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Abstract

Symmetries are ubiquitous in a wide range of nonlinear systems. Particularly in

systems whose dynamics is determined by a Lagrangian or Hamiltonian func-

tion. For hybrid systems which possess a continuous-time dynamics determined

by a Lagrangian function, with a cyclic variable, the degrees of freedom for the

corresponding hybrid Lagrangian system can be reduced by means of a method

known as hybrid Routhian reduction. In this paper we study sufficient condi-

tions for the existence of periodic orbits in hybrid Routhian systems which also

exhibit a time-reversal symmetry. Likewise, we explore some stability aspects of

such orbits through the characterization of the eigenvalues for the corresponding

linearized Poincaré map. Finally, we apply the results to find periodic solutions

in underactuated hybrid Routhian control systems.
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1. Introduction

Hybrid systems are dynamical systems with continuous-time and discrete-

time components in its dynamics. These dynamical systems are capable of

modeling several physical systems, such as, multiple UAV systems [36], [48],

bipedal robots [46], [47], [49], embedded computer systems [12], [39], [44] and

underactuated mobile vehicles [18], among others.

Simple hybrid systems are a type of hybrid systems introduced in [30], called

in this manner because of its simple nature. A simple hybrid system is char-

acterized by a tuple H = (D,X,S,∆) where D is a smooth manifold, X is a

smooth vector field on D, S is an embedded submanifold of D with co-dimension

1 called the switching surface (or the guard), and ∆ : S → D is a smooth em-

bedding called the impact map (or the reset map). This type of hybrid system

has been mainly employed for the understanding of walking gaits in bipeds and

insects [3], [26], [53]. In the situation where the vector field X is associated

with a mechanical system (Lagrangian or Hamiltonian), alternative approaches

for mechanical systems with unilateral constraints have been considered in [15],

[16], [27], [28], and [31].

A symmetry is a transformation that leave invariant the solutions in a dy-

namical system. The type of symmetry that most mechanical systems naturally

exhibit is known as reversing symmetry. Reversing symmetries leave the equa-

tions of motion invariant if the direction of time is reversed. Dynamical systems

possessing this class of symmetry are called reversible if the reversing symmetry

is an involution [32]. It is important to mention that the existence of periodic

orbits has been a predominant topic of research in dynamical systems since the

studies of Poincaré [40]. The use of reversing symmetries to find periodic orbits

has been employed, for instance, in the restricted three-body problem [6].

When a dynamical system exhibits a symmetry, it produces a conserved
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quantity for the system. This reduces the degrees of freedom in the dynamics of

the system. One of the classical reduction by symmetry procedures in mechanics

is the Routh reduction method [23]. During the last few years there has been a

growing interest in Routh reduction, mainly motivated by physical applications

[10], [19], [34], [35]. Routh reduction for hybrid systems has been introduced by

A. Ames and S. Satry and it has been applied in the field of bipedal locomotion

[2], [3], [5]. The reduced simple hybrid system is called simple hybrid Routhian

system. In this work we build in the former approach to that concept by study-

ing sufficient conditions for which a simple hybrid Routhian system exhibits a

periodic solution.

The search of limit cycles in hybrid systems has been an active research field

in the robotics and automatic control community since the works of Mc’Geer

due to the study of periodic walking gaits for passive dynamic walkers [13],

[38]. Since these works, the study of orbital stability for hybrid systems has

been the more explored analysis in this field. The method of Poincaré map is

frequently used in the legged locomotion community to study orbital stability

of walking gaits [21], [25], [42], [43], [52], [53]. In most of the studies analyzed

in the literature employing such an approach, one assumes the existence of a

periodic solution. Then one proceed with the corresponding stability analysis

of the orbits by examining the eigenvalues of the linearized Poincaré Map at

its fixed points. In general, since fixed points of the Poincaré map corresponds

with periodic orbits for the underlying dynamical system, to find these orbits

one needs to employ computational resources to find the Poincaré map and its

fixed points.

In this work, we show how to ensure the existence of periodic solutions by

examining the symmetries for a simple hybrid Routhian system excluding com-

putational tools. Moreover, with the method proposed in this work we also

provide a characterization for the eigenvalues associated with the linearized

Poincaré map for these periodic solutions, also from an analytical point of view.

To the best of our knowledge, sufficient conditions for simple hybrid Routhian

systems under which one can ensure the existence of periodic solutions and the
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characterization of its qualitative behavior, excluding the use of computational

tools, has not yet been widely discussed in the literature. Similar results for

simple hybrid (non-Routhian) systems concerning the existence of periodic so-

lutions can be found in [8] and [14]. Sufficient conditions for the existence and

uniqueness of Poincaré maps can be found in [11] and results about stability of

periodic solutions for 2D-simple hybrid systems can be found in [22].

The primary goal of this paper consists on establishing the conditions under

which we can ensure the existence of periodic orbits in simple hybrid Routhian

systems. By introducing a time-reversal symmetry, trajectories for a simple hy-

brid Routhian system will become in a periodic orbit if the trajectory begins

at a fixed point of the symmetry map. In this work, we provide characteriza-

tions for the eigenvalues associated with the linearized Poincaré map for these

periodic solutions. We also apply the results to the classical example of the

2D one-leg robotic hopper for which, after applying Routh reduction method

for simple hybrid system, we reduce the hybrid dynamics to the one for the

2D spring loaded inverted pendulum (SLIP). Then we study the existence of

periodic motions and show that periodic orbits are at most marginally stable.

As an application we employ the results given in this work for the search of pe-

riodic orbits in underactuated hybrid mechanical control systems, in particular,

for the 2D spring loaded inverted pendulum.

The paper is structured as follows: Section 2 presents a review on Lagrangian

mechanics and Routh reduction. Section 3 introduces simple hybrid Routhian

systems and the 2D-SLIP model is derived as the simple hybrid Routhian system

for to the 2D one leg robotic hopper. Section 4 contains the main results of the

paper, such as how after introducing time-reversal symmetries we find sufficient

conditions to ensure the existence of periodic solutions and we study how to

characterize some of the eigenvalues for the linearization of the Poincaré map

corresponding to the periodic orbit. In this section we also explain how to apply

the results for the reduced system associated with the 2D one leg robotic hopper.

Finally, Section 5 shows the results obtained in Section 4 to study the existence

of periodic solutions in underactuated simple hybrid Routhian control systems.
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2. Preliminaries on Routh reduction

Let Q be the configuration space of a mechanical system, a differentiable

manifold of dimension n, with local coordinates q = (q1, . . . , qn). Let TQ be

the tangent bundle of Q, locally described by the positions and velocities for

the system (q, q̇) = (q1, . . . , qn, q̇1, . . . , q̇n) ∈ TQ with dim(TQ) = 2n.

The dynamics of the mechanical system is determined by a Lagrangian func-

tion L : TQ → R given by L(q, q̇) = K(q, q̇) − V (q) where K : TQ → R is the

kinetic energy and V : Q → R the potential energy. Along this work we will

assume that the Lagrangian L is regular, that is, det

(
∂2L

∂q̇i∂q̇j

)
6= 0 for all

i, j = 1, . . . , n.

The corresponding equations of motion describing the dynamics of the sys-

tem are given by the Euler-Lagrange equations for L, that is,
d

dt

(
∂L

∂q̇i

)
=
∂L

∂qi
,

i = 1, . . . , n; a system of n second-order ordinary differential equations. These

equations induce a vector field XL : TQ → T (TQ) describing the dynamics of

the Lagrangian system, given by

XL(qi, q̇i) =

(
qi, q̇i; q̇i,

(
∂2L

∂q̇i∂q̇j

)−1(
∂L

∂qi
− ∂2L

∂q̇i∂qj
q̇j
))

.

There exists a large class of systems for which the Lagrangian does not

depend on some of the generalized coordinates. Such coordinates are called

cyclic or ignorable, and the corresponding generalized momenta is easily checked

to be constants of the motion.

The Routh reduction procedure is a classical reduction technique which takes

advantage of the conservation law to define a reduced Lagrangian function, so-

called the Routhian, such that the solutions of the Euler-Lagrange equations

for the Routhian are in correspondence with the solutions of Euler-Lagrange

equations for the original Lagrangian, when the conservation of momenta is

taken into account. The technique is due to Edward Routh, who successfully

applied it to the study of the stability of steady motions (today, we call these

relative equilibria).

The steps to carry out Routh reduction are described in many classical texts
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of mechanics (such as [23]) as follows. Assume qi = (xa, θ) are local coordinates

on Q, a = 1, . . . , n− 1.

1) Let L(xa, ẋa, θ, θ̇) be a G-regular Lagrangian with cyclic coordinate θ, that

is,
∂L

∂θ
= 0, and denote by pθ the generalized momentum corresponding to

θ.

2) Fix a value of the momentum µ = pθ, and consider the function

Rµc (xa, ẋa) =
(
L− θ̇pθ

) ∣∣∣
pθ=µ

, (1)

where the notation means that we have used the relation µ = pθ to replace all

the appearances of θ̇ in terms of (xa, ẋa) and the parameter µ. The function

Rµc is the (classical) Routhian.

3) If we regard Rµc as a new Lagrangian in the variables (xa, ẋa), then the

solutions of the Euler-Lagrange equations for Rµc are in correspondence with

those of L when one takes into account the relation pθ = µ. More precisely,

if L is G-regular:

(i) Any solution (xa(t), θ(t)) of the Euler-Lagrange equations for L with

momentum pθ = µ projects onto a solutions xa(t) of the Euler-Lagrange

equations for Rµc ,
d

dt

(
∂Rµc
∂ẋa

)
− ∂Rµc
∂xa

= 0. (2)

These equations will be referred to as Routh equations. Equations (2)

induce a vector field XRµc : TQ → T (TQ) describing the dynamics of

the reduced system, called Routhian vector field, and given by

XRµc (xa, ẋa) =

(
xa, ẋa, ẋa,Mab

(
∂L

∂xa
− ∂2L

∂ẋa∂xb
ẋb
))

,

where Mab =
(

∂2L
∂ẋa∂ẋb

)−1

.

(ii) Conversely, any solution of Routh equations for Rµc can be lifted to a

solution of the Euler-Lagrange equations for L with momentum pθ = µ.

This is best understood by means of an example:
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Example 1. The Lagrangian L : T (R× S1)→ R given by

L(r, ṙ, θ, θ̇) =
1

2
m(ṙ2 + r2θ̇2)− 1

2
r2k.

describes (in polar coordinates) the motion of a mass m on the plane which is

pinned to a fixed point through a spring of elastic constant k (as it is shown in

Figure 1).

k

m

θ

r

Figure 1: spring-loaded pendulum

Note that the Lagrangian L is regular since det

 ∂2L
∂ṙ∂ṙ

∂2L
∂ṙ∂θ̇

∂2L
∂θ̇∂ṙ

∂2L
∂θ̇∂θ̇

 = (mr)2 6= 0.

The coordinate θ is cyclic, and the associated conservation law reads pθ = mr2θ̇.

If we set pθ = µ 6= 0 (a fixed constant µ which represents the fixed value of the

momentum), we can work out θ̇ in terms of the (r, ṙ) and find the relation

θ̇ = µ/mr2. Then the Routhian Rµc : TR→ R is given by

Rµc (r, ṙ) =
(
L− µθ̇

) ∣∣∣
pθ=µ

=
1

2

(
mṙ2 − kr2 − µ2

mr2

)
.

The equivalence of solutions between L and Rµc happens when one takes into

account the conservation law pθ = µ. More precisely: a solution (r(t), θ(t))

of the Euler Lagrange for the G-regular Lagrangian L with momentum pθ = µ

projects onto a solution r(t) of Routh equations for Rµc . Conversely, given a

solution r(t) of the Routh equations for Rµc , one can use the conservation law

pθ = µ to lift r(t) to a solution (r(t), θ(t)) of the Euler Lagrange for L (with

momentum µ, obviously).
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3. Simple hybrid Routhian systems

3.1. Simple hybrid system

Simple hybrid systems [30] (see also [2]) are characterized by the 4-tuple

H = (D,X,S,∆) where D is a smooth manifold, the domain, X is a smooth

vector field on D, S is an embedded submanifold of D with co-dimension 1

called switching surface, and ∆ : S → D is a smooth embedding called the

impact map. S and ∆ are also called the guard and reset map, respectively, in

[2]-[4].

In this work, the dynamics associated with a simple hybrid system is de-

scribed by an autonomous system with impulse effects as in [53]. We denote by

ΣH the simple hybrid dynamical system generated by H, that is,

ΣH :

γ̇(t) = X(γ(t)), γ−(t) /∈ S

γ+(t) = ∆(γ−(t)), γ−(t) ∈ S
(3)

where γ : I ⊂ R → D, and γ−(t) := lim
τ→t−

γ(τ), γ+(t) := lim
τ→t+

γ(τ) are the left

and right limits of the state trajectory γ(t), respectively, describing the states

immediately before and after the times when integral curves of X intersects S

(i.e., pre and post impact of the solution γ(t) with S).

Remark 1. Consider the impact map ∆ given by the identity map. When a

trajectory crosses S, we will have γ+ = ∆(γ−) = γ− ∈ S, so that we are again

in the regime of discrete dynamics where re-initialization (to γ−) will occur. It

is clear that this process will never end. Consequently, there exists an infinite

number of resets in a finite amount of time. This situation generates a class

of behavior called Zeno behavior. That is, a solution of a hybrid system may

experience a Zeno state if infinity many impacts occur in a finite amount of

time [2]. This is particularly problematic in applications where numerical work

is conducted, as computation time grows infinitely large at these Zeno points.

There are two primary modes through which zeno behavior can occur:

(1) A trajectory is reset back onto the guard, prompting additional resets.

As seen in the above example where γ+ = ∆(γ−) = γ− ∈ S, if there is a set of
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points in the guard which the reset map cycles between, we can get ’stuck’ on

the guard. To exclude this type of behavior, we require that S∩∆(S) = ∅, where

∆(S) denotes the closure as a set of ∆(S). This ensures that the trajectory will

always be reset to a point with positive distance from the guard.

(2) The set of times where a solution to our system reaches the guard (and is

correspondingly reset) has a limit point. This happens, for example, in the case

of the bouncing ball with coefficient of restitution 1/2. If t0 is the time between

two impacts, then the time between the next two impacts will be t0/2, then t0/4,

and so on. In time

T = t0 +
t0
2

+
t0
4

+ ... = 2t0

we will have infinite resets in a finite time. To exclude these kind of situations,

we require the set of impact times to be closed and discrete, as in [53].

Both of the previously established hypothesis will be assumed implicitly through-

out the rest of the paper (i.e., ∆(S)∩S = ∅ and the set of impact times is closed

and discrete). Necessary and sufficient conditions for the existence of Zeno be-

havior in the class of hybrid systems studied in this work have been explored in

[33].

3.2. Simple hybrid Routhian systems

When the configuration space is Q = P × G (i.e., D = TQ = TP × TG)

with G an abelian Lie group and P a smooth manifold, A. Ames and S. Sastry

introduced the notion of hybrid Routhian systems in [2] and [5]. This is based on

2 invariance properties allowing the reduction by symmetries: a cyclic regular

Lagrangian L : TQ → R and a function h : Q → R describing an unilateral

constraint which induces the switching surface, being h cyclic and defined in

the same generalized coordinates as L. These two invariance properties allow

to define the Routhian Rµc : TP → R and the reduced constraint function

h̄ : P → R.

The starting point for symmetry reduction is a Lie group action ψ : G×Q→

Q of some Lie group G on the manifold Q. There is a natural lift of the action
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ψ to the space T ∗Q,

ΨT∗Q : G× T ∗Q→ T ∗Q,

(g, (q, p)) 7→ T ∗ψg−1(q, p).

The cotangent bundle T ∗Q is equipped with the following geometric structure,

called canonical symplectic structure (see, for instance, [37]) Ω = dq ∧ dp with

(q, p) being local coordinates on T ∗Q. The action ΨT∗Q enjoys the following

properties (see [37]):

• ΨT∗Q is a symplectic action, meaning that, if we denote ΨT∗Q
g ≡ ΨT∗Q(g, ·),

(ΨT∗Q
g )∗Ω = Ω, where (ΨT∗Q

g )∗Ω accounts for the pullback by ΨT∗Q
g of

the 2-form Ω.

• It admits an Ad∗-equivariant momentum map J : T ∗Q→ g∗ given by

〈J(q, p), ξ〉 = 〈p, ξQ〉, ∀ξ ∈ g∗,

where ξQ(q) := d
dtψexp(tξ)q is the infinitesimal generator of the element

ξ ∈ g∗ and where g∗ denotes the dual of g, the Lie algebra associated with

the Lie group G.

Likewise, there is a lift of the action ψ to TQ denoted by ΨTQ

ΨTQ : G× TQ→ TQ,

(g, (q, q̇)) 7→ Tψg(q, q̇).

It has been shown in [2] and [5] that to perform a hybrid Routhian reduction

one needs to impose some compatibility conditions between the action and the

simple hybrid system whose continuous-time dynamics is described by a La-

grangian flow associated to L (a.k.a simple hybrid Lagrangian system). By the

term hybrid action we mean a Lie group action ψ : G×Q→ Q such that (i) L

is invariant under ΨTQ, i.e. L ◦ΨTQ = L; (ii) ΨTQ restricts to an action on S;

(iii) ∆ is equivariant w.r.t. the previous action, namely ∆ ◦ΨTQ
g |S= ΨTQ

g ◦∆.

In the case of a hybrid action, ΨTQ admits an Ad∗-equivariant (Lagrangian)

momentum map JL : TQ → g∗ given by JL = J ◦ FL, where FL : T → T ∗Q
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is the Legendre transformation associated with regular Lagrangian L, given by

FL(q, q̇) := (q, p = ∂L/∂q̇). This follows directly from the invariance of L, since

it implies that FL is an equivariant diffeomorphism, i.e. FL◦ΨTQ
g = ΨT∗Q

g ◦FL.

The hybrid equivalent of momentum map is the notion of hybrid momentum

map introduced in [2]. For example, in the case of TQ, JL is a hybrid momentum

map if the diagram

g∗

TQ S TQ

JL
JL|S

i ∆

JL (4)

commutes, where i denotes the canonical inclusion from S to TQ.

The situation of interest in this paper is that of an Abelian group action, i.e.

G = S1 (the case G = R is analogous; and if G is a product one can iterate the

procedure): this corresponds to the classical notion of cyclic coordinates. From

now on we will assume Q = P × S1 where P is called the shape space and the

action being given by

ψα : S1 ×Q→ S1 ×Q,

(θ, x) 7→ (θ + α, x). (5)

While this is indeed a strong assumption, it is always the case locally, so as long

as it applies to the domain of interest of a specific problem the procedure below

applies. More general results where the manifold is not a product or the Lie

group is arbitrary (not necessarily Abelian) can be handled by using the same

tools, but involving more technicalities such as the introduction of a principal

connection. These matters will be discussed in a future extension of this work.

A. Ames and S. Sastry also shown that if the trajectory γ for a simple hybrid

Lagrangian system starting at γ0 ∈ J−1(µ), with J : TQ → g∗ the momentum

map associated for the conserved quantity µ, being g the Lie algebra associated

with G, then the trajectory for a simple hybrid Routhian system starting at

π(γ0) with π : TQ→ TP the projection over the first factor of TQ = TP ×TG,

is determined by π(γ(t)).
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Definition 3.1. A simple hybrid system H = (D,X,S,∆) is said to be a simple

hybrid Routhian system if it is determined by HRµc := (TP,XRµc ,Sµ,∆µ), where

XRµc : TP → T (TP ) is the Routhian vector field, Sµ is the reduced switching

surface given by S |(JL|S)−1(µ) with µ the momentum constraint determined by

the conserved quantity which arises from the cyclic coordinate and ∆µ : Sµ →

TP is the impact map on Sµ given by ∆ |(JL|S)−1(µ).

Definition 3.2. The simple hybrid Routhian dynamical system generated by

HRµc is given by

Σ
HR

µ
c

:

γ̇(t) = XRµc (γ(t)), if γ−(t) /∈ Sµ,

γ+(t) = ∆µ(γ−(t)), if γ−(t) ∈ Sµ,
(6)

where γ(t) ∈ TP .

Note that, as before, ∆µ : Sµ → TP is continuous and if we denote ∆µ(Sµ)

the closure of ∆µ(Sµ) then we must assume ∆µ(Sµ) ∩ Sµ = ∅ and therefore,

an impact does not lead immediately to another impact. We shall assume that

HRµc satisfies (see Section 4.1 in reference [53] for more details)

(A1) Assumption 1: Sµ 6= ∅ and there exists an open subset U ⊂ TP and

a differentiable function h̄ : U → R such that Sµ = {x ∈ U | h̄(x) = 0} with

∂h̄
∂x (s) 6= 0 for all s ∈ Sµ (that is, Sµ is an embedded submanifold of TP with

co-dimension 1) and the Lie derivative of the vector field XRµc with respect to

h̄ does not vanish on TP , that is LXRµc
h̄(w) 6= 0, ∀w ∈ TP .

(A2) Assumption 2: A trajectory γ : [0, T ] → TP crosses the switching

surface Sµ at t−i = inf{t > 0|γ(t) ∈ Sµ}. We allow the trajectory γ to be non-

smooth but continuous at t−i . That is, the velocity before the impact ẋ− may

be different from the velocity ẋ+ after the impact at Sµ, i.e., ẋ(t−i ) 6= ẋ(t+i ).

The requirement that the configuration right after the impact does not be-

long to Sµ (that is, ∆µ(Sµ) ∩ Sµ = ∅), becomes a requirement on the exit

velocity which states that the system has to be moving away from the switching

surface right after the impact, that is, ∇h̄(γ(ti)) · γ̇(t+i ) ≤ 0, with h̄ : TP → R

as in A1.
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A trajectory of a hybrid Routhian system is determined by the dynamics as-

sociated with the Routhian until the instant when the state attains the switching

surface Sµ. We refer to such instant as the impact time. There is an instan-

taneous change in the velocity component of the state at impact times. The

impact map gives new initial conditions from which the continuous dynamics

evolves until the next impact occurs.

Remark 2. We defined simple hybrid Routhian systems from simple hybrid

systems as in [2]-[4]. However our definition is slightly different, but it is not

contradictory, with the one given in [2] and [3]. The constraint defining Sµ

is smooth satisfying both assumptions A1 and A2, (it is not determined by

unilateral constraints as considered in [2]-[4] and [9], since we use the approach

for systems with impulsive effects following [21] and [53]). Usually, and specially

in biped locomotion, the impact map is given by foot placement on the ground

and it comes from a Newtonian impact equation [3], [4], [9]. In this work we

only assume ∆µ is a smooth embedding on Sµ satisfying A1 and A2 .

Solutions for the simple hybrid Routhian dynamical system Σ
HR

µ
c

, are con-

sidered right continuous and with finite left and right limits at each impact with

Sµ. More precisely:

Definition 3.3. A solution for the hybrid Routhian system Σ
HR

µ
c

is a curve

γ : [t0, tf )→ TP , tf ∈ R ∪ {∞}, tf > t0, unique from a given initial condition,

depending continuously on it, satisfying A2, and such that:

(i) γ(t) is right continuous on [t0, tf ),

(ii) left and right limits, denoted by γ−(t) and γ+(t), respectively, exists at

each point t ∈ (t0, tf ),

(iii) there exists a closed discrete subset I ⊂ [t0, tf ), the impact times, such

that, for each t /∈ I, γ(t) is differentiable, γ̇(t) = XRµc (γ(t)), and γ(t) /∈

Sµ; and for t ∈ I, γ−(t) ∈ Sµ and γ+(t) = ∆µ(γ−(t)).
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Note that right continuity of solutions implies γ(t) = γ+(t) at all the points

in its domain of definition. If α0 ∈ TP denotes the initial state at time t0, the

solution at t0 is denoted γ(t0, α0). When α0 /∈ Sµ, γ(t0, α0) = α0 and when

α0 ∈ Sµ, γ(t0, α0) = ∆µ(α0) = γ(t0,∆
µ(α0)) (see Section 4.1 in [53] for details).

Remark 3. As we commented in Section 2, since the Euler-Lagrange equations

for Rµc involve less variables, they are easier to solve. If the Lagrangian L is reg-

ular, then one usually proceeds to solve these first, and then uses the momentum

constraint ∂L/∂θ̇ = µ to reconstruct the sought solutions of the Euler-Lagrange

equations of L. Special care should be taken when translating this reduction

technique to hybrid systems. The reason is that the collisions with the switching

surface will, in general, modify the value of the momentum map. Therefore, if

I = {Ii}i∈Λ, where Λ = {0, 1, 2, ...} ⊆ N is a finite (or infinite) indexing set,

and Ii = [ti, ti+1] if i, i+ 1 ∈ Λ and IN−1 = [tN−1, tN ) or [tN−1,∞) if |Λ| = N ,

N finite, with ti, ti+1, tN−1 ∈ R and ti ≤ ti+1, then the Routhian has to be

defined in each Ii taken into account the value of the momentum µi after the

collision at time τi. Note that this also has influence in the way the reset map

∆ is reduced.

Let us denote: (1) µi the momentum of the system in Ii = [ti, ti+1], (2) ∆µi

is given by ∆ |(JL|S)−1(µi), and (3) Sµi is given by S |(JL|S)−1(µi), There is a

sequence of hybrid Routhian systems

[t0, t1] (P,Rµ0
c ,Sµ0 ,∆µ0)

[t1, t2] (P,Rµ1
c ,Sµ1 ,∆µ1)

(. . . ) (. . . )

Coll.

Red.

Coll.

Coll.

Red.

Coll.

Red.

Similarly as in [5], the reconstruction procedure from the reduced hybrid flow

to the flow for the simple hybrid Lagrangian system involves a recursive inte-

gration at each stage in the previous diagram of the cyclic variable using the

solution of the reduced hybrid Routhian system. Roughly speaking, this accounts
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to imposing the momentum constraint on the reconstructed solution.

Example 2 (The 2D one leg robotic hopper). The 2D one leg hopper robot

consists of a spring loaded inverted pendulum together with a planar rigid body

attached at the top of the spring (see Figure 2). This model is a schematic rep-

resentation for the stance phase of a running or hopping biped with one foot on

the ground at any time (see [1] for details). The common point of attachment

is the center of mass of the rigid body (i.e., the sprung leg is attached at a hip

joint which is the center of mass).

Figure 2: 2D one leg robotic hopper

The configuration space of the system is Q = (R×S1)×S1, locally parametrized

by the coordinates q = (ξ, ϕ, θ) describing the length of the spring, the angle of

the spring with respect to the ground (i.e., the angle formed between the line

joining the foothold to the center of mass and the vertical gravitational axis)

and the attitude for the rigid body, respectively. We denote by m the mass of

the rigid body and I its moment of inertia. The spring is considered massless

and l0 denotes the non-load length of the spring.

The motion is divided into two phases: The first one is the stance phase, with

foothold fixed, the leg under compression, and the body swinging forwards (i.e.,

θ is increasing). The second one is a flight phase, which occurs when the rigid

body moves, describing a ballistic motion under the influence of gravity. The

transition between both phases occurs when the spring is uncompressed (i.e., it

is unloaded) until the time when the spring touch the ground again. Both phases

define a hybrid system.
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The Lagrangian describing the flight phase is given by the kinetic energy

minus the potential energy, which is given by the spring potential V (ξ) and the

gravitational potential, that is,

L(ξ, ϕ, θ, ξ̇, ϕ̇, θ̇) =
1

2
m(ξ̇2 + ξ2ϕ̇2) +

1

2
Iθ̇2 − (mgξ cosϕ+ V (ξ)).

To derive the switching surface and the impact map, we note that the flight

starts when the spring length reaches its non-load length (i.e., ξ = l0). Therefore

the switching surface is given by S = {(ξ, ϕ, θ, ξ̇, ϕ̇, θ̇) ∈ TQ| ξ = l0}.

By assuming that at the start of the stance phase the leg is at an angle of

−ϕ0, by employing polar coordinates x = ξ sinϕ, y = ξ cosϕ and nothing that

y+ = l0 cos(−ϕ0) = l0 cos(ϕ0), the impact map is given by

∆(x−, y−, θ−, ẋ−, ẏ−, θ̇−) = (−l0 sinϕ0, l0 cosϕ0,−θ−, ẋ−,−ẏ−,−θ̇−).

Note that the Lagrangian and the constraint which define the switching sur-

face, i.e., h(q) = ξ − l0, are both cyclic in θ. Therefore by denoting µ the

conserved quantity, the Routhian Rµc : T (S1 × R)→ R is given by

Rµc (ξ, ϕ, ξ̇, ϕ̇) =
m

2
(ξ̇2 + ξ2ϕ̇2)− µ2

2I
−mgξ cosϕ− V (ξ).

Note that Rµc describes the motion for the spring-loaded inverted pendulum

(SLIP) which has been used as a model which reasonably provides a template for

sagittal plane motions of the center of mass (COM) of diverse legged systems

as it was reviewed in [26] and further studied in [20] and [17].

Figure 3: 2D spring loaded inverted pendulum

The aerial phase consists of a projectile (or ballistic) motion for the COM
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(where the only external force is gravity) at the end of which, when ξ = l0, the

next stance phase starts as is shown in Figure 2.

Routh equations for Rµc are given by

ξ̈ = ξϕ̇2 − g cosϕ− 1

m

∂V

∂ξ
, ϕ̈ =

g

ξ
sinϕ− 2ϕ̇ξ̇

ξ
,

which defines the Routh vector field

XRµc (s) =

(
s, ξ̇, ϕ̇, ξϕ̇2 − g cosϕ− 1

m

∂V

∂ξ
,
g

ξ
sinϕ− 2ϕ̇ξ̇

ξ

)T
,

where s(t) = (ξ(t), ξ̇(t), ϕ(t), ϕ̇(t)) ∈ T (R × S1). Therefore the simple hybrid

Routhian system Σ
HR

µ
c

is given by

Σ
HR

µ
c

:

ṡ(t) = XRµc (s(t)), if s−(t) /∈ Sµ,

s+(t) = ∆µ(s−(t)), if s−(t) ∈ Sµ,
(7)

where

Sµ = {(ξ, ξ̇, ϕ, ϕ̇) ∈ T (R× S1)|ξ = l0}

and

∆µ(x−, y−, ẋ−, ẏ−) = (−l0 sinϕ0, l0 cosϕ0, ẋ
−,−ẏ−).

4. Time reversal symmetries and periodic solutions for Simple Hybrid

Routhian systems

In this section we study how to impose symmetries on the Routhian vector

field XRµc describing the continuous-time dynamics for a simple hybrid Routhian

system, and onto the impact map, to achieve periodic motions in these classes

of hybrid systems.

4.1. Time-reversal symmetries for simple hybrid Routhian systems

As it was reviewed in [32] (see also [1]), the notion of time reversal symme-

tries plays a fundamental role in mechanical systems which are invariant under

the transformation (q, q̇, t) 7→ (q,−q̇,−t). This symmetry implies that for a
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trajectory in phase space γ(t) = (q(t), q̇(t)) with initial condition γ0 = (q0, q̇0),

then β(t) = (q(−t),−q̇(−t)) is also a solution for the system with initial condi-

tion β0 = (q0,−q̇0). In particular, if we have the trajectory q(t), we also have

the trajectory q(−t).

Definition 4.1. [32] A diffeomorphism Φ : TP → TP is called time-reversal

symmetry for the Routh vector field XRµc with Routhian Rµc : TP → R if Φ is

an involution, that is, Φ ◦ Φ = Id, and it satisfies

dΦ

dt
(γ(t)) = −XRµc (Φ(γ(t))). (8)

That is, the Routh vector field satisfies XRµc (Φ(q, q̇)) = −dΦ(q, q̇) ·XRµc (q, q̇).

We call a Routh vector field satisfying condition (8) a reversible Routh vector

field under the time-reversing symmetry Φ.

Remark 4. Note that the name “time-reversal” is given by the fact that equa-

tion (8) can be read as

Φ ◦Xt
Rµc

= X−t
Rµc
◦ Φ,

where −t means the time-reversibility of the vector field Xt
Rµc

.

Proposition 1. Consider a time-reversal symmetry Φ for XRµc . If γ∗ is a fixed

point of Φ such that γ(0) = γ∗ for γ an integral curve of XRµc passing through

γ∗, then Φ(γ(t)) = γ(−t).

Proof: Consider γ̃(t) = Φ(γ(−t)), then γ̃(0) = Φ(γ(0)) = Φ(γ∗) = γ∗. That

is, γ and γ̃ satisfy the same initial value.

Note that ˙̃γ(t) = −dΦ · γ̇(−t), but γ(t) is a solution of XRµc , then ˙̃γ(t) =

−dΦ ·XRµc (γ(−t)).

Since Φ is a time-reversal symmetry for XRµc , then ˙̃γ(t) = XRµc (Φ(γ(−t))),

and by definition of γ̃(t), it follows that ˙̃γ(t) = XRµc (γ̃(t)). Therefore, γ̃(t) is a

solution for XRµc with initial value γ∗. By uniqueness of solutions for an initial

value problem, γ̃(t) = γ(t), that is Φ(γ(−t)) = γ(t). Since Φ is an involution,

Φ(γ(t)) = γ(−t). �
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Theorem 4.2. Let Rµc : TP → R be the Routhian function invariant under the

map Φ : TP → TP ,

Φ(q(t), q̇(t)) = (F (q(t)),−dF (q) · q̇(t)) (9)

with F : Q→ Q a smooth involution. If γ∗ = (q∗, q̇∗) is a fixed point of Φ, then

Φ(γ(t)) = γ(−t). In particular F (q(t)) = q(−t).

Proof: Let γ(t) be a solution of Routh equations for Rµc with initial value

γ(0) = γ∗ and consider the map γ̃(t) = Φ(γ(−t)). Given that γ∗ is a fixed point

of Φ both curves in TP , γ(t) and γ̃(t), satisfy the same initial values. Since

Rµc is invariant under Φ, Rµc (γ̃(t)) = Rµc (Φ(γ(−t))) = Rµc (γ(−t)) and given

the Routh’s equations are invariant under (q, q̇, t) 7→ (q,−q̇,−t), Rµc (γ̃(t)) =

Rµc (γ(t)). Therefore, γ̃(t) and γ(t) satisfy the same Routh equations. Next, by

uniqueness of solutions for the initial value problem, it follows that Φ(γ(t)) =

γ(−t). Therefore, F (q(t)) = q(−t). �

4.2. Existence of periodic orbits

In this section, based on the properties of the Routhian, we find sufficient

conditions for the existence of periodic solutions in simple hybrid Routhian

systems in analogy with the results for invariant Hamiltonian systems studied

in [14].

Theorem 4.3. Let Σ
HR

µ
c

be a simple hybrid Routhian dynamical system with

Routhian Rµc : TP → R invariant under Φ : TP → TP defined as in (9). If γ∗ is

a fixed point of Φ, γ crosses the switching surface S at t−i = inf {t > 0|γ(t) ∈ S}

and the impact map is defined as ∆(γ−(ti)) = Φ(γ−(ti)) then γ(t) is a periodic

solution for Σ
HR

µ
c

with period 2t−i .

Proof: Since Rµc is invariant under Φ, by Theorem 4.2 Φ must satisfy

Φ(γ(t)) = γ(−t). In particular, for t = t−i , using the notation γ(t−i ) = γ−(ti),

we have Φ(γ−) = γ(−t−i ) = γ−(−ti). Given that by definition ∆(γ−) = γ+(t)

we have that γ(t+i ) = γ(−ti) and therefore, right after the impact, γ(t) is re-

initialized back to γ(−ti) so, it is periodic with period 2t−i . �
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The advantage of this result is that we can search for periodic orbits just

looking at the Routhian function, instead of, for instance, using the Poincaré

return map. Also, depending on the quantity of fixed points, Theorem 4.3

provides a family of periodic solutions instead of a single periodic orbit.

Example 3 (The 2D robotic hopper - continuation). Consider the 2D hy-

brid system given by the planar robotic hopper introduced in Example 2. We have

seen that after employing Routh reduction this system becomes in the 2D SLIP.

Consider the function F : R × S1 → R × S1 as F (ξ, ϕ) = (ξ,−ϕ). F is a

smooth involution. Using F we can construct the symmetry map Φ : T (R×S1)→

T (R × S1) using (9) as Φ(ξ, ϕ, ξ̇, ϕ̇) = (ξ,−ϕ,−ξ̇, ϕ̇). It is easy to check that

Rµc ◦ Φ = Rµc .

Fixed points of Φ are given by γ∗ = (ξ∗, 0, 0, ϕ̇∗), for any ξ∗ and ϕ̇∗. Let

t−i the point where γ crosses the switching surface Sµ and define ∆µ(t−i ) =

∆µ(ξ−, ϕ−, ξ̇−, ϕ̇−) = Φ(ξ−, ϕ−, ξ̇−, ϕ̇−) = (l0,−ϕ0,−ξ̇−, ϕ̇−). Therefore, by

Theorem 4.3, there exists a periodic solution for the hybrid Routhian system

determined by Rµc and ∆µ with period 2t−i .

4.3. Stability analysis of periodic orbits

Let γ(t) be a periodic solution for Σ
HR

µ
c

(with period 2t−i ) associated with

the time-reversal symmetry Φ : TP → TP and γ∗ = γ(0) be a fixed point of

Φ. For the stability analysis of this orbit, we use the method of Poincaré maps

[24], [41].

Let P be the Poincaré map corresponding to the periodic orbit γ(t), that

is, P : Sµγ∗ → S
µ
γ∗ , being Sµγ∗ (i.e., the reduced switching surface at the fixed

point γ∗) the Poincaré section, a hypersurface at γ∗, with co-dimension one of

the reduced configuration space, where we are assuming that γ∗ ∈ Sµγ∗ .

Given that γ is a periodic orbit and γ(0) = γ∗, by definition of Poincaré

map, P(γ∗) = γ∗. Stability analysis employing the method of Poincaré maps

tell us that γ(t) is asymptotically stable at γ∗ if the eigenvalues for the Jacobian

of P (i.e., its tangent map) at γ∗, denoted by T P : Tγ∗Sµγ∗ → Tγ∗Sµγ∗ , are within
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the unit circle (that is, if the discrete system γn+1 = P(γn) is asymptotically

stable at γ∗).

Denote by Fix(f) the set of fixed points associated with a function f : TP →

TP , that is,

Fix(f) = {x ∈ TP | f(x) = x}.

Given that Φ is a diffeomorphism, Fix(Φ) is an embedded submanifold of

TP and we assume it has constant dimension, r = dim(Fix(Φ)) < dim(TP ).

Therefore, there exists a hypersurface Sµγ∗ at γ∗ such that TγFix(Φ) ⊂ TγSµγ∗ .

We denote by {qα} = (q1, . . . , qr) with 1 ≤ α ≤ r local coordinates on the

submanifold Fix(Φ). Therefore, in this set of local coordinates, γ∗ ∈ TP has

the expression, γ∗ = (γ∗1 , . . . , γ
∗
r , 0, . . . , 0) ∈ Fix(Φ), then P(γ∗, 0) = γ∗.

Definition 4.4 ([53]). Let φ(t, α0) be a solution for Σ
HR

µ
c

. The map T∆µ :

TP → R ∪ {∞} given by

T∆µ(α0) =

inf {t ≤ 0|φ(t, α0) ∈ Sµ} if there exists t : φ(t, α0) ∈ Sµ,

∞ otherwise

(10)

is called time-to-impact map.

Next, we denote by λi the eigenvalues of the Jacobian T P, and

Λ0 = {#λi such that |λi| = 0}, Λ1 = {#λi such that |λi| = 1}

where # means“quantity”.

Lemma 4.5. Let γ(t) be a periodic solution for a simple hybrid system ΣH as

in equation (3), and P : S → S the corresponding Poincaré map to γ(t). If

rank(∆) = β is constant, then Λ0 ≥ n− 1− β.

Proof: Consider the function N : ∆(S)→ S given by N(x) = φ(T∆(x), x).

Therefore, P(x) = N(∆(x)) and it follows that

T P(γ∗) = dN(∆(γ∗)) · d∆(γ∗).
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Given that rank dN(∆(γ∗)) · d∆(γ∗) ≤ rank (d∆(γ∗)) = β and dim(S) ≤

n− 1, by rank-nullity Theorem and the fact that kernel of T P is precisely the

eigenspace corresponding to the eigenvalue 0, if follows that Λ0 ≥ n− 1− β.�.

Theorem 4.6. Let Σ
HR

µ
c

be a simple hybrid Routhian system satisfying Φ(γ(t)) =

γ(−t) with γ(0) = γ∗ a fixed point of Φ. If γ(t) is a periodic solution transversal

to Sµγ∗ at γ∗, then Λ1 ≥ r.

Proof: By the transversality assumption, we can employ [Theorem 3.3 in [22]]

and so there is an open subset O ⊂ TP of γ∗ with Sµγ∗ ⊂ O, where every

trajectory starting form O crosses Sµ and where there exists a Poincaré map

P : Sµγ∗ → Sµγ∗ . Denote by P = [P1,P2, . . . ,Pn−1] the Poincaré map in local

coordinates (xa, ẋa) ∈ TP , satisfying P(γ∗, 0) = γ∗ where γ∗ ∈ Fix(Φ). Since

Φ is a time-reversal symmetry, every solution starting at γ∗ is a periodic orbit.

It is easy to check that T Pij(γ∗) = δij with δij = 1 if i = j and δij = 0 if

i 6= j, for i = 1, . . . , n− 1 and j = 1, . . . , r, where T Pij denotes the (i, j)-entries

for the Jacobian matrix of P. Indeed, it follows from

T Pii(γ∗) = lim
h→0

Pi(γ∗1 , . . . , γ∗i + h, . . . , γ∗k , 0, . . . , 0)− Pi(γ∗1 , . . . , γ∗i , . . . , γ∗k , 0, . . . , 0)

h

=lim
h→0

γ∗i + h− γ∗i
h

= 1,

and the fact that if i 6= j,

T Pij(γ∗) = lim
h→0

Pi(γ∗1 , . . . , γ∗j + h, . . . , γ∗k , 0, . . . , 0)− Pi(γ∗1 , . . . , γ∗i , . . . , γ∗k , 0, . . . , 0)

h

=lim
h→0

γ∗i − γ∗i
h

= 0.

Therefore T P has at least r eigenvalues λi with |λi| = 1. �

Example 4 (The 2D robotic hopper - continuation). Consider the situ-

ation of Example 3, which is a 4-dimensional system on T (R × S1). The fixed

points of Φ are γ∗ = (ξ∗, 0, 0, ϕ̇∗). Then dim(Fix(Φ)) = 2.
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By Theorem 4.6, Λ1 ≥ 2. Then T P(γ∗) is of the form

T P(γ∗) =


1 0 ∗ ∗

0 1 ∗ ∗

0 0 ∗ ∗

0 0 ∗ ∗

 .

Given that rank(∆µ) = 2, Λ0 ≥ 1. Therefore T P(γ∗), in an appropriate choice

of coordinates, takes the form

T P(γ∗) =


1 0 ∗ 0

0 1 ∗ 0

0 0 ∗ 0

0 0 ∗ 0

 .

It follows that the set of eigenvalues for T P are {1, 1, λ, 0}. Hence, if |λ| < 1,

the periodic orbit is marginally stable.

Remark 5. Note that in Example 4 we can get, at most a characterization of

neutral stability for the periodic solution γ. It would be interesting to consider

perturbed simple hybrid Routhian systems, similarly to the framework given in

[43], while the perturbation preserves the symmetry, in order that we can turn

the neutrally stable periodic orbit into a stable limit cycle. This will be explored

in a future work by considering an adaptation of the averaging method and

approximate for hybrid systems given in [17] and [50], respectively.

5. Application to existence of periodic solutions for hybrid Routhian

control systems

In this section we apply the results given in Section 4 to underactuated con-

trol systems. We study how by considering the notion of hybrid zero dynamics

given [53] together with a time reversible symmetry we can obtain a charac-

terization which facilitates the searching of periodic solutions in simple hybrid

Routhian control system.
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5.1. Underactuated mechanical control system

An underactuated control system is a control system where the quantity of

actuators is fewer than the dimension of the configuration space.

Consider a Lagrangian function L : TQ → R, with dim(Q) = n which

is cyclic with respect to one of the generalized coordinates. Without loss of

generality, we assume that the cyclic variable is the last one, that is, qi = (xa, θ),

a = 1, . . . , n − 1, with θ cyclic. In order to design control laws for controlled

simple hybrid Routhian systems we consider the underactuated controlled Euler-

Lagrange equations [7]

d

dt

(
∂L

∂ẋα

)
− ∂L

∂xα
= uα,

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= 0,

d

dt

(
∂L

∂ẋβ

)
− ∂L

∂xβ
= 0,

where α = 1, . . . , k; β = k+1, . . . , n−1, with u(t) = (u1(t), ..., uk(t)) ∈ U control

inputs and where U is an open subset of Rk, the set of admissible controls.

We assume at least one degree of underactuation, where the underactuated

configurations include the cyclic variable θ.

Since the cyclic variable is uncontrolled, by employing Routh reduction, the

reduced equations are given by the controlled Routh equations for the Routhian

Rµc : TP → R, that is,

d

dt

(
∂Rµc
∂ẋa

)
− ∂Rµc
∂xa

= uα,
d

dt

(
∂Rµc
∂ẋβ

)
− ∂Rµc
∂xβ

= 0. (11)

Equations (11) give rise to a model of an affine control system of the form

γ̇ = XRµc (γ) + C(γ)u := X(γ, u) (12)

where C is a constant matrix, XRµc is the Routh vector field and X : TP ×U →

T (TP ) is a vector field, called control vector field.

The tuple H
Rµc
c = (TP,U,Sµ,∆µ, X) with Sµ and ∆µ as in Definition 3.1,

and X : TP × U → T (TP ) defined in (12), is called simple hybrid Routhian

control system. A simple hybrid Routhian system is a simple hybrid Routhian

control system with U = {0}.
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5.2. Hybrid zero dynamics and periodic solutions for simple hybrid

Routhian control systems

Definition 5.1 ([29]). Consider the control vector field X(γ,w) given in (12).

The embedded submanifold Z of TP given by

Z = {γ̃ ∈ TP | ∃!u?(γ̃) s.t. X(γ̃, u?(γ)) ∈ Tγ̃Z}

is called the zero dynamics submanifold of TP , and ˙̃γ = X(γ̃, u?(γ̃)) is the

associated zero dynamics on Z.

Theorem 5.2. Consider a control system γ̇ = X(γ, u) as in (12) with associ-

ated Routhian vector field XRµc and Z the associated zero dynamics submanifold.

Assume that Z is invariant under the time reversal symmetry Φ for XRµc ,

C(Φ(γ))Γ(u) = −(dΦ(γ)C(γ))u (13)

for all γ ∈ TP and with Γ : U → U a one to one invertible map. If γ∗ is a fixed

point of Φ in Z, the solution γ(t) : I → TP with initial condition γ(0) = γ∗

belongs to Z and Φ(γ(t)) = γ(−t) ∀t ∈ I. Moreover, for all γ ∈ Z it follows

that u?(Φ(γ)) = Γ(u?(γ)) and

X (Ψ(γ)) = −dΨ(γ) · X ,

where X and Ψ denotes the restrictions to Z of X and Φ respectively.

Proof: If γ∗ ∈ Z is a fixed point of Φ, by definition of the zero dynamics

X(γ, u?(γ)) ∈ TγZ ∀γ ∈ Z, hence γ(t) ∈ Z ∀t ∈ I. Moreover, by Theorem 4.2

Φ(γ(t)) = γ(−t).

Now, given that Z is invariant under Φ, that is Φ(γ) ∈ Z ∀γ ∈ Z, then

−dΦ(γ) ·X(γ, u?(γ)) ∈ TΦ(γ)Z. (14)

By the definition of the zero dynamics X(Φ(γ), u?(Φ(γ))) ∈ TΦ(γ)Z. Us-

ing that C(Φ(γ)))Γ(u(γ)) = −(dΦ(γ)C(γ))u(γ) and the fact that Φ is a time

reversible symmetry for XRµc , −dΦ(γ) ·XRµc (γ) = XRµc (Φ(γ)). Therefore,

XRµc (Φ(γ)) + C(Φ(γ))Γ(u?(γ)) ∈ TΦ(γ)Z.
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Finally, by Definition 5.1 the feedback control u?(γ) is unique, then (14) is

equivalent to XRµc (Φ(γ)) + C(Φ(γ))Γ(u?(γ)). Therefore ∀γ ∈ Z, Γ(u?(γ)) =

u?(Φ(γ)) and given that Φ is a time reversible symmetry for XRµc , it follows

that −dΦ(γ) ·X(γ, u?(γ)) = X(Φ(γ), u?(Φ(γ))) ∈ TΦ(γ)Z . �

The following definition are given in analogy with [53] for the class of simple

hybrid Routhian control systems:

Definition 5.3. Let H
Rµc
c be a simple hybrid Routhian control system and let

Z be the zero dynamics submanifold for XRµc imposed by u?(γ). Denoting by

W = Z ∩ Sµ, the submanifold Z is called hybrid invariant if ∆µ(W) ⊂ Z.

Definition 5.4. Consider the simple hybrid Routhian control system H̃
Rµc
c =

(Z, U,W,∆µ|Z ,X ) generating the hybrid dynamical control system

Σ
H̃
R
µ
c

c

:

γ̇(t) = X (γ(t), u?(γ(t))), γ−(t) /∈ X

γ+(t) = ∆µ|Z(γ−(t)), γ−(t) ∈ W.

(15)

The hybrid dynamical control system Σ
H̃
R
µ
c

c

is called hybrid zero dynamics asso-

ciated with the simple hybrid Routhian control system HRµc
c .

Theorem 5.5. Consider the situation and hypothesis of Theorem 5.2, but where

γ is any solution of Σ
H̃
R
µ
c

c

satisfying γ(0) = γ∗ with γ∗ ∈ Z a fixed point of the

time reversal symmetry Φ for XRµc with Z hybrid invariant. If in addition γ

crosses the switching surface W at t−i = inf {t > ti−1|γ(t) ∈ W} and the impact

map is defined as ∆µ(γ−(ti)) = Φ(γ−(ti)), then γ(t) is a periodic solution on

Z for the simple hybrid Routhian control system Σ
H̃
R
µ
c

c

with period 2t−i .

Proof: By Theorem 5.2 γ(t) ∈ Z and Φ(γ(t)) = γ(−t) ∀t ∈ I. In particular,

for ti = t−i , denoting γ(t−i ) = γ−(ti) ∈ W, we have Φ(γ−) = γ−(−ti). Since

∆µ(γ−(ti)) = Φ(γ−(ti)), ∆µ(γ−) = γ+(t) and then γ(t+i ) = γ(−ti). Therefore,

right after the impact, the solution γ(t) is re-initialized back to γ(−ti) so, it is

periodic with period 2t−i . �

Note that from the previous result, depending on the quantity of fixed points,

we are able to find a family of periodic solutions, instead of a single periodic

orbit.
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Example 5 (2D controlled spring loaded inverted pendulum). Consider

the 2D robotic hopper with two degrees of underactuation, one in the pitch an-

gle and the other in the rigid body attitude (i.e., we only control the length of

the spring). By employing the results given in Example 2 the controlled Routh

equations are given by

ξ̈ = ξϕ̇2 − g cosϕ− 1

m

∂V

∂ξ
+ u, ϕ̈ =

g

ξ
sinϕ− 2ϕ̇ξ̇

ξ

where u is a torque applied to control the length of the spring. We consider the

elastic potential to be V (ξ) = 1
2κ(ξ − l0)2, with κ ∈ R+ the spring constant.

Following Example 3, we consider the smooth involution F (ξ(t), ϕ(t)) =

(ξ(t),−ϕ(t)) and Φ(γ(t)) = (ξ(t),−ϕ(t),−ξ̇(t), ϕ̇(t)). Fixed points of Φ are

γ∗ = (ξ∗, 0, 0, ϕ̇∗). The Routhian Rµc is invariant under Φ and XRµc is a time

reversible Routhian vector field. Then Φ(γ(t)) = (ξ(−t),−ϕ(t),−ξ̇(t), ϕ̇(−t)),

as a consequence of Theorem 4.2.

Next, define the zero dynamics submanifold as

Z =

{
(ξ, ϕ, ξ̇, ϕ̇) ∈ T (R× S1)| ξ = h(ϕ), ξ̇ =

∂h

∂ϕ
ϕ̇

}
where h is an even function of ϕ. Note that this choice of h makes Z invariant

under Φ and therefore the zero dynamics reads

ϕ̈ =
1

h(ϕ)

(
g sinϕ− 2ϕ̇2 ∂h

∂ϕ

)
.

Note that C(γ) ◦ Φ(γ) = −dΦ(γ)C(γ) and then Γ(u) = u.

The control input u?(ϕ, ϕ̇) on Z is

u?(ϕ, ϕ̇) =
∂2h

∂ϕ2
+
∂h

∂ϕ

g sinϕ

h(ϕ)
−2

ϕ̇2

h(ϕ)

(
∂h

∂ϕ

)2

−h(ϕ)ϕ̇2 + g cosϕ+
κ(h(ϕ)− l0)

m

and it is easy to verify that it satisfies u?(−ϕ, ϕ̇) = u?(ϕ, ϕ̇), that is, u?(Φ(γ)) =

Γ(u?(γ)).

The function Φ in Z is given by

Φ(ϕ, ϕ̇) = (h(ϕ),−ϕ,−∂h
∂ϕ

ϕ̇, ϕ̇).
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Since γ̃∗ = (h(0), 0,− ∂h
∂ϕ |ϕ=0 · ϕ̇∗, ϕ̇∗) is a fixed point of Φ in Z, the solution

γ(t) with γ(0) = γ̃∗ belongs to Z.

Finally, if we define the switching surface S as in Example 3, and impact map

as ∆µ(ξ−, ϕ−, ξ̇−, ϕ̇−) = Φ(ξ−, ϕ−, ξ̇−, ϕ̇−) = (l0,−ϕ0,−ξ̇−, ϕ̇−) then W =

{(ϕ, ϕ̇) ∈ Z|h(ϕ) = l0} and Z is hybrid invariant because h is an even function.

Therefore, γ(t) is a periodic solution for the simple hybrid Routhian control

system.
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[35] B. Langerock, E. Garćıa-Torano, F. Cantrijn. Routh reduction and the class

of magnetic Lagrangian systems. J. Math. Phys. 53 (2012), no. 6, 062902

[36] T. Lee, K. Sreenath, and V. Kumar.Geometric Control of Cooperating

Multiple Quadrotor UAVs with a Suspended Payload. IEEE Conference on

Decision and Control (CDC), 5510–5515, Florence, Italy, 2013.

[37] J. Marsden and T. Ratiu, Introduction to Mechanics and Symmetry,

2nd ed., ser. Texts in Appl. Math. New York: Springer, , vol. 17, 1999.

[38] T. McGeer, Passive dynamic walking, Int. J. Robot. Res. 9 (2) (1990) 6282.

31



[39] P.J. Meyer and D. Dimarogonas. Compositional abstraction refinement for

control synthesis, Nonlinear Analysis: Hybrid Systems, Vol. 27, pp. 437-

451, 2018.
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