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Abstract: This paper presents a generic, scalable approach to obtain closed-form state-trajectory expressions for high-
order (order > 2) lowpass sigma-delta (ZA ) modulators with distinct noise transfer function (NTF) zeros. Constant
modulator input is assumed. The techniques of state-space diagonalization, continuous-time embedding, and Poincaré
map analysis are combined and extended. It is shown that an even-order modulator can be decomposed into individual
second-order subsystems with circular trajectories about two half-plane centers, while an odd-order moduiator will
result in an additional first-order subsystem represented by an oscillating quantity. The trajectory and half-plane
transition expressions thus obtained provide effective tools for stability analysis of ZA modulators.

1. INTRODUCTION

Sigma-delta (ZA )} modulation {1-]3] is a popular and
increasingly important technique that seamlessly bridges
continuous  and  digital domains by the use of
oversampling and noise shaping. Single-bit modulators
are particularly appealing due to their inherent linearity
and high tolerance of analog component imperfections.
Theoretical development and understanding of ZA
modulators, however, have been far lagging behind.
Stability remains one long-standing major issue that
threatens the use of high-order £A modulators capable
of providing high signal-to-noise ratio (SNR).
Linearized analyses (e.g., [4], [S]) of stability problem
suffer from their approximation nature and inadequacy
to explain intricate phenomena such as chaos and limit
cycles. While nonlinear dynamical approaches (e.g., [6]-
[91), though being exact, are usually complicated and
restricted to second-order modulators.

Section 2 of this paper extends the state-space
diagonalization method of Steiner and Yang [10] to
cover the case of transition matrices having complex
conjugate eigenvalues, which is commonly found in ZA
modulators with distinct (e.g., optimized) NTF zeros
[3]. Section 3 introduces a generic continuous-time
cmbedding (7] procedure and shows that this class of
high-order ZA modulators can be decomposcd into
second-order and first-order subsystems. Assuming
constant modulator input, closed-form and scalable
state-trajectory expressions are derived for them.
Section 4 studies the transition across the hyperplane
that divides the modulator dynamics into two linear half-
planes. Formulace for the generalized Poincaré scctions
are also given. Altogether these expressions constitute
effective tools for DC stability analysis of ZA
modulators. Finally, Section 5 draws the conclusion.

2. SIMILARITY TRANSFORMS

This section describes the diagonalization of an
arbitrary-order XA modulator with distinct NTF zeros.
The cascade-of-resonators architecture [S] (Fig. 1a) is
chosen for illustration duc it its popularity. For brevity,
4th and 5Sth-order modulators are considered but how

the formulation cun be adapted to higher order systems
should be obvious from the context. Using a similar
approach as in [l1], by defining the state-vector
=[x x"] and p=z-1, the state-space format
of a parameterized N th-order modulator is

px'0 = AL @ 0y 4,y

y= bnu+d(zmx(u) 4y
v=sgn(y) .
specifically for our example in Fig. 1a (N =4 and 5),
X = [x,‘"’ A ‘xqsm]’ .

B e[k bkk bhkkk bE -k (B R
a;w:_{alkl wkk,  akkky ak ok, !“skl'"ks]I'

a®=[k" 0 0 o o],

A=A +zA, (2)
0 0 0 o0 0 0k 0 00
-nk, 0 k' o @ o 0 0 0|0
= 0 0 0 90 0]+zl0 0 0 &'l 0
0 0 -nk O k' 0 0 0 9|0
e 0o 0 o0 0 0 9 0 0 0

Here sgn(y) is the sign function whose output is +1
when y20 and -1 when y<0. The bracketed superscripts
denote the number of similarity transforms the state-
vectors or matrices have undergone. Note that (2)
depicts the case of an odd-order system ( N =5). For an
even-order modulator { N =4), the elements outside the
delimiting lines are simply dropped, e.g., the rightmost
column and bottommost row in A%, the rightmost

g
element in x™ etc. This convention of combined

representation of even and odd-order systems will be
followed throughout this paper. Next, by substiluting
p =z-1 and considering the special structure of A,,
the first equation of (1) is rewritten as

o = (1+ A, L+ A ™ +(T+ A, )b +(I+4,)a® . (3)
Examining Fig. 1a, the NTF zeros are just the poles of
the transfer function from v to y with zero input (1=0).
Thus  (T+A2)(T+Ay)  musr  have  eigenvalues
corresponding to the distinet NTF zeros and is
diagonalizable by a similarity transform through a non-
singular matrix Ty, resulting in
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Fig. 1. (a) Example TA modulators (Sth-order as a whole and dth-order within the dotled line) in a parameterized
cascade-of-resonator structure; (b) the normalization process by rotating to the new coordinate systemx’, y'.

zx(ll = Ail\x(L)+b£I)u+H£I)v (4)
{y =bhyu +dPx"
-where
=T b =T, T+A Y, al’ =T, (T + A, )],
d" =d™T, AV =T 1+ AN+ AT,

e 00 %)
; i 0
= , = _
0 c-";l o 0 e
6 - 0 |

Here szLNI2J is the number of second-order

subsystems. The bolded 05 stand for zeros apart from
the diagonal. The ;s {(by convention w, >0) correspond
to the distinct NTF zero frequencies. It can be verified
that the elements in other state-matrices are also
complex conjugate pairs. To visualize the dynamics it is
desirable 0 work with real stalc-variables. This is
achieved by a stmilarity transform that separates the real
and imaginary parts of the conjugate elements, namely,

[ o o
. H 1 i
wely o ah o 2] ()
0 01
Such transform produces
{Exm = AP +pPu+alv €]
y:bﬂu+d(,z'x[”

with

x(?} :-r.;lx(ll' hi!r = Tm-lbiliy ai?) — T:;Iﬂ“”. d[:) = d(‘lJ'l‘_1

AP =TIAVT,
0 (3
: e =[c‘.:osw‘ —sinm,}
0 " |sinw,  cose,

1
The elements in all state-matrices are made real by this
transtormation. Now the state-space representation is
transformed into parallel sccond-order subsystems (plus
an  additional first-order subsystem for odd-order
modulators). In this block-diagonal form, the state-
variables of every subsystem become almost decoupled,
interacting only through the quantizer function
v=sgn(y) . By detailing the second equation in (7),

y=bu+|d, dz][x:z' x;z’]T+v--

e g I 2T

these summation terms are in fact dot products which
represent the projections of the state-variables of cvery

&

21
+d2.~:;4:"z.\'! - s

second-order subsystem onto the vectors formed by
every pair in di, namely [dy.; dyl’, i=1,2.... N, . A
further transformation and simplification is to rotate and
scale the coordinate system of every sccond-order
subsystem such that these vectors become the unit
vectors in the conventional upward sense (see Fig. ib},
and to scale o, ., to unity for odd-order modulators.
This process, denoted as the normalization process, is
done by the normalization matrix T, defined as

n,=(d;_,+d;)du[cmﬂ —sind‘:’ 410

sind  cosd

Ay
where ©; s are as determined in Fig. 1b. Notice that the
transformation by T, has no effect on A’ because
only the coordinate system of every second-order
subsystem is changed but not its nature. Summarizing,
x® = A(z'“xm +b£‘1)u+a(z3)v (i1
{y =hyu +d(,‘n:vc(:n
where
x(}) = T;]x(:., bI‘.‘i = T';Ibf],
a® =T, 2%, A¥=T'APT =A{ (12)
4 =d®T, =[0 1 01 {1] .
It should be stressed that (1), (&), (7) and (11) all
describe the same XA modulator because y (thus the
modulator outpul v) is invariant. The only distinction
lies in the different choices of state-vectors.

3. CONTINUOUS-TIME EMBEDDING

Embedding [7] refers to the construction of a set of
continuous differential equations whose solution, in the
form of a time-evolving trajectory, contains every point
along the discrete trajectory solved from the discrete
system of equations. Such process resulls in continuous-
time functions easier to handle anaiytically. To embed
an arbitrary-order discrete-time system like (11), we
consider a continueus-time counterpart
X, =Ax +bu+ay (13)
{_y =hgu+d x,
where the subscripl ¢ stands for continuous-time.
Assuming ¢ 2 k and x,.(k) is known, the exact solution

of the first equation in (13) is
xc(lj=exp{Ac(lvk))xc(k)+J:exp(A,_.(l—r))[htu(f)«}u(v(r)}dr (i4)
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where cxp(c) stands for matrix exponential. Now
assume & and v remain constant during the time interval
k< t<k~+1, then at the next time instance

x (bt )= cxp(Ac)K‘(k)+J.:é:cp(A,(k+ L= ba(t) +ap(ifer

(13)
= exptA )X () + U{:cxp(Acr)d‘r]bcu(k) +a (k)]
Mapping {15) to (11), it follows that
W, ¢ 0
RO i T
e Y B B PR (16)

b‘=(J‘l:cxp(g\"r)dr)-lb',"" ae=(_[r:cxp(;\cr)lt)-la‘,”, d, =d".

Now we have established a relationship between the
discrete-time and continuous-time models. According to
(15}, a unit time-step advancement (i.e., increasing r by
1} in the continuous-time trajectory corresponds fo a
hop to the next state in the discrete-time domain. For
case of exposition we define a, =[of -0y 1€y ],
b ={B, - By, | By, ]- Also, we denote a matrix or
vector after dropping the terms outside the delimiters by
a tilde sign, e.g., in (10), Z\C=diag[w] W, ] and b,
is b, without the last element etc. It should stressed that
this tilde sign is Dnmatetial for even-order modulators
wherein A, =A_, b.=b, etc. For a constant u, a
further simplification is possible by defining another

continuous-time state-vector x(f) which is a trunslation
of x (). given by

i o4 X, Al'Bou (17)
x (= =k o ] aa E T

iy PR Bl e

Ultimately (13) becomes

i=Ag+ay

e as)

wn = a )

Y. = ol ~Gpypw FOr v<0

y=hu+ a, (i - ﬂ;'l.scu)|+xm.:_

where the middle linc in (I8) is only for odd-order
modulators. Equation (18) can be casily solved to give

FN )} ale, | Jeoswr —sinar]([ . (0 ol ., (19)
{x:‘(():l*’ oy, v—[sinm,.r msm,z] I:x,,(O) ]+ - ey, v
i=12,..,N,. And for the possible first-order subsystem

S (O+11 for v20 (20)
- "("):{x,_\_ﬁ,(ony,r for we0’

These two  equations reveal that  sccond-order
subsystems represents circular trajectories orbiting
about two centers symmetric about the origin; while the
first-order subsystem is an oscillating quantity. Fig. 2
shows the typical dynamics of these subsystems.
Recalling that every unit time-step advancement in (19)
& (20) corresponds to a hop to the next state for a
discrete trajeclory, conlinuous-time embedding actually
“fills in” the states between consecutive discrete states
by assuming continuous {infinitesimal) cvolution of
trajectory. Consequently, by restricting ¢ to be non-
negative integers, {18)-(20) can also be used to describe
the discrete trajectory provided the starting condition
x(0) in a half-planc is known.
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Fig. 2. Typical decomposed subsystents: (@) second-
order (positions af half-plane centers can vary us long
as they are symmetric aboul the origin); (b) first-order.
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Fig. 3. Concepiual drawings of nonlinear dynamics (a)
discrete trajectory; (b) transition wedges and Poincaré
sections; (¢) continuous (rajectory; (d) fixed-points and
the corresponding limit cycle.

4. POINCARE SECTIONS

The third line in (18} can be verified to be equal to
y=(by-d AT, Jutd ltx, .

= +d,0-A,7'B,)a+d.% 2n

RS
N,
=Ku+ z,=|'xlf|+x2.",0l

where 1 is an identity matrix with appropriate
dimension. In the second line of {21) the superscripts for
the discrete system matrices are omitted because the
cxpression inside the bracket is invariant under
similarity transforms. This bracketed value, denoted by
K, is in fact the forward-path resonator DC gain
(ignoring the last branch in odd-order modulators which
is not part of a resonator, i.c., by putting bk, -k, =0 in
Fig. 1a) from « to y with v = 0. Thercfore, we have the

hyperplane P {Ku+Zlx, |+x;, ., =0} that divides
the state-space into twe regions, called the positive half-
planc PHP (E7x,, |+%y,,, 2 —Ku) and the negative
half-plane NHP (E%x,; 1+x,, ,; < —Ku) whercin the

quantizer owput v i8 +1 and -1 respectively. This
demonstrates that the transform in (10) is essential for
visualization becausc now the hatl-planc conditions can
readily be told by summing the “y-coordinates” of all
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Fig. 4(a)-(c) Simulation of a Sth-order A modulator with optimized NTF zeros under stable operation (u =0.48,
OSR=64, 1000 runs) together with the boundary transition flow limit cycle denoted by bolded lines.

subsystems, Employing the convention of Wang [7],
mode-~ and mode-v are used to distinguish the positive
and negative states of the quantizer output. A practical
ZA modulater is a sampled-data system and its state
trajectory undergoes discrete mapping as in Fig. 3a. The
discrete constraint will carry the trajectory, after hitting
P, somewhere beyond (and including) P wherg it stays
for one time instance (known as the transition point [7])
before changing into dynamics of the oppeosite half-
plane. The two wedges shown in Fig. 3b, bounded by P
and the far end boundaries B, and P, denote the
possible regions where the transition poinis occur. These
wedges are called the positive and negative transition
wedges Tand T.In reality the transition may take place

anywhere on the chosen Poincaré sections [7] }"; and

Pv,,, where ¢ , 17 € [0.1] are called the T and ;‘ Hir

Jactors for obvious reasons. Their equations are
obtained hy realizing the fact that when states residing

on g, and P, (ic., x» and x, in Fig. 3¢) are mapped
by ¢ and 7 time-step backward, they will land on P, so

ﬁ : ”]—(T'p.‘-fwf‘az,)sinayp
) [z - -

+;F\v-'y_¢ ==Ku

+(;,;a+m,"a:‘_‘ yoos e —a 'y, )
and

f;.; : (i-ﬁ;w#w{'a,.)sinwﬁ 23)

M M
Hxp =@ 0y, o080 + 00, ] $xps—y.p=—Ku -

The boundedness and positioning (and thus the
modulator stability and exact values of ¢ and 7)) of the
transition points into these wedges are, however,
analytically intractable. Fig. 3d shows the possible
conlinuous-time first-return limit cycle and fixed-points,
denoted by ;p* and ;,", arising from a particular
transition flow. Wang has investigated the case of ¢= 1=
I, called the boundary transition flow, which has
intuitively further stretched limit cycles (but whose
stability do not necessarily guarantee stability of a ZA
modulator). Fig. 4 shows the actual discrete trajectories
transformed into the subsystem [ramework, together
with the limit cycle of the boundary transition flow. In a
recent work by the authors [12], it is shown that stability
analysis must involve all possible transition flows. By

virtue of the trajectory and transition expressions
presented in this paper, cfficient numerical methods can
be used to locate all possible fixed-points and evaluate
the stability of their accompanying limit cyeles [12].

5. CONCLUSION

This paper has presented a nonlinear dynamical
approach to the investigation of the state-trajectory
behavior of high-order (order > 2), lowpass ZA
modulators with distinct NTF zeros under constant
input. Algebraic difficulties arising from the nonlinear
quantizer function have been tackled by combining and
extending the techniques of state-space diagonalization,
continuous-time embedding and Poincaré map analysis.
It has been shown that this class of ZA modulators can
be decomposed into individual second-order subsystems
with circular trajectories orbiting about two half-plane
centers, whereas for odd-order modulators there is an
additional first-order subsystem exhibiting an oscillating
quantity. Trajectory and transition expressions thus
derived constitute useful tools for stability analysis.
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