legs are Y14 and Yj— in a manner we now specify. In
Fig. 50, we show which legs are grouped together into virtual legs for each of the gaits dis-
cussed in this paper, as well as the leg numbering scheme we use for Minitaur. E.g., in the
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Figure 51: SC-Minitaur preflexive pronking. Top: Empirical data from Minitaur (Fig. 27C) in its “high-
inertia” configuration (Sec. 4.2.2) showing stable preflexive pronking (note that the hip heights
z1, z, oscillate in phase). We compare this empirical data to our simulation models in Fig. 34. Ad-
ditionally, by examining successive touchdown and liftoff times from the log file, we get statistics
for the time of stance #r = 0.139 £ 0.013 seconds, and time of flight #r = 0.233 £ 0.026 seconds.
The deviation in flight time is thus 11% including the initial transients, justifying our investigation
into “constant flight time” in Sec. 3.5.5. Bottom: Snapshots of SC-Minitaur (taken roughly at
bottom, liftoff, and apex) from this experiment, showing the newly attached 0.5 kg weights on
either end (compared to Fig. 32) to modify « (3.86).

bounding gait, legs “0” and *“2” receive radial actuation signals Y14 and Y1—, and legs “1”
and “3” receive radial actuation signals Y4 and Y,_, respectively.
Additionally, define the attitude controller for within-group stabilization

Twg 1= kP¢Wg + kdd’wg, 4.14)

where ¢y, is the body angle in the plane containing the within-group legs (e.g. for bounding,
¢wg 1s the roll angle; for pacing, ¢y, is the pitch angle; for trotting, ¢y, is the body angle
projected in the plane containing the diagonally paired legs). Then, in stance the physical
legs are commanded the radial forces

Ti+ ="+ ng, Ti—:="4 —ng. 4.15)

We point out here the ¢y is not visible in right column of Fig. 50 since it is the angle of the
body about an axis on the plane of the page. We also observe that (4.14) is a mere copy of
our previously defined attitude controller (3.60) (after Assumption 5 is incorporated), simply
applied about a different axis. We define it separately here in order to be explicit about within-
group feedback stabilization in the remainder of the paper.

Comparison to Raibert. This part of our implementation differs from the “Force Equal-
ization” rule in (Raibert, 1986, pg. 93), since we explicitly command radial forces that are
unequal across the leg groups and utilize this affordance for feedback attitude stabilization.
A later account of Raibert’s implementation on his quadruped Raibert et al. (1989) reveals
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Figure 52: SC-Minitaur feedback-stabilized bounding. Top: Empirical data from Minitaur (Fig. 27C) in its
“high-inertia” configuration (Sec. 4.2.2), but with feedback phase control (3.59), showing stable
bounding (note that while in the initial transient phase (first inset), the hip heights z;, z, oscillate
without a specific relative phase, after some time they stabilize to being out of phase, and the
pitch oscillations are much more pronounced). We compare this empirical data to our simulation
models in Fig. 34, and discuss in Sec. 4.2.3. Bottom: Snapshots of SC-Minitaur bounding in
place (roughly at front stance, aerial, and rear stance) from the same experiment.

that two additional actuators (which we don’t need with our method) are used for feedback
attitude stabilization (see Sec. 4.2.5 for further details about trot implementation).
¢) Toe positioning in flight.
Our implementation. In flight, the radial forces simply act to keep each toe at the nominal
leg extension, p. The hip actuators are used to servo the toes to a desired absolute leg angle, 6*
using the controller described in (4.17). We furnish additional details about the hip actuation
in Sec. 4.2.4.
Comparison to Raibert. This part of our implementation is equivalent to the “Positioning”
rule in (Raibert, 1986, pg. 92).
In future work we plan to explore a more sophisticated version of our intra-group control such that
a “virtual leg” is formally anchored in the physical leg groups transmitting ground reaction forces
to the robot body, as in Saranli and Koditschek (2003).

4.2.2 Preflexive Stability

First, we leverage the preflexive stability properties analyzed in Sec. 3.5.4 and 3.5.5 to get stable
limit cycles on Minitaur without any feedback coordination of the phases of the two hips. We
program each of the sagittal plane legs (virtualized according to the top row of Fig. 50) as a vertical
hopper, using the controller (3.5) with w; = 0 in (3.58).

Bounding in place

The first result we obtain is that Minitaur bounds in place (Fig. 32). In that figure we compare
the resulting time-behavior of the appropriately chosen physical coordinates to simulations of the

156



numerical models depicted in Fig. 27, and find that ¥ ~ 0.77 is a good fit. This matches our expec-
tation, since most of Minitaur’s mass is concentrated at the hips (where the motors are attached), but
some mass is concentrated near the center where the battery is housed. This preflexive stability is
a demonstration of our analytical result in Sec. 3.5.4, and also shows remarkable agreement of em-
pirical data to the simulated sagittal plane biped (Fig. 27B) and only slightly more distinguishable
traces relative to the slot-hopper template (Fig. 27A).

Pronking in place

In the next experiment, we artificially modify « by attaching two weights on top of Minitaur (we
deem the modified model “SC-Minitaur” or strongly-coupled Minitaur). These outrigger payloads
have a total mass of 1 kg, are added at a distance of 0.37 m from the center of mass, and primarily
serve to increase the rotational inertia about the center of mass (Fig. 51, bottom). Using the parallel
axis theorem, the resulting inertia is

i =kmpd® +1-0.37% =: k' (mp, + 1)d>
= «’ =1.149, 4.16)

using values for myp, d and k mentioned in Sec. 4.2.2.

We find that the modified SC-Minitaur exhibits a preflexively stable pronking in place, as shown
in Fig. 51. We reiterate to emphasize that the controller was not modified between Fig. 32 and
Fig. 51, only the physical parameters of the body. This preflexive stability is an empirical demon-
stration of our stability analysis in Sec. 3.5.5.

Qualitatively, we observe that preflexively, the legs z; are in phase in SC-Minitaur Fig. 51, but out
of phase in unloaded Minitaur (Fig. 32 and Fig. 54). We did not include z5 in the top row of Fig. 32
for clarity, but the different asymptotic relative phases can be seen by comparing the zoomed-in
panels in Fig. 32 to Fig. 51; specifically, the reader should compare the relative phases of the red
and yellow traces. This empirical outcome is expected from our analytical results of Sec. 3.5.4
(preflexive bounding) and Sec. 3.5.5 (preflexive pronking), and the simulation results generated
from our slot hopper model in Fig. 30. Additionally, the pitch shows a pronounced oscillation in
both Fig. 32 and Fig. 54 (instances of bounding), but the magnitude of the pitch is very small in
Fig. 51 (instance of pronking).

4.2.3 Feedback Synchronization

Simulations in the companion paper showed that the coordination controllers (3.59)—(3.60) can
establish either bounding or pronking limit cycles in the decoupled slot hopper. In this paper, we
show that the same controllers can reinforce or disturb the slot hopper’s preflexive stability (proved
in Sec. 3.5.2) when applied to a slot hopper simulation (Fig. 30). In this subsection, we now apply
the feedback phase control ideas of Sec. 3.5.1 to attempt to disrupt the limit cycles of Sec. 4.2.2.
We first point out that the two Minitaur configurations listed in Sec. 4.2.2 are indicated with the
vertical green (WC-Minitaur, Fig. 27C) and magenta (SC-Minitaur, Fig. 51) lines in Fig. 30. Our
empirical trials reveal that the phase control (3.59) is able to overcome the preflexive stabilization
in the magenta configuration (see Sec. 4.2.3 below) to disrupt the mechanically entrained pronk-
ing in favor of the “commanded” bounding gait. On the other hand, more aggressive feedback
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coordination (3.60) is required to overcome the preflexive stability in the green configuration (see
Sec. 4.2.3 below) to disrupt the mechanically entrained bounding in favor of the “commanded”
pronking gait.!! We remind the reader that these experiments are recorded in the video attachment
as well.

Using phase control to disrupt preflexive pronking and impose bounding

We implement the feedback controller (3.59) on SC-Minitaur, and plot the results in Fig. 52. Com-
pared to the results with the preflexive control only (Fig. 51), a pitch oscillation can be observed, and
furthermore, the second row reveals an alternating front/rear touchdown in z; and z5, indicating that
the anti-phase limit cycle characteristic of bounding has been stabilized. In the region ¢ € [74,79]
seconds of Fig. 52, the robot rolls in an underdamped fashion due to the attitude controller applied
in the frontal plane (4.14) not being tuned ideally. The sagittal plane behavior is mostly unaffected
by this rolling.

We can conclude that the ¥ of SC-Minitaur (magenta line in Fig. 30) allows the phase control
(3.59) to overcome the preflexive control analyzed in Sec. 3.5.5. We display this data point in
Fig. 30 as well.

An additional example of the application of phase control can be found in the application to the
pacing gait presented in Sec. 4.2.5. However, note that this application is beyond the analytical
scope of the present paper, since Minitaur does not possess hip ab/adduction joints. Consequently,
the body-leg angle is rigidly set at 7r/2, and (a) the legs cannot be positioned vertically with respect
to the ground, and (b) ground reaction forces are not always directed vertically as they are in the
slot hopper.

Using attitude control to disrupt preflexive bounding and impose pronking

The phase controller (3.59) is not successful in overcoming the preflexive control in WC-Minitaur
(green line in Fig. 30), indicating that the preflexive controller is “stronger.” We apply the more
aggressive attitude-servoing controller (3.60) in order to attempt to stabilize an in-phase limit cycle
(pronking).

The results in Fig. 53 show an in-phase pattern for zy, z,, indicating stability of the in-phase limit
cycle. Moreover, the magnitude of the body pitch has been reduced to approximately 0.15 radians,
compared to the much larger pitch oscillations seen in the bounding trial in Fig. 32. We display this
data point in Fig. 30 as well.

4.2.4 Parallel Template Compositions for Translation and Rotation of the CoM

Raibert (1986) pioneered a kind of empirical composition—decoupled controllers, each designed to
stabilize an isolated 1DOF “template plant,” which, when utilized in tandem, empirically stabilize
a high-DOF body. The empirical success betrays the difficulty in obtaining provable guarantees,

Tt is worth noting in passing that there seems to be no analogous path to destabilizing the very strongly preflexive
pronking regime (the far right hand side of Fig. 30 with « values well beyond unity) because it is not clear what
configuration setpoint to furnish—an observation that might lead us toward consideration of feedforward excited
(“clocked”) gaits Haynes et al. (2011) or potentially, a refinement via appeal to higher period orbits of the “factored
map” expressions.
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Figure 53: Minitaur feedback-stabilized pronking. Top: Empirical data from Minitaur (Fig. 27C) in its
default configuration, but with feedback attitude control (3.60) stable pronking (note that the hip
heights z;, z, oscillate in phase). As described after (3.113), the “energy” coordinates have units
of speed. See Sec. 4.2.3 for more discussion. Bottom: Snapshots of WC-Minitaur pronking
(taken roughly at bottom, liftoff, and apex) from this experiment.

however: coupling in mechanical systems can move energy between the different compartments,
either stabilizing or destabilizing the template plant.

In Murphy and Raibert (1985), the following quote appears shortly after the one we have used
before: “there was a limit on forward velocity. As the model bounded faster, the height of centre of
gravity of the body decreased along with the magnitude of its angular oscillation. These two factors
reduced the ground clearance of the foot as it swung forward. Eventually, the model stubbed its
toe, tripped and fell.” This anecdote confirms the difficulties of composing fore-aft control with
the vertical energization (3.5) and coordination (3.59)—(3.60) discussed thus far. This motivates
further analytical work to discover and prove stability of feedback-stabilization of other DOFs, but
we restrict the scope of this paper to empirical composition of controllers. We find empirically
that the simplicity of our template controllers (3.5)—(3.60) affords robustness against large amounts
of coupling energy (arising from the significant cross talk injected by these erstwhile decoupled
controllers) before destabilization.
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Figure 54: Minitaur preflexive bounding. Empirical data from Minitaur (Fig. 27C) exhibiting bounding with
preflexive coordination (pitch) control (Sec. 3.5.4), feedback roll control (3.60) (roll angle is also
displayed in the first row), moving at a range of commanded forward speeds (Sec. 4.2.4) up to
4.8 body lengths / sec, as well as yaw rates (Sec. 4.2.4), controlled using a parallel composition
of decoupled controllers. See the last paragraph of Sec. 4.2.4 for discussion. Lastly, numerical
post-processing of this data reveals that despite the strong fore-aft and yaw perturbations in this
trial, the stance duration is 109 &= 7.5 ms (mean and standard deviation): a 6.5% deviation. As in
Raibert (1986), this motivates our constant stance duration assumption in Table 5.

Fore-aft speed control

We adapt the monopedal fore-aft speed controller described in Raibert (1986), and we review it
briefly here. Our decoupled control strategy (3.5) already encourages thinking of sagittal plane
Minitaur as a composition of a “front” and “rear” monoped, and so we apply the fore-aft control to
each monoped independently. The control input is the touchdown angle of the virtual leg in flight,

which is easy to actuate with very little energetic cost by using the hip actuators, since the toes are
light. Specifically, we set

b = kp(0* (%) —6;) —kqb;, 4.17)

where the desired touchdown angle, 6* (x) is defined as a function of the current speed X according
to the “neutral point” ideas of Raibert (1986),

psin(0*(x)) = —;T—:j +ki(x*—X)

for i € J, where note that 7/w is the stance duration (assumed constant as in Table 5). Recall that
0; is the absolute leg angle, and an estimate of the body pitch, ¢, is required as well to command
the leg angle correctly.

An important part of this controller is an estimate of the current speed, x. We obtain a proprio-
ceptive forward speed estimate in Minitaur by using encoder-measured joint angles and velocities
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together with the forward kinematics g : Ry x S — R? of the leg,
: Fi
x:Dg(ri,Gi)[é.] (4.18)
l

for i € J, where Dg is the leg Jacobian derived in (Kenneally et al., 2016, eqn. (6)).

Applying this controller to preflexively bounding Minitaur (shown bounding in place in Fig. 32)
along with a roll controller (4.14) to stabilize out-of-sagittal-plane motion, results in fore-aft motion
as shown in Fig. 54, while not disturbing the front/rear preflexive phase coordination at a range of
speeds. The desired speed x* is set by an external signal (often an operator, but in this case we
used a ramp function showed in dashed black). In the last row of Fig. 54, we use a 3Hz cutoff
filter to low-pass the raw speed measurements from motion capture. The step rate of Minitaur (each
front or rear stance is counted as a “step”) is about 3Hz, and a distinct oscillation can be noticed
at around this frequency in the forward speed. We hypothesize that this is an artifact of imperfect
tuning between the front and rear hips; a full analysis of the fore-aft stability (that we defer to future
work) should illuminate this issue further.

Even with this decoupled compositional control, it is still possible to attain traveling speeds of
1.92 m/s (4.8 body lengths / second, or 11 leg lengths / second), comparing favorably to quadrupeds
of a similar size (as listed in Sprowitz et al. (2013a)), keeping in mind that Minitaur is a general-
purpose quadruped with onboard power. Further, since this gait is the result of a smoothly parametrized
family of control policies (3.5), (4.14) (rather than, e.g., empirically optimized parameter set points
as in Weingarten et al. (2004)), stable bounding can be accessed at a continuum of traveling speeds
and yaw rates (as demonstrated in Fig. 54), as well as vertical height (shown below in Sec. 4.2.4).
We posit that the limit to even higher speeds in these trials is primarily due to:

a) inaccuracy in x estimate: as observed in Fig. 54, the proprioceptive speed estimate (4.18)
systematically underestimates the actual speed of the robot past around 1.5 m/s. This usually
results in incorrect toe placement, and the robot stumbles forward. The reason for this inaccu-
racy could be toe slip (see next point) or minor delays in estimation of touchdown and liftoff
(which are on the order of 5-10 ms as stated in Sec. 4.2.1);

b) loss of traction: yaw correction in stance (Sec. 4.2.4) requires a large amount of friction, and
especially at higher speeds small amounts of toe slip can cause failure;

¢) destabilization of pitch oscillation: the preflexive stabilization we analyzed in Sec. 3.5.4
maintains the desired pitch oscillations for a range of speeds, but as seen between ¢ € [52,56]
seconds in Fig. 54, the pitch oscillations can reduce in magnitude, or worse, get out of syn-
chronization with the leg touchdowns when a lot of energy is injected at higher traveling
speeds.

The last point motivates us to incorporate the fore-aft degree of freedom in our analysis in the future,
as well as to augment the bounding coordination with additional coordination control.

While the phase controller (3.59) is successful at disrupting preflexive pronking in SC-Minitaur
(Sec. 52), it is unable to disrupt preflexive bounding (as we observed in Sec. 4.2.3). Likewise, we
did not observe any empirical benefit to the application of (3.59) to “augment” Minitaur’s preflexive
bounding stability (as analyzed in Sec. 3.5.4). However, we posit that for a physical machine with
k =~ 1 (no preflexive stability), (3.59) could be used to feedback-stabilize bounding (as analyzed in
De et al. (2016)).
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Figure 55: Minitaur bounding leap. Left: Empirical data from Minitaur (Fig. 27C) exhibiting bounding

(Sec. 4.2.4), with a discrete “leap” command send at # = 9 seconds (higher desired vertical energy
for a single stride at both hips) resulting in a vertical displacement of the center of mass while
bounding. Right: Snapshots of WC-Minitaur performing a bounding leap, showing that this
simple strategy allows the robot to clear a gap larger than 1.5 times its body length.
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Figure 56: Minitaur pronking leap. Empirical data from Minitaur (Fig. 27C) exhibiting pronking (3.60), with

a discrete “leap” command send at ¢+ = 18.5 seconds (higher desired vertical energy for a single
stride at both hips) resulting in a vertical displacement of the center of mass while pronking.

The fore-aft control above is also applied to pronking (Fig. 53) as well as trotting (below, in
Sec. 4.2.5) to obtain modest traveling speeds of 1 and 2 body lengths / second respectively. The
inaccuracy in the proprioceptive speed estimate was much larger in these other gaits, so we believe
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Figure 57: Minitaur preflexive and feedback-stabilized pacing. Empirical data from Minitaur (Fig. 27C)
with decoupled vertical hopping controllers applied to “left” and “right” virtual hips, revealing
no preflexive stability (left) resulting in a roll over (note faint horizontal lines are at +/2, and
the IMU Euler angles pass through a parameterization singularity), but a stable roll oscillation
(center, right) with our feedback phase controller (3.59). The zoomed-in segment (right) reveals
interesting comparisons to preflexive (Fig. 32) and forced (Fig. 52) sagittal plane bounding. See
Sec. 4.2.5 for discussion.

Figure 58: Snapshots of pacing in place (taken roughly at left stance, aerial, right stance) from the experiment
in Fig. 57(center, right).

that these gaits can travel at much faster speeds with some more tuning. Since the focus of this paper
is the coordination control of the z, ¢ degrees of freedom, we defer to future work the analysis of
vertical and fore-aft coupling that would facilitate extracting faster translational speeds from these
other gaits.

Yaw control while bounding

We also compose an empirically motivated yaw controller, that makes use of the available hip
torques in stance. Specifically, the two legs comprising the “virtual leg” in stance apply differential
hip torques in order to impart a yawing moment on the body (in the horizontal plane).

If ¢ € S! is the yaw angle, C * € Ris the desired yaw rate, and t; is the hip torque applied to the
left and right hips in stance, we set

tj = (=) k;* (4.19)

where j € {left, right}. Note that we intentionally use a different index than i € J used in Sec. 3.5.1
and throughout the paper to refer to the two virtual legs, since in (4.19) we are referring to legs
grouped within an erstwhile single” virtual leg.

This is a different strategy than the horizontal-plane toe placement strategy in Raibert et al.
(1989), which requires 2DOF control of toe position in the horizontal plane (an ab/adduction joint)

163



and is thus inaccessible to Minitaur.

This strategy results in controllable yaw in bounding Minitaur. As an example, in Fig. 54, the
yaw of the robot begins to drift at around # = 54 seconds, and the yaw controller (with desired yaw
being supplied by an operator) allows the robot to the brought back on course. As expected, this
introduces a rolling disturbance that can be seen at around ¢ = 56 seconds, but the roll is eventually
stabilized by the attitude controller (4.14).

Further characterization of the fore-aft and yaw controllers is needed to argue that bounding Mini-
taur anchors a unicycle in the horizontal plane; we defer this topic to future work. Experiments in
the lab are already underway employing higher-level control schemes designed for unicycle plants,
such as De and Koditschek (2013), Lopes and Koditschek (2007).

Running leaps

As mentioned in Sec. 4.2.4, our template-based control (3.5) affords the operator the ability to
control the height setpoint a* through k,. Even though in our analysis we have kept a* constant,
in practice, we can increase a* for a single stride to get a running leap. This results in a large
perturbation off the limit cycle (both in bounding and pronking), but the large stability basin of
the (preflexive or feedback) coordination of Sec. 4.2.2—4.2.3 helps restore the nominal gait pattern
within 1-2 strides.

Fig. 55 shows a bound leap: though there is a large pitching disturbance before the body recovers,
the fore-aft speed of the body as well as the zj, z» stepping pattern is maintained through the leap,
demonstrating the large stability of basins of the template controllers. Fig. 56 shows a pronk leap at
around ¢ = 18.5 seconds, where again a large pitching disturbance is introduced by the leap, but the
z-oscillations are not disturbed.

4.2.5 Pacing and Trotting

So far we have presented data from Minitaur bounding and pronking. However, moving beyond the
sagittal plane (while still only using the controllers (3.5), (3.59) and (3.60) as applicable), Minitaur
is able to exhibit the remaining virtual bipedal gaits: pace and trot. A pictorial description of these
gaits from the virtual leg viewpoint is in Fig. 50.

Our implementation of pacing and trotting on a physical machine differs from that reported in
Raibert et al. (1989), in ways that we summarize below:

a) we are able to exhibit these gaits while using fewer actuators: only shank actuators in our
case as compared to two actuators (fore-aft and ab/adduction) at the hip (Raibert et al., 1989,
egs. (6.3), (6.4)) due to the analytical insights from De et al. (2016) suggesting the use of the
w; term in (3.58) for phase (3.59) or attitude (3.60) control;

b) the state machine in (Raibert et al., 1989, Fig. 6-6) forces a prescribed alternating stance
/ flight sequence, whereas our state machine (Fig. 49) bears more resemblance to Raibert’s
“independent” version in (Raibert et al., 1989, Fig. 6-11) which is reportedly only used for
bounding and pronking.'> One advantage of using a less prescriptive state machine is that

12The reported “pronk™ observed with the independent state machines in Raibert et al. (1989) is possibly due to the added
hip actuation stabilizing the attitude DOFs. Per our analytical result of Sec. 3.5.4, Raibert’s quadruped (Raibert et al.,
1989, Table 6-1) with only shank actuation would exhibit preflexive bounding stability, as corroborated by the prior
simulation study in Murphy and Raibert (1985).
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Figure 59: Minitaur feedback-stabilized trotting. Empirical data from WC-Minitaur exhibiting trotting im-
plemented by commanding two diagonally paired virtual legs as vertical hoppers (3.5), but with
added coordination logic (Sec. 4.2.5).

Figure 60: Snapshots of trotting showing legs 1 and 2 (numbering shown in Fig. 50) in stance (left), aerial
(center), and then legs 0 and 3 in stance (right). Going from the left panel to the center panel, the
active retraction of legs 1 and 2 (as described in Sec. 4.2.5) is also apparent. These snapshots are
from the experiment in Fig. 59.

unexpected double stance (caused by unexpected ground contact on rough terrain) is handled
gracefully, whereas it falls completely outside the logical jurisdiction of (Raibert et al., 1989,
Fig. 6-6).

Pacing

We find that in the frontal plane, when the decoupled controller (3.5) is applied to the left and right
virtual legs, Minitaur does not preflexively exhibit any coordination. This leads us to believe that it
lies in the “chaotic” region on Fig. 30. The left column of Fig. 57 reveals typical preflexive behavior:
a fall within a few steps.

However, when our phase controller (3.59) is applied (suggested by our analytical insight from
De et al. (2016)), a stable anti-phase limit cycle emerges in the frontal plane. We reiterate here
that since Minitaur does not have an ab/adduction joint, the virtual hips canot be moved by using
hip torques in the frontal plane. Thus, this stabilization is established only using the leg extension
actuators, using the phase control ideas we have described in Sec. 3.5.1.
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Trotting

In a trot, the virtual hips are located close to the center of mass Raibert (1986), effectively making
d very small. Consequently, from (3.86), « is very large, and as Fig. 30 shows, the in-phase limit
cycle is preflexively stable.

This preflexive stability is very strong, and phase control (3.59) as in Sec. 4.2.3 is unable to
produce a trot. The trot implementation in Raibert et al. (1989) used a sequenced state machine,
logically forcing alternating virtual leg stances. We have employed a slightly less aggressive strategy
(Fig. 49), where the virtual leg state machine is now updated to include 3 possible states: STANCE,
FLIGHT, and RETRACT. For i € J, when virtual leg i goes through its liftoff event, it is placed in
the RETRACT state where it is kinematically prevented from touching down. When leg i + 1 has
lifted off, leg i is moved from RETRACT — FLIGHT, where it can detect the touchdown event as
usual.

The state machine above only allows a single leg to be in STANCE at any time instance, thus only
allowing for trot gaits with an aerial phase. When implemented on Minitaur, we observe a stable
trotting pattern as shown in Fig. 59.

The details of the attitude and speed control for the trot gait (both formally and empirically)
deserve a more careful examination than is possible within the scope of this paper, such as a formal
anchoring of the virtual leg to a monopedal template as was done for RHex in Saranli and Koditschek
(2003); we defer this to future work.
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CHAPTER 5 : Conclusion

This concluding chapter presents a variety of informal observations about the reported work and
discusses some specific directions of future work that are either already or soon-to-be underway.

5.1 Hardware: Actuator Design using Dynamic Models

Motivation for future work While past literature has used Newton’s laws to create useful mod-
els of manipulator dynamics, metrics for manipulability Murray et al. (1994), and their role in
platform-level design Asada and Youcef-Toumi (1987), currently available models are still deficient
in a number of ways.

e Models of motor behavior are deficient, requiring post-fabrication empirical characterization
(e.g. 2.1.2): We aim to leverage existing dynamic models of motors Maxon Motors (2010),
explicitly exposing their relation to the motor design parameters (Sec. 2.1), time-dependent
characteristics, but in addition accounting for critical non-linear effects such as flux saturation,
thermal dissipation, position-dependence of torque (ripple).

o The thermo-electric performance of the driving electronics is currently treated as a “black
box,” even though their dynamic characteristics are relevant for high-bandwidth actuation
and sensing: We aim to create dynamic models of the driving electronics, incorporating
the effects of swiching losses (PWM frequency selectable in software, trading off switch-
ing losses and control bandwidth), Joule losses, torque response (including characteristics of
the control and communication software), as well as thermal dissipation;

e Modeling of transmission bandwidth, and their relation to friction and compliance: Recent
studies have shed some light on the inner workings of gearboxes Wang and Kim (2015) and
suggested a useful notion of bandwidth Wensing et al. (2017). We aim to leverage these
studies to develop usable dynamic models of transmission bandwidth incorporating both con-
tinuous effects (springs, viscous, and static friction), as well as discrete effects (impacts)
Kenneally and Koditschek (2017).

Desired outcome: model-driven design Leveraging usable models of these components should
allow for principled design and selection for precisely defined criteria such as

e static performance (including stalled as well as constant-speed performance), typically stud-
ied under conventional motor selection, but now coupling the design space of the motor with
the electronics;

e platform actuation bandwidth including dynamics of all the components (as suggested above),
as well as knowledge of time-discretization in various control loops;

e platform sensing bandwidth including the role of both continuous dynamics as well as impact
dynamics in the transmission rates of information and its tradeoff with power expenditure
Kenneally and Koditschek (2017); and

e dynamic robot performance utilizing some of our analytical conclusions about the approxi-
mate dynamic behavior of the composed robot bodies (Chapter 3), or simplifications thereof,
as a dynamic task specification.
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5.2 Hybrid Averaging

Our applications of the Fig. 40 procedure in Sec. 3.7 are the first of many potential hybrid averaging
stability results obtained using Thm. 4. As we have stated before, work currently in progress sug-
gests straightforward applicability to (a) planar tail-energized hopping with the 3 DOF tailed SLIP
system; and (b) planar bounding with the 3 DOF sagittal plane biped system; both listed in Fig. 1.
We wish to also apply this result in the near future to:
e horizontal-plane locomotion on the 3 DOF lateral leg spring (LLS) model Schmitt and Holmes
(2000);
e tail-energized hopping on the 4 DOF planar tailed monoped of Fig. 1, representative of our
Jerboa results in Sec. 4.1;
e hip-energized hopping on the 4 DOF planar tailed monoped of Fig. 1, representative of our
numerical results in Sec. 4.1.1;
e tail-energized spatial hopping on a spatial tailed monoped of Fig. 4 (right), suggesting control
and design parameters for spatial hopping on the Jerboa;
e gpatial bounding / pronking / trotting / pacing on the spatial quadruped of Fig. 27D, suggesting
control parameters for Minitaur gaits;
etc. In addition, we anticipate applicability to even higher DOF models, potentially leveraging
other symmetries than the two we have considered so far—virtual biped (Sec. 3.3) and time-reversal
(Sec. 3.6)—for multilegged locomotion, as in Golubitsky et al. (1998).

5.2.1 Eliminating Inconclusive Applications of Hybrid Averaging

One drawback of the current version of our procedure for correct-by-design synthesis (Fig. 40) is
that it can be inconclusive. So far, we don’t have a formal result about the exact classes of systems
for which the procedure will be guaranteed to be conclusive, but in our usage of Thm. 4, we have
observed the following potential roadblocks, and speculate here on how they may be eliminated in
future work:

Incompatible assigment of body states, actuators, and design parameters to templates’
In this thesis we have not explicitly considered design parameters or actuator configuration,
instead modeling both templates (Sec. 3.1) and bodies (3.140) as closed-loop dynamical sys-
tems. In the next two discussion subsections, we detail our plans on extending our closed-loop
theory in this regard, potentially enriching the procedure (Fig. 40) to either search for the cor-
rect assignment, or guarantee infeasibility.

Inadequate template library We discuss this topic in detail in Sec. 5.2.6.

Reset map linearization not O(¢)-Lipschitz The condition on S¢ in Thm. 4(ii) (inherited from
Thm. 2(i)) has resulted in the neutral point stepping controller to be unaverageable in Sec. 3.7.2.
Since we have used this controller with extensive empirical success (Chapter 4), there seems
to be a discernible “logic gap” between the sufficient and necessary conditions pertaining to
the reset Lipschitz condition. Further work is needed to ascertain if the neutral point controller
is an “outlier” or if there are large classes of reset maps with appealling empirical behavior in
robotics that similarly fail our current averageability criteria.

At present, an easy “fix” for this roadblock does not seem forthcoming, since the IFT usage
in smooth dynamical averaging theory (Thm. 1) guarantees that a fixed point of the averaged
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system, po, is O(g) away from a fixed point of the original system, p. = po + O(¢), and if
the reset linearization D R does not have an O(¢) Lipschitz constant, its contribution to return
map stability (see proof of Thm. 2) may be drastically different in the original vs. averaged
systems.

Nonetheless, since the neutral point controller is a specific instance of a deadbeat controller
(as we show in Sec. 3.7.2), a promising direction of inquiry is to incorporate (partially) dead-
beat resets as a special class of reset maps in our switching averaging theorem (Thm. 2) and
attempt to leverage any analytical simplifications available therein.

5.2.2 Control Averageable Systems

The work presented here has assumed closed-loop templates, such that the available freedom at
composition-time only allows for tuning of parameters. As an analogue of control Lyapunov func-
tions (CLFs) Ames et al. (2014), we would like to explicitly incorporate the controller in the analyt-
ical procedure (Fig. 40). In order to do so, let us replace (3.140) (y = Fy(y)) by

y:Fy(Yvu)’ (51)

i.e. the control input is listed as an explicit parameter.

With this modification, we expect that application of hybrid averaging to (5.1) will allow greater
freedom in selection of control strategies for composition than the mere selection of constant pa-
rameters. Some potential benefits of allowing for this greater freedom include:

Analytical guarantees invariant to control strategy Instead of obtaining parametric limits on
the control signal, we might obtain functional constraints. We expect constraints (or at least
constraints that are sufficient if not necessary) will involve symmetry (Def. 2). This would
allow us to prove, for instance, that the stability of some of our hopping compositions are
independent of if Raibert’s “thrust at bottom” strategy Koditschek and Buehler (1991), Raibert
(1986) is used or our “active damping” (Sec. 3.5).

Optimal controllers If the averaging conditions could suggest constraints for the control signal,
the control synthesis problem might then be posed as an optimization problem on the averaged
system. We would expect the simpler averaged system to allow for more efficient, and faster,
search results.

5.2.3 Assignment Problem: Toward Morphological Reduction / Computation

Our work in Chapter 3 has not made any significant contributions in relation to the physical aspects
of the template embedding in the composed body. As stated in Sec. 1.2.1, this includes (broadly)
assignment / mapping of morphological parameters between the body and the template on one hand,
and mapping control strategies from the template to the body on the other.

Specific instances of these morphological mappings include
Coordinate projection from body to template Suppose

Y: = Nt()’b)

is a projection from body coordinates to template coordinates. We emphasize that m; acts
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before the subsequent coordinate changes to convert the physical template coordinates to
oscillator coordinate (i.e. the template coordinate change from Sec. 3.1 is a property of the
template itself, logically independent of my, a property of the body). In our work in this
thesis, these projections have been nothing more than selections of some of the physical body
coordinates, e.g. the z; coordinate of the slot hopper (Sec. 3.5) is mapped directly to the
¢ vertical coordinate of the vertical hopper template (Sec. 3.1.1). We are intrigued by the
possibility of a less rigid change of coordinates for 7.

Parameter pullback A distinct morphological reduction map, E maps parameters in the body to
corresponding parameters in the template Libby et al. (2015), i.e.

Pt = Et(py).

A concrete example appears in our mapping of “mass” and “gravity” parameters in (3.91),
such that the vertical hopper (template) control signals could be applied to the slot hopper
(body). This map affords several exciting research prospects, such as an analytical study
of allowable parameters (obstacles in parameter space) in the body from feasible parameter
regions in the template. As an example, it may allow us to formalize questions such as when is
a “heavy toe” too heavy to allow Raibert’s decoupled stepping and pitch controllers (Raibert,
1986, Chapter 2) to work?' Additionally, if we can establish a smooth dependence of stability
criteria on parameters (for instance, in the analytical averaged return map obtained in Thm. 4)
we may simply differentiate with respect to parameters to find their local optima (within the
feasible region). More formally, instead of (5.1), we have

y = Fy(y.u,p). (5.2)

Controller pushforward In the other direction, the controller (feedback) function must be mapped
from template to body in a manner cognizant of the specific configuration of the actuator on
the robot body. For instance, in our tail-energized hopping experiments (Sec. 4.1), the vertical
hopper control input u,, (Sec. 3.1.1) is generated not by an actuator in the leg shank, but using
the tail.

More formally, if u(y:) is the template controller and 7 maps control signals from template
to body, we may find the body actuator signal as

ub(yp) = 7 (ue(yr)) = 77" o ug o me(yb). (5.3)

5.2.4 Application to Return Map Approximation

One of the most exciting prospects for our averaging theory is the ability to get a good return map
approximation with relative ease. As an example, in Sec. 3.7.2, we produced a superior return map
approximation using averaging that far outperformed that of Raibert (1986) in selecting the neutral
point, motivating a comparison of our general approximation technique to specific approximations
of SLIP stance dynamics Geyer et al. (2005), Saranl et al. (2010). Future applications may include

IRaibert placed a “balance beam” on his planar hopper in order to make the body inertia larger, effectively making the
toe massless, in order to eliminate the “heavy toe” coupling toe swing dynamics (for fore-aft speed control) with body
orientation.
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reactive planning incorporating (iterations of) the controlled return map approximation, in order to
plan footsteps while running.

5.2.5 Averaged Anchoring

We have not yet formalized a notion of averaged anchoring, but we observe (for instance) that
the averaged SLIP energy dynamics (3.161) is a cross product of averaged isolated (decoupled)
vertical hopper / compliant inverted pendulum dynamics, i.e. the averaged vector fields (and not
their unaveraged versions, as posited in Full and Koditschek (1999)) are conjugate. This suggests a
notion of averaged anchoring, as conjugacy of averaged vector fields.

The potential applications of averaged anchoring include finding reduced (averaged) CoM behav-
ior of the spatial quadruped while executing its gaits (Sec. 4.2), in order to treat it as a horizontal
plane agent for higher-level navigation.

5.2.6 Template Discovery

The templates are crucial in the sense that in our paradigm (Sec. 1.1.1), the behavior of the com-
posed body must be approximated by a “product” of template behaviors. As a result, the template
dynamics must express the requisite complexity to capture all elements of the body’s closed-loop
dynamics. We anticipate that templates could be learned from data, in a way that is similar to
the search for manipulation primitives / synergies from data Todorov and Ghahramani (2004). We
expect that template plants / controllers can then be found by analyzing the reduced-dimensional
template dynamics (as described in Sec. 5.2.2 above).

The benefits of data-driven template discovery would include a large library of known primitives,
alleviating one source of inconclusive averaging results. In addition, a large “grammar” of known
templates would accelerate the generation of previously unknown behaviors, found autonomously
using our composition rules of Fig. 40 (or extensions thereof).

5.3 Design Paradigm

5.3.1 Feedforward vs. Feedback, Central vs. Distal

As described in the introduction, our control algorithms have had the characteristics of being highly
o feedback-driven—template control signals (Sec. 3.1) are exclusively feedback functions of
the template state; and
e distal—by dint of being a composition of dynamical “modules,” the control is distributed
among these modules rather than executed at a central location.
Klavins et al. (2002) articulates the orthogonal “axes” of feedforward vs. feedback, as well as
central vs. distal.

We feel justified in our strong reliance on feedback strategies for simple tasks such as horizontal
plane locomotion, since feedback strategies are typically resistant to catastrophic failure in the pres-
ence of perturbations Kuo (2002). In the animal world, Sherrington (1910) suggested that reflexes
play large roles in the control of movement, but since then numerous studies of many invertebrate
and vertebrate animals indicate central pattern generators (CPGs) can produce coordinated motor
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patterns. However, when the nervous system interacts with the biomechanical system, regulation of
relevant motor patterns requires additional feedback Zehr and Duysens (2004). A more recent study
Gazzola et al. (2015) shows that inertial swimmers can use only proprioception (feedback) or a com-
bination of proprioception and CPG signals for coordinated motion. Our argument (Sec. 1.1.2) is
that since our engineered machines lack the evolution-refined low-level preflexes (feedback control
systems) that animals possess, our control algorithms should compensate by including a preponder-
ance of feedback elements in the control strategy. However, we acknowledge that feedback strate-
gies are often “greedy,” and for more complex tasks, a combination of a deliberative feedforward
signal and feedback may be more appropriate.

We are also intrigued by the central / distal question; while it seems unavoidable to have a distal-
favored scheme as a result of our compositional paradigm, the informational coupling introduced
between two vertical hoppers by our phase controller (Sec. 3.5.1) played a centralization role that
deserves further study.

5.3.2 Application to Other Domains

Legged locomotion motivated our development of the paradigm in Sec. 1.1.1, as well as the ac-
companying analytical tools in Chapter 3. However, we believe that the paradigm applies to other
domains as well, and many of our tools. The correspondence between locomotion and the “neigh-
boring” field of manipulation has already been discussed in the literature Johnson and Koditschek
(2013a), and we envision near-term future work could apply our phase-synchronization results (such
as Sec. 3.5) to the juggling problem Rizzi and Koditschek (1994). Applications in dexterous manip-
ulation / grasping would necessitate an extension of Thm. 3 to multiple “distinct” hybrid modes.
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