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Vertical hopper compositions for preflexive and feedback-stabilized
quadrupedal bounding, pacing, pronking, and trotting

Abstract
This paper applies an extension of classical averaging methods to hybrid dynamical systems, thereby achieving
formally specified, physically effective and robust instances of all virtual bipedal gaits on a quadrupedal robot.
Gait specification takes the form of a three parameter family of coupling rules mathematically shown to
stabilize limit cycles in a low degree of freedom template: an abstracted pair of vertical hoppers whose relative
phase locking encodes the desired physical leg patterns. These coupling rules produce the desired gaits when
appropriately applied to the physical robot. The formal analysis reveals a distinct set of morphological regimes
determined by the distribution of the body’s inertia within which particular phase relationships are naturally
locked with no need for feedback stabilization (or, if undesired, must be countermanded by the appropriate
feedback), and these regimes are shown empirically to analogously govern the physical machine as well. In
addition to the mathematical stability analysis and data from physical experiments we summarize a number of
extensive numerical studies that explore the relationship between the simple template and its more
complicated anchoring body models.
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Abstract
This paper applies an extension of classical averaging methods to hybrid dynamical systems, thereby achieving
formally specified, physically effective and robust instances of all virtual bipedal gaits on a quadrupedal robot. Gait
specification takes the form of a three parameter family of coupling rules mathematically shown to stabilize limit
cycles in a low degree of freedom template: an abstracted pair of vertical hoppers whose relative phase locking
encodes the desired physical leg patterns. These coupling rules produce the desired gaits when appropriately
applied to the physical robot. The formal analysis reveals a distinct set of morphological regimes determined by
the distribution of the body’s inertia within which particular phase relationships are naturally locked with no need for
feedback stabilization (or, if undesired, must be countermanded by the appropriate feedback), and these regimes
are shown empirically to analogously govern the physical machine as well. In addition to the mathematical stability
analysis and data from physical experiments we summarize a number of extensive numerical studies that explore
the relationship between the simple template and its more complicated anchoring body models.

Keywords
Legged Robots, Dynamics, Motion Control

1 Introduction

In this paper we apply a dynamical systems method for
coupling hybrid oscillators De et al. (2018) to achieve
formally specified, physically effective and robust instances
of all virtual bipedal gaits on a quadrupedal robot. Gait
specification takes the form of a three-parameter family
(ka, kp , and kd to be introduced in (8)–(10)1) of coupling
rules used to entrain an otherwise independent pair of
virtual vertical leg hopping controllers. The specification
is formal in the sense that we give mathematical stability
proofs for the entrained target limit cycle resulting from
application of these coupling rules to a reduced degree
of freedom template Full and Koditschek (1999) model
for each combination of mechanical coupling and desired
phase relation. The gaits are physically effective in the
sense that appropriate projections of the robot’s 6DOF
(twelve dimensional) in-place hopping trajectories match
closely those of the 2DOF (four dimensional) template
when subject to the same coupling rules tuned to the
appropriate parameter settings. The gaits are robust in the
sense that they persist in the face of mechanical cross-talk
arising from adjoining fore-aft excitation control terms to
those commanding the coupled vertical hopping, yielding

reliable bounding, pacing, pronking, and trotting behaviors
in the physical machine. In many of the configurations
we study, this robust gait stability can be formally
attributed to natural stabilizing forces arising from intrinsic
body morphology that have been termed preflexes in the
biomechanics literature to distinguish them from feedback
(reflex) endowed stability. For the reader’s convenience, we
include a definition here:

Definition 1. Preflex Brown and Loeb (2000). Stabilizing
forces generated through the interaction of the body
mechanics with contact forces, without any work output
from actuators.

1.1 Related work
Biological inspiration Almost all biological quadrupeds

exhibit one or more effectively bipedal gaits wherein
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Figure 1. Virtual biped models of increasing complexity. Building on our previous work on the coordination of a pair of
mechanically decoupled vertical hoppers (A) De et al. (2018), we now introduce the slot hopper (B) as a new template for
quadrupedal running. Its coordination stability analysis (Sec. 3), guides the synthesis of preflexive and feedback coordinated
gaits in the progressively more complicated dynamics of the sagittal plane biped (C) and the physical Minitaur robot (D)
Kenneally et al. (2016); Minitaur (2016) (Sec. 4) that robustly anchor this template (in the sense of Full and Koditschek (1999))
when properly compensated according to our controller designs. Fig. 18 and Table 3 summarize the relationships between these
models, our controllers, and our analytical, numerical and empirical results.

the legs are coordinated into two pairs that seem to
operate in synchrony Biewener (2003). Inspired by this
phenomenon, engineers have formulated the concept of a
virtual leg Sutherland and Carlson (1983); Raibert (1986),
whereby groups of legs are “coordinated” such that the
forces they exert on the body are equivalent to those
that would have been exerted by a single virtual leg.
The details of this coordination vary by implementation
(ours is detailed in Sec. 4.2), but the goal is that
the dynamical behavior of the system collapse down
from their full state to a lower dimensional subspace
well-represented by a monoped. Raibert et al. (1989)
implemented all possible virtual bipedal quadruped gaits
(Fig. 11) utilizing vertical energization of virtual legs,
and often relying on preflexive out-of-phase coordination,
which was systematically studied in simulation by Murphy
and Raibert (1985). Berkemeier (1998) investigated this
phenomenon further, and observed in simulation a second
form of preflexive coordination (in-phase) in a vertically-
restricted model.

Prior analysis One appealing way to think abstractly
about multi-legged locomotion is of the legs as abstract
oscillators. This point-of-view permits ready formulation
of gait coordination in terms of the oscillators’ relative
phases, as in Golubitsky et al. (1998). The work of
Klavins et al. (2000) additionally shows how to construct
these phase dynamics from some simple Hamiltonian
mechanical systems, but that approach is more difficult
to extend to non-Hamiltonian coupled dynamics required
for implementation on the physical mechanism that we
consider here. Klavins et al. (2002) numerically studied
the coordination of two separate “bipedal” models using
both feedforward (“central pattern generator, or CPG”)
and feedback schemes, finding that the feedback-generated
oscillators were more robust to environmental uncertainty.
Motivated by these results, we pursue feedback-only

coordination here, and show analytically the stability of the
resulting limit cycles with desired phase relations.

Other researchers have numerically studied coordination
on simplified models of quadrupedal behavior: the pair
of papers Poulakakis (2005) and Poulakakis (2006) study
bounding on Scout II: an underactuated quadruped with
fixed shank compliance and a single rotary actuator at each
hip, which precludes the vertical energization scheme of
Sec. 1.1. The authors explored the stability of a bounding
limit cycle by numerically evaluating the return map
eigenvalues for a 3DOF sagittal plane model (identical to
Fig. 1C). Shahbazi and Lopes (2016) introduced a “Dual-
SLIP” model of informationally-coupled, mechanically-
decoupled hoppers, and showed numerically that it was
possible to coordinate them into pronking and bounding
limit cycles by directly specifying the desired touchdown
and liftoff times for each hip using a once-per-stride
optimized controller. Our modeling paradigm is similar; the
analysis in our companion paper De et al. (2018) provably
attains similar coordination between two (now vertically
restricted) hoppers with simple feedback laws. Gan et al.
(2016) found numerical evidence of periodic orbits in a
planar quadrupedal Hamiltonian model by optimizing body
parameters, and relying on preflexive coordination.

Our analytical work is most closely related to Berkemeier
(1998), who computes approximate return maps of in-
place bounding and pronking using Raibert’s (piecewise-
Hamiltonian) shank energization controller, and an "-
perturbation analysis. However, a full stability analysis for
" ¤ 0 (including important nonlinear dissipation terms that
contribute prominently to our stability proofs of vertical
hopping as well as preflexive pronking) was not possible
due to analytical intractability. In this paper, we bring new
analytical tools to bear on this problem that are sufficiently
powerful to provide a full stability analysis with a new
nonlinear shank energization controller.

Prepared using sagej.cls



Vertical hopper compositions for quadrupedal gaits 3

To our knowledge this paper presents the first instances
of stability proofs of any (both in-phase and out-of-phase)
coordination schemes that bear directly on gaits on a
physical quadruped—connections which we highlight in
Table 3.

Recent robotics Both of the contrasting feedfor-
ward/feedback approaches mentioned in Sec. 1.1 appear
in empirical quadrupedal demonstrations in the literature.
Righetti and Ijspeert (2008) optimize parameters for a CPG
whose outputs are used to set the motor control signals.
This technique has been empirically shown to propel some
quadrupeds at speeds of 5–7 body lengths/second (see
Fukuoka and Kimura (2009) and Sprowitz et al. (2013),
though the latter results are from a 1 kg prototype without
onboard power). However, purely open-loop control signals
are particularly sensitive to perturbations from the environ-
ment Klavins et al. (2002), and also do not provide any
analytical affordance since the body dynamics are invisible
in the gait design space.

Some researchers eschew the CPG and directly optimize
some parameterization of the motor signals: Shkolnik et al.
(2011) use pre-planned position trajectories using an offline
planning phase for a specific terrain which is assumed
known a-priori. Pusey et al. (2013) use timing parameters
which are optimized by hand to demonstrate feedforward
bounding at a given speed. Culha and Saranli (2011) use
an open-loop hip retraction scheme and passive shank to
reduce the number of control parameters, add a spine
joint for thrust, and numerically optimize gait parameters
using a Nelder-Mead optimization step. However, in these
purely open-loop implementations, the parameters are
sensitive to desired speed, and the stability basin (in
the presence of perturbations from external forces or
rough terrain) is small. Hutter et al. (2014) introduce
“operational space control”, and the recent preprint from
Neunert et al. (2016) brings model-predictive control
(MPC) to bear on a physical quadruped. These papers
are representative of a recent trend toward applying
(generally highly complex) decision-space optimization
methods to gait generation. MPC-like methods alleviate
the instability problems of open-loop strategies over short
time horizons by optimizing online over short horizons,
but have been computationally prohibitive for all but the
simplest examples, generally need very accurate models
of the robot, and preclude any analytical insight. Barasuol
et al. (2013) promote a combination of feedforward
CPG–like trajectories augmented by feedback “reflexes”
for walking and trotting. In the same vein, Park et al.
(2017) demonstrate bounding at 6.5 body lengths/second
on the 30 kg MIT Cheetah using feedforward vertical
energization at the front and rear hips, and rely on preflexive
coordination of the body pitch (which we analyze and
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Figure 2. Phase locking in the slot hopper hopper template
and its anchors depicted in Fig. 1. We show both analytically
and empirically that the slot hopper—when controlled by
almost independently energizing each leg as a vertical
hopper—exhibits phase-locking to in-phase (“pronking”) and
anti-phase (“bounding”) limit cycles. It does so in a manner
affected by both its mechanical construction (non-dimensional
inertia (13); horizontal axis) as well as a modest feedback
controller applied to perturb the hopping frequencies (phase
control gain (9); vertical axis), such that a desired behavior
can be selected—with provable stability properties—either
recruiting or countermanding preflexive behaviors. These
parameters induce the analogous behaviors in the more
complicated sagittal plane biped and physical minitaur (Fig. 1)
as summarized in Fig. 18.

thereby predictively both countermand as well as reinforce
in this paper).

From the perspective of control architecture and
experimental practice, our work is arguably most similar
to Raibert et al. (1989), whose empirical demonstration
of virtual bipedal gaits mentioned above used systematic
compositions of simple one DoF feedback controllers (and
no feedforward signals). We have previously used similar
compositions to demonstrate planar hopping in a tailed
biped De and Koditschek (2015a), and also apply the
same techniques to our quadruped here while requiring
fewer actuators. We have included a careful comparison of
specific aspects our control strategy to Raibert’s in Table 5.

1.2 Contributions and organization
1.2.1 Contributions Fig. 1B introduces the “slot hopper”
model (inspired by in-place biped models in prior literature,
such as Burden et al. (2007); Berkemeier (1998)), wherein
we add a notional mechanical coupling between the two
independent vertical hoppers (Fig. 1A), taking the form of
a connecting bar pivoting freely around a vertically-sliding
pin. The central contribution of this paper as stated at the
outset is the proposal of the slot hopper as a template for
all “virtual bipedal” quadruped gaits, a stability analysis
of the target limit cycles that encode them in that model,
and the empirical demonstration of their anchoring in the

Prepared using sagej.cls
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physical Minitaur quadruped (Fig. 1D). The analysis and
data presented in this paper to establish these claims is
summarized in an “iconic” manner in Fig. 2 (and with
supporting data later on in Fig. 18) as follows:

� In-place bipedal gait stability analysis. We provide
the first correctness proofs for in-place dynamical
virtual bipedal gaits by adapting the hybrid averaging
analysis of De et al. (2018) to the three distinct
(overlapping) physical regimes of the slot-hopper
template determined by its “non-dimensional inertia”
(13) as depicted along the abscissa of Fig. 2.
� Preflexive phase regulation and its systematic

reassignment. In so doing, we show formally
how these regimes elicit preflexive stabilization
for both in-phase (pronking) and out-of-phase
(bounding) quadrupedal hopping behavior in a
manner determined by the sign of the coordination
gain (9) as depicted along the ordinate of Fig. 2.
Namely, we interpret the slot-hopper template’s
provably stable limit cycles (whose relative phase is
depicted by the shadowed bodies of Fig. 2 and plotted
by the black dots in Fig. 18) as being empirically
anchored by closely matching periodic motions of
the appropriately loaded physical Minitaur (green
and magenta vertical lines in Fig. 18). We further
demonstrate that the formally established preflexive
behavior can be robustly either countermanded
or reinforced by simple sign adjustments to the
coordination control law gains introduced in (9)–
(10) when applied to the slot-hopper template (again
depicted by the shadowed bodies of Fig. 2 but
plotted as blue and red dots in Fig. 18), to achieve
correspondingly enhanced or disrupted empirical
pronking or bounding on the putatively anchoring
physical Minitaur (plotted as colored open diamonds
in Fig. 18).
� Empirical composition of anchored templates.

Using only shank extension actuators we apply
the identical three parameter1 family of slot-hopper
controllers (7)–(10) to the laterally paired hips
of Minitaur and present empirical evidence that
this anchors the template by demonstrating that
all in-place virtual bipedal quadruped gaits on
the physical machine arise from the corresponding
template parameter settings, as summarized in
Table 3. We empirically compose these vertical
hopping coordination controllers with fore-aft and
yaw controllers to get useful and robust locomotion
performance (Table 4).

The stability results propose for the first time a formal
explanation for preflexive in-place coordination, extending
the results of Berkemeier (1998) to include " ¤ 0 dynamics

(responsible for the stabilization of height in our vertical
hopper controller in Sec. 2.1.3 and of phase difference in the
strongly coupled hoppers of Sec. 3.3); they show in addition
that the preflexes are effective for a vastly different shank
energization strategy than Raibert’s, as well as that these
results bear out on a physical platform.

1.2.2 Organization Table 3 summarizes how our analyt-
ical results (including both preflexive and feedback stabi-
lization) and the insights gained therein are brought to bear
on Minitaur to endow it with the virtual bipedal gaits. In
contrast, Table 4 summarizes our empirical forays (moving
beyond the analytical scope of this paper, but anticipating
formal analysis now in progress) into parallel composition
in the sense of De and Koditschek (2015a) of these robust
in-place virtual bipedal limit cycles with other templates.
In Sec. 2.1, we first call out results from the companion
paper De et al. (2018) that are used as analytical tools for the
proofs here. We introduce (Sec. 2.2) the slot hopper model
(Fig. 1B), describe its relationship to both the abstract pair
of vertical hoppers (Fig. 1A), as well as the more complex
sagittal plane biped model (Fig. 1C). In Sec. 3, after
observing that the feedback stabilization results of De et al.
(2018) extend directly to the slot hopper’s decoupled regime
(Sec. 3.1), we prove (Sec. 3.2–3.3) that as that template’s
non-dimensional inertia (13) is varied through the range
in Table 3, we obtain preflexive stability of bounding and
pronking (covering the gamut of interesting virtual bipedal
limit cycles). As summarized in Fig. 18, the physical
robot Minitaur (2016) exhibits the same preflexive stability,
switching from bounding (Fig. 4) to pronking (Fig. 12)
when its non-dimensional inertia is modified with appropri-
ately placed “outrigger” masses, without any modification
in the control signals. Our analytical results are subject to a
set of simplifying assumptions whose validity with respect
to the physical robot is summarized in Table 2 and whose
fidelity to its sagittal plane Lagrangian model, Fig. 1C, is
further established by extensive numerical study (Figs. 4–
7). Using numerical simulation, in Sec. 4.1 we establish
a strong correspondence between our models/assumptions
and the physical machine on one hand (Sec. 4.1.1–4.1.3),
as well as between our analytical and simulation results
on the other (Sec. 4.1.4–4.1.5). We introduce our empirical
results on Minitaur by first detailing our implementation
in Sec. 4.2. Using insights from our analytical results as
laid out in Table 3, we demonstrate preflexive bounding
and pronking (Sec. 4.3), and also countermand the natural
pattern by applying phase-modifying feedback (9)–(10)
(Fig. 13, Fig. 14). In addition to the in-place gaits just
discussed, the robustness of our control strategies allow em-
pirical composition (Sec. 4.5) with additional controllers to
stabilize fore-aft, roll, and yaw DOFs, and results in bound-
ing at speeds up to approximately 5 body lengths/second
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(Fig. 15), punctuated by stably recovered leaps of 2 body-
heights (Fig. 16). Further intuitive combinatorial pairings of
Minitaur’s hips using appropriate combinations of (9)–(10)
yields in-place pacing (Fig. 23) and trotting (Fig. 21), and
pronking leaps of 3 body-heights (Fig. 14).

In Sec. 5, we conclude with observations and remarks
that are not yet formal but offer more context for the present
contributions and give a sense of what promising steps lie
ahead in our current and near future work.

2 Modeling and theory
First, in Sec. 2.1, we review the key contributions of our
companion paper De et al. (2018), introduce in Sec. 2.2 the
slot hopper template plant, derive its equations of motion
in Sec. 2.2.1–2.2.3, and show in Sec. 2.2.4 that setting
� D 1 effectively results in physically decoupled vertical
hoppers (Fig. 1A). Henceforth, we refer to this as the
“decoupled” instance of the slot hopper. In Sec. 2.2, we
describe the procedure by which the template vertically
hopping controller is reused in the slot hopper.

2.1 Background: hybrid averaging theory and
application

2.1.1 Hybrid averaging In the companion paper De et al.
(2018), we introduced an analytical tool for "-perturbation
stability analysis of hybrid limit cycles. In the Theorem
below (and the remainder of the paper), " > 0 is a
sufficiently small scalar, which we relate to the various
physical parameters of the system in each application (e.g.,
Sec. 3.2).

We repeat the statement of the constant flow-time
(switching systems) averaging theorem here for the
convenience of the reader; for the proof (as well as
the extension to event-based switching), please see the
companion paper.

Theorem 1. Switching Averaging Theorem. Given the
“original” and “averaged” switching systems of the forms

Px D "f .x; t; "/; P� D 1; x.TC/ D R.x.T //; (1)

Py D "f .y/; P� D 1; y.TC/ D R.y.T //; (2)

where � is reset to 0 by the switching event, we assert the
following hypotheses on (2):

(i) if the C r (for r � 2) reset R (allowed to vary
with ") satisfies: (a) DR.x/ D S0 C "S1.x; "/ (with
constant S0); (b) S0 is invertible, and its unity
eigenvalues have diagonal Jordan blocks2, and

(ii) if there is a point p0 such that: (a) it is an equilibrium
of f ; (b) R.p0/ D p0; and (c) the averaged return
map is hyperbolic at p0,

then there exists "0 > 0 such that, for all 0 < " � "0, (1)
possesses a unique hyperbolic periodic orbit, of the same
stability type as p0.

Intuitively, condition (i) asserts that the reset-
linearization DR only has an O."/-dependence on the
state, thus ensuring that its spectrum does not vary
drastically between the true and our approximated fixed
point. Condition (ii) asserts that the averaged fixed point is
structurally stable, thus ensuring that the stability properties
of the original system match our approximation of it. As we
show in De et al. (2018), this theorem can be used to obtain
analytical representations of (approximations of) hybrid
limit cycles appearing in legged locomotion as well as
their stability properties. The extensions of De et al. (2018)
to symmetry-factored return maps and near-simultaneous
transitions are also utilized to apply the single-mode result
to the bounding and pronking limit cycles of interest.

For each of the analyses, we choose to evaluate stability
of a return map using a Poincaré section at the physical
touchdown event. Thm. 1 requires a single continuous mode
(single stance in Sec. 3.2, double stance in Sec. 3.3), and a
reset map following it (for which we integrate trivial aerial
dynamics in each analysis).

2.1.2 Vertical hoppers in phase/energy coordinates
Consider a pair (i 2 f1; 2g) of vertical hoppers with a unit
mass at height zi , with nominal leg length �, and with stance
(“stance” is when zi < �) dynamics Rzi D ui and flight
dynamics Rzi D �g; i.e., we assume that in stance, there is
a vertical extension actuator able to exert any desired force
ui on the ground, and in flight, the mass follows ballistic
flight.

We now present “phase/energy coordinates” for both its
stance and flight phases. To that end, we define the phase
vector, p W R2 ! R2 corresponding to its vertical height in
stance,

p.zi ; Pzi / WD Œ�Pzi ; .� � zi /!�
T ; (3)

where ! is the natural frequency of the spring-mass
system in stance (cf. (8)). The energy coordinate (intuitively
changing slowly) in each mode, whose closest prior
analogue in the literature is in Koditschek and Buehler
(1991), is defined as

ai WD

(
kp.zi ; Pzi /k zi < �, andq
2g.zi � �/C Pz

2
i else,

(4)

and the phase angle coordinate, inspired by Klavins et al.
(2000) and intuitively with fast dynamics relative to the
energy, is defined as

 i WD

(
†p.zi ; Pzi / zi < �, and
ai�Pzi
2ai

else.
(5)
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Table 1. Table of important symbols used throughout the paper, listed by order of appearance, some originating in the
companion paper De et al. (2018), others introduced (or redefined) in this paper.

Symbol Brief description De et al. (2018) Symbol Brief description De et al. (2018)

K W R4! R4 Bipedal symmetry (48) K D
h
0 1 0
1 0 0
0 0 �1

i
Slow-coord. symmetry (49)

! 2 RC Stance spring frequency (32) !f W ai 7! g=.2ai / Flight frequency (35)

Symbol Brief description This paper Symbol Brief description This paper

� 2 RC Non-dimensional inertia (13) zi 2 R Physical hip height �2.1.2
z 2 R Physical CoM height �2.2 � 2 R Physical “body angle” �2.2
mb 2 RC Mass of robot �2.2 ib 2 RC Rotational inertia of robot �2.2
d 2 RC Half hip–to–hip distance �2.2 ai 2 RC Hip energy (liftoff vel.) (4)
 i 2 ‰ � RC Hip phase (5) ˇ 2 RC Stance damping (8)
ui W X! R Hip control input (7) vi W X! R Nonlinear part of control (8)
wi W X! R Phase control (8) ka 2 RC Vertical gain (8)
kp; kd 2 RC Coordination control gains (9), (10) ˛i 2 R Morphological parameters (18)
‰ � R Phase space �2.1 X � R4 Averaging domain �2.1
" 2 RC Averaging parameter �2.1 F W X! TX Stance vector field �2.1
f W X! TX2 Slow vector field �2.1 f W X2! TX2 Averaged vector field �2.1
R W X2! X2 Slow coordinate reset �2.1  W X! R Event function �2.1
G � X Guard set �2.1 P W X2! X2 Averaged return map �2.1e i 2 ‰ � RC Modified �3.2 hip phase (27) eı 2 R Modified �3.2 phase diff. (28)
. 1; a1; a2;eı/ “WC” averaging vector �3.2 �i 2 R Return map parameters (33), (36)
. 1; a1/ “SC” averaging vector �3.3.3 a� 2 RC Body angle energy (37)
az 2 RC CoM vertical energy (38) !� ; ˇ� 2 RC �–oscillation reparam. (46)
Q� W TS

1! TS1 .�; P�/ stance flow (43) R� W TS
1! TS1 .�; P�/ reset (44)

ts 2 RC Stance duration �3.3 tf 2 RC Flight duration �3.3

In order to study phase coordination between the two
hoppers, we introduce a new “bounding phase difference”
to compare  1 to  2 when hopper 1 is in stance and hopper
2 is in flight.

ı WD �1 � �2; where (6)

�i WD

(
. i � �=2/=! zi < �, and
. i � 1=2/=!f.ai / else,

where !f is the “flight frequency” for the ballistic mass, as
defined in Table 1.

2.1.3 Feedback controllers For our vertical extension
actuator, we utilize the vertical hopping feedback controller
from our own prior work De and Koditschek (2015a), and
related to the tunable damping strategy of Secer and Saranli
(2013),

ui .x/ WD !
2.� � zi /C "vi .x/; (7)

where the first summand is a Hooke’s Law spring force
(instantiated using actuators in our physical platform), and
the second is a weak nonlinear forcing term comprising a
lumped stabilizing (mass-normalized) damping term, given
by ˇ in units of N/(m/s)/kg, as well as an active damping
term modulated by gain ka,

vi .x/ WD �ˇ Pz � ka cos i C wi .x/: (8)

Intuitively, these terms modulate the hopping energy,
with ˇ representing inescapable dissipation present on
physical systems, and ka representing energy injection
through feedback control. Finally, wi .x/ is a phase
coordination controller used to (informationally, through
software) couple the two vertical hoppers z1 and z2. In De
et al. (2018), we introduced two new intuitively-motivated
coordination controllers: first, a “phase controller” which is
a function of the velocity difference Pz1 � Pz2.

wi .x/ WD .�1/
i�1kd . Pz1 � Pz2/ sin i (9)

As we show in De et al. (2018), the averaged effect of
the control strategy (9) is akin to servoing on the abstract
relative phase ı. We also introduced an alternative “attitude
controller”

wi .x/ WD .�1/
i�1

�
kp.z1 � z2/C kd . Pz1 � Pz2/

�
; (10)

which has the more readily apparent effect of stabilizing
z1 � z2 in double stance when applied to both hoppers.
Intuitively, it plays the role of a virtual attitude-stabilization
impedance as in Park et al. (2017), and we show formally
its effect in our analysis (Sec. 3.3).

2.1.4 Equilibria in oscillator coordinates We review
from the analysis of mechanically-uncoupled vertical
hoppers in De et al. (2018), the equilibrium of the averaged
vector field

�� D �; x� D Œka=ˇ; ka=ˇ; 0�
T ; (11)
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and the reset map

R
�h a1

a2
ı

i�
D K

�
a1
a2

ıC
a2�a1
g

�
D

�
a2
a1

�ıC
a1�a2
g

�
: (12)

2.2 Linearized 2DOF slot hopper
In prior literature, there are several instances of a 2DOF
vertically-constrained biped (Fig. 1B), such as Burden
et al. (2007); Berkemeier (1998). We include a complete
Lagrangian derivation of its equations of motion3 below,
and also derive a simplified analytically tractable version
subject to an assumption that we present below (similar to
the small-angle assumption made by Berkemeier (1998)).

Define the “non-dimensionalized inertia” parameter
(originally due to Murphy and Raibert (1985)) which we
shall henceforth refer to simply as the “inertia parameter”,

� WD
ib

mbd2
; (13)

where mb is the body mass (without loss of generality, we
set to mb D 1 kg, and we justify doing so in Sec. 2.2), d
is half the hip-to-hip distance and ib is the rotational inertia
about the center of mass.

The configuration variables (including those for massless
limbs) are q WD Œr1; r2; z; ��T , where ri 2 RC are the
lengths of the legs, z 2 RC is the height of the center of
mass, and � is the “body angle.” Despite the four entries,
the number of dynamical DOFs accounting for constraints
and degeneracies is only two, as shown below. The kinetic
and potential energies are respectively

T .q; Pq/ WD
1

2
mb Pz

2
C
1

2
ib P�

2; V .q/ WD mbgz:

Actuation enters this model only through the stance legs,
i.e. ‡i 2 R are the forces acting on the ri prismatic joints.
The model has two possible contacts—the two toes located
at

ai .q/ WD z C .�1/i�1d sin� � ri : (14)

The following assumption allows us to derive simplified
equations of motion for the slot hopper,

Assumption 1. To derive the constrained slot hopper
dynamics (21), (22), we substitute the linearized version,

ai .q/ WD z C .�1/i�1d� � r1; (15)

of the exact constraint in (14).

As a plot of bounding data from the physical platform
shows (Fig. 15), the oscillation in the body angle for
Minitaur bounding is in the order of ˙0:3 radians, where
the small angle approximation error is less than 1.5%.

Secondly, since our proofs only provide sufficient (not
necessary) conditions for stability, we often find that the
basin of stability is much larger than the scope of the
analysis (whether it be in relation to Assumption 1, or the
magnitude of the perturbation parameter). We compare the
behavior of this simplified model to a higher fidelity hybrid
system simulation as well as data from Minitaur in Fig. 4 to
corroborate the validity of this assumption.

Lastly, define the virtual leg index set I � Z2, where the
members i 2 I are “1” and “2”, but we use “i � 1” and
“i C 1” to refer to the other element in the set. Also, define
zi 2 RC, the heights of the hips, as

zi WD z C .�1/
i�1d� (16)

(anticipating the imposition of assumption 1). Clearly

2d P� D Pz1 � Pz2; (17)

which we use to change coordinates in Sec. 2.2.3. In the
following, we will think of an abstract “hopper i” being
located at height zi .

The continuous dynamics vary according to which
constraints from (15) are active (physically corresponding
to one or both toes contacting the ground). The different
“modes” are thus: “double stance” (both ai active), “single
stance” (only one active), and “aerial” (no constraints).

Controller parameter scaling We endeavor to apply the
same scalar control feedback signals developed for vertical
hopper control (recorded in (7)–(10)) to the slot hopper
analyses (Sec. 3), simulations (Sec. 4.1), and Minitaur
experiments (Sec. 4.2). This “template” controller feedback
law, ui W X! R, is related to the physical input signal
‡i 2 R (Sec. 2.2) through

‡i .x/ WD ˛0 C ˛1ui .x/; (18)

where ˛i 2 R are constant parameters that we modify
according the physical parameters of various plant models
considered in this paper (Table 3). The formal effect of
this affine transform (i.e., its role in facilitating the proofs
of Sec. 3) is to cancel extraneous constant terms in the
equations of motion (effectively mass and gravity-like
parameters) and reduce to a form close to (25). This is a
kind of morphological reduction as defined in Libby et al.
(2015), however the details and physical implications of the
reduction map are beyond the scope of this paper.

Lagrangian setup For the derivation of the equations of
motion, we use the notation of Johnson et al. (2016). In
each hybrid mode (subsections below) we define (a) the
configuration variables q, (b) the unconstrained (aerial)
inertia tensor M.q/, (c) the Lagrangian constraint a.q/,
whose rows are comprised of the exact “toe pinned”
constraint (14), and (d) the input vector ‡ . Let A WD
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Dqa.q/. Note that the gravity-like potential is the same
in each case, and so the gravity-like forces are N.q/ D
DqV.q/ D Dq.mbgz/. Lastly, the unconstrained inertia
tensor happens to be constant in each case below, and so
as in Johnson et al. (2016), we get the equations of motion
from �

M AT
A 0

� �
Rq
�

�
D

�
‡ � N
PA Pq

�
; (19)

where � are the constraint forces at the toe. Lastly, in each
case below, we use a text color to highlight terms in the
equations of motion that are present without Assumption 1.
When Assumption 1 is used, these terms get simplified

as ��
�*

�

sin�, ��
��* 1

cos2 �, and �
�7
0

P�2. Note that we prefer to impose
the “small angle” approximation before taking derivatives
(following Assumption 1) rather than after (which requires
making the substitutions described in this paragraph and the
following subsubsections). We include the dynamics absent
Assumption 1, below, for completeness.

2.2.1 Single stance Without loss of generality, we
consider the case where hopper 1 is in stance, and hopper 2
is in flight. The toe of hopper 1 is pinned to the ground, and
so only constraint 1 is active in (15), or a.q/ D a1.q/.

Without the small angle approximation, in single stance,
we have q D Œr; z; ��, M.q/ D diag

�
0; mb; �mbd

2
�
,

a.q/ D z C d��
�*

�

sin� � r , ‡ D ‡1. We can solve for Rq by
inverting the block matrix on the left of (19) (which is
non-singular as long as there are no massless free DOFs
or kinematic singularities Johnson et al. (2016)),

Rq D

264�g C ‡1
mb
.1C��

���: 0
cos2 �=�/ ����

��: 0

d sin� P�2

�g C ‡1=mb
‡1 cos�
dmb�

375 : (20)

Even though the system has two dynamical DOF, we have
three rows here, since the three (originally unconstrained)
variables r; z; � are now related through the toe–ground
constraint. Additionally, to get the second row of (21), we
use (16) with the first two rows of (20), and so the cos� in
last row of (20) does not need to be approximated.

With the small angle approximation, using the change
of coordinates from center-of-mass .z; �/ to “hip height”
zi coordinates in (16), we get mb Rz D �mbg C ‡1, and
mb Rz1 D �mbg C .1C 1=�/‡1. As per Sec. 2.2 and as
listed in Table 3, we substitute (18), and get

Rz1 D u1; Rz2 D �g �
1 � �

1C �
.u1 C g/; (21)

which can be compared to the exact version (20). We outline
in Sec. 2.2 how the control input u1 is set as a function of
the robot state.

Impulse

O

Support

O 0

Figure 3. Center of percussion. From Symon (1971): “The
point O 0 about which a blow must be struck in order that no
impulse be felt at the point O is called the center of percussion
relative to O . If the body is unsupported, and is struck at O 0,
its initial motion will be a rotation about O”.

The physical implications of different values of � are
noted in Table 3, and an intuitive interpretation of � is that
it moves the center of percussion (see Fig. 3), where the net
force on the hip over the stance duration plays the role of
the “impulse.” As (21) shows, a � D 1 configuration results
in a complete lack of coupling interaction, equivalent to
the “rotation about O 0” condition of Fig. 3. In Table 3, we
depict the location of the mass concentration (the location
of the body mass if it were concentrated at a finite number
of points, instead of distributed throughout the body, for
equivalent total mass, inertia, and center-of-mass) as well
as of the CoP as � is varied.

2.2.2 Double stance Without a small angle
approximation, using q D Œr1; r2; z; ��, M.q/ D

diagŒ0; 0;mb; �mbd2�, a.q/ D

24z C d���*�

sin� � r

z � d��
�*

�

sin� � r

35, and

‡ D

�
‡1
‡2

�
in (19), we get

Rq D

26666664
�g C ‡1C‡2

mb
C

.‡1�‡2/��
�* 0

cos2 �
mb�

����
��: 0

d sin� P�2

�g C ‡1C‡2
mb

C
.‡2�‡1/��

�* 0

cos2 �
mb�

C���
��: 0

d sin� P�2

�g C ‡1C‡2
mb

.‡1�‡2/ cos�
dmb�

37777775
Even though the system has two dynamical DOF, we have
four rows here, since the four (originally unconstrained)
variables r1; r2; z; � are now related through two instances
of the toe–ground constraint. Additionally, as above, the
cos� in the last row does not need to be approximated when
Assumption 1 is in place:

With the small angle approximation, after replacing ‡i
as in Table 3, using Assumption 1 we get:

mb Rz D �mbg C ‡1 C ‡2;

R� D
‡1 � ‡2

dmb�
:
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Table 2. Assumptions made to facilitate analytical results. We list how they are utilized, and also point to empirical or numerical
justification.

Assumption (title) Application Benefit Justification

(De et al. 2018, 1)
(simultaneous transitions) Sec. 3.3

apply switching averaging
(Thm. 1)

Simulation comparison in Fig. 7; < 7%
empirical single stance (Sec. 4.1.2)

(De et al. 2018, 2) (constant
stance duration) Sec. 3.2–3.3 simplify reset map Fig. 15 shows 6.5% deviation despite

perturbations (see Sec. A.5.1 discussion)

1 (linearized stance
constraint) Sec. 3.2–3.3

simplify single (21) and dou-
ble (22) stance dynamics

Fig. 5 trajectory comparison
(with/without)

2 (low initial pitch energy) Sec. 3.3
decouple the CoM and pitch-
ing dynamics (57)

Fig. 14 shows relative magnitudes of a�
and az (see Sec. 4.4.2 discussion)

3 (small flight time) Sec. 3.3 prove the time-varying �-
reset (44) is a contraction

Only restricts analytical scope to low
energy pronking; Fig. 9 shows stability
for much higher tf (see Sec. 3.3.6).

Using Table 3 and substituting in (18), we get

Rz D
u1 C u2

2
; R� D

u1 � u2

2d�
: (22)

2.2.3 Aerial In this case, Assumption 1 makes no
difference. Using q D Œz; ��, no constraint a, and no input
‡ , M.q/ D diag

�
mb; �mbd

2
�
, Rq D

�
�g
0

�
we get the

equations

Rz D �g; R� D 0; (23)

and using (17) we can reinterpret these in the zi coordinates,

Rz1 C Rz2 D �2g; Rz1 � Rz2 D 0 H) Rzi D �g; (24)

that is, the aerial phase is identical to the flight of two
independent vertical hoppers (the reader may compare to
De et al. (2018)).

2.2.4 Decoupled case First consider the stance dynam-
ics of the decoupled (� D 1) slot hopper. In double stance,
using (16) in (22), and also setting � D 1, we get Rzi D
Rz ˙ d R� D ui , and in single stance, setting � D 1 in (21),
we see that Rz1 D u1; Rz2 D 0.

In aerial phase, (23) is already decoupled. All together,
we see that the decoupled slot hopper has the equations of
motion (for each i 2 I)

Rzi D

(
�g C ui (stance)
�g (flight):

(25)

2.3 Phase differences and phase control
The two coupled hips of the slot hopper are not identical
oscillators, and we rely on intuition in each different non-
degenerate regime in Sec. 3 to construct a modified phase
difference coordinate (compared to (6)), such as (28) in
Sec. 3.2.1.4

In addition to the feedback coordination controllers
(9)–(10), the slot hopper exhibits preflexive phase control

terms, i.e. their more complex equations of motion contain
terms qualitatively resembling wi in (8) even without any
feedback control. The specific form of wi in these cases
is more difficult to express via a single equation, but we
provide at the outset an intuitive description of the stability
mechanism that is borne out by our analysis in this paper:

The weakly coupled hoppers are stabilized through a
coupling interaction between the relative phase of the two
hoppers and their energies (described in detail after (34)).
Meanwhile, the strongly coupled hoppers are stabilized
through the leg damping acting as a phase controller (cf.
Sec. 3.3).

3 Slot hopper analytical results
First in Sec. 3.1, we discuss the � � 1 “decoupled” regime
of the slot hopper (as an extension of the � D 1 case
idenified in Sec. 2.2.4). In Sec. 3.2–3.3, we set the input
wi � 0 in (8)) of (a) out-of-phase hopping at � < 1 (which
we term in the weak coupling regime in Table 3), and (b) in-
phase hopping at � � 1 (which we term the strong coupling
regime).7 In Sec. 3.3.7 we reintroduce phase control (9) and
attitude control (10) throughwi , and show that it is possible
to augment preflexive pronking with feedback. We present
many more numerical and empirical instances of feedback
augmentation/disruption of preflexive stability in the next
section.

3.1 The “decoupled” � � 1 case
In the companion paper, we analyzed the � D 1 case
and saw that the return maps for bounding- and
pronking-coordinated vertical hoppers are hyperbolic with
eigenvalues O."/ within the unit sphere. From the slot
hopper dynamics in (21), (22), and (23), we see that
the dynamics (specifically the coupling forces) depend
smoothly on �. Now suppose � D 1C O."2/. Then,
coupling forces of O."2/ magnitude appear in the
continuous dynamics, and are consequently ignored in the
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Table 3. Behavioral regimes and analytical results. As the inertia � (13) of a slot-hopper (Fig. 1B) is varied (mass concentration
depicted as red disks) along the abscissa of the plot in Fig. 2 (and Fig. 18), we observe the following systematic changes in its
morphological, analytical and behavioral features which are echoed by the sagittal plane biped (Fig. 1C) and Minitaur robot
(Fig. 1D) in close correspondence: (a) the center of percussion (CoP, Fig. 3, depicted as blue disk) moves (cf. Sec. 2.2.1), (b) the
preflexive control stabilizes different limit cycles (compare the analytical results depicted in Fig. 2 with the numerical summary of
Fig. 18 whose superimposed markings locate the corroborating in-place empirical Minitaur experiments of Sec. 4.3.1–4.3.2), and
(c) we are able to prove stability of five of these limit cycles (corresponding to the degenerate case, and either preflexive or
feedback stabilization of both relative phase targets) as listed below.

Regime
Relative
phase

Coordination
control

˛0 (18) ˛1 (18) Analysis Numerical/empirical
demonstration

“Degenerate”
� D 0

Reduces to single leg
De et al. (2018); see
Sec. 5.1.3

“WC”
� < 1

anti-phase Preflexive
(29), (34)

mbg
1C1=�

mb
1C1=� Proof in Sec. 3.2.3 Minitaur bounding (Sec. 4.3.1)

in-phase Attitude (10) Minitaur pronking (Sec. 4.4.2)

“Decoupled”
� � 1

anti-phase
Phase (9),
kd > 0

g 1
Bounding proof in De
et al. (2018)

“Comparison of coordination”
figure in De et al. (2018), SC-
Minitaur bounding (Sec. 4.4.1)

in-phase
Phase (9),
kd < 0

g 1
Pronking proof in De
et al. (2018)

“Comparison of coordination”
figure in De et al. (2018)

“SC”
� > 1

in-phase Preflexive (60) mbg
2

mb
2 Proof in Sec. 3.3.5 SC-Minitaur pronk (Sec. 4.3.2)

in-phase Attitude (10) mbg
2

mb
2 Proof in Sec. 3.3.7

anti-phase
Phase (9),
kd > 0

Suggested by bounding
analysis De et al. (2018)5 Minitaur pacing (Sec. A.6.1)

anti-phase Retraction
(Sec. A.6.2)

Suggested by vertical
hopper analysis De et al.
(2018)6

Minitaur trotting (Sec. A.6.2)

averaging step. Thus, the averaged return map is perturbed
by O."2/, and the stability conclusions we have presented
still hold.

3.2 Weak coupling: preflex anti-phase
stability

In this subsection, we use " as a perturbation parameter
perturbing both (a) the dissipation in the shank forcing
controller (7), and (b) � (13), by setting � D 1�"

1C"
.

Specifically, we can reparameterize the dynamics (21) in
terms of " D 1��

1C�
to get

Rz1 D u1; Rz2 D �.1C "/g � "u1I (26)

so that there is now a weak coupling interaction between
the two hoppers for small " > 0.8

As in the prior bounding analysis, we capitalize on step-
to-step symmetry and use the “half return map” analysis
as depicted in the upper series of sketches in (De et al.
2018, Fig. 2), but supress the parenthetical subscripts,
F WD F.1/; R WD R.1/ (as described in the last paragraph of
Sec. 2.1) for ease of reading.

3.2.1 Continuous dynamics From (21), the stance
dynamics of hopper 1 are free of any influence from
hopper 2, and so Pa1; P 1 can be computed as for an
isolated vertical hopper De et al. (2018). However, there
is coupling from hopper 1 into the dynamics of hopper 2,
suggesting (for reasons to be motivated directly below in the
discussion of (28)) the following coupled phase definition
as a replacement for  2 in (5):

e 2 WD  2 C "a1 cos 1
2a2

: (27)

Owing to the new mechanical coupling, here we must define
the following modified ı (specifically in the patch where
hopper 1 is in stance and hopper 2 is in flight):

eı WD  1 � �=2

!
�

e 2 � 1=2
.1C "/!f.a2/

: (28)

Again, this definition is motivated by the aim to find a
“slow” coordinate, d

dt
eı D O."/, which is in equilibrium on

the limit cycle.9 With these new definitions, using the flight
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energy coordinate from (4) in (21),

a2 Pa2 D Pz2.g C Rz2/ D �" Pz2.u1 C g/

(5)
D �"a2.1 � 2 2/.u1 C g/

(7)
D �"a2.1 � 2 2/.!a1 sin 1 C g/C O."2/

) Pa2
(27)
D �".1 � 2e 2/.!a1 sin 1 C g/C O."2/:

Using (28) to replace e 2 witheı, we get

Pa2 D �
g".2!eı � 2 1 C �/.!a1 sin 1 C g/

2!a2
(29)

To calculate, d
dt
eı, first we calculate d

dt
e 2. From (5), P 2 D

�
Rz2
2a2
C
Pz2 Pa2
2a2
2

. Using (26) and (29),

P 2 D
g

2a2
C "

�g.g C u1/.2 2 � 1/.2!eı � 2 1 C �/
4!a22

C
g C u1

2a2

�
C O."2/;

and then using (7) and the newly defined phase coordinate
(27),

d

dt
e 2 D P 2 � "a1! sin 1

2a2
C O."2/ D

g

2a2
C

"g
�
.2 2�1/.2!eı�2 1C�/.!a1s1Cg/

!
C 2a2

�
4a22

C O."2/:

Now we move on to using this to calculate d
dt
eı. Using (28)

and also substituting in P 1, we get

d

dt
eı D " sin 1v1

!a1
C O."2/:

Now we can complete the continuous dynamics for � WD
 1, x WD .a1; a2;eı/,
P� D ! C

"

a1
sin 1v1

Px D "

264 � cos 1v1
�g.2!eı�2 1C�/.!a1 sin 1Cg/

2!a2
sin 1v1
!a1

375 DW "f .x; �; "/;
(30)

where v1 is defined in (8) but now time with a silenced
active phase coordination term w1 � 0. The form of (30)
yields dx

d�
D O."/ as required by Thm. 1. Comparing to the

dynamics of the independent hoppers in De et al. (2018), we
notice that P�; Pa1 are identical (a consequence of the lack of
coupling from hopper 2 to hopper 1 in (21)), and second,
in sharp contrast, that the Pa2 dynamics (29) are intricately
coupled with the phase differenceeı.

Anticipating an anti-phase limit cycle, we consider the
same x� as for the independent hoppers (11), and averaging
(30) with respect to the fast variable � after substituting in
(8) gives us

f .x/ D

264 ka�a1ˇ
2!

�geı.g�C2a1!/
a2�!

0

375 ; (31)

which evaluates to 0 at x�, satisfying Thm. 1(ii). Note
that ı has an averaged effect on the energy level of the
flight hopper (second row above). This departure from
the mechanically decoupled hoppers De et al. (2018)
contributes to the preflexive stabilization of the bounding
limit cycle. Intuitively, if the flight hopper is leading in
phase (eı < 0), a2 is increased, and vice versa. This effect
over stance interacts with the reset (see text after (34)).
Moreover, we can calculate the Jacobian at the fixed point,

Df .x�/ D
�
�
ˇ
2! 0 0

0 0 �g�4
0 0 0

�
; (32)

where

�4 WD
gˇ
ka!
C

2
�

(33)

is a scalar only depending on constant parameters.

3.2.2 Reset Since the aerial dynamics are the same as
for isolated hoppers, the reset for the ai components are
the same as in (12). We now calculate the reset for the last
coordinateeı.

We use the explicit superscripts :s or :f to denote which
coordinate patch (case of (5)) is being used. We use “c1” as
shorthand for cos s

1 in this calculation. At liftoff,

ı.tLO/ D
 s
1.tLO/ � �=2

!
�
 f
2.tLO/ � 1=2

!f.a2/

(27)
D

 s
1.tLO/ � �=2

!
�
e 2.tLO/ � 1=2

!f.a2/
C
"c1a1

g

(28)
D eı C "�eı C c1a1

g
�
 s
1.tLO/ � �=2

!

�
:

Similarly, but bearing in mind that at the touchdown patch
hopper 1 is in flight and hopper 2 is in stance, and
accordingly modifying (28), we get

ı.tTD/ D
 f
1.tTD/ � 1=2

!f.a1/
�
 s
2.tTD/ � �=2

!

(27)
D

 f
1.tTD/ � 1=2

!f.a1/
�
 s
2.tTD/ � �=2

!
�
"c2a2

g

(28)
D eı C "�eı � c2a2

g
C
 s
2.tTD/ � �=2

!

�
:

Using the boundary conditions  s
1.tLO/ D � (constant

flow-time assumption in Table 2), and  s
2.tTD/ D 0 (initial
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condition for the flow of Thm. 1) in the equations above,

ı.tLO/ Deı C " �eı � a1
g
�

�
2!

�
;

ı.tTD/ Deı C " �eı � a2
g
�

�
2!

�
:

Substituting this into (12), and dividing through by .1C "/,

eı.tTD/ Deı.tLO/C
a2�a1
g

:

Putting everything together,

R.a1; a2;eı/ D K ha1; a2; eı C a2�a1
g

iT
: (34)

We see that x� in (11) when substituted into the equation
above yieldsR.x�/ D x�, and DR has a constant O.1/ part,
together satisfying Thm. 1(i).

The influence of the energy levels ai on the phase
difference eı (apparent in the last entry above) results in
a coupled interaction of a2 and eı through the continuous
dynamics (31) and the reset (34). Intuitively, following
along the example in the discussion after (31), if the flight
hopper is leading in phase (ı < 0), then a2 is increased
during stance (as discussed before). From (34), the flight
hopper now has a shorter flight period, and so ı is increased.

3.2.3 Stability test Using (32) and (34), we can compute
the averaged return map and evaluate at x� (11),

DP .x�2 / D

24 0 1 �"g�4
�5 0 0

�5=g �1=g �.1 � "�4/

35 ; (35)

where �4 is defined in (33), and

�5 WD 1 �
"ˇ
2!
: (36)

As shown in A.1, the return map is hyperbolic, and so
we can apply Thm. 1 to conclude that the weakly coupled
hoppers have a stable anti-phase limit cycle "–close to (11);
we tabulate this result in Table 3.

3.2.4 Disruption with feedback The preflexive stability
we just proved is demonstrated in empirical results in
Sec. 4.3, 4.5. We also demonstrate (though we do not
analyze) the disruption of this preflexive stability using the
phase controller (9) in Sec. 4.4.1. As argued in Remark 3.1,
we expect the hyperbolic phase-controlled limit cycles to
persist in a sufficiently small neighborhood of � around 1.
In interests of space we omit a full analysis of the weakly
coupled slot hopper as detailed in this section with wi set
according to (9) (which would proceed almost identically
to the proof presented here, with the incorporation of the
feedback as shown in De et al. (2018)).

3.3 Strong coupling: preflex in-phase stability
In this subsection we consider the “strongly coupled” mass-
parameter regime � � 1 (last row of Table 3), where
the body’s mass concentration beyond the hips moves
the center of percussion far from the mass center, thus
diminishing the moment associated with differences in
the ground reaction forces of one leg vs. the other.
Unlike in Sec. 3.2, where we used an explicit analytical
relation between � and " made in (21), � and " are
unrelated in this section. The regime of operation here
is one of “large �,” but still “small ".” As in De et al.
(2018), we instead now interpret " as the magnitude of
the (naturally ocurring) dissipative forces along with the
underlying hopping energization terms (second summand
in (8) originally introduced in De and Koditschek (2015a))
applied to the vertical hopper according to (7).

Because of the strong coupling, we find it helpful to work
in the physical .z; �/ coordinates (center of mass location
and body angle), subject to Assumption 1 as in Sec. 2.2.2.
First, we introduce an assumption on the initial “attitude”
energy:

Assumption 2. The initial conditions lie within the “low
a�” set L WD fx W a�=.�az/ D O."1=2/g.

Our justification for the assumption is listed in the next-
to-last row of Table 2; specifically, we show empirical
evidence of its applicability in Fig. 14. It allows us to
decouple the vertical and attitude dynamics (Sec. 3.3.2).
Next, we show that the vertical dynamics are stable
(Sec. 3.3.3), which is unsurprising since the decoupled
dynamics resemble that of an isolated vertical hopper.

Then, in Sec. 3.3.4–3.3.6, we tackle stability of the
“attitude” coordinate, �. First, we rigorously prove in
Sec. 3.3.5 that the continuous–time orbits of r� followed
by its resets render L (of Assumption 2) positive invariant,
subject to the following additional assumption:

Assumption 3. The flight time is bounded above: tf <
"�ˇ

p
d=�=!2.

This assumption (and the contraction proof it enables) is
necessary because the stability of the �–dynamics depend
on the flight time of the slot hopper, thus rendering
the �–return map time-varying. However, numerical and
empirical exercise of all these models shows that the time-
variation in the return map is indeed insignificant; we
offer evidence that Assumption 3 is unnecessary both in
simulation (Sec. 4.1.4), as well as in data taken from the
physical Minitaur experiments summarized in Fig. 12. In
Sec. 3.3.6, we discuss an assumed time-invariant version
of the �–stability analysis, exposing the relation of the
shape parameter � to the behavior of �, not subject to
Assumption 3.
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3.3.1 Coordinate changes Similar to the map p in (3),
we define the “�–phase”

p� WD d
�
� P�; ��!

�T
; a� WD kp�k; (37)

as in (4). Unlike the complete polar transformation for
the shank coordinate in (4) and (5), in this instance we
only need the body angle energy a� for analysis. This is
because in this subsection, the desired limiting behavior
is a point attractor for � (not an oscillatory behavior),
and consequently a “�-phase”  � is neither well-defined
nor required for analysis. In contrast, because vertical
oscillations of the mass center are of key interest, we will
need to define the vertical hopping energy and phase,

az WD kp.z; Pz/k;  z WD †p.z; Pz/ (38)

as in (4) and (5) respectively. Note that the vertical energy
coordinate az has units of m/s as before in (4), and the new
attitude energy coordinate a� also has the same units (since
in (37), d is a length, and � is an angle).

3.3.2 Decoupling In A.2, we show how Assumption 2,
empirically justified in the last row of traces in Fig. 14,
allows us to decouple the z and � dynamics in stance to
O."/;

Rz D !2.� � z/ � "ˇ Pz � "ka cos z ;

� R� D �d.!2 C kp/� � d."ˇ C kd / P�;
(39)

where  z D †p.z; Pz/.
Additionally, note that the aerial dynamics in (23) are

decoupled already, enabling completely isolated analyses
of the vertical “z” DOF (in Sec. 3.3.3) and the attitude “�”
DOF (in Sec. 3.3.4–3.3.7).10

3.3.3 CoM vertical dynamics stability The z continuous
dynamics (first row of (60)) are exactly the same as of a
single “virtual” leg located at the center of mass Raibert
(1986); Saranli and Koditschek (2003). The analysis of this
subsystem proceeds identically to the analysis of a single
vertical hopper De et al. (2018) (which utilizes Thm. 1),
and we obtain the same stability result.

3.3.4 Attitude continuous dynamics: preflexive For
Sec. 3.3.4–3.3.6, we examine preflexive stability by setting
kp D kd D 0 in (60). First we reparameterize the R�
equation in (60) with

!� WD !
p
d=�; ˇ� WD

"ˇ
2!

p
d=�; (40)

to yield R� D �!2�.1C ˇ
2
�/� � 2!�ˇ�

P�. Using the linear
coordinate change

y� WD

"
!�

q
1Cˇ2� ˇ�=

q
1Cˇ2�

0 1=
q
1Cˇ2�

#�
�
P�

�
(41)

from (Koditschek and Buehler 1991, A.1), we get

Py� D .�!�ˇ�I � !�J /y� ; (42)

where J WD
�
0 �1
1 0

�
is the skew form of a rotation in the

plane. Directly solving this linear system, we get the time–
ts flow of the vector field (42),

Q�.y� I t / D e
�ˇ�!� ts Rot.�!� ts/y� ; (43)

where Rot W S1 ! R2�2 W � 7! exp.�J / is the rotation
matrix on the plane.

The reset for the � coordinates (from the decoupled R� D
0 aerial �–dynamics) is a “time of flight” tf–parameterized
map,

R�.y�/ D
�
I C !� tfN

�
y� ; where N WD

�
0 1

0 0

�
: (44)

3.3.5 Attitude stability: preflexive Since the �–dynamics
are decoupled from the z–dynamics to O."/ in both the
flow (60) and reset (44), we can analyze the �–stability
separately. Direct computation yields the return map

P�.y�/ D R� ıQ�.y� I ts/

D e�ˇ�!� ts.I C !� tfN/Rot.�!� ts/y� : (45)

We show in A.3 that P� is a contraction. The continuous
� dynamics already (60) strictly contract a� , and so L is
positive invariant.

In summary, the decoupling described in Sec. 3.3.2, the
proof of vertical stability of the CoM in Sec. 3.3.3, and the
proof of �–stability in this subsection together guarantee
stability of the in-phase limit cycle; we list this result in
Table 3. We continue below to make further observations
about the behavior when Assumption 3 is not made, or in
the presence of feedback.

3.3.6 Attitude stability: time-invariant, preflexive Mak-
ing instead the approximation that both the stance time ts
and flight time tf are constant (justified by observing their
small variance in empirical trials such as the one in Fig. 12),
we now have a time-invariant �–return map (45), and we
can look at the eigenvalues of P� to discern stability.

Define eP � WD .I C �fN/Rot.��s/ such that P�.y�/ D
e�ˇ��seP �y� . Note that

deteP � D 1; treP � D 2 cos �s � �f sin �s:

Next, we prove and use the following Lemma:

Lemma 1. If deteP � D 1 and j treP � j � 2, then e�i ,
the eigenvalues of P� , are complex conjugate with unit
magnitude.

Proof. Since the determinant is identically 1,e�i D tr =2˙p
.tr =2/2 � 1 DW �0 ˙ j�1, and je�i j2 D �20 C �21 D 1.
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Note from (40) that !� / 1=
p
�, and so when � is made

arbitrarily large, j treP � j ! 2. The eigenvalues of P� are
�i D e

�ˇ��se�i , and so (using the Lemma above) �i lie
within the unit circle. We conclude that the return map P�
is stable, without requiring the restrictive Assumption 3.

We show numerically (in Sec. 4.1.4) as well as
empirically, by mechanically reconfiguring Minitaur to
have two different � values (in Sec. 4.3), that this condition
on � is important, and that instability of the in-phase limit
cycle results when � is not large enough. In other words, the
“weakly coupled” body of Sec. 3.2 (as well as our physical
platform Minitaur arranged with its “native” intended body
mass distribution) does not possess a stable in-phase limit
cycle, and requires feedback control (which we discuss
next) to render it attracting, thereby eliciting a pronk.

3.3.7 Attitude stability: feedback Now, we augment the
preflexive stability to reinforce the in-phase (pronking)
limit cycle by reintroducing feedback through positive
kp and kd in (10). From (60), we have enough control
affordance to stabilize the � dynamics to a point within a
single stance phase as follows.

First, we reparameterize the constants kp and kd in terms
of a new parameter, k� > 0, such that

d.!2Ckp/

�
D k� ;

d."ˇCkd /
�

D
k2�
2
:

Using this in the second row of (60), we get

R� D �k� P� � k
2
��=2: (46)

Now define the “graph error” Koditschek (1987) e� WD
P� C k��. Using (46), we get

Pe� D �2k�e� H) e�.t/ WD e
�2k� te�.0/; (47)

and so k� can be made arbitrarily large to get e�.t/
arbitrarily small in stance. Consequently, in arbitrarily small
time, the flow collapses to the e�1� .0/ submanifold, where
by definition of e� ,

P� D �k�� H) �.t/ D e�k� t�.0/; (48)

and with large k� , both �.t/; P�.t/ are also driven to zero
arbitrarily fast. Denote this deadbeat stance map as

Q�;FB W .�; P�/ 7! “arbitrarily close to 0”: (49)

Choosing a Poincaré section at liftoff, we get the return map

P�;FB

�h
�
P�

i�
D Q�;FB

�
.I C tfN/

h
�
P�

i�
: (50)

In summary, despite the flight destabilization, the deadbeat
nature of the stance stabilization guarantees stability in the
return map sense. We list this result in Table 4.

Though this discussion of feedback stability is for the
strongly coupled plant (57), we employ this controller on
the physical platform Minitaur, and empirically find that
even in the “weakly coupled” regime (1 � � � 0) it is able
to overcome preflexive bounding stability and exhibit a
pronking gait (Sec. 4.4.2).

4 Numerical and empirical results
In this section we present all our numerical and empirical
results, beginning with simulation work to test the efficacy
of our models and assumptions (Sec. 4.1), and also data
from a physical platform: Ghost Robotics’ Minitaur (2016),
a direct-drive quadrupedal robot introduced in Kenneally
et al. (2016). Each of Minitaur’s legs has two actuated
degrees of freedom capable of independently controlling
toe extension and hip flexion, with no ab/adduction
joints and no passively compliant elements. Minitaur is
equipped with encoders on each of its motors, as well
as an inertial measurement unit (IMU). No exteroceptive
sensing is required for the experiments reported here. The
computationally simple controllers (leg extension controller
(7) as well as other controllers mentioned below) are
implemented on a STM32F303 microcontroller running at
72 MHz. The control parameters appearing in (7)–(10) used
in the numerical simulation (and in correspondence with
our physical platform of Fig. 1D as shown in Fig. 4) are:
mb D 5 kg, ! D 51:6 rad/s, � D 0:2 m, ˇ D 4 N/(m/s)/kg,
d D 0:2m, � D 0:75, ka D 7:4N (though these parameters
are modified in the case of parametric sweeps).

In Sec. 4.2 we provide details of our implementation
for all the gaits demonstrated on the physical platform,
and empirical results in Sec. 4.3 onward. All of these
experiments are also included in the video attachment.

4.1 Simulation results
In this subsection, we use numerical simulation (all created
using MATLAB R2016a with ode45) to, first, test the
efficacy of our slot hopper model and justify the various
assumptions that were made for our analyses (Table 2) in
Sec. 4.1.1–4.1.4. In Sec. 4.1.5, we use numerical study to
get a global view of the closed-loop behavior when subject
to a �–sweep (13). An exhaustive �–sweep would be
impractical with the physical platform, though we present
empirical results at two interesting values as suggested by
our analysis (Fig. 18).

4.1.1 2DOF slot-hopper as a model for Minitaur In this
paper we posit the 2DOF slot hopper model (Sec. 2.2)
as a template—analytically tractable and effectively
representative of the locomotion tasks of interest Full
and Koditschek (1999)—to be anchored in a physical
platform possessing far greater dynamical complexity. Even
assuming massless limbs, and considering operation in only

Prepared using sagej.cls

http://www.st.com/content/st_com/en/products/microcontrollers/stm32-32-bit-arm-cortex-mcus/stm32f3-series/stm32f303.html
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/help/matlab/ref/ode45.html


Vertical hopper compositions for quadrupedal gaits 15

Table 4. Empirical extensions via template composition. Parallel composition of the new slot-hopper template with the existing
SLIP template De and Koditschek (2015a) can be directly embedded into the Minitaur dynamics to achieve stable running and
leaping, while relying on the analytically supported vertical energization and coordination strategies in Table 3.

Regime Controller(s) composed Empirical demonstration

“WC”
� < 1

Stepping fore-aft controller (63), yaw
controller (65)

Bounding at commanded velocities up to 5 body lengths/second
(Fig. 15)

Increased vertical gain ka (8) for a single
stride

Leaping from and returning to steady state bounding/pronking
(Fig. 16, Fig. 19)
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Figure 4. Projecting Minitaur and sagittal plane biped trajectories onto the slot hopper DOF. Top: A comparison of empirical
data from Minitaur bounding in place (Fig. 1C) with simulations of a high-fidelity sagittal biped model (Sec. 4.1.1, Fig. 1B) and the
more abstracted slot hopper model (Sec. 2.2, Fig. 1A). Note that the x DOF only appears in models B–C, and its velocity is
displayed here (third plot of traces) for a full account of the physical machine’s behavior as it bounds in place (see Sec. 4.1.1).
We provide a “zoomed-in” version on the right so that some of the almost-overlapping traces are visible (e.g. the z coordinate in
the first row is almost overlapped by the red/yellow traces). Bottom: Snapshots of WC-Minitaur bounding in place (taken at rear
stance, aerial, and front stance) from this experiment.

the sagittal plane, a physically realistic Lagrangian model
requires working with at least 5DOF kinematics, suggesting
the sagittal plane biped (Fig. 1B) as an intermdiate model.

In this section, we present plots comparing the template
and appropriately projected numerical and empirical body
trajectories that establish: (i) the accuracy of a linearized
approximation (Assumption 1) to that template; (ii) the
precision with which the sagittal plane biped model
(Fig. 1B) anchors that template; and (iii) initial empirical

data suggesting the efficacy of that intermediate model as
a description of the sagittal plane behavior of the Minitaur
robot (Fig. 1C) at steady state. We reserve for Sec. 4.3 a
more extensive empirical study detailing the utility of the
template model’s preflexive and feedback-based stability
analyses for commanding and executing useful running
behavior in the physical machine.
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Figure 5. 2DOF slot-hopper as a template anchored by the Sagittal Plane biped. Numerical comparison of steady state
behavior in the sagittal biped (Fig. 1B, Sec. 4.1.1) and in the slot-hopper (Fig. 1A, Sec. 2.2) models presenting error between the
corresponding state trajectories from a variety of initial conditions. Left: time trajectories from two different initial conditions in the
two columns. Note that the last traces on the left are non-existent for slot-hopper and only show that the sagittal plane biped
settles down to zero-net horizontal velocity. Right: a frequency domain comparison of the resulting � and z oscillations obtained
from 100 initial conditions (10 along each axis; see Sec. 4.1.1 for details). Even though the phase lag can be quite large, it
converges to a constant which is generally small (as shown in the right hand sweep, and which, in any case, does not diminish
the qualitative match), and the error in oscillation magnitude is bounded above by 3.5% (as discussed in Sec. 4.1.1). With the
exception of the added x–DOF, the primary distinction between these two models is our Assumption 1; the qualitative similarity in
the limiting behavior of the two models thus justifies the assumption.

This intermediate numerical model of the anchoring
sagittal plane system (Fig. 1B) can be derived using the self-
manipulation modeling paradigm of Johnson et al. (2016).
As shown in Fig. 1 (third column), the body is allotted 3
DOF’s, and each leg is modeled as a massless revolute-
prismatic joint, suggesting q WD Œ�1; r1; �2; r2; x; z; ��T ,
and the kinetic and potential energies are respectively
T .q; Pq/ WD 1

2
mb. Px

2 C Pz2/C 1
2
ib P�

2, and V.q/ WD mbgz.
Additionally, we consider two possible active contacts at
the massless toes,

ai .q/ WD
�
x

z

�
C .�1/i�1d

�
cos�
� sin�

�
C ri

�
� sin.�i � �/
cos.�i � �/

�
;

and depending on which contacts are active, one or both
constraints are activated, and appear as rows in a.q/. We
omit a full hybrid system description of this model, but we
follow the modeling procedure of Johnson et al. (2016).

In Fig. 4, we plot data from Minitaur and data from both
the sagittal biped simulation and the slot hopper simulation.
Since the body inertia ib is not known accurately for
Minitaur, we tuned that parameter from the simulation;
� D 0:77 proved to be a good estimate. In the last row, the
speed of the robot from raw motion capture data is plotted
alongside a filtered version (obtained by truncating the
Fourier transform at 3 Hz–approximately the stride rate of

bounding Minitaur). We believe that the speed oscillations
are caused in part because of the motion capture rigid body
CoM being located vertically above the actual CoM, and
also because the body speed Px does indeed oscillate in a
manner that averages out over a stride due to imperfect
tuning of the nominal leg angles. The leg angles and fore-
aft behavior are out of the analytical scope of this paper
(though we describe our implementation in Sec. A.5.1).

The sagittal biped simulation’s speed is also plotted,
but note that the slot hopper model does not even have
an x degree of freedom. The fore-aft energy can be
considered a “perturbation” to the slot hopper model we
have analyzed here, and the persistence of the expected
vertical oscillations and phase relationships testifies further
to the robustness of the analytical results.

All in all, Fig. 4 indicates that at least for bounding in
place, both models provide good agreement in the z and
� degrees of freedom (to each other and to empirical data),
over the region of state space most pertinent to the bounding
task. A comparison of the slot hopper and sagittal biped
models over a much larger region of state space (more trials
than is practical to run on the physical platform) is shown
in Fig. 5.
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Figure 6. Comparison of slot hopper simulation to
SC-Minitaur. The empirical data (in contrast to the numerically
computed dotted traces) for this plot is from Fig. 12 and
Fig. 13, and we have now used the value of � in (55). Note the
different z–scales in the two sets of plots. See the last
paragraph of Sec. 4.1.1 for further discussion.

The left panels of Fig. 5 show time trajectories for
some relevant coordinates comparing the sagittal biped
simulation to the slot hopper simulation. The simulations
are started with both models in aerial phase, with different
initial �.0/, Px.0/ conditions, but from the same z.0/.
Note from Fig. 4 and Fig. 15 that the initial � on
touchdown for bounding seems to be within j�j < 0:4
radians empirically. The range of speeds chosen was small
since this simulation does not implement the fore-aft
control necessary to stabilize large speeds (in Sec. A.5.1, we
describe a controller used for this purpose on the physical
platform).

The leftmost columns show time-trajectories of the re-
sulting hybrid executions, and even though the two models
are drastically different in dimension and complexity, the
resulting behavior is a charateristic z and � oscillation in
either case. The only discernible qualitative difference is a
phase shift in the resulting steady-state oscillation

In the top right column of Fig. 5, we compare the
resulting oscillations in the frequency domain. Suppose
�z.M/ is the z-oscillation magnitude at the predominant
frequency, where M 2 fA;Bg (referring to the model from
Fig. 1), and a similar quantity is defined for �. In Fig. 5 (top
right) we plot the quantity���.B/=��.A/�z.B/=�z.A/

�
�

�
1

1

� (51)

as a metric of the normalized dissimilarity in the �, z
oscillations in the two cases. Note that each entry of the
vector inside the k � k above is a “% error” in the oscillation
of the �, or z trace (respectively), and we plot the norm
of this vector in the top right of Fig. 5. As the legend
reveals, the error is less than 3.5% over the range of initial
conditions considered.

In the Fig. 5 (bottom right), we compare the phase offset
of the resulting �–oscillations,

†�.B/ � †�.A/ (52)

showing a larger range of phase lags between the two
simulations (generally more strongly related to �.0/ than
Px.0/). These discrepancies in steady state phase as a
function of initial condition don’t affect qualitative behavior
on the limit cycles, hence, the stabilizing effects of body and
feedback parameters proven mathematically for the slot-
hopper (Sec. 3.2–3.3) achieve correspondingly stabilizing
results in the qualitative behavior of the sagittal biped and
physical robot as we will detail in the next section.

In addition to the numerical and empirical comparisons
in Fig. 4–5, we include in Fig. 6 another comparison of the
slot hopper’s preflexive and feedback–stabilized behavior at
a different � value (55) to data from SC-Minitaur. The top
two rows demonstrate preflexive (pronking) behavior, and
with the same � value, we apply the phase controller (9) to
both simulation and physical platform, and plot the results
in the bottom rows (bounding in both cases). The �-traces in
the top row, and the z–traces in the bottom row both exhibit
small amplitude variations, where various perturbation
sources in the physical world cause apparent discrepancies
between physical data and simulation. However, there is
a very close match in the more pronounced z, and �–
oscillations that are observed in the top and bottom rows
respectively between the simulation and the empirical data.
This provides more evidence that the template and the
analytical conclusions garnered from Sec. 3.3 and the
pronking analysis in De et al. (2018) are representative of
Minitaur’s behavior in the real world.

4.1.2 Near-simultaneous transitions As the correspond-
ing section of De et al. (2018) describes, an assumption on
active toe extension control is required for the application
of the single-mode hybrid averaging theory to our pronking
analyses in De et al. (2018) and Sec. 3.3 (to ensure simulta-
neous transitions between aerial and double stance modes
as intuitively illustrated in the lower series of (De et al.
2018, Fig. 2)). However, in practice, the resulting hybrid
executions of the four-mode system (allowing for single
stance) are quite similar.

In Fig. 7, we compare simulated executions of the slot
hopper model (Sec. 2.2) from three different initial �.0/
conditions (z.0/ D 0:4 m in each case), with executions
of a version of this model modified as follows. In the

Prepared using sagej.cls



18 Journal Title XX(X)

r 1
(m

)
�.0/ D 0:1

r 2
(m

)
z

(m
)

�
(r

ad
)

�.0/ D �0:25 �.0/ D 0:4
0.25

0.2

0.15
0.25

0.2

0.15
0.3

0.2

0.1

0

-0.1

Figure 7. Qualitative effect of active toe extension for
simultaneous transitions. Simulation runs of the slot hopper
(Sec. 2.2, Fig. 1A) testing the simultaneous transition
assumption (third row of Table 2) with some plots of executions
from different initial conditions (in columns). In the traces with
dashed lines, active toe extension control in aerial phase (see
Sec. 4.1.2) is enabled, whereas for the solid lines it is
disabled. The resulting qualitative behavior is almost identical
in either case.

aerial phase, we apply the following acceleration to the toe
(though the mass is non zero)

Rri WD kp
�
�C .�1/i�1�d � ri

�
� kd Pri ;

for i 2 I, where ri is the extension of the toe in flight.
Though the model assumes massless toes, this imposed
feedback results in simultaneous touchdown as long as
j�j < �=2. In Fig. 7, the solid lines correspond to
executions going through all 4 hybrid modes, and the
broken lines are with simultaneous touchdown.

As expected, the larger j�.0/j results in the most
disparate behavior11, but in all cases, the asymptotic
resulting behavior is identical, with small phase shifts in
the z–oscillations. This supports our analytical assumption
of simultaneous transitions (Table 2) in both the prior paper
and Sec. 3.3, even though we do not enforce it on the
physical platform (Sec. 4.2.3). Still, as referenced from
Table 2, the relative frequency of single stance periods
observed in pronking trials is quite low (< 7%).

4.1.3 Robustness to parametric inaccuracy The simple
form our controller takes (7), (8) is relatively robust to
parametric inaccuracy. In Fig. 8, we numerically explore
the results of a mismatch in the two parameters ˛i in
(18) of Sec. 2.2. In the wide range of parameters shown
in the bottom row (g 2 Œ�10; 40� m/s2 and one order of
magnitude of variation in the assumed body mass mb)12,
the qualitative behavior still displays a stable limit cycle
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Figure 8. Robustness to parametric inaccuracy. Simulation of
the slot hopper model (Fig. 1A) testing the effect of poorly
chosen physical mass and inertial matching parameters, ˛i in
Sec. 2.2. Despite the large and varied discrepancies between
assumed (applied in the control (18)) and actual ˛i captured in
the bottom plot, there is a stable limit cycle everywhere except
for a region contained within the yellow polygon. The colors in
the top plot correspond to the applied parameters designated
by the “�” in the bottom row. The “correct” parameters (Table
3) are at the blue “�” (i.e. there is no parameter mismatch);
we chose the green “�” to be deliberately close to the yellow
“failure region” (the lowered energy results in almost no aerial
phase, causing the z–oscillations to be deminished; cf.
Sec. 4.1.3), and the red “�” in a disparate region of the
parameter space. The percentage errors in the last row
measure the relative discrepancy between the intended
response to “correct” (blue) control parameters vs. that
achieved by the actually applied parameters as described in
(53) and the text following.

for almost13 the entire region. We chose � D 0:9 for each
simulation in this subsubsection.

The top rows of Fig. 8 plot executions from three
different parameter sets (shown in the bottom row with a
“�” corresponding to the color of the solid line in the top
row). The bottom row of Fig. 8 displays the discrepancy

100
�
�i .˛/=�i .˛

�/ � 1
�

(53)

in the resulting � and z oscillations for some parameter
vector ˛ D Œ˛0; ˛1� relative to the result with the correct
parameters, ˛� (blue “�” in Fig. 8), for three different
“measures” �i chosen for the three columns along the
bottom row of Fig. 8: the magnitude of the �–oscillation
(left), frequency of the �–oscillation (center), and mean of
the limiting CoM height z (right).
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In-phase preflexive stability (Sec. 4.1.4)
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Figure 9. Strongly coupled in-phase stability vs. �.
Simulations of a slot hopper (Sec. 2.2, Fig. 1A) testing the
convergence of an in-phase limit cycle as the parameters !�
(equivalently, � through (40)) and the flight time tf. The
“convergence metric” is an estimate (described in Sec. 4.1.4)
where negative values indicate stability. We chose the pink
and green parameter vectors on either side of a posited
stability “boundary” supported by the findings of Sec. 3.3.6,
and the red point to illustrate that the behavior for small–!� is
convergent (albeit slow due to the small !� ) despite the dark
patch surrounding it. The plots in the bottom row are
discussed in the text.

We can see from the contours on the bottom row that
excluding the yellow region13 that in each case, even large
parametric mismatches in (18) result in less than 30% error
as compared to the designer’s intention.

4.1.4 Strongly coupled in-phase stability vs. � In
Sec. 3.3.6, we showed that the assumption of constant
flight time permits a conclusion that “high enough”
� (consequently, “low enough” !� in (40)) results in
preflexive pronking. In simulation, we test a range of
values of !� across an order of magnitude to explore its
interaction with a primary destabilizing influence absent
this assumption. Intuitively, a greater excursion of pitch in
flight should disrupt the sagittal plane gaits and, indeed,
recall from the return map expression (45), the flight time tf
provides a destabilizing effect. Motivated by this, in Fig. 9,
we plot a metric of stability (described below) on a !�–t�f
plane. The flight time is not constant, however we provide
the vertical hopper with a desired energy a� D gt�f =2.

The bottom rows of Fig. 9 display both the physical
� coordinate, as well as values of a� (37) sampled at
successive transitions into aerial mode (liftoff). The slope
of the solid line (obtained as a least-squares degree-1
polynomial fit) in the bottom row is the “convergence
metric” we use in the top row of Fig. 9. We use
this unconventional metric since (as the green time-
series plot shows), in large parts of this “ungoverned”
region of the parameter space, the behavior is somewhat
chaotic (as apparent from the a� plot), and conventional
numerical estimates of the return map eigenvalues return
uninterpretable or inaccurate results. Intuitively, while in
a linear system or in a small-enough basin near a fixed
point, we would expect an exponential trend for state
trajectories, due to the chaotic nature of the section data,
in our experience a degree-1 fit proved relatively more
reliable. Nonetheless, negative values of our “convergence
metric” in fact indicate convergent behavior, and positive
values correspond to divergence.

The plot results agree with our analytical result in
Sec. 3.3.6 even without a time-invariant assumption: for
each t�f , there is a “low enough” !� that results in
convergence to the in-phase limit cycle, and for smaller
t�f allows for a larger range of !� that result in stability.
These findings are corroborated by empirical results in
Sec. 4.3; Fig. 12 shows a stable empirical preflexive pronk
obtained by modifying the � of the physical platform with
no feedback–generated control signals (i.e. wi � 0 in (8)).

4.1.5 Phase locking at intermediate � In our analysis
of the case � < 1 in Sec. 3.2.3, we showed the anti-phase
limit cycle is preflexively stabilized, whereas in Sec. 3.3.6
we argued that there is a preflexive stability for the in-
phase limit cycle when � � 1. These analyses motivate
an inquiry into the behavior of the system for intermediate
values of � (i.e., comprising a range of values around the
third row of Table 3). As previously argued in Sec. 3.1,
we expect the phase control to be effective in a sufficiently
small neighborhood of � around 1; numerically and (as we
show in Sec. 4.4) also empirically, we are able to explore a
much larger neighborhood.

Fig. 18 shows the limiting (after t D 10 seconds of
execution) “touchdown offset”,

cos.2�es/; wherees WD si � si�1

si � s
�
i

(54)

for leg i 2 I, si is the latest touchdown time of leg i , and s�i
is the previous touchdown time. This calculation essentially
returnses D 0 for the in-phase limit cycle, andes D 1=2 for
an anti-phase limit cycle.

The black dots in Fig. 18 summarize simulation runs that
corroborate the analytical results of this section for the slot-
hopper model (Fig. 1A) at the left and right extremes of
the plot (Sec. 3.2 and Sec. 3.3, respectively), and strongly
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Table 5. Comparison to prior virtual leg management. We refer to Raibert et al. (1989) for baseline prior practice, as it remains
the most complete reference to Raibert’s pioneering ideas that continue to dominate most experimental quadruped work,
including our own. The analytical insights reported here afford similar behavioral results from less prescribed (event-based)
compensators requiring fewer actuated degrees of freedom.

Name Raibert et al. (1989) Our implementation Possible benefit/discussion

State machine
Prescribed alternating stance/flight
(Fig. 6-6), cf. note 17

Independent hips with event-
based (non-prescribed) mode
switching14

Robustly handles unexpected per-
turbations.15

Virtual leg
flight control

Identical hip-relative horiz plane
displacement: eqs. (6.5)–(6.6) Same as Raibert (Sec. A.5.1)

Virtual
leg event
synchronization

Actively enforced simultaneous
touchdown

Simultaneous touchdown not en-
forced

Minimal qualitative effect
(Sec. 4.1.2), not reliant on flat
ground (Sec. 4.2.3)

Virtual leg
stance control

Equal axial leg forces: eq. (6.7) Each leg indepedently applies
(18)

Shank actuators control both height
and roll/pitch (see below and
Sec. 4.2.3)

Vertical control Increased “rest length” at bottom Negative damping (7) Smoothly defined through stance

Fore–aft speed
control

Positioning flight toe at “neutral
point:” eqs. (6.1)–(6.2) Same as Raibert (Sec. A.5.1)

Pitch/roll
control

Hip torques (flexion/extension and
ab/adduction): eqs. (6.3)–(6.4) Coordination controllers (9)–(10) Hip actuators not needed

(Sec. 4.2.3)

Yaw control
Positioning flight toe using
ab/adduction: eqs. (6.9)–(6.10)

Fore/aft hip joint torques in stance
(65)

Ab/adduction joints not needed
(Sec. A.5.2)

suggest that there is a sharp “phase transition” in a tight
neighborhood of � D 1 regarding which our analysis is
silent absent the specific sensorimotor feedback policies
analyzed in (De et al. 2018, Sec. 4.2–4.3). Looking ahead
to the empirical study of the next section, the superimposed
vertical green and magenta lines correspond roughly to the
values of � exhibited by Minitaur without weights (see
Sec. 4.3 reporting reflexive bounding via an anti-phase fore-
aft oscillation) and with weights (see Sec. 4.4 reporting
preflexive pronking via an in-phase fore-aft oscillation)
added to distribute the mass center. Their correspondence
with this section’s analysis of the slot-hopper model further
attests to our hypothesis that its dynamics are anchored by
preflex in the physical machine.

In contrast, we use colored dots in Fig. 18 to depict
the capacity of the sensorimotor feedback policy (9) to
override the preflexive coordination patterns as proven in
the bounding and pronking analyses of De et al. (2018)
for the case � D 1 and shown in Sec. 3.1 to apply in the
“approximately decoupled” � � 1 regime. Specifically, the
red dots summarize the simulated results of applying (9)
with kd < 0 (commanding an anti-phase limit cycle) while
the blue dots correspond to the case kd > 0 (commanding
an in-phase limit cycle) for the slot-hopper model (Fig. 1A),
with a range of coupling values including the effectively
decoupled situation of � D 1 illustrated in numerical results
from De et al. (2018). While the phase control is insufficient
to overcome the preflexive stability at extreme values of �,
the figure shows regions near � D 1 where the feedback

control is able to stabilize near-independent hoppers to a
desired limit cycle. The disruptive influence of feedback is
also empirically demonstrated in the Minitaur in Sec. 4.4.

4.2 Physical platform implementation details
In this paper we primarily view Minitaur as a composition
of two hoppers in the sagittal plane (with exceptions
in Sec. 4.6). The various aspects of implementation
and control are described in this subsection, and the
experimental results are presented in the following
subsections.

4.2.1 Template control implementation The overall
implementation proceeds as follows (and is further detailed
throughout this subsection): (a) a virtual leg grouping is
selected; (b) physical touchdown and liftoff detection is
implemented; (c) the controller (7) (and recursively, (8), and
when applicable, (9) and/or (10)) is used to formulate the
stance control signal; (d) this control signal is applied to
the stance leg through the process described in Sec. 4.2.3;
(e) to additionally move the in-place-hopping robot in the
horizontal plane, the fore-aft (63) and yaw (65) controllers
are applied.

In this paper we assume control authority over the radial
leg force for implementation of (7). On Minitaur, this
force can be controlled at a very high bandwidth using the
microcontroller and drive electronics documented in De and
Koditschek (2015b); Kenneally et al. (2016), and the motor
encoders enable 12-bit measurements of the motor position
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RETRACT1 RETRACT2

Figure 10. State machines utilized to implement the various
gaits in this paper. Our work is inspired by Raibert, and this
figure is meant to elicit connections to (Raibert et al. 1989,
Fig. 6-6, 6-11). However, unlike Raibert’s implementation (we
summarize in Table 5 our departures from Raibert’s
implementation, and provide further details in Sec. 4.2.3 as
well as Sec. A.6.2), our scheme enables bounding, pacing,
and pronking with independent virtual legs and fewer actuators
(only using radial leg extension), whereas Raibert’s reported
pace and trot results used the more aggressive sequenced
coordination of (Raibert et al. 1989, Fig. 6-6), as well as two
additional actuators at each hip.

and velocity. The accumulated losses from motor back-
EMF and bearing friction are represented in the lumped
damping term in (7). Whereas there is no torsional control
asserted for the in-place gaits discussed in this and the next
two subsections, 4.3 and 4.4, please see Sec. 4.2.3 for an
account of additional controllers introduced to coordinate
other actuated and unactuated DOFs.

4.2.2 Touchdown detection A major design considera-
tion for Minitaur was drivetrain transparency, as described
in Kenneally et al. (2016). In flight, we set the toe extension
using a PD controller with low gains, and on physical toe-
touchdown, the vertical force on the toe manifests as a de-
flection in the motor angles (through the well-conditioned
leg Jacobian Kenneally et al. (2016)). An above-threshold
deflection (corresponding exactly to an above-threshold toe
force) causes the TOUCHDOWN event to be triggered.
This scheme allows for touchdown detection in as little
as 6 milliseconds with no additional sensors, as shown
in (Kenneally and Koditschek 2017, Fig. 4, 5). Further
research is underway to establish which behaviors on the
Minitaur machine are crucially dependent upon this high
bandwidth proprioceptive capability.

4.2.3 Virtual leg groups As (Raibert 1986, Ch. 4)
describes, we use the term “virtual leg” in this paper to refer

Bound

Pace

Trot

Pronk0
12

3

0
12

3

0
12

3

�pitch

�roll

�att

Figure 11. Virtual bipedal gaits on a quadruped. Sec. 4.2.3
discusses the feedback coordination needed for these
“groupings.” On the left, the solid lines are grouped together
into a single virtual leg, and the dashed lines into a second
one. The solid arrow connotes the “projection” of the dynamics
manifesting formally as a dimension reduction of the state
space considered in the analysis. The nominal leg numbering
we use is also depicted in the figure, and is helpful for
interpreting the empirical data in Fig. 15–21.

to a group of physical legs (on Minitaur) coordinated to
operate in synchrony as per the three rules detailed in A.4.
In each case, we first present our implementation, and then
highlight below the similarities and differences between
our implementation and that of (Raibert 1986, pg. 92). We
point out here that though we use the simulation paper
Murphy and Raibert (1985) and book Raibert (1986) as
the main expository sources of Raibert’s insights, some of
the implementation details pertaining to the quadrupedal
gaits demonstrated by him and his collaborators are only
present in the technical report Raibert et al. (1989). We
consider the latter as the definitive representation of “prior
art” when juxtaposing with our own implementation, but
refer to the book Raibert (1986) on occasion when the
requisite descriptions are missing from the technical report.
In future work we plan to explore a more sophisticated
version of our intra-group control such that a “virtual leg”
is formally anchored in the physical leg groups transmitting
ground reaction forces to the robot body, as in Saranli and
Koditschek (2003).

4.3 Preflexive stability
First, we leverage the preflexive stability properties
analyzed in Sec. 3.2 and 3.3 to get stable limit cycles on
Minitaur without any feedback coordination of the phases
of the two hips. We program each of the sagittal plane legs
(virtualized according to the top row of Fig. 11) as a vertical
hopper, using the controller (7) with wi � 0 in (8).

4.3.1 Bounding in place The first result we obtain is that
Minitaur bounds in place (Fig. 4). In that figure we compare
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Figure 12. SC-Minitaur preflexive pronking. Top: Empirical data from Minitaur (Fig. 1C) in its “high-inertia” configuration
(Sec. 4.3.2) showing stable preflexive pronking (note that the hip heights z1, z2 oscillate in phase). We compare this empirical
data to our simulation models in Fig. 6. Additionally, by examining successive touchdown and liftoff times from the log file, we get
statistics for the time of stance ts D 0:139˙ 0:013 seconds, and time of flight tf D 0:233˙ 0:026 seconds. The deviation in flight
time is thus 11% including the initial transients, justifying our investigation into “constant flight time” in Sec. 3.3.6. Bottom:
Snapshots of SC-Minitaur (taken roughly at bottom, liftoff, and apex) from this experiment, showing the newly attached 0.5 kg
weights on either end (compared to Fig. 4) to modify � (13).
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Figure 13. SC-Minitaur feedback-stabilized bounding. Top: Empirical data from Minitaur (Fig. 1C) in its “high-inertia”
configuration (Sec. 4.3.2), but with feedback phase control (9), showing stable bounding (note that while in the initial transient
phase (first inset), the hip heights z1, z2 oscillate without a specific relative phase, after some time they stabilize to being out of
phase, and the pitch oscillations are much more pronounced). We compare this empirical data to our simulation models in Fig. 6,
and discuss in Sec. 4.4.1. Bottom: Snapshots of SC-Minitaur bounding in place (roughly at front stance, aerial, and rear stance)
from the same experiment.

the resulting time-behavior of the appropriately chosen
physical coordinates to simulations of the numerical models
depicted in Fig. 1, and find that � � 0:77 is a good fit. This
matches our expectation, since most of Minitaur’s mass is
concentrated at the hips (where the motors are attached), but
some mass is concentrated near the center where the battery
is housed. This preflexive stability is a demonstration of

our analytical result in Sec. 3.2, and also shows remarkable
agreement of empirical data to the simulated sagittal plane
biped (Fig. 1B) and only slightly more distinguishable
traces relative to the slot-hopper template (Fig. 1A).

4.3.2 Pronking in place In the next experiment, we
artificially modify � by attaching two weights on top of
Minitaur (we deem the modified model “SC-Minitaur” or
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Figure 14. Minitaur feedback-stabilized pronking. Top: Empirical data from Minitaur (Fig. 1C) in its default configuration, but with
feedback attitude control (10) stable pronking (note that the hip heights z1, z2 oscillate in phase). As described after (38), the
“energy” coordinates have units of speed. See Sec. 4.4 for more discussion. Bottom: Snapshots of WC-Minitaur pronking (taken
roughly at bottom, liftoff, and apex) from this experiment.

strongly-coupled Minitaur). These outrigger payloads have
a total mass of 1 kg, are added at a distance of 0.37 m
from the center of mass, and primarily serve to increase the
rotational inertia about the center of mass (Fig. 12, bottom).
Using the parallel axis theorem, the resulting inertia is

i 0b D �mbd
2
C 1 � 0:372 DW �0.mb C 1/d

2

H) �0 D 1:149; (55)

using values for mb and d mentioned in the introduction of
Sec. 4, and � mentioned in Sec. 4.3.1.

We find that the modified SC-Minitaur exhibits a
preflexively stable pronking in place, as shown in Fig. 12.
We reiterate to emphasize that the controller was not
modified between Fig. 4 and Fig. 12, only the physical
parameters of the body. This preflexive stability is an
empirical demonstration of our stability analysis in Sec. 3.3.

Qualitatively, we observe that preflexively, the legs zi
are in phase in SC-Minitaur Fig. 12, but out of phase in
unloaded Minitaur (Fig. 4 and Fig. 15). We did not include
z2 in the top row of Fig. 4 for clarity, but the different
asymptotic relative phases can be seen by comparing the

zoomed-in panels in Fig. 4 to Fig. 12; specifically, the
reader should compare the relative phases of the red and
yellow traces. This empirical outcome is expected from
our analytical results of Sec. 3.2 (preflexive bounding)
and Sec. 3.3 (preflexive pronking), and the simulation
results generated from our slot hopper model in Fig. 18.
Additionally, the pitch shows a pronounced oscillation in
both Fig. 4 and Fig. 15 (instances of bounding), but the
magnitude of the pitch is very small in Fig. 12 (instance
of pronking).

4.4 Feedback synchronization
Simulations in the companion paper De et al. (2018)
showed that the coordination controllers (9)–(10) can
establish either bounding or pronking limit cycles in the
decoupled slot hopper. In this paper, we show that the
same controllers can reinforce or disturb the slot hopper’s
preflexive stability (proved in Sec. 3) when applied to a
slot hopper simulation (Fig. 18). In this subsection, we
now apply the feedback phase control ideas of Sec. 2.3 to
attempt to disrupt the limit cycles of Sec. 4.3.
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Figure 15. Minitaur preflexive bounding. Empirical data from Minitaur (Fig. 1C) exhibiting bounding with preflexive coordination
(pitch) control (Sec. 3.2), feedback roll control (10) (roll angle is also displayed in the first row), moving at a range of commanded
forward speeds (Sec. A.5.1) up to 4.8 body lengths/sec, as well as yaw rates (Sec. A.5.2), controlled using a parallel composition
of decoupled controllers. See the last paragraph of Sec. A.5.1 for discussion. Lastly, numerical post-processing of this data
reveals that despite the strong fore-aft and yaw perturbations in this trial, the stance duration is 109˙ 7:5 ms (mean and
standard deviation): a 6.5% deviation. As in Raibert (1986), this motivates our constant stance duration assumption in Table 2.

We first point out that the two Minitaur configurations
listed in Sec. 4.3 are indicated with the vertical green (WC-
Minitaur, Fig. 1C) and magenta (SC-Minitaur, Fig. 12)
lines in Fig. 18. Our empirical trials reveal that the phase
control (9) is able to overcome the preflexive stabilization
in the magenta configuration (see Sec. 4.4.1 below) to
disrupt the mechanically entrained pronking in favor of
the “commanded” bounding gait. On the other hand,
more aggressive feedback coordination (10) is required to
overcome the preflexive stability in the green configuration
(see Sec. 4.4.2 below) to disrupt the mechanically entrained
bounding in favor of the “commanded” pronking gait.16 We
remind the reader that these experiments are recorded in the
video attachment as well.

4.4.1 Using phase control to disrupt preflexive pronking
and impose bounding We implement the feedback
controller (9) on SC-Minitaur, and plot the results in
Fig. 13. Compared to the results with the preflexive
control only (Fig. 12), a pitch oscillation can be observed,
and furthermore, the second row reveals an alternating
front/rear touchdown in z1 and z2, indicating that the
anti-phase limit cycle characteristic of bounding has been
stabilized. In the region t 2 Œ74; 79� seconds of Fig. 13, the
robot rolls in an underdamped fashion due to the attitude
controller applied in the frontal plane (61) not being tuned

ideally. The sagittal plane behavior is mostly unaffected by
this rolling.

We can conclude that the � of SC-Minitaur (magenta line
in Fig. 18) allows the phase control (9) to overcome the
preflexive control analyzed in Sec. 3.3. We display this data
point in Fig. 18 as well.

An additional example of the application of phase control
can be found in the application to the pacing gait presented
in Sec. A.6.1. However, note that this application is beyond
the analytical scope of the present paper, since Minitaur
does not possess hip ab/adduction joints. Consequently, the
body-leg angle is rigidly set at �=2, and (a) the legs cannot
be positioned vertically with respect to the ground, and (b)
ground reaction forces are not always directed vertically as
they are in the slot hopper.

4.4.2 Using attitude control to disrupt preflexive
bounding and impose pronking The phase controller (9)
is not successful in overcoming the preflexive control in
WC-Minitaur (green line in Fig. 18), indicating that the
preflexive controller is “stronger.” We apply the more
aggressive attitude-servoing controller (10) in order to
attempt to stabilize an in-phase limit cycle (pronking).

The results in Fig. 14 show an in-phase pattern for z1, z2,
indicating stability of the in-phase limit cycle. Moreover,
the magnitude of the body pitch has been reduced to
approximately 0.15 radians, compared to the much larger
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Figure 16. Minitaur bounding leap. Empirical data from
Minitaur (Fig. 1C) exhibiting bounding (Sec. A.5.1), with a
discrete “leap” command send at t D 9 seconds (higher
desired vertical energy for a single stride at both hips)
resulting in a vertical displacement of the center of mass while
bounding.

pitch oscillations seen in the bounding trial in Fig. 4. We
display this data point in Fig. 18 as well.

4.5 Parallel template compositions for
translation and rotation of the CoM

Raibert (1986) pioneered a kind of empirical composition—
decoupled controllers, each designed to stabilize an isolated
1DOF “template plant,” which, when utilized in tandem,
empirically stabilize a high-DOF body. The empirical
success betrays the difficulty in obtaining provable
guarantees, however: coupling in mechanical systems can
move energy between the different compartments, either
stabilizing or destabilizing the template plant.

In Murphy and Raibert (1985), the following quote
appears shortly after the one we have used in Sec. 1: “there
was a limit on forward velocity. As the model bounded
faster, the height of centre of gravity of the body decreased
along with the magnitude of its angular oscillation. These
two factors reduced the ground clearance of the foot as
it swung forward. Eventually, the model stubbed its toe,
tripped and fell.” This anecdote confirms the difficulties of
composing fore-aft control with the vertical energization
(7) and coordination (9)–(10) discussed thus far. This
motivates further analytical work to discover and prove
stability of feedback-stabilization of other DOFs, but we

Figure 17. Snapshots of WC-Minitaur performing a bounding
leap, showing that this simple strategy allows the robot to clear
a gap larger than 1.5 times its body length.

restrict the scope of this paper to empirical composition
of controllers. We find empirically that the simplicity
of our template controllers (7)–(10) affords robustness
against large amounts of coupling energy (arising from the
significant cross talk injected by these erstwhile decoupled
controllers) before destabilization.

Though the empirical demonstrations in this section go
beyond the scope of our analytical results, they are each
distinctly relevant to the topic of this paper: (a) fore-aft
bounding (A.5.1) demonstrates of robustness to persistent
periodic perturbations from coupling interactions with the
fore-aft DOFs; (b) horizontal-plane yaw control (A.5.2)
demonstrates the utility of the coordination controllers
developed in this paper as well as the attitude controller
used in the roll plane when subjected to aperiodic
perturbations when turning; (c) leaping and return to
steady motion (A.5.3) demonstrates the robustness of the
(preflexive or feedback) coordination controller to large
instantaneous perturbations in the relative phase of the two
legs. For this subsection and the next, detailed descriptions
of our experiments are in the Appendix.

4.6 Pacing and trotting
So far we have presented data from Minitaur bounding
and pronking, but now we show how the various regimes
(Table 3) of the simple 2DOF slot hopper model introduced
in this paper also pertain to trotting and pacing, covering
the full gamut of virtual bipedal quadruped gaits. Moving
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beyond the sagittal plane (while still only using the
controllers (7), (9) and (10) as applicable), Minitaur is able
to exhibit the remaining virtual bipedal gaits: pace and trot.
A pictorial description of these gaits from the virtual leg
viewpoint is in Fig. 11.

Our implementation of pacing and trotting on a physical
machine differs from that reported in Raibert et al. (1989),
in ways that we summarize below:

a) we are able to exhibit these gaits while using
fewer actuators: only shank actuators in our
case as compared to two actuators (fore-aft and
ab/adduction) at the hip (Raibert et al. 1989, eqs.
(6.3), (6.4)) due to the analytical insights from De
et al. (2018) suggesting the use of the wi term in (8)
for phase (9) or attitude (10) control;

b) the state machine in (Raibert et al. 1989, Fig.
6-6) forces a prescribed alternating stance/flight
sequence, whereas our state machine (Fig. 10)
bears more resemblance to Raibert’s “independent”
version in (Raibert et al. 1989, Fig. 6-11) which is
reportedly only used for bounding and pronking.17

One advantage of using a less prescriptive state
machine is that unexpected double stance (caused
by unexpected ground contact on rough terrain)
is handled gracefully, whereas it falls completely
outside the logical jurisdiction of (Raibert et al. 1989,
Fig. 6-6).

Our pacing and trotting experiments are described in A.6.1–
A.6.2.

5 Conclusion
We have presented a method for implementing all the
virtual bipedal quadruped gaits on Minitaur using just shank
extension actuators (for in-place bouncing) by recourse to
a simple three-parameter family of controllers (7)–(10).
The corresponding robustly stabilized family of behaviors
admits reliable, rapid changes in set point command, for
example, interspersing steady gaits with leaps up to 2 leg
lengths. Adding on hip flexion actuation, we obtain diverse
and reliably robust modes of locomotion at up to 5 body
lengths/second.

This family of controllers arises from insights into
the slot hopper, a new template for coordination of in-
place virtual bipedal gaits that exhibits two different
kinds of preflexive stability as its non-dimensional inertia
(13) is varied. We leveraged hybrid averaging De et al.
(2018) to provide (to our knowledge) the first proofs of
preflexive virtual biped bounding and pronking using this
template. We have also presented extensive numerical and
empirical evidence that these analytical results have strong
qualitative bearing on Minitaur’s behavior in the physical
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Figure 18. Phase locking as a function of body inertia and
feedback gain parameters. Stable steady-state relationships
between leg phases for simulation and physical runs of the
models depicted in Fig. 1 in relation to the inertia parameter �
(13). Solid round dots represent the limiting relative phase
between the two legs of the slot hopper model (Sec. 2.2,
Fig. 1B). Each gray translucent dot is the result of a single trial
(5 trials are plotted at each � value, though in many of the
trials, the dots overlap and appear as a single dot of increased
opacity) which is tmax D 5 seconds long, and the phase offset
is calculated at the end. The gray dots refer to a preflexive
control only (kd D 0 in (9)), whereas, in contrast, the blue and
red dots contain trials with some phase control (9). The hollow
diamonds are data points representing Minitaur’s preflexive
and feedback-stabilized gait coordination behavior in the
physical world (Sec. 4.3–4.4, Fig. 1D). Please refer back to
Sec. 1.2.1 for our textual summary of the major claims of the
paper, now recapitulated in detail through this figure.

world. Specifically, as summarized in Fig. 18, they yield
analytically formulated controllers (9)–(10) that augment
/ disturb preflexive stability and enable a diverse set of
behaviors on the same physical body.

5.1 Discussion
5.1.1 Hybrid averaging for analysis of dynamical
compositions The mathematical basis for our formal
results—the stability of the bounding and pronking
behaviors in the first two abstract models of Fig. 1—
rests upon the hybrid averaging tools in De et al. (2018).
However, the central contribution of this paper is to
demonstrate the utility of this analysis to the development
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of robust, dynamic gaits on a general purpose physical
quadruped.

Analytical insight about the slot hopper gives us
useful understanding about (a) conditions under which our
proposed control strategies succeed, (b) indications about
conditions under which they will fail to work, and lastly,
(c) information about the relation of the control strategy
to the morphological parameters of the robot body.18 In
this paper, we have provided a detailed example of the
benefits of analytical insight. Murphy and Raibert (1985)
and Raibert et al. (1989) observed preflexive bounding
stability in their simulation and physical models; later
Berkemeier (1998) provided a restricted19 explanation of
this stability. We are now able to (using formal analysis) for
the first time (a) explain the mechanism of this preflexive
bounding stability, (b) explain a second mechanism for
preflexive pronking stability, (c) explain analytically and
not anecdotally the relation of the morphological “non-
dimensional inertia” parameter to both preflexes, and
(d) use our analytical insight to not just exploit but also
countermand the preflexive tendencies on our quadrupedal
robot to achieve a highly robust gait stabilization feedback
paradigm requiring very few tuning parameters1.

In consequence of (the long-known Holmes (2005)) non-
integrability of most two (and higher) DoF mechanical
systems no procedural strategy has been developed for
analyzing many 2DoF (and effectively any higher DoF)
hybrid dynamical systems representative of locomotion
(LLS Schmitt and Holmes (2000), SLIP with torso,
etc.). By providing a principled means of approximating
these generically non-integrable systems with formally
“nearby” integrable provably “close enough” stand-ins, we
believe our averaging approach may offer a route toward
such a procedural analysis of much higher dimensional
locomotion systems than has heretofore been possible,
allowing us to reap the aforementioned benefits.

We have shown in the bounding analysis of Sec. 3.2
how coupling forces can cancel “on average” (e.g. the last
slot of (31)) to permit dynamical composition of the two
hoppers into a single bounding body without destabilization
from coupling. We are encouraged by the prospect of
our averaging analytical result revealing how to compose
dynamical primitives for synthesizing behaviors such as
the useful bounding, pronking, trotting, pacing, and leaping
demonstrated here, the tailed planar hopping we have
demonstrated before De and Koditschek (2015a), and many
other examples in the future.

Work now underway is attempting to formalize the utility
of time-reversal symmetries Altendorfer et al. (2004) in an
averaging framework. Our goal is to further the anecdotal
observations of (Raibert 1986, Ch. 5) about “symmetric
stances,” and show and generalize their utility in “averaging

out” a subset of pointwise-in-time deleterious coupling
forces.

5.1.2 Multiple phases in strongly-coupled analysis Our
present framework De et al. (2018) (and indeed, classical
non-hybrid dynamical averaging, for which our reference
is Guckenheimer and Holmes (1990)) only accounts for
a single “fast” coordinate. Our analysis of the strongly-
coupled hoppers was contingent on assumption 2(a), which
allowed us to decouple the z and � dynamics in (60),
was crucial because otherwise the z and � dynamics
oscillate in a non-phase-locked manner. Future work in
applied dynamical systems to enable averaging across
several loosely interacting “phase” variables may make a
full coupled analysis possible.

Additionally, we required a restrictive condition on the
flight time (assumption 2(b)), essentially due to the time-
varying nature of the � return map (Sec. 3.3.5. A much
more useful conclusion about � was derived with a time-
invariant assumption in Sec. 3.3.6. We believe that a
theory of “small” time-variations that allows us to use
the eigenvalues of P� would make the strongly coupled
stability proof not require assumption 2(b).

5.1.3 Limiting value of � ! 0 The first row of Table 3
refers to a degenerate condition, where all the mass of the
body is concentrated at its center. In this configuration, the
�-DOF is degenerate (since ib D �mbd2 D 0). Thus, we
are effectively reduced to a 1DOF vertical hopper without
any physical relevance, since the model in Fig. 1B posseses
a “body” whose orientation now cannot be controlled.

5.1.4 CoM templates for virtual bipeds In this paper, we
thought of each hip as a vertical hopper: a loose “template–
anchor” relation Full and Koditschek (1999) that we do
not make formal here. In the future, we hope to formalize
a definition of “averaged anchoring.” However, without
making any formal statements, we can note the following:
As (21) shows, “weakly coupled” hoppers behave as if each
hip is still a vertical hopper (i.e. the mechanically decoupled
hoppers of De et al. (2018) are a reasonable template). The
behavior of the CoM (z) is revealed to be oscillatory from
Fig. 5, albeit with small magnitude relative to the hips. As
Fig. 15 reveals, the center of mass displays small vertical
and horizontal oscillations, but over a full stride, seems to
behave like a point particle in the sagittal plane.

In strongly coupled hoppers (subject to assumption 2(a)),
the CoM behaves like a single vertical hopper (60). Our
empirical data of the pronk (Fig. 14) and the trot (Fig. 21)
reveal vertical oscillations of the CoM (suggesting a SLIP-
like template), though the magnitude of vertical oscillation
is much smaller in the current trot implementation.

5.1.5 Multiple shank energization strategies The
shank-energization strategy we used in this paper is quite
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different from the “thrust-at-bottom” strategy utilized by
Raibert (1986), but both exhibit the preflexive stability
characteristics originally observed in Murphy and Raibert
(1985) and analyzed in Berkemeier (1998). Though our
new analytical tools allowed us to better understand its
origins (Sec. 3.2–3.3), we are still far away from a theory
that might encompass many alternative shank energization
strategies including Raibert’s; more insight is needed to
develop necessary conditions that might help delimit the
scope of such a general analysis.

5.2 Future work
Work is currently underway to bring the analytical
methods of De et al. (2018) to bear on models of much
greater complexity than the slot hopper. Specifically, as
suggested by Sec. 5.1.1, we favor the application of phase-
related control signals with intention to use averaging
to exploit inherent symmetry in Lagrangian systems. We
are also exploring applications to a simplified spatial (3-
dimensional) Minitaur model (lying somewhere between
Fig. 1B and C) with the goal of (a) proving its stability
in space with these control laws, and (b) proving that
the spatial model anchors a slot hopper as suggested in
Sec. 5.1.4.

Other current work includes application to a tailed
vertical hopper (a constrained version of tail-energized
hopping with the Penn Jerboa De and Koditschek (2015a)),
as well as a bipedal model with a spine degree-of-freedom
such as the one in Culha and Saranli (2011).
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Notes

1. For example, for 3D bounding–in–place in Fig. 4, in addition
to the two “morphological” parameters per (identical) virtual
leg (which only require rough guesses, cf. Fig. 8), the required
parameters are ka in (7) (which controls vertical hopping

height), and kp and kd in (10) for roll control. If preflexive
coordination is insufficient (e.g. bounding–in–place on SC-
Minitaur in Fig. 13), we compose a phase controller (9) (with
one additional parameter). These parameters only require very
rough guesses as shown in Sec. 4.1.3.

2. Equivalently, unity eigenvalues have algebraic multiplicity 1.

3. The reader may note the close correspondence between
(Burden et al. 2007, eq. (1)) and the double stance equations
of motion we find for the slot hopper (22).

4. We wish to emphasize that our present understanding
necessitates in each physical regime a different intuitive
choice of the “correct” phase  i and the appropriate phase
difference ı. Work currently underway is making progress
towards replacing this intuitive step with a uniformly defined
and algorithmically implemented procedure.

5. Minitaur does not have ab/adduction joints, resulting in its
frontal plane projection having rigid leg angles (unlike the
vertical legs of the slot hopper in Sec. 2.2). Despite this,
pacing Minitaur responds favorably to the phase controller
developed on the slot hopper, as shown in Sec. A.6.1.

6. As discussed in Sec. A.6.2, due to the extremely strong
coupling between the virtual legs, the retraction policy is
needed to separate the phases of the two virtual legs. After this
process, each (identical) step is controlled just like a single
vertical hopper as analyzed in (De et al. 2018, Sec. 4.1).

7. Note that despite this nomenclature, in some sense the nature
of the coupling “changes sign” as the decoupled regime lies at
an intermediate �-value (Fig. 18).

8. Note that for purposes of analysis, we merely require the
coefficient of u1 above to be O."/, but for the sake of not
introducing a new constant into our perturbation analysis
around " D 0, we choose the equality above.

9. Intuitively, in the averaging of a single vertical hopper in
De et al. (2018), the introduction of the even function (with
respect to the half-orbit center angle �=2), sin i , in the
coordination term, wi (9), leaves a proportionally stabilizing
ı term in f . However, now with wi set to 0, the odd function
(cos i ) arising from the vertical energization term in vi
(8), can have no effect on relative phase (intentionally, since
we prefer the vertical energization control not affect phase
relations) and integrates out of the averaged vector field (31).
The determination of the “right” phase coordinatee 2 (27) is,
in this light, informed by the computation of d

dt
eı as to not

“disturb” the odd factor vi in (30).

Research is currently under way to facilitate algorithmic
generation of slow and fast coordinates suitable for averaging.

10. Lastly, we point out that this decoupling of the vertical and
pitch oscillations is in some sense necessary for a limit cycle
analysis: as the last two rows of Fig. 9 show, the body angle
oscillations generally occur at a different time scale than the
stance/flight vertical hopping cycle of z, without any sign of
phase-locking.
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11. Because larger � results in longer unmodeled single stance
periods when the active policy of (De et al. 2018, Sec. 2.5) is
not applied.

12. Even non-physical g < 0 values result in observable hopping
since the spring-like forces in (7) dominate the constant term
in (18).

13. Except the region within the depicted yellow polygon, where
the applied radial force (18) is insufficient to overcome gravity
and sustain oscillations.

14. Exception is made in the trot (Fig. 10) where the retraction is
prescribed for reasons discussed in Sec. A.6.2.

15. For example, into unplanned modes (e.g., double stance
Sec. A.6.2) or transitions (e.g. leap from pronk Sec. A.5.3).

16. It is worth noting in passing that there seems to be no
analogous path to destabilizing the very strongly preflexive
pronking regime (the far right hand side of Fig. 18
with � values well beyond unity) because it is not clear
what configuration setpoint to furnish—an observation that
might lead us toward consideration of feedforward excited
(“clocked”) gaits Haynes et al. (2011) or potentially, a
refinement via appeal to higher period orbits of the “factored
map” expressions.

17. The reported “pronk” observed with the independent state
machines in Raibert et al. (1989) is possibly due to the added
hip actuation stabilizing the attitude DOFs. Per our analytical
result of Sec. 3.2.3, Raibert’s quadruped (Raibert et al. 1989,
Table 6-1) with only shank actuation would exhibit preflexive
bounding stability, as corroborated by the prior simulation
study in Murphy and Raibert (1985).

18. A formal morphological reduction in the style of Libby et al.
(2015) will be forthcoming when we work on the more
formally anchored versions of these controllers in the higher
DoF models toward the physical machine.

19. Restricted, in the sense that the prior Berkemeier (1998)
analysis—for tractability with conventional methods—had
to “ignore” the O."/ dissipation terms which contribute
prominently to our vertical hopper (Sec. 2.1.3) and preflexive
pronking (Sec. 3.3) stability.
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A Appendix
This appendix contains various calculations that are used
for our stability proofs, broken down by the section in
which they appear.

A.1 WC averaged return map eigenvalues
Now we calculate the eigenvalues of (35). The characteris-
tic polynomial is

m".�/ D �
3
� �2.�1C "�4/ � �5.1 � "�4/� � �5

DW �3 C c2."/�
2
C c1."/�C c0."/: (56)

The roots are an "–parameterized family of scalars � W
R�0 ! C. The eigenvalues at " D 0 are the roots of
m0.�/ D �

3 C �2 � � � 1 D .�2 � 1/.�C 1/ (noting that
�5j"D0 D 1 from (36)), which are f�1;�1; 1g, and thus
�1.0/ D �1; �2.0/ D 1; �3.0/ D �1.

Now we consider two cases: as " > 0, either the
eigenvalues remain all real, or two of them move into the
complex plane as a complex conjugate pair:

i) �i 2 R: To do this, we find �0i .0/. Note that the
characteristic polynomial is alternatively expressed
as

m".�/ D …
3
iD1.� � �i ."// D �

3
C .��1 � �2 � �3/�C

.�1�2 C �1�3 C �2�3/� � �1�2�3:

Using the chain rule, we equate D"c."/ D D�c."/ �
�0."/ and evaluate at " D 0. However, the matrix
D�c."/j"D0 is singular, indicating that not all the
eigenvalues remain real as " > 0.

ii) �1 2 R; �2; �3 2 C: We reparameterize �2; �3 D
�6 ˙ j�7, and define �8 WD �26 C �

2
7 . The character-

istic polynomial is now

m".�/ D …
3
iD1.� � �i ."// D �

3
C .��1 � 2�6/�C

.2�1�6 C �8/� � �1�8:

We can equate the coefficients with (56), and
differentiate with " on both sides to get

�2�06 � �
0
1 D c

0
2;

�08 � 2�6�
0
1 C 2�

0
6�1 D c

0
1;

��01�8 � �1�
0
8 D c

0
0;

where 0 denotes "-derivative. Now evaluating both
sides at " D 0, we get a linear system of equations24�1 0 �2

�2 1 2

�1 �1 0

3524�01.0/�08.0/

�06.0/

35 D c0.0/;
which is readily solved to yield �01.0/ D �

ˇ
4!

, and
�08.0/ D �

ˇ
4!

. Thus the first-order Taylor expansion
of the roots is

�1 D 1 �
"ˇ
4!
C O."2/;

j�2j
2
D j�3j

2
D 1 � "ˇ

4!
C O."2/;

and we are guaranteed that all the roots move inside
the unit circle for small " > 0.

A.2 SC decoupling under Assumption 2
Substituting our controllers (7), (8) with the attitude
controller (10)20 into the double stance equations of motion
(22), we see that in closed loop,

Rz D !2.� � z/ � "ˇ Pz � "ka.cos 1 C cos 2/=2;

� R� D �d.!2 C kp/� � d."ˇ C kd / P�

� "ka.cos 1 � cos 2/=2:

(57)

Now we simplify the sum and difference cosines in the
equation above. Define the variables pi WD p.zi ; Pzi / (where
the map p is as defined in Sec. 2.1.2), and pz WD p.z; Pz/.
From (24), note that p1 D pz C p� , and p2 D pz � p� ,
where p� is defined in Sec. 3.3. To approximate cos i in
(57), we need to approximate 1=kpik:

1

kpz C p�k2
D

1

pTz pz C p
T
� p� C 2p

T
z p�

D
1

kpzk2

�
1

1C .a�=a/2 C pTz p�=a
2

�
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where note that from assumption 2, .a�=a/
2 C

pTz p�=a
2 D O."/. Taking a square root, we get

1
kpzCp�k

D
1
kpzk

.1 � ıC=2/C O."/;

where we define ıC WD .a�=a/
2 C pTz p�=a

2. Similarly,
we can calculate

1
kpz�p�k

WD
1
kpzk

.1 � ı�=2/C O."/;

where ı� WD .a�=a/2 � pTz p�=a
2. We can now use these

to calculate

cos 1 C cos 2 D eT1
�
p1
kp1k
C

p2
kp2k

�
D

eT
1

kpzk

�
.pz C p�/.1 � ıC=2/C .pz � p�/.1 � ı�=2/

�
D

eT
1

kpzk

�
pz

�
2 �

ıCCı�
2

�
� p�

ıC�ı�
2

�
C O."/

D cos 
�
2C O."2/

�
C O."/ D 2 cos C O."/; (58)

since a�=a appears in the p� term (use Assumption 2
again). Similarly,

cos 1 � cos 2

D
eT
1

kpzk

�
p�

�
2 �

ıCCı�
2

�
� pz

ıC�ı�
2

�
C O."/

D O."/ � cos .pTz p�=a
2/ D O."/; (59)

using Assumption 2 again. Using (58) and (59) in (57),

Rz D !2.� � z/ � "ˇ Pz � "ka cos z ;

� R� D �d.!2 C kp/� � d."ˇ C kd / P�;
(60)

where  z D †p.z; Pz/.

A.3 SC preflexive attitude stability: P� is a
contraction

We next prove that P� is a contraction subject to
Assumption 3. First, we need a Lemma:

Lemma 2. For � � 0, e� � 1C �2=2C �
p
1C .�=2/2.

Proof. First, note that

d
d�

�
1C �2

2
C �

p
1C �2=4

�
D �C 2C�2p

4C�2

� �C 2C�2

2
D 1C �C �2

2
� e�;

whereas the last expression is the derivative of e�. Since
both expressions equal 1 at � D 0, and the derivative of e�

is pointwise greater for � � 0, e� is the larger expression
for all � � 0.
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Figure 19. Minitaur pronking leap. Empirical data from
Minitaur (Fig. 1C) exhibiting pronking (10), with a discrete
“leap” command send at t D 18:5 seconds (higher desired
vertical energy for a single stride at both hips) resulting in a
vertical displacement of the center of mass while pronking.

Let us define �s WD !� ts, and �f WD !� tf. To check if
P� is a contraction, we need to check that the largest
eigenvalue of P T� P� lies within the unit cycle, since this is
the largest value that yTP T� P�y=y

T y can take. The largest
eigenvalue is

�max �
e�2ˇ��s

2
.2C �2f C �f

q
4C �2f / � e

�2ˇ��sC�f ;

where we use the Lemma above for the last inequality.
Since the exponential is monotonic, we only need check

�2ˇ��s C �f < 0 ” tf �
"�ˇ
p
d=�

!2
< 0

which is ensured by Assumption 2.

A.4 Virtual leg groups: our implementation
compared to that of Raibert et al. (1989)

a) Event synchronization.
Our implementation. As shown in Fig. 10, each
virtual leg has an independent mode, STANCE
or FLIGHT. Transitions between these modes are
triggered by events: TOUCHDOWN (described in
Sec. 4.2.2) and LIFTOFF (elapse of �=! seconds
since TOUCHDOWN, following the constant flow-
time assumption (Table 2). The specific STANCE and
FLIGHT controllers are presented next.
Comparison to Raibert. This part of our implemen-
tation is a simpler version of the “Synchronization”
rule in (Raibert 1986, pg. 93). Our justification for
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this is our comparative numerical work in Sec. 4.1.2
showing that the qualitative effect of active toe ex-
tension is relatively minor. Additionally, feedback
synchronization in flight relies heavily on the ground
being particularly flat.

b) Mean–difference coordinates in stance.
Our implementation. Our analytical result of
Sec. 3.3.7 showed that using only shank extension
actuators, (10) can be applied to two stance legs to
feedback-stabilize the body orientation for the in-
phase (pronking template) limit cycle. Noting from
(10) that the two legs receive equal and opposite
control signals, we introduce the following “mean-
difference” input coordinate change:
For a desired virtual leg radial force ‡1 (given by
(18)), suppose the physical radial forces commanded
of the within-group legs are ‡1C and ‡1� in a
manner we now specify. In Fig. 11, we show which
legs are grouped together into virtual legs for each
of the gaits discussed in this paper, as well as the
leg numbering scheme we use for Minitaur. E.g., in
the bounding gait, legs “0” and “2” receive radial
actuation signals ‡1C and ‡1�, and legs “1” and
“3” receive radial actuation signals ‡2C and ‡2�,
respectively.
Additionally, define the attitude controller for within-
group stabilization

‡wg WD kp�wg C kd P�wg; (61)

where �wg is the body angle in the plane containing
the within-group legs (e.g. for bounding, �wg is
the roll angle; for pacing, �wg is the pitch angle;
for trotting, �wg is the body angle projected in the
plane containing the diagonally paired legs). Then,
in stance the physical legs are commanded the radial
forces

‡1C WD ‡1 C ‡wg; ‡1� WD ‡1 � ‡wg: (62)

We point out here the �wg is not visible in right
column of Fig. 11 since it is the angle of the body
about an axis on the plane of the page. We also
observe that (61) is a mere copy of our previously
defined attitude controller (10) (after Assumption 1
is incorporated), simply applied about a different
axis. We define it separately here in order to be
explicit about within-group feedback stabilization in
the remainder of the paper.
Comparison to Raibert. This part of our implemen-
tation differs from the “Force Equalization” rule in
(Raibert 1986, pg. 93), since we explicitly command
radial forces that are unequal across the leg groups
and utilize this affordance for feedback attitude stabi-
lization. A later account of Raibert’s implementation

Figure 20. Snapshots of pacing in place (taken roughly at left
stance, aerial, right stance) from the experiment in
Fig. 23(center, right).

on his quadruped Raibert et al. (1989) reveals that
two additional actuators (which we don’t need with
our method) are used for feedback attitude stabi-
lization (see Sec. A.6.2 for further details about trot
implementation).

c) Toe positioning in flight.
Our implementation. In flight, the radial forces
simply act to keep each toe at the nominal leg
extension, �. The hip actuators are used to servo the
toes to a desired absolute leg angle, �� using the
controller described in (63). We furnish additional
details about the hip actuation in Sec. A.5.1.
Comparison to Raibert. This part of our imple-
mentation is equivalent to the “Positioning” rule in
(Raibert 1986, pg. 92).

A.5 Empirical compositions
A.5.1 Fore-aft speed control We adapt the monopedal
fore-aft speed controller described in Raibert (1986), and
we review it briefly here. Our decoupled control strategy (7)
already encourages thinking of sagittal plane Minitaur as a
composition of a “front” and “rear” monoped, and so we
apply the fore-aft control to each monoped independently.
The control input is the touchdown angle of the virtual leg
in flight, which is easy to actuate with very little energetic
cost by using the hip actuators, since the toes are light.
Specifically, we set

R�i D kp.�
�. Px/ � �i / � kd P�i ; (63)

where the desired touchdown angle, ��. Px/ is defined as a
function of the current speed Px according to the “neutral
point” ideas of Raibert (1986),

� sin.��. Px// D �
� Px

2!
C k Px. Px

�
� Px/

for i 2 I, where note that �=! is the stance duration
(assumed constant as in Table 2). Recall that �i is the
absolute leg angle, and an estimate of the body pitch, �,
is required as well to command the leg angle correctly.

An important part of this controller is an estimate of
the current speed, Px. We obtain a proprioceptive forward
speed estimate in Minitaur by using encoder-measured joint
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Figure 21. Minitaur feedback-stabilized trotting. Empirical data from WC-Minitaur exhibiting trotting implemented by
commanding two diagonally paired virtual legs as vertical hoppers (7), but with added coordination logic (Sec. A.6.2).

Figure 22. Snapshots of trotting showing legs 1 and 2 (numbering shown in Fig. 11) in stance (left), aerial (center), and then
legs 0 and 3 in stance (right). Going from the left panel to the center panel, the active retraction of legs 1 and 2 (as described in
Sec. A.6.2) is also apparent. These snapshots are from the experiment in Fig. 21.

angles and velocities together with the forward kinematics
g W RC � S1 ! R2 of the leg,

Px D Dg.ri ; �i /
�
Pri
P�i

�
(64)

for i 2 I, where Dg is the leg Jacobian derived in
(Kenneally et al. 2016, eqn. (6)).

Applying this controller to preflexively bounding
Minitaur (shown bounding in place in Fig. 4) along with a
roll controller (61) to stabilize out-of-sagittal-plane motion,
results in fore-aft motion as shown in Fig. 15, while not
disturbing the front/rear preflexive phase coordination at
a range of speeds. The desired speed Px� is set by an
external signal (often an operator, but in this case we used
a ramp function showed in dashed black). In the last row
of Fig. 15, we use a 3Hz cutoff filter to low-pass the raw
speed measurements from motion capture. The step rate of
Minitaur (each front or rear stance is counted as a “step”)
is about 3Hz, and a distinct oscillation can be noticed at
around this frequency in the forward speed. We hypothesize
that this is an artifact of imperfect tuning between the front

and rear hips; a full analysis of the fore-aft stability (that we
defer to future work) should illuminate this issue further.

Even with this decoupled compositional control, it is
still possible to attain traveling speeds of 1.92 m/s (4.8
body lengths / second, or 11 leg lengths / second),
comparing favorably to quadrupeds of a similar size (as
listed in Sprowitz et al. (2013)), keeping in mind that
Minitaur is a general-purpose quadruped with onboard
power. Further, since this gait is the result of a smoothly
parametrized family of control policies (7), (61) (rather
than, e.g., empirically optimized parameter set points as in
Weingarten et al. (2004)), stable bounding can be accessed
at a continuum of traveling speeds and yaw rates (as
demonstrated in Fig. 15), as well as vertical height (shown
below in Sec. A.5.3). We posit that the limit to even higher
speeds in these trials is primarily due to:

a) inaccuracy in Px estimate: as observed in Fig. 15,
the proprioceptive speed estimate (64) systematically
underestimates the actual speed of the robot past
around 1.5 m/s. This usually results in incorrect
toe placement, and the robot stumbles forward. The
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Figure 23. Minitaur preflexive and feedback-stabilized pacing. Empirical data from Minitaur (Fig. 1C) with decoupled vertical
hopping controllers applied to “left” and “right” virtual hips, revealing no preflexive stability (left) resulting in a roll over (note faint
horizontal lines are at ˙�=2, and the IMU Euler angles pass through a parameterization singularity), but a stable roll oscillation
(center, right) with our feedback phase controller (9). The zoomed-in segment (right) reveals interesting comparisons to
preflexive (Fig. 4) and forced (Fig. 13) sagittal plane bounding. See Sec. A.6.1 for discussion.

reason for this inaccuracy could be toe slip (see next
point) or minor delays in estimation of touchdown
and liftoff (which are on the order of 5-10 ms as
stated in Sec. 4.2);

b) loss of traction: yaw correction in stance (Sec. A.5.2)
requires a large amount of friction, and especially at
higher speeds small amounts of toe slip can cause
failure;

c) destabilization of pitch oscillation: the preflexive
stabilization we analyzed in Sec. 3.2 maintains the
desired pitch oscillations for a range of speeds, but
as seen between t 2 Œ52; 56� seconds in Fig. 15, the
pitch oscillations can reduce in magnitude, or worse,
get out of synchronization with the leg touchdowns
when a lot of energy is injected at higher traveling
speeds.

The last point motivates us to incorporate the fore-aft
degree of freedom in our analysis in the future, as well
as to augment the bounding coordination with additional
coordination control.

While the phase controller (9) is successful at disrupting
preflexive pronking in SC-Minitaur (Sec. 13), it is unable to
disrupt preflexive bounding (as we observed in Sec. 4.4).
Likewise, we did not observe any empirical benefit to
the application of (9) to “augment” Minitaur’s preflexive
bounding stability (as analyzed in Sec. 3.2). However, we
posit that for a physical machine with � � 1 (no preflexive
stability), (9) could be used to feedback–stabilize bounding
(as analyzed in De et al. (2018)).

The fore-aft control above is also applied to pronking
(Fig. 14) as well as trotting (below, in Sec. A.6.2) to
obtain modest traveling speeds of 1 and 2 body lengths /
second respectively. The inaccuracy in the proprioceptive
speed estimate was much larger in these other gaits, so we
believe that these gaits can travel at much faster speeds

with some more tuning. Since the focus of this paper is
the coordination control of the z, � degrees of freedom,
we defer to future work the analysis of vertical and fore-aft
coupling that would facilitate extracting faster translational
speeds from these other gaits.

A.5.2 Yaw control while bounding We also compose an
empirically motivated yaw controller, that makes use of the
available hip torques in stance. Specifically, the two legs
comprising the “virtual leg” in stance apply differential hip
torques in order to impart a yawing moment on the body (in
the horizontal plane).

If � 2 S1 is the yaw angle, P�� 2 R is the desired yaw rate,
and �j is the hip torque applied to the left and right hips in
stance, we set

�j D .�1/
jk P�
P�� (65)

where j 2 fleft; rightg. Note that we intentionally use a
different index than i 2 I used in Sec. 2.1.2 and throughout
the paper to refer to the two virtual legs, since in (65) we
are referring to legs grouped within an erstwhile “single”
virtual leg.

This is a different strategy than the horizontal-plane toe
placement strategy in Raibert et al. (1989), which requires
2DOF control of toe position in the horizontal plane (an
ab/adduction joint) and is thus inaccessible to Minitaur.

This strategy results in controllable yaw in bounding
Minitaur. As an example, in Fig. 15, the yaw of the robot
begins to drift at around t D 54 seconds, and the yaw
controller (with desired yaw being supplied by an operator)
allows the robot to the brought back on course. As expected,
this introduces a rolling disturbance that can be seen at
around t D 56 seconds, but the roll is eventually stabilized
by the attitude controller (61).

Further characterization of the fore-aft and yaw
controllers is needed to argue that bounding Minitaur
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anchors a unicycle in the horizontal plane; we defer
this topic to future work. Experiments in the lab are
already underway employing higher-level control schemes
designed for unicycle plants, such as Lopes and Koditschek
(2007); De and Koditschek (2013).

A.5.3 Running leaps As mentioned in Sec. A.5.1, our
template-based control (7) affords the operator the ability to
control the height setpoint a� through ka. Even though in
our analysis we have kept a� constant, in practice, we can
increase a� for a single stride to get a running leap. This
results in a large perturbation off the limit cycle (both in
bounding and pronking), but the large stability basin of the
(preflexive or feedback) coordination of Sec. 4.3–4.4 helps
restore the nominal gait pattern within 1-2 strides.

Fig. 16 shows a bound leap: though there is a large
pitching disturbance before the body recovers, the fore-aft
speed of the body as well as the z1, z2 stepping pattern
is maintained through the leap, demonstrating the large
stability of basins of the template controllers. Fig. 19 shows
a pronk leap at around t D 18:5 seconds, where again a
large pitching disturbance is introduced by the leap, but the
z-oscillations are not disturbed.

A.6 Pacing and trotting details
A.6.1 Pacing We find that in the frontal plane, when the
decoupled controller (7) is applied to the left and right
virtual legs, Minitaur does not preflexively exhibit any
coordination. This leads us to believe that it lies in the
“chaotic” region on Fig. 18. The left column of Fig. 23
reveals typical preflexive behavior: a fall within a few steps.

However, when our phase controller (9) is applied
(suggested by our analytical insight from De et al. (2018)),
a stable anti-phase limit cycle emerges in the frontal plane.
We reiterate here that since Minitaur does not have an
ab/adduction joint, the virtual hips canot be moved by using
hip torques in the frontal plane. Thus, this stabilization is
established only using the leg extension actuators, using the
phase control ideas we have described in Sec. 2.3.

A.6.2 Trotting In a trot, the virtual hips are located close
to the center of mass Raibert (1986), effectively making d
very small. Consequently, from (13), � is very large, and as
Fig. 18 shows, the in-phase limit cycle is preflexively stable.

This preflexive stability is very strong, and phase control
(9) as in Sec. 4.4.1 is unable to produce a trot. The trot
implementation in Raibert et al. (1989) used a sequenced
state machine, logically forcing alternating virtual leg
stances. We have employed a slightly less aggressive
strategy (Fig. 10), where the virtual leg state machine is now
updated to include 3 possible states: STANCE, FLIGHT,
and RETRACT. For i 2 I, when virtual leg i goes through
its liftoff event, it is placed in the RETRACT state where
it is kinematically prevented from touching down. When

leg i C 1 has lifted off, leg i is moved from RETRACT!
FLIGHT, where it can detect the touchdown event as usual.

The state machine above only allows a single leg to be in
STANCE at any time instance, thus only allowing for trot
gaits with an aerial phase. When implemented on Minitaur,
we observe a stable trotting pattern as shown in Fig. 21.

The details of the attitude and speed control for the trot
gait (both formally and empirically) deserve a more careful
examination than is possible within the scope of this paper,
such as a formal anchoring of the virtual leg to a monopedal
template as was done for RHex in Saranli and Koditschek
(2003); we defer this to future work.
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