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Abstract—In this paper, an initial condition of strictly causal 

rational interpolative sigma-delta modulators (SDMs) is 
estimated based on quantizer output bit streams and an input 
signal. A set of initial conditions generating bounded trajectories 
is characterized. It is found that a set of initial conditions 
generating bounded trajectories but not necessarily 
corresponding to quantizer output bit streams is convex. Also, it is 
found that a set of initial conditions corresponding to quantizer 
output bit streams but not necessarily generating bounded 
trajectories is convex too. Moreover, it is found that an initial 
condition both corresponding to quantizer output bit streams and 
generating bounded trajectories is uniquely defined if the loop 
filter is unstable (Here, an unstable loop filter refers to that with 
at least one of its poles being strictly outside the unit circle). To 
estimate that unique initial condition, a projection onto convex set 
approach is employed. Numerical computer simulations show that 
the employed method can estimate the initial condition effectively. 
 

Index Terms—Sigma-delta modulators, stability, admissibility, 
projection onto convex sets. 

I. INTRODUCTION 
INCE some interpolative SDMs consist of an unstable 

loop filter [1], [7], [8] and the input-output relationship of a 
quantizer is characterized by a discontinuous nonlinear 
function, a feedback connection of the unstable loop filter and 
the quantizer would cause the dynamics of these interpolative 
SDMs very complicated. Chaotic and fractal behaviors may 
occur [4], [6], [12], [13]. As chaotic behaviors are highly 
dependent on an initial condition, the dynamics of an 
interpolative SDM would be very different if there is a very 
small change in the initial condition. When there is a sudden 
change of a supply voltage or a mechanical shaking, the content 
in a register containing the initial condition of an interpolative 
SDM may be corrupted. Since signals in interpolative SDMs 
are constructed based on the initial condition and an input 
signal, in this case, the constructed signal will be very different 
from the actual one and a serious construction error would be 
encountered. 
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In order to minimize the construction error, it is necessary to 
estimate the initial condition of an interpolative SDM based on 
quantizer output bit streams and an input signal. However, 
some fundamental questions have not been explored yet. For 
examples, for a certain type of interpolative SDMs, such as 
interpolative SDMs with unstable loop filter, does there exist a 
unique initial condition both corresponding to quantizer output 
bit streams and generating bounded trajectories? If yes, how 
can we find an initial condition which is closed to that unique 
initial condition? 

One of the most common methods for estimating the initial 
condition of an interpolative SDM is to formulate the problem 
as an optimization problem. In [7], constraints were imposed so 
that the estimated initial condition is guaranteed to correspond 
to quantizer output bit streams. However, the obtained solution 
does not guarantee to generate bounded trajectories because 
stability condition was not exploited in the optimization 
problem in [7]. The unbounded state responses shown in 
Section V of this paper illustrate this phenomenon. In this 
paper, necessary and sufficient bounded conditions on state 
variables are characterized and constraints based on these 
bounded conditions are imposed so that it is guaranteed to 
generate bounded trajectories. 

The outline of this paper is as follows. In Section II, 
notations used throughout this paper are introduced. In Section 
III, analytical results are presented. This paper is to estimate an 
initial condition of strictly causal rational interpolative SDMs. 
To address this problem, projection onto convex set approach is 
employed. In order to apply this approach, two convex sets are 
needed to be characterized. The set of initial conditions 
generating bounded trajectories is characterized by Theorem 1 
and the set of initial conditions corresponding to the given 
quantizer output bit streams were given in [7]. It is shown in 
Theorems 3 and 4 that these two sets are convex. Hence, the 
projection onto convex set approach can be applied for 
estimating the initial condition. Besides, it is shown in Theorem 
2 that the initial condition both corresponding to quantizer 
output bit streams and generating bounded trajectories is 
uniquely defined if the loop filter is unstable, so it is guaranteed 
that the solution found by the proposed algorithm based on the 
projection onto convex set approach is the unique solution of 
the problem. In Section IV, the details of the proposed 
algorithm based on the projection onto convex set approach are 
discussed. In Section V, numerical computer simulation results 
are presented to illustrate the effectiveness of the method. 
Finally, conclusions are summarized in Section VI. 
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II. NOTATIONS 
The block diagram of an interpolative SDM is shown in 

Figure 1, in which the loop filter and the quantizer of the 
interpolative SDM are denoted as ( )zF  and ( )⋅Q , respectively. 
Since an interpolative SDM with a single-input single-output 
strictly causal rational loop filter and a single bit quantizer 
having the decision boundary at zero are widely employed in 
industries, an interpolative SDM with this type of loop filter 
and quantizer is considered in this paper. The state space 
matrices of the loop filter are denoted as A , Β , C  and D . 
Due to the negative feedback configuration and the strictly 
causal condition, 0=D . Denote an input of the interpolative 
SDM, an output of the loop filter, the quantizer output bit 
streams and the state vector of the loop filter as ( )ku , ( )ky , 
( )ks  and ( )kx , respectively. Then the dynamics of the 

interpolative SDM can be characterized by the following 
standard state space equations: 

( ) ( ) ( ) ( )( )kskukk −+=+ BAxx 1 , (1a) 
and 

( ) ( )kky Cx= , (1b) 
where 

( ) ( )( )kyQks = , (1c) 
in which 

( )( ) ( )
( )⎩

⎨
⎧

<−
≥

≡
01
01

ky
ky

kyQ . (1d) 

III. ANALYTICAL RESULTS 
A. Necessary and sufficient bounded conditions of state 

variables 
In some circuits and systems, such as audio systems [3], 

some eigenvalues of A  are strictly outside the unit circle. 
Hence, state variables of these interpolative SDMs may not be 
bounded for some bounded inputs and initial conditions. To 
guarantee that the state variables are bounded, define Γ  as the 
set of initial conditions such that ( )kx  is bounded 0≥∀k . 
Denote ( )zU  and ( )zS  as the z-transforms of ( )nu  and ( )ns , 
respectively. 
Theorem 1 

( ) Γ∈0x  if and only if there exists a signal with its 
z-transform ( )zP  defined by 

( ) ( )( ) ( ) ( ) ( )( )( )zSzUzzzz −+−−≡ −−−− BxAIP 1111 01  (2) 
which is analytical at 1=z . 
Proof: 

Since ( ) ( ) ( ) ( )( )∑
−

=

−− −+=
1

0

10
k

n

nkk nsnuk BAxAx  for 1≥k , 

( ) ( )( ) ( ) ( ) ( )( )( )zSzUzzzk
zk

−+−−= −−−−

→+∞→
BxAIx 1111

1
01limlim . 

( )kx  is bounded 0≥∀k  if and only if the region of 
convergence of each element in 

( )( ) ( ) ( ) ( )( )( )zSzUzzz −+−− −−−− BxAI 1111 01  includes the point 
1=z . Hence, the necessary and sufficient bounded conditions 

for any bounded inputs become the existence of an initial 
condition such that ( )zP  is analytical at 1=z . This completes 
the proof.  

It is worth noting that ( )zP  is not the transfer function of the 
interpolative SDMs because ( )zP  is nonlinear with respect to 
( )0x  and transfer functions usually refer to linear 

time-invariant systems only. The nonlinearity of ( )zP  with 
respect to ( )0x  is due to the term ( )zS  because 

( ) ( )( )∑
∀

−=
k

kzkxQzS C . 

The set of initial conditions generating bounded trajectories 
depends on the nonlinearity of the interpolative SDMs. 
Although input, initial condition and system function of any 
systems are independent (that is, for any linear or nonlinear 
systems, we can have arbitrary input and initial condition.), 
based on given input, initial condition and system function, 
system characteristics (such as the boundedness of both state 
responses and output response) are uniquely defined and these 
characteristics depend on input, initial condition and system 
function. 

The importance of Theorem 1 is on the characterization of 
the set of initial conditions generating bounded trajectories for 
any bounded inputs. 
Corollary 1 

If A  contains some unstable eigenvalues, then ( )zP  is 
analytical at 1=z  if and only if ( ) ( ) ( )( )zSzUz −+ − Bx 10  
contains unstable zeros which cancel exactly the unstable poles 
of A  and ( ) ( ) ( )( )zSzUz −+ − Bx 10  has no unstable pole. 
Proof: 

This result can be trivially derived from Theorem 1. Hence, 
the proof is omitted.  

Corollary 1 is important as we have discussed before that 
some eigenvalues of A  of some circuits and systems are 
strictly outside the unit circle. 
B. Uniqueness of an initial condition corresponding to given 

stable admissible quantizer output bit streams 
Denote an infinite length binary sequence with each element 

in the sequence being either 1  or 1−  as ( ) ( )( )L,1,0 ss≡s . 
Define { } { } L×−×−≡Ψ 1,11,1  and n  as the dimension of the 
state vectors. Denote the mapping from nℜ  to Ψ  as Λ  such 
that (1a)-(1d) are satisfied, that is ( )( ) sx =Λ 0 . The set of 
quantizer output bit streams is said to be admissible if s∀  in 
the set of quantizer output bit streams, ( ) nℜ∈∃ 0x  such that 

( )( ) sx =Λ 0 . It is worth noting that Ψ  may not be admissible 
because it may exist Ψ∈s  such that ( ) nℜ∈∃/ 0x  satisfying 

( )( ) sx =Λ 0 . Denote the admissible set of quantizer output bit 
streams as bΨ , that is ( ){ n

b ℜ∈∀≡Ψ 0: xs  (1a)-(1d) are 

satisfied.}. Define a mapping from nℜ  to bΨ  as bΛ  such that 
(1a)-(1d) are satisfied. Obviously, bΛ  is surjective, but it may 
not be injective. Even though it is injective, the corresponding 
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trajectories may not be bounded. Denote the set of stable 
admissible quantizer output bit streams as sbΨ , that is 

( ){ Γ∈∀≡Ψ 0: xssb  (1a)-(1d) are satisfied.}. Denote a mapping 
from Γ  to sbΨ  as sbΛ  such that (1a)-(1d) are satisfied. 
Theorem 2 

If A  is unstable, then sbΛ  is bijective. 
Proof: 

Suppose ( ) ( ) Γ∈0,0 21 xx  and ( ) ( )00 21 xx ≠  such that 

( )( ) ( )( ) sbsbsb Ψ∈=Λ=Λ sxx 00 21 , then 

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )∑

∑
−

=

−−

−

=

−−

−+=

−+=

1

0

122

1

0

111

0

0

k

n

nkk

k

n

nkk

nsnuk

nsnuk

BAxAx

BAxAx
 for 1≥k , 

which implies that ( ) ( )( ) ( ) ( )kkk 2121 00 xxxxA −=−  for 1≥k . 
Since ( ) ( ) Γ∈0,0 21 xx , ( )k1x  and ( )k2x  are bounded. If A  is 
unstable, since ( ) ( )00 21 xx ≠ , then ( ) ( )kk 21 xx −  will be 
unbounded, which is a contradiction because a subtraction of 
any two bounded sequences must be bounded. Hence, 
( ) ( )00 21 xx =  and sbΛ  is injective. Since sbΨ  is the stable 

admissible set of quantizer output bit streams, sbΛ  is surjective. 
Hence, sbΛ  is bijective and this completes the proof.   

The novelty of Theorem 2 is as follows. The initial 
conditions generating bounded trajectories but not necessarily 
corresponding to quantizer output bit streams are not uniquely 
defined because if ( ) Γ∈0x , then ( ) Γ∈kx  0≥∀k . Similarly, 
the initial conditions corresponding to quantizer output bit 
streams but not necessarily generating bounded trajectories are 
not uniquely defined too. However, the initial condition both 
corresponding to given quantizer output bit streams and 
generating bounded trajectories is uniquely defined when the 
loop filter is unstable. 

Since Theorem 2 reveals that the initial condition both 
corresponding to given quantizer output bit streams and 
generating bounded trajectories is uniquely defined when A  is 
unstable, the importance of Theorem 2 is that if A  is unstable 
and an initial condition satisfying these two properties is found, 
then that initial condition is the unique solution. Moreover, 
Theorem 2 explains why the initial condition is sensitive to the 
state responses of the interpolative SDM. This result is useful 
for the further investigation of the occurrence of chaotic 
behaviors. 
Corollary 2 

If A  is unstable, ( ) Γ∈0x  and sbΨ∈s  such that s  is 
periodic with period M , then ( ) ( )kMxx =0  0≥∀k . 
Proof: 

If ( ) Γ∈0x , then ( ) Γ∈kMx  0≥∀k . Since A  is unstable, 

sbΛ  is bijective. As s  is periodic with period M , this implies 
that ( ) ( )kMxx =0  0≥∀k . This completes the proof.  

Although it was reported in [10] that periodicity of quantizer 

output bit streams implies periodicity of state vectors, the 
analysis in [10] is based on the study of interpolative SDMs 
with DC poles and without DC poles. For interpolative SDMs 
without DC poles, it assumes that the null space of MAI −  is 
{ }0 . In fact, this assumption is not true if A  is marginally 
stable or strictly stable [1]. 

When A  is unstable, although Theorem 2 provides 
information on the uniqueness of an initial condition both 
corresponding to given quantizer output bit streams and 
generating bounded trajectories, the method for finding that 
initial condition is not addressed yet. In order to find that initial 
condition, these two properties are considered separately. That 
is, the set of initial conditions corresponding to given quantizer 
output bit streams but not necessarily generating bounded 
trajectories, and the set of initial conditions generating bounded 
trajectories but not necessarily corresponding to given 
quantizer output bit streams, are considered separately. 
C. Convexity of admissible set of initial conditions 

The admissible condition for quantizer output bit streams 
were characterized in [7]. Here is a summary. For a given 

bΨ∈s , since ( ) 1=ks  if ( ) 0≥ky  and ( ) 1−=ks  if ( ) 0<ky  

0≥∀k , this implies that ( ) ( ) 0≥kyks  0≥∀k , that is, 
( ) ( ) 000 ≥Cxs  and 

( ) ( ) ( ) ( )( ) 00
1

0

1 ≥⎟
⎠

⎞
⎜
⎝

⎛
−+ ∑

−

=

−−
k

n

nkk nsnuks BACxCA  (3a) 

for 1≥k . For given quantizer output bit streams, denote the set 
of initial conditions that satisfies (3a) as Φ , that is ( ){ 0x≡Φ  
such that 

( )
( )

( )

( )
( ) ( ) ( )( )

( ) ( ) ( )( )
0

BAC

CB
x

CA

CA
C

≥

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−
+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∑
−

=

−−
1

0

1

001
0

0
1
0

k

n

nkk nsnuks

sus

ks

s
s

MM

 (3b) 

for 1≥k .}. 
Theorem 3 
Φ  is convex. 

Proof: 
If ( ) ( ) Φ∈0,0 21 xx , then [ ]1,0∈∀λ , ( ) ( ) 000 1 ≥Cxsλ , 

( ) ( ) ( ) 0001 2 ≥− Cxsλ , 

( ) ( ) ( ) ( )( ) 00
1

0

11 ≥⎟
⎠

⎞
⎜
⎝

⎛
−+ ∑

−

=

−−
k

n

nkk nsnuks BACxCAλ  and 

( ) ( ) ( ) ( ) ( )( ) 001
1

0

12 ≥⎟
⎠

⎞
⎜
⎝

⎛
−+− ∑

−

=

−−
k

n

nkk nsnuks BACxCAλ  for 

1≥k . Hence, ( ) ( ) ( ) ( )( ) 00100 21 ≥−+ xxC λλs  and 

( ) ( ) ( ) ( )( ) ( ) ( )( ) 0010
1

0

121 ≥⎟
⎠

⎞
⎜
⎝

⎛
−+−+ ∑

−

=

−−
k

n

nkk nsnuks BACxxCA λλ  

for 1≥k . This implies that ( ) ( ) ( ) Φ∈−+ 010 21 xx λλ  and it 
completes the proof.  

It is worth noting that although bΨ∈s  and sbΛ  is bijective 
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when A  is unstable, there may exist ( ) Γℜ∈ \0 nx  such that 

( )( ) sbbb ΨΨ∈=Λ \0 sx  because Γ≠ℜn . 
The importance of Theorem 3 is to allow the estimation of an 

initial condition based on projection onto convex set approach, 
which will be discussed in Section IV. 
D. Convexity of the bounded set of initial conditions 

For any given Ψ∈s , define ( ){ 0x≡Θ  such that 

( )( ) ( ) ( ) ( )( )( )zSzUzzz −+−− −−−− BxAI 1111 01  is analytical at 
1=z .}. It is worth noting that there may exist ( ) ΓΘ∈ \0x  

because bΨΨ∈ \s . In other words, ( )0x  may not satisfy 
(1a)-(1d). 
Theorem 4 

Θ  is convex. 
Proof: 

For any given Ψ∈s , suppose ( ) ( ) Θ∈0,0 21 xx , then there 
exist two signals with z-transform ( )z1P  and ( )z2P  denoted as 

( ) ( )( ) ( ) ( ) ( )( )( )zSzUzzzz −+−−= −−−− BxAIP 111111 01  
and 

( ) ( )( ) ( ) ( ) ( )( )( )zSzUzzzz −+−−= −−−− BxAIP 121112 01  
such that they are analytical at 1=z . Since [ ]1,0∈∀λ , 

( ) ( ) ( )
( )( ) ( ) ( ) ( ) ( ) ( )( )( )zSzUzzz

zz

−+−+−−

=−+
−−−− BxxAI

PP
121111

21

0101

1

λλ

λλ

 

and ( ) ( ) ( )zz 21 1 PP λλ −+  is analytical at 1=z , this implies that 

( ) ( ) ( ) Θ∈−+ 010 21 xx λλ . This completes the proof.  
Theorem 4 is useful because we can estimate ( )0x  via a 

projection onto convex set approach, which will be discussed in 
Section IV. 

IV. ALGORITHM FOR ESTIMATING AN INITIAL CONDITION 
Projection onto convex set approach is widely used in the 

construction of signals [2], [5], [9]. To estimate an initial 
condition, a projection onto convex set approach is employed. 
The algorithm is as follows: 
Algorithm 
Step 1: Initialize ( ) Φ∈0ˆ 0x  and 0=k . 
Step 2: Solve the following optimization problem: 

( )
( ) ( )

20
0ˆ0min kk

k
xx

x
−

Θ∈
. (4a) 

This optimization problem is equivalent to the following 
optimization problem: 

( )
( ) ( )

20
0ˆ0min kk

k
xx

x
− , (4b) 

subject to 

( )( ) ( )( ) ( ) ( )( )( )zSzUzzz k −+−− −−−− BxAI 1111 01  is analytical at 
1=z . (4c) 

By Corollary 1, if A  has r  unstable modes, denoted as iλ  for 

ri ,,2,1 L= , then ( )( ) ( ) ( )( ) 0Bx =−+ −
ii

k SUz λλ10 . Hence, the 
constraint of this optimization problem becomes: 

( )( ) ( ) ( )( ) 0Bx =−+ −
ii

k SUz λλ10  for ri ,,2,1 L=  (4d) 
and 

( )( ) ( ) ( )( )zSzUzk −+ − Bx 10  is stable. (4e) 
This problem is a standard quadratic programming problem 
with LMI constraints and a linear continuous constraint. This 
problem can be solved via the dual parameterization method [8] 
and it has a unique solution. Denote the solution as ( )0kx . 
Step 3: Solve the following optimization problem: 

( )
( ) ( )

2

1

0ˆ
00ˆmin

1

kk
k

xx
x

−+

Φ∈+
. (4f) 

This optimization problem is equivalent to the following 
optimization problem: 

( )
( ) ( )

2

1

0ˆ
00ˆmin

1

kk
k

xx
x

−+
+

, (4g) 

subject to 

( )
( )

( )

( )( )
( ) ( ) ( )( )

( ) ( ) ( )( )
0

BAC

CB
x

CA

CA
C

≥

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−
+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∑
−

=

−−

+

1

0

1

1
001

0

0ˆ
1
0

k

n

nk

k

k nsnuks

sus

ks

s
s

MM

(4h) 

for 1≥k . This problem is also a standard quadratic 
programming problem with LMI constraints. There are many 
existing solvers for solving this problem and it has a unique 
solution. Denote the solution as ( )0ˆ 1+kx . 
Step 4: Iterative Step 2 and Step 3 until ( ) ( ) ε≤−+

2

1 0ˆ0ˆ kk xx , 

where ε  is a prescribed acceptable error. 
Corollary 3 

When A  is unstable, if ≠ΦΘI Ø, where Ø denotes the 
empty set, then the proposed Algorithm converges to the actual 
initial condition. 
Proof: 

Since both Θ  and Φ  are fixed for given quantizer output bit 
streams, they are convex sets, and the initial condition both 
generating bounded trajectories and corresponding to given 
quantizer output bit streams is uniquely defined when A  is 
unstable, the result follows directly and it completes the proof.  

The importance of Corollary 3 is to provide a condition for 
the existence of an initial condition both generating bounded 
trajectories and corresponding to given quantizer output bit 
streams. When A  is unstable, if ≠ΦΘI Ø, then the 
projection onto convex set approach can guarantee that the 
obtained solution is closed to the actual one. 

The computational complexity of the proposed algorithm 
depends on that of solving the corresponding LMI problem and 
the linear continuous constraint optimization problem. In 
general, the computational complexity of solving LMI problem 
is much lower than that of the linear continuous constraint 
optimization problem. Hence, the analysis of the computational 
complexity of the proposed algorithm can be simplified by just 
considering that of the linear continuous constraint 
optimization problem. The detail analysis of the computational 
complexity of solving the linear continuous constraint 
optimization problem can be found in [14]. In [14], the index 
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set is constructed by adding only one of the most violated 
points in a refined set of grid points. Hence, the computational 
complexity is much reduced. 

V. NUMERICAL COMPUTER SIMULATION RESULTS 
Since the interpolative SDM is nonlinear, the actual system 

is quite complicated. In particular, it is hard to understand why 
the state trajectories are bounded when the loop filter is 
unstable. To understand this phenomenon, the following 
example is used to illustrate and account for this phenomenon. 
Consider the following state space matrices, in which they are 
employed in audio systems [3]: 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−
≡

11000
1100

00110
0011
00001

2

1

f

f
A , (5a) 

[ ]T00001≡B , (5b) 
and 

[ ]54321 ccccc≡C , (5c) 

where +ℜ∈21, ff  and ℜ∈ic  for 5,,2,1 L=i  are loop filter 
coefficients, in which 21 ff ≠ . ∈∀ 2,41,44,23,25,1 ,,,, ttttt C\{0}, 

denote 

( ) ( ) ⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−

−
≡

21

5,1

112

4,2

112

3,2

2

2,4

2

1,4

12

4,2

12

3,2
2,41,4

1

5,1

1

4,2

1

3,2

4,23,2

5,1

0

00

000
0000

ff
t

fff
jt

fff
jt

f
jt

f
jt

ff
t

ff
t

tt

f
t

f
jt

f
jt

tt
t

T
,(6a) 

and 
( )1,1,1,1,1 1122 fjfjfjfjdiag −+−+≡D , (6b) 

where 1−≡j  and C denotes as the set of complex numbers. 
Then, 1−= TTDA kk  0≥∀k , where 

( ) ( ) ( )

( ) ( ) ( )

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−
−

−
−−

−

−−−

=−

00001

00
22

1
2

00
22

1
2

22
1

22
1

2

22
1

22
1

2

5,1

4,2

1

4,214,2

3,2

1

3,213,2

2,4

2

2,4212,4

2

212,42122,4

1,4

2

1,4211,4

2

211,42121,4

1

t

t
fj

tft
j

t
fj

tft
j

t
fj

tfft
fj

fftffft
j

t
fj
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Since the eigenvalues of A  are the diagonal elements of the 
matrix D , the unstable modes being cancelled are the unstable 
diagonal elements of the matrix D . By expanding (2), we have 
the following necessary and sufficient bounded conditions on 
state variables relating ( ) ( )zSzU −  to the initial condition: 

( )kx1  is bounded 0≥∀k  if and only if ℜ∈∃B  such that 
( ) ( )( ) BzSzU

z
=−

→1
lim , (7a) 

( )kx2  is bounded 0≥∀k  if and only if there exists a signal 
with z-transform ( )zP  analytically defined at 1=z  such that 

( ) ( ) ( ) ( ) ( )( )φθφ
θθ

−−−=− − coscos2
sinsin

1
2

1
1

2
1 rzR

r
zf

zPzC
r

zf
zSzU ,(7b) 

( )kx3  is bounded 0≥∀k  if and only if there exists a signal 
with z-transform ( )zP′  analytically defined at 1=z  such that 

( ) ( ) ( ) ( )
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( ) ( )( )111
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111
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θ
φθφ

θ , (7c) 

( )kx4  is bounded 0≥∀k  if and only if there exists a signal 
with z-transform ( )zP ′′′  analytically defined at 1=z  such that 
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( )kx5  is bounded 0≥∀k  if and only if there exists a signal 

with z-transform ( )zP '''''  analytically defined at 1=z  such that 
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where 
( ) ( ) ( ) ( ) ( ) ( )[ ]Tkxkxkxkxkxk 54321≡x , (7f) 

11 fr +≡ , (7g) 

21 fr +≡′ , (7h) 

( )1
1tan f−≡θ , (7i) 

( )2
1tan f−≡′θ , (7j) 



TCASI:3390 
 

6

( )
( ) ( ) 2

1

1
132

2

2

00

2
0

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛ −

+⎟
⎠
⎞

⎜
⎝
⎛≡

f
xfx

xR , (7k) 

( ) ( ) ( ) 2

1

1
3

2

1

2 000
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
≡′

f
xx

f
xR , (7l) 

( ) ( )
( ) ( )

( )

2

52
12

2

1
322

4
21

2 0

00
00

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−
−

−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
≡′′ xf

ff
f

xxf
x

ff
xR ,(7m) 

( )
( ) ( )

2

12

31
1

1
2

12

2

00
0

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

≡′′′
ff

xf
f

x

ff
xR , (7n) 

( )
( )

( ) ( )
( ) ( )

2

2

4
21

22

5
21

3

122

1''''
00

000

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛ +
−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
+

−
≡

f

x
ff

x

x
ff

x
fff

xR ,(7o) 

( ) ( )
( )

( )

2

121

2

2

12

1

1
3

''''' 0
00

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
+

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−

−
≡

fff
x

ff
f

xx
R , (7p) 

( ) ( )

( )
⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛ −

≡ −

0

00
tan

2

1

1
13

1

x
f

xfx
φ , (7q) 

( ) ( )

( )
⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛
−

≡′ −

1

2

1

1
3

1

0

00
tan

f
x

f
xx

φ , (7r) 

( ) ( )

( ) ( )

( )⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−
−

−

+
−

≡′′ −

0

00

00

tan

52
12

2

1
32

4
21

2

1

xf
ff

f
xxf

x
ff

x

φ
, (7s) 

( )
( ) ( )⎟⎟

⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−
≡′′′ −

00
0tan

31
1

1

21

xf
f

x
xφ , (7t) 

( )
( )

( ) ( )

( ) ( )
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+
−

+
−

+
−

≡ −

2

4
21

2

5
21

3

122

1

1''''

00

000

tan

f

x
ff

x

x
ff

x
fff

x

φ
, (7u) 

( ) ( )

( )
⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛
−

≡ −

1

2

1

1
3

1'''''

0

00
tan

f
x

f
xx

φ , (7v) 

( ) 221
1 cos21 −− +−≡ zrzrzC θ , (7w) 

( ) 221
2 cos21 −− ′+′′−≡ zrzrzC θ , (7x) 

and 
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f
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f
zrzCzC

−− −
−

′′−
≡
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If ( ) ( ) ( ) 0000 321 === xxx , then ( )kx2  is bounded 0≥∀k  if 

and only if there exist two zeros of ( ) ( )zSzU −  located at θjre  
and θjre− , and ( )kx3  is bounded 0≥∀k  if and only if both 

( )kx1  and ( )kx2  are bounded 0≥∀k . If ( ) 0x =0 , then ( )kx4  
is bounded 0≥∀k  if and only if there exist four zeros of 
( ) ( )zSzU −  located at θjre , θjre− , θ ′′ jer  and θ ′′−′ jer , and 
( )kx5  is bounded 0≥∀k  if and only if both ( )kx1  and ( )kx4  

are bounded 0≥∀k . It is worth noting that the zeros of 
( ) ( )zSzU −  for bounded trajectories are in general not located 

at θjre , θjre− , θ ′′ jer  and θ ′′−′ jer , and this is true when 
( ) 0x =0 . However, ( )kx1  is bounded 0≥∀k  if and only if the 

average value of quantizer output bit streams is equal to that of 

the input signal, that is, ( ) ( )∑∑
−

=
+∞→

−

=
+∞→

=
1

0

1

0

1lim1lim
k

nk

k

nk
ns

k
nu

k
. This 

result does not directly depend on ( )01x . Figure 2a and Figure 
2b plot ( ) ( )zSzU −10log20  against ωjrez =  and ωjerz ′= , 

respectively, where [ ]θθω ,′∈ , ( ) 0x =0 , 001801 .f = , 
00068502 .f = , 863756618201 .c = , 361381473802 .c = , 
09000370903 .c = , 013209157004 .c = , 000908375005 .c =  

and ( )ku  being a normalized sum of sinusoidal signals within 
the signal band of the interpolative SDM. Here, we select 

( )
⎟⎟
⎠
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⎜⎜
⎝

⎛
⎟
⎠
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100
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100
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n

R
kn
R

kn

ku
π

π
, in which 64=R  for this 

interpolative SDM. A normalized sum of sinusoidal signals 
within the signal band is used for an illustration because it 
covers the whole signal band. 100 sinusoidal signals, instead of 
a single sinusoidal signal, are employed for an illustration 
because it can avoid the occurrence of limit cycles. According 
to the numerical computer simulations, it can be seen from 
Figure 2 that there are two zeros located at θjre  and θ ′′ jer . 
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If the input is a rational step signal, then ( )ku  can be denoted 
as ( ) uku ≡  for 0≥k , where ∈u Q, in which Q denotes the set 
of rational numbers. 
Corollary 4 

For a rational step input signal and the interpolative SDM 
defined by (5a)-(5c), ( ) ( )011 xkx −  can only be an integer 
multiple of the reciprocal of the denominator of the input step 
size. 
Proof: 

As ( ) ( ) ( )( )∑
−

=

−+=
1

0
11 0

k

n

nyQukxkx  for 1≥k , ∈∃ 1q Z and 

∈∃ 2q ZP

+
P such that ( ) ( )

2

1
11 0

q
qxkx =−  for 1≥k , where Z and 

ZP

+
P denote the sets of integers and positive integers, 

respectively. This completes the proof.  
Although it was reported in [11] that when ∈u Q, then ( )ks  

is periodic with the period being a multiple of the denominator 
of the input step size, this result is different from that stated in 
Corollary 4. This is because periodicity was studied in [11], 
while magnitude is studied in Corollary 4. In fact, ( ) ( )011 xkx −  
may be aperiodic. Also, the quantizer output bit streams were 
studied in [11], while the first state variable of the interpolative 
SDM is studied in Corollary 4. 

In order to verify the effectiveness of the algorithm, the same 
filter ( 001801 .f = , 00068502 .f = , 863756618201 .c = , 

361381473802 .c = , 09000370903 .c = , 013209157004 .c = , 

000908375005 .c = ) and the input signal 

( ( )
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⎝

⎛
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100

1

100
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100
sin

nk
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R
kn
R

kn

ku
π

π
, in which 64=R ) employed 

above are used for an illustration here. An initial condition is 
generated randomly with the first state variable being 
uniformly distributed between 1.0−  and 1.0  and the other 
state variables being uniformly distributed between 0001.0−  
and 0001.0 . The first state variable has a larger variance than 
the others because it has larger stability margin. In the 
algorithm, we choose 1210−=ε  because it is small enough for 
most circuits and systems. Also, a random vector with the same 
distribution as the initial condition is generated and employed 
as the initialized vector for the algorithm. First, it is tested to see 
if it satisfied (3b) or not. If it is not satisfied, a new random 
vector is re-generated until (3b) is satisfied. Second, run Steps 2 
to 4 of the proposed algorithm. Figures 3a-3e plot the actual 
state responses and Figure 3f plots the actual quantizer output 
bit streams. Figures 4a-4e plot the differences between the 
actual and new state responses using the estimated initial 
condition, while Figure 4f plots the difference between the 
actual and new quantizer output bit streams. It can be seen from 
Figure 4b and Figure 4c that the differences diverge transiently. 
This is because as A  is unstable, the interpolative SDM is 
chaotic. Although the 2-norm error between the actual and the 

estimated initial condition is guaranteed to be bounded by ε , 
0≠ε  and a small deviation from the actual initial condition 

would cause very different state responses. However, the 
differences in the steady state responses are bounded because 
the constructed trajectories are guaranteed to be bounded. Also, 
there is no difference between the actual and the constructed 
quantizer output bit streams as shown in Figure 4f because the 
quantizer output bit streams is admissible. Figure 5a-5e plot the 
difference between the actual and new state responses using a 
random initial condition with zero mean and variance 0.0001. It 
can be seen from Figure 5a-5e that the transient differences are 
much more than that of our estimated initial condition. Also, 
there is a great difference between the actual and the new 
quantizer output bit streams, as shown in Figure 5f. 

The run-time complexity of the algorithm depends on the 
solvers employed for solving the corresponding LMI problem 
and the linear continuous constraint optimization problem. In 
our numerical computer simulations, Matlab optimization 
toolbox is employed for solving these problems. Based on a PC 
with Pentium 1.2GHz CPU and 256M bytes DDRAM, the 
numerical computer simulation time is about 13 seconds. 

VI. CONCLUSIONS 
In this paper, an initial condition of an interpolative SDM is 

estimated based on projection onto convex set approach. The 
set of initial conditions generating bounded trajectories is 
characterized and it is shown that a set of initial conditions 
generating bounded trajectories but not necessarily 
corresponding to quantizer output bit streams is convex. Also, 
it is shown that a set of initial conditions corresponding to 
quantizer output bit streams but not necessarily generating 
bounded trajectories is convex too. Moreover, an initial 
condition both generating bounded trajectories and 
corresponding to quantizer output bit streams is uniquely 
defined if the loop filter of an interpolative SDM is unstable. 
Hence, by using a projection onto convex set approach, the 
initial condition can be estimated. One of the advantages of the 
projection onto convex set approach is the guarantee of the 
convergence to the actual solution if the intersection of the 
above two convex sets is nonempty. 
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Figure 2. Plot of ( ) ( )zSzU −10log20  against (a) ωjrez =  and 

(b) ωjerz ′= , where [ ]θθω ,′∈ . 
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Figure 3. (a)-(e) Actual state responses. (f) Actual quantizer 

output bit streams. 

 
Figure 4. (a)-(e) Differences between the actual and new state 
responses using the estimated initial condition. (f) Difference 
between the actual and the new quantizer output bit streams. 

 
Figure 5. (a)-(e) Differences between the actual and new state 

responses using a random initial condition. (f) Difference 
between the actual and the new quantizer output bit streams.
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