7,580 research outputs found

    Contribución al modelado y diseño de moduladores sigma-delta en tiempo continuo de baja relación de sobremuestreo y bajo consumo de potencia

    Get PDF
    Continuous-Time Sigma-Delta modulators are often employed as analog-to-digital converters. These modulators are an attractive approach to implement high-speed converters in VLSI systems because they have low sensitivity to circuit imperfections compared to other solutions. This work is a contribution to the analysis, modelling and design of high-speed Continuous-Time Sigma-Delta modulators. The resolution and the stability of these modulators are limited by two main factors, excess-loop delay and sampling uncertainty. Both factors, among others, have been carefully analysed and modelled. A new design methodology is also proposed. It can be used to get an optimum high-speed Continuous-Time Sigma-Delta modulator in terms of dynamic range, stability and sensitivity to sampling uncertainty. Based on the proposed design methodology, a software tool that covers the main steps has been developed. The methodology has been proved by using the tool in designing a 30 Megabits-per-second Continuous-Time Sigma-Delta modulator with 11-bits of dynamic range. The modulator has been integrated in a 0.13-µm CMOS technology and it has a measured peak SNR of 62.5dB

    State-trajectory behavior in high-order, lowpass sigma-delta modulators with distinct NTF zeros

    Get PDF
    This paper presents a generic, scalable approach to obtain closed-form state-trajectory expressions for high-order (order > 2) lowpass sigma-delta (/spl Sigma//spl Delta/) modulators with distinct noise transfer function (NTF) zeros. Constant modulator input is assumed. The techniques of state-space diagonalization, continuous-time embedding, and Poincare map analysis are combined and extended. It is shown that an even-order modulator can be decomposed into individual second-order subsystems with circular trajectories about two half-plane centers, while an odd-order modulator will result in an additional first-order subsystem represented by an oscillating quantity. The trajectory and half-plane transition expressions thus obtained provide effective tools for stability analysis of /spl Sigma//spl Delta/ modulators.published_or_final_versio

    A describing function study of saturated quantization and its application to the stability analysis of multi-bit sigma delta modulators

    Get PDF
    Just as their single-bit counterparts, multi-bit sigma delta modulators exhibit nonlinear behavior due to the presence of the quantizer in the loop. In the multi-bit case this is caused by the fact that any quantizer has a limited output range and hence gives an implicit saturation effect. Due to this, any multi-bit modulator is prone to modulator overloading. Unfortunately, until now, designers had to rely on extensive time-domain simulations to predict the overloading level, because there is no adequate analytical theory to model this effect. In this work, we have developed such an analytical theory based on multiple input describing function analysis. This way, we obtained expressions for the signal gain, the noise gain and the variance of the quantization noise. Here, both the case of DC as well as sinusoidal signals was considered. These results were used for the stability analysis of multi-bit Sigma Delta modulators, which allows to predict the overloading level. Code implementing the proposed expressions is available for download at http://cas1.elis.ugent. be/cas/en/download

    Continuous-time cascaded ΣΔ modulators for VDSL: A comparative study

    Get PDF
    This paper describes new cascaded continuous-time ΣΔ modulators intended to cope with very high-rate digital subscriber line specifications, i.e 12-bit resolution within a 20-MHz signal bandwidth. These modulators have been synthesized using a new methodology that is based on the direct synthesis of the whole cascaded architecture in the continuous-time domain instead of using a discrete-to-continuous time transformation as has been done in previous approaches. This method allows to place the zeroes/poles of the loop-filter transfer function in an optimal way and to reduce the number of analog components, namely, transconductors and/or amplifiers, resistors, capacitors and digital-to-analog converters. This leads to more efficient topologies in terms of circuitry complexity, power consumption and robustness with respect to circuit non-idealities. A comparison study of the synthesized architectures is done considering their sensitivity to most critical circuit error mechanisms. Time-domain behavioral simulations are shown to validate the presented approach.Ministerio de Educación y Ciencia TEC2004-01752/MI

    Force feedback linearization for higher-order electromechanical sigma-delta modulators.

    No full text
    Abstract A higher-order electromechanical sigma–delta modulator can greatly improve the signal-to-noise ratio compared with a second-order loop that only uses the sensing element as a loop filter. However, the electrostatic force feedback on the proof mass is inherently nonlinear, which will produce harmonics in the output spectrum and limits the total signal-to-noise and distortion ratio. High performance inertial sensors, which use sigma–delta modulators as a closed-loop control system, have strict requirements on the output signal distortion. In this paper, nonlinear effects from the force feedback and pick-off circuits are analysed and a strategy for force feedback linearization is put forward which can considerably improve the signal-to-noise and distortion ratio. A PCB prototype of a fifth-order electromechanical modulator with a bulk micromachined accelerometer was used to demonstrate the concept

    A design tool for high-resolution high-frequency cascade continuous- time Σ∆ modulators

    Get PDF
    Event: Microtechnologies for the New Millennium, 2007, Maspalomas, Gran Canaria, SpainThis paper introduces a CAD methodology to assist the de signer in the implementation of continuous-time (CT) cas- cade Σ∆ modulators. The salient features of this methodology ar e: (a) flexible behavioral modeling for optimum accuracy- efficiency trade-offs at different stages of the top-down synthesis process; (b) direct synthesis in the continuous-time domain for minimum circuit complexity and sensitivity; a nd (c) mixed knowledge-based and optimization-based architec- tural exploration and specification transmission for enhanced circuit performance. The applicability of this methodology will be illustrated via the design of a 12 bit 20 MHz CT Σ∆ modulator in a 1.2V 130nm CMOS technology.Ministerio de Ciencia y Educación TEC2004-01752/MICMinisterio de Industria, Turismo y Comercio FIT-330100-2006-134 SPIRIT Projec

    Estimation of an initial condition of sigma-delta modulators via projection onto convex sets

    Get PDF
    Abstract—In this paper, an initial condition of strictly causal rational interpolative sigma-delta modulators (SDMs) is estimated based on quantizer output bit streams and an input signal. A set of initial conditions generating bounded trajectories is characterized. It is found that a set of initial conditions generating bounded trajectories but not necessarily corresponding to quantizer output bit streams is convex. Also, it is found that a set of initial conditions corresponding to quantizer output bit streams but not necessarily generating bounded trajectories is convex too. Moreover, it is found that an initial condition both corresponding to quantizer output bit streams and generating bounded trajectories is uniquely defined if the loop filter is unstable (Here, an unstable loop filter refers to that with at least one of its poles being strictly outside the unit circle). To estimate that unique initial condition, a projection onto convex set approach is employed. Numerical computer simulations show that the employed method can estimate the initial condition effectively

    Adaptive design of delta sigma modulators

    Full text link
    In this thesis, a genetic algorithm based on differential evolution (DE) is used to generate delta sigma modulator (DSM) noise transfer functions (NTFs). These NTFs outperform those generated by an iterative approach described by Schreier and implemented in the delsig Matlab toolbox. Several lowpass and bandpass DSMs, as well as DSM\u27s designed specifically for and very low intermediate frequency (VLIF) receivers are designed using the algorithm developed in this thesis and compared to designs made using the delsig toolbox. The NTFs designed using the DE algorithm always have a higher dynamic range and signal to noise ratio than those designed using the delsig toolbox
    corecore