144 research outputs found

    Algorithms for Blind Equalization Based on Relative Gradient and Toeplitz Constraints

    Get PDF
    Blind Equalization (BE) refers to the problem of recovering the source symbol sequence from a signal received through a channel in the presence of additive noise and channel distortion, when the channel response is unknown and a training sequence is not accessible. To achieve BE, statistical or constellation properties of the source symbols are exploited. In BE algorithms, two main concerns are convergence speed and computational complexity. In this dissertation, we explore the application of relative gradient for equalizer adaptation with a structure constraint on the equalizer matrix, for fast convergence without excessive computational complexity. We model blind equalization with symbol-rate sampling as a blind source separation (BSS) problem and study two single-carrier transmission schemes, specifically block transmission with guard intervals and continuous transmission. Under either scheme, blind equalization can be achieved using independent component analysis (ICA) algorithms with a Toeplitz or circulant constraint on the structure of the separating matrix. We also develop relative gradient versions of the widely used Bussgang-type algorithms. Processing the equalizer outputs in sliding blocks, we are able to use the relative gradient for adaptation of the Toeplitz constrained equalizer matrix. The use of relative gradient makes the Bussgang condition appear explicitly in the matrix adaptation and speeds up convergence. For the ICA-based and Bussgang-type algorithms with relative gradient and matrix structure constraints, we simplify the matrix adaptations to obtain equivalent equalizer vector adaptations for reduced computational cost. Efficient implementations with fast Fourier transform, and approximation schemes for the cross-correlation terms used in the adaptation, are shown to further reduce computational cost. We also consider the use of a relative gradient algorithm for channel shortening in orthogonal frequency division multiplexing (OFDM) systems. The redundancy of the cyclic prefix symbols is used to shorten a channel with a long impulse response. We show interesting preliminary results for a shortening algorithm based on relative gradient

    Energy and spectrum efficient blind equalization with unknown constellation for air-to-ground multipath UAV communications

    Get PDF
    In unmanned aerial vehicle (UAV) communications, frequency-selective fading can severely deteriorate the quality of transmitted signal by generating undesired and disordered constellation diagrams due to scatters in the air-to-ground (ATG) mutipath channels. In this paper, we propose a low-overhead blind equalization method to combat frequency-selective fading in air-ground multipath UAV channels. Specifically, a pre-equalization method is proposed based on a constant modulus algorithm to restore the contour of the constellation diagram. Moreover, the similarity measure function and the difference measure function are derived using template matching to identify the constellation of M-ary quadrature amplitude modulation. Furthermore, we propose a weighted constant cross algorithm (WXA) to reduce the residual mean square error and construct a cross-shaped modulus value, by utilizing the statistical information of the identified normalized standard constellation diagrams and the equalizer output decision symbols’ weighting value. The proposed method requires less information and no training sequences and pilots, therefore, if achieves energy and spectrum efficient ATG multipath UAV communications. Simulation results show that the proposed WXA algorithm can reduce the residual mean square error convergence value between -22dB and -25dB, making it very useful for the equalization of the frequency-selective fading channel in typical UAV communication scenarios

    Blind Channel Equalization of Star QAM using Dual Dispersion MCMA Algorithm

    Get PDF
    An algorithm for blind channel equalization is presented for 16 and 32 Star QAM, namely, Dual Dispersion MCMA algorithm. The algorithm taking the concept from MCMA, uses the Dual Dispersion minimization approach for blind channel equalization. As Star QAM constellation contains two rings, so instead of one, dual dispersion minimization approach is used for its both rings. With modification in MCMA cost function, the new algorithm results improved performance in convergence rate of Residual ISI and MSE against MCMA algorithm. By incorporating decision directed approach, the performance increases drastically. Simulation results show effectiveness of proposed algorithm in removing the ISI and correcting the errors in symbols of received signal

    Joint estimation of dynamic polarization and carrier phase with pilot-based adaptive equalizer in PDM-64 QAM transmission system

    Get PDF
    A pilot-based adaptive equalizer is investigated for high cardinality polarizationdivision-multiplexing quadrature amplitude modulation transmission systems. Pilot symbols are periodically inserted for joint estimation of the dynamic state of polarization (SOP) and carrier phase, in a least mean square (LMS) sense. Compared to decision-directed least mean square (DDLMS) equalization and radially-directed equalization, the proposed equalizer can achieve robust equalization and phase estimation, especially in low optical signal-to-noise ratio (OSNR) scenarios. In an experiment on 56 GBaud PDM-64 QAM transmission over 400 km standard single-mode fiber, we obtained at least 0.35 bit per symbol generalized mutual information (GMI) improvement compared with other training symbol-based equalization when tracking 600 krad/s dynamic SOP. With the joint estimation scheme, the equalization performance will not be compromised even if the SOP speed reaches 600 krad/s or the laser linewidth approaches 2 MHz. For the first time, it is demonstrated that the pilot-based equalizer can track dynamic SOP rotation and compensate for fiber linear impairments without any cycle slips under extreme conditions

    Near-Instantaneously Adaptive HSDPA-Style OFDM Versus MC-CDMA Transceivers for WIFI, WIMAX, and Next-Generation Cellular Systems

    No full text
    Burts-by-burst (BbB) adaptive high-speed downlink packet access (HSDPA) style multicarrier systems are reviewed, identifying their most critical design aspects. These systems exhibit numerous attractive features, rendering them eminently eligible for employment in next-generation wireless systems. It is argued that BbB-adaptive or symbol-by-symbol adaptive orthogonal frequency division multiplex (OFDM) modems counteract the near instantaneous channel quality variations and hence attain an increased throughput or robustness in comparison to their fixed-mode counterparts. Although they act quite differently, various diversity techniques, such as Rake receivers and space-time block coding (STBC) are also capable of mitigating the channel quality variations in their effort to reduce the bit error ratio (BER), provided that the individual antenna elements experience independent fading. By contrast, in the presence of correlated fading imposed by shadowing or time-variant multiuser interference, the benefits of space-time coding erode and it is unrealistic to expect that a fixed-mode space-time coded system remains capable of maintaining a near-constant BER

    Multiuser MIMO-OFDM for Next-Generation Wireless Systems

    No full text
    This overview portrays the 40-year evolution of orthogonal frequency division multiplexing (OFDM) research. The amelioration of powerful multicarrier OFDM arrangements with multiple-input multiple-output (MIMO) systems has numerous benefits, which are detailed in this treatise. We continue by highlighting the limitations of conventional detection and channel estimation techniques designed for multiuser MIMO OFDM systems in the so-called rank-deficient scenarios, where the number of users supported or the number of transmit antennas employed exceeds the number of receiver antennas. This is often encountered in practice, unless we limit the number of users granted access in the base station’s or radio port’s coverage area. Following a historical perspective on the associated design problems and their state-of-the-art solutions, the second half of this treatise details a range of classic multiuser detectors (MUDs) designed for MIMO-OFDM systems and characterizes their achievable performance. A further section aims for identifying novel cutting-edge genetic algorithm (GA)-aided detector solutions, which have found numerous applications in wireless communications in recent years. In an effort to stimulate the cross pollination of ideas across the machine learning, optimization, signal processing, and wireless communications research communities, we will review the broadly applicable principles of various GA-assisted optimization techniques, which were recently proposed also for employment inmultiuser MIMO OFDM. In order to stimulate new research, we demonstrate that the family of GA-aided MUDs is capable of achieving a near-optimum performance at the cost of a significantly lower computational complexity than that imposed by their optimum maximum-likelihood (ML) MUD aided counterparts. The paper is concluded by outlining a range of future research options that may find their way into next-generation wireless systems

    Optics for AI and AI for Optics

    Get PDF
    Artificial intelligence is deeply involved in our daily lives via reinforcing the digital transformation of modern economies and infrastructure. It relies on powerful computing clusters, which face bottlenecks of power consumption for both data transmission and intensive computing. Meanwhile, optics (especially optical communications, which underpin today’s telecommunications) is penetrating short-reach connections down to the chip level, thus meeting with AI technology and creating numerous opportunities. This book is about the marriage of optics and AI and how each part can benefit from the other. Optics facilitates on-chip neural networks based on fast optical computing and energy-efficient interconnects and communications. On the other hand, AI enables efficient tools to address the challenges of today’s optical communication networks, which behave in an increasingly complex manner. The book collects contributions from pioneering researchers from both academy and industry to discuss the challenges and solutions in each of the respective fields
    • …
    corecore