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Abstract 
Blind channel equalization and instantaneous blind source separation are two impor­

tant blind signal processing tasks. Blind equalization refers to the problem of determining 

the propagation channel impulse response or its inverse when the channel is unknown 

and the transmitted data is inaccessible. Instantaneous blind source separation is a 

method of recovering unobserved source signals from observed instantaneous mixtures, 

exploiting only the assumption of mutual independence between source signals. 

Stochastic gradient-based adaptive blind equalization algorithms are relatively sim­

ple to implement and are generally capable of delivering satisfactory performance, as is 

evidenced by their actual use in digital communication systems. Existing adaptive algo­

rithms, however, are either slow in convergence or yield high steady-state misadjustment 

in equalizer output if forced to converge faster. This thesis proposes several new blind 

equalization algorithms which are either capable of converging faster or yielding lesser 

residual inter-symbol interference in steady-state. 

Firstly, the blind equalization algorithms have been categorized in two groups: 1) 

multi modulus algorithms (MMA) and 2) constant modulus algorithms (CMA), depend­

ing respectively on whether the carrier-phase offset can jointly be acquired or not. Sec­

ondly, the notions of a) dispersion minimization and b) energy maximization have been 

introduced and under which, new cost-functions have been designed and associated adap­

tive algorithms have been derived. 

Under the notion of dispersion minimization, a new CMA and two new MMA have 

been obtained. 'With the aid of computer simulations, it has been shown that newly 

obtained algorithms are capable of converging faster. Moreover, under the notion of 

energy maximization, two new algorithms, one for each CMA and MMA, have been 

obtained as well. New energy maximization based algorithms have been shown to exhibit 

better steady-state performance. Importantly, this investigation provides first treatment 

on the design of energy based adaptive blind equalization algorithms. 

Finally, iterative joint-diagonalization based instantaneous blind source separation 

methods have been proposed which make optimal use of third- and fourth-order cumu­

lants. We explore estimation of Given's rotation using both root-finding method and 

closed-form estimator. Numerous computer experiments verify the theoretical results 

and make comparison with existing methods. 
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Chapter 1 

Introduction 

1.1 Blind Channel Equalization 

Recent technological advances in the field of telecommunications have made possible 

the transmission of high data rates even in environments with high interferences. In 

the context of the actual communications systems, one of the biggest limitations in 

the transmission rates is the interference originated from the user itself, the so called 

intersymbol interference (lSI). The multiparty propagation (e.g. mobile systems) and 

limitation in bandwidth (e.g. telephone lines) are some of the most common phenomena 

that causes lSI. Classically, equalization has been the solution to eliminate or reduce 

this interference. Considering the growing complexity of the communication systems, 

the design of equalizers has become very important task and subject of many works. 

One of the approaches in the theory of equalization is to make use of a training 

sequence known by both transmitter and receiver. During this period the equalizer 

has a copy of the transmitted data and it adjusts its parameters to learn the channel 

impulse response or its inverse. The other approach is the non supervised equalization, 

or simply, blind equalization, which is the focus of this work. Blind equalization is 

mainly characterized by the absence of a learning period. Several of its applications take 

advantage of this feature to improve spectral efficiency by using the time earlier spent on 

the training period to transmit information. Note that, in some cases, the transmission 

of a training sequence is undesired or even impossible, such as in multi-point computer 

network and radio-digital transmission on microwave band. 

The most studied and implemented blind adaptation algorithm of the 1990's is the 

constant modulus algorithm (CMA) [53,129]. The CMA seeks to minimize a cost defined 

1 
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by the constant modulus criterion. The constant modulus cost-function penalizes devia­

tions in the modulus (i.e., magnitude) of the equalized signal away from a fixed value. In 

certain ideal conditions, minimizing the constant modulus cost can be shown to result in 

perfect (zero-forcing) equalization of the received signal [26]. Remarkably, the constant 

modulus criterion can successfully equalize signals characterized by source alphabets not 

possessing a constant modulus [e.g., quadrature amplitude modulation (QAM)], as well 

as those possessing a constant modulus [e.g., phase shift keying (PSK)]. In 1992, a mod­

ified version of CMA appeared [137], which was later termed as multimodulus algorithm 

(MMA) [139]. The most striking feature of MMA was mentioned to be its capability to 

jointly recover the carrier-phase offset while the CMA required a separate block for the 

same purpose. The objective of this thesis is to consider these blind channel equalization 

methods, to put forward new cost-functions, to derive associated algorithms, to disclose 

their links, and to carry out a comprehensive study of their properties and performance. 

1.2 Blind Source Separation 

The problem of blind source separation (BSS) arises in many signal processing appli­

cations like communications, array processing, speech analysis and speech recognition. 

In all these instances, the underlying assumption is that several linear mixtures of un­

known, random, zero-mean, and statistically independent signals, called sources, are 

observed; the problem consists of recovering the original sources from their mixtures 

without a priori information of coefficients of the mixtures and knowledge of the sources. 

The principle involved in the solution to this problem is nowadays called independent 

component analysis (ICA), which can be viewed as an extension of the widely known 

principal component analysis (PCA). The independence between the recovered sources 

is measured by their mutual information (MI). The MI measures the information that 

one variable contains about another one, i.e., the reduction of uncertainty of a magnitude 

when another one is known. The MI is zero if and only if the sources are independent. 

Comon [32] studied the separability condition for BSS problem, and pointed out that 

for statistically independent non-Gaussian sources, the separation can be achieved by 

restoring the independence. He proposed using MI as a tool to measure the indepen­

dence of the output signals, and to use an Edgeworth expansion to approximate the 

probability density function in the MI criterion. The Edgeworth expansion of the MI of 
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a standardized (i.e. after whitening) real variable, up to an additive constant 10 and as a 

function of standardized cumulants. The ICA algorithms based on the maximization of 

third- and fourth-order cumulants are reported in [32] and [33] by Comon, respectively. 

In this thesis, we aim to present a weighted form of third- and the fourth-order cumu­

lants, capable of handling the symmetric and asymmetric sources jointly, in an optimal 

manner. 

1.3 Thesis Organization and Contributions 

Below is the summary of the main original contributions of this work, together with its 

organization on a chapter-by-chapter basis: 

Chapter 3 

• A new adaptive constant modulus algorithm, namely cCMA(p), is obtained by 

minimizing a novel deterministic cost-function. The proposed cost-function con­

stitutes a dispersion measure obtained by combining a priori and a posteriori 

equalizer outputs. It is proved, and experimentally endorsed, that for the given 

equalizer length, the proposed cCMA(p) exhibits better lSI mitigation capability 

for larger value of parameter p . 

• A convergence proof is provided from system theoretic point of view. Accord­

ing to this proof, there exists a range of step-size for the equalizer implementing 

cCMA(p), for which the modulus of equalizer output can be kept bounded from 

above infinitely often . 

• An easy-to-compute approximate bound is also obtained for the range of step-sizes 

for which a complex-valued generic constant modulus algorithm will remain stable 

if initialized close to a minimum of the constant modulus cost-function. Simulation 

results on probability of divergence. 

Chapter 4 

• Two new families of multimodulus algorithms are presented. The first family, 

MMA(p, q), is obtained by generalizing the Wesolowski dispersion criterion with 

two degrees of freedom. It is shown that faster converging algorithms may be 
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obtained by selecting appropriate values of free parameters. The second family, 

cMMA(p), is obtained by constraining a so-called convex blind equalization crite­

rion to acquire the signal energy on convergence. 

• These algorithms are shown to be capable of recovering the carrier-phase jointly 

with equalization. Analytical reasonings are provided for carrier-phase recovery 

capability of these families. 

• The dispersion constants for the selected members of the families, MMA(p, q) and 

cMMA(p), are evaluated in the presence and absence of convolutional noise. 

• The dynamic convergence analysis is carried out for a generic Bussgang-type blind 

equalization algorithms leading to the evaluation of dynamic lSI and MSE expres­

sions. Five members of each of MMA(p, q) and cMMA(p) are studied. Simulation 

results show the correctness of these expressions. 

Chapter 5 

• A method of l2-optimization is suggested which leads to the formulation of a type 

of constant modulus cost-function. The method involved the maximization of 

equalizer output energy such that the dispersion of equalizer output is minimized 

with respect to the largest modulus of the transmitted signal. The feasibility of 

this method is analytically discussed. 

• To obtain an adaptive algorithm, the proposed cost-function is modified to contain 

a differentiable constraint. The derived constant modulus algorithm, which we 

termed as ,8-CMA, is shown to be computationally simpler than some existing 

constant modulus algorithms. 

• Experiments are provided to show the superiority of proposed algorithm, ,8-CMA, 

over traditional CMA algorithms for the equalization of symbol- and fractionally­

spaced channels with APSK signalling. 

Chapter 6 

• A method of h-optimization has been recently suggested which leads to the formu­

lation of a type of multimodulus cost-function. The method involved the maximiza­

tion of equalizer output energy such that the dispersion in quadrature components 
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of equalizer output are minimized with respect to the corner-points of QAM sig­

nal. To obtain an adaptive algorithm, the existing cost-function is modified to 

contain differentiable constraints. The derived multimodulus algorithm, which we 

termed as ,B-MMA, is shown to be computationally simpler than some existing 

multimodulus algorithms . 

• Experiments are provided to show the superiority of derived algorithm, ,B-MMA, 

over traditional MMA algorithms for the equalization of symbol- and fractionally­

spaced channels with 16/64/256-QAM signalling. Dynamic convergence analysis 

is also provided and experimentally verified. 

Chapter 7 

• In the field of blind source separation, joint-diagonalization based approaches con­

stitute an important framework. Recently, some authors have shown how to per­

form diagonalization by simultaneously using cumulants of third- and fourth-order. 

In this Chapter, we extend these results to the optimal composition of third- and 

fourth-order cumulants. We introduce free parameters (or weights) ,B in combin­

ing the cumulants (of pair-wise mixed signals) and evaluate its optimal value such 

that the mean-square estimation of Given's rotation is minimized. We show that 

the optimal value of,B depends on the a priori statistical knowledge of the mixing 

signals. However, based on several computer experiments, we notice that (even) in 

the absence of such a priori knowledge, the use of an approximate value of ,B (ob­

tained directly from the statistics of the observed source) may lead to satisfactory 

performance and yield better results than some existing algorithms . 

• We also obtain a closed-form estimator, which provides a quicker estimate of 

Given's rotation. Here we also take the statistics of background (additive Gaussian) 

noise in consideration. 

1.4 Publications Derived from this Work 

The following publications have arisen from the work detailed in this thesis: 
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phase recovery of square-QAM", submitted to IEEE Signal Processing Letters. 



Chapter 2 

Blind Channel Equalization: 
Adaptive Methods 

2.1 Introduction 

In many data communication systems, channel equalization is one of the most important 

functions for the receivers. Data communication requires that digital signals be transmit­

ted over a specific analog medium between the transmitter and the receiver. Because of 

practical limitations, analog channels are usually imperfect and can introduce unwanted 

distortions. Examples of non-ideal analog media include telephone lines, coaxial cables, 

and wireless channels at various frequencies under different system configurations. For 

linearly distortive channels, channel equalization is an effective approach of distortion 

removal and compensation [37]. 

Adaptive channel equalization was first developed by Lucky [83] at Bell Labs for 

telephone channels. Adaptive channel equalizers begin adaptation with the assistance 

of a known training sequence transmitted during the initial stage by the transmitter. 

During the training phase, a known sequence is transmitted by the transmitter such 

that the equalizer output can be compared with the desired input to form an error. The 

equalizer parameters can be adjusted to minimize the mean square symbol error. At the 

end of the training phase, the equalizer parameters should be near their optimum values 

such that much of the intersymbol interference has been removed. As the channel input 

can now be correctly recovered from the equalizer output through a memory less decision 

device, real data transmission can begin in the subsequent operation phase [37]. 

In many communications, signals are transmitted by the sender over time varying 

channels. As a result, a periodic training signal is necessary to identify or equalize 

7 



8 

the time-varying channel response. The drawback of this approach is evident in many 

communication systems where the use of training sequence can represent significant 

overhead costs and may be unrealistic or impractical. For instance, no training signal is 

available to receivers attempting to intercept enemy communication. In a multicast or 

a broadcast system, it is highly undesirable for the transmitter to engage in a training 

session for a single user by temporarily suspending its normal transmission to a number 

of other users. As a result, there is a strong and practical need for a special kind of 

channel equalizer, known as blind equalizers, that do not require the transmission of 

a training sequence. Digital cable TV and cable modems are excellent examples of 

such systems that directly benefit from blind equalization. In blind equalization, the 

actual data sequence is unknown to the receiver except for its probabilistic or statistical 

properties over a known alphabets of transmitted signal [37]. 

The blind equalization has become an important research problem in digital signal 

processing primarily because of its desirable features and the challenge it poses to re­

searchers in the field [59, 26]. By eliminating training data and maximizing channel 

capacity for true information transmission, blind channel equalization presents a band­

width efficient solution to distortion compensation. Compared with the more traditional 

approach of training based equalization, blind equalization is a theoretically challenging 

problem that is gaining appeal. There are a number of different approaches to the prob­

lem of blind equalization. In general, blind equalization methods can be classified into 

direct and indirect approaches [37]. Direct blind equalization approach derives equalizer 

filters directly from input statistics and the observed output signal of the unknown chan­

nel. Indirect blind equalization approach first identifies the underlying channel impulse 

response before designing an appropriate equalizer filter. The present thesis focusses 

on direct and adaptive approach to achieve blind equalization. 

2.1.1 Blind SISO Equalization 

Consider a single-input-single-output (8180) discrete linear systems, where the relation­

ship between the input and the output signal is given as 

K-l 

Xn = L hkan-k + '!9n 

k=O 
(2.1.1) 
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where n is discrete time index, {an} is independently and identically-distributed trans­

mitted sequence, and takes values of quadrature amplitude modulation (QAM) or am­

plitude phase shift-keying (APSK) symbols with equal probability. The hk is impulse 

response of time-invariant moving-average channel, K is the channel length and {)n is 

additive white Gaussian noise. Now consider a blind equalizer Wn is available at the 

receiver. The objective of this equalizer is to adjust its coefficients vector w such that 

the overall channel-equalizer impulse-response h ® Wn = 8n-~ is achieved or well ap­

proximated, where ® denotes convolution and ~ denotes bulk-delay. The key in the 

development of a blind equalizer is therefore to design the rule of self-adjustment with 

knowing the transmitted data {an} and channel coefficients hk· 

There are basically two different approaches to the problem of blind equalization [37]. 

The stochastic gradient-based approach iteratively minimizes a chosen cost-function over 

all possible choices of the equalizer coefficients, while the statistical approach uses suffi­

cient stationary statistics collected over a block of received data for channel identification 

or equalization. The latter approach often exploits higher order or cyclo-stationary sta­

tistical information directly. The present thesis focusses on the adaptive online 

equalization methods employing the gradient-search approach. 

For reasons of practicality and ease of adaptation, a linear channel equalizer is typi­

cally implemented as a finite impulse-response (FIR) filter. Denote the equalizer param­

eter vector with N elements as 

In addition, define the received signal vector as 

The output signal of the linear equalizer is thus 

where the superscripts T and H represents transpose and conjugate transpose, respec­

tively. 

2.1.2 Cost-Functions and Associated Adaptive Functions 

The idea behind the cost-function based blind equalization is to optimize, through the 

choice of equalizer filter coefficients w, a certain real-valued cost-function J, such that 



10 

the equalizer output Yn provides an estimate of the source signal an up to some inherent 

indeterminacies, giving, Yn = 0 an', n' = n-(, where a = lolen E C and ( E Il, represent 

an arbitrary gain and delay, respectively. The phase, represents an isomorphic rotation 

of the symbol constellation and hence is dependent on the rotational symmetry of signal 

alphabets; for example, , = m7r/2 radians, with m E {O, 1,2, 3} for a square-QAM 

system. Hence, a blind equalization algorithm tries to solve the following optimization 

problem: 

W = arg optmiziewJ, withJ = E[..7(Yn)] (2.1.2) 

'where the cost J is an expression for implicitly embedded higher-order statistics of Yn 

and .J(Yn) is a real-valued function. Ideally, the cost J makes use of statistics which 

are significantly modified as the signal propagates through the channel, and the opti­

mization of cost modifies the statistics of the signal at the equalizer output, aligning 

them with those at channel input. The equalization is accomplished when equalized 

sequence Yn acquires an identical distribution as that of the channel input an [20]. If the 

implementation method is realized by stochastic gradient-based adaptive approach [60]: 

( 
a.J )* Wn+l = Wn ± J.L aWn ' (2.1.3) 

where the polarity (+) or (-) depends on whether we want to maximize or minimize the 

cost, respectively. The updating algorithm becomes 

{2.1.4} 

where J.L is a step-size governing the speed of convergence and the level of steady-state 

equalizer performance. The complex-valued error-function <t>{Yn} can be understood as 

an estimate of the difference between the desired and the actual equalizer outputs. That 

is, <t>(Yn} = 'l1(Yn) - Yn, where 'l1(Yn)l is an estimate of the transmitted data an. Such 

nonlinear memory-less estimate, 'l1(Yn), is usually referred to as Bussgang nonlinearity 

and is selected such that, at steady state, when Yn is close to an_~, the auto-correlation 

1 An admissible estimate of W(Yn) is the conditional expectation E [an' IYn] [101]. Using Bayesian 
estimation technique, E [an' IYn] was derived for non-Gaussian sources by Bellini [16], Fiori [45] and Haykin 
[60] assuming uniformly distributed sources. Just recently, in the year 2007, Pinchas and Bobrovsky [107] 
presented a new approximate expression for E [an' IYn], based on Maximum Entropy principle and Laplace 
integral method, without assuming uniformly distributed sources; they jointly achieved blind equalization 
and carrier-phase recovery. In contrast, we rely on cost-function based intrinsically embedded signal/noise 
statistics for the estimation of W(Yn) in this work. 
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of Yn becomes equal to the cross-correlation between Yn and 'l1(Yn), i.e., 

(2.1.5) 

For two-dimensional signals, the associated algorithms can be divided broadly into 

two main categories. The algorithms in the first category are those which achieve equal­

ization without carrier-phase recovery while the algorithms in the second category are 

those which achieve equalization jointly with carrier-phase recovery. Algorithms in the 

first category (usually) exploit the modulus of the equalized signal, IYnl, as a measure to 

detect and minimize the residual lSI; we refer to these algorithms as constant modulus 

algorithms (CMA) [53, 129]. General design principles for these type of algorithms are 

recently suggested in [11, 18]. 

The second category of algorithms exhibits a non-analytic error-function. By non­

analytic, we mean that the error-function <I>(Yn) = 'l1(Yn) - Yn is a decoupled function of 

the quadrature components of deconvolved sequence Yn· We can write <I>(Yn) = </>(YR,n) + 
J</>(YI,n), so the real (R) and imaginary (I) parts of <I>(Yn) are respectively obtained from 

the real and imaginary parts of Yn. Its direct implication is the following optimization 

problem: 

w = arg optmiziewJ, with J = E[.7(YR,n)] + E[..7(YI,n)] (2.1.6) 

This split cost-function (2.1.6) was first introduced by Benveniste and Goursat [19] under 

two assumptions: 1) the quadrature components of transmitted data an are independent 

of each other and 2) the correlation between the real and imaginary parts of the lSI is 

small. 

Later, this heuristical strategy was experimented by many researchers and several im-

portant observations have been made: i) faster convergence can be obtained for square­

QAM in comparison to CMA(2,2) [105, 135, 136, 140], ii) carrier-phase recovery can 

jointly be achieved [143, 8, 6, 49], iii) moderate-level frequency-offset error can be toler­

ated [102], iv) lesser fluctuation in equalizer coefficients in steady-state in comparison to 

CMA(2,2) [5, 81], v) similar form of stationary points as those exhibited by CMA(2,2) 

[137, 143], vi) (possibly) no undesirable minima [75] and vii) ease in hardware imple­

mentation [92]. In contrast to the first category, we refer to algorithms in the second 

category as multimodulus algorithms (MMA). The term multimodulus was first used in 

[138], probably as a short form of the term multiple-modulus which was coined in [120]. 
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If RR and RI are respectively assumed to be modulus for in-phase and quadrature com­

ponents of Ym then deducing from [11, 25], we establish that the error-function ¢(YL,n) 

of MMA satisfies the following properties: 

p1) ¢(YL,n) is odd-symmetrical, 

p2) ¢(YL,n) > 0 for 0 < YL,n < RL, 

p3) ¢(YL,n) = 0 solely at YL,n = 0, RL and -RL, 

p4) ¢(YL,n) must be decreasing for YL,n > RL. 

where subscript L denotes either R or I. These properties define the requirements for 

the algorithm to converge to the modulus RL. Consequently, p2)-p4) guarantee that 

the error-function ¢(YL,n) drives YL,n towards the modulus RL when YL,n > 0 and p1) 

(together with p2)-p4)) ensures that ¢(YL,n) brings YL,n close to minus of modulus (i.e., 

-Rd, when YL,n < O. Thus, an MMA equalizer minimizes the dispersion in YR,n and YI,n 

away from four statistical points ±RR ± JRI; it is the reason that these carrier-phase 

sensitive algorithms have been termed as reduced- or 4-phase-constellation algorithm 

[19, 52, 126]. 

2.2 Notion of Dispersion Minimization 

Minimizing (a measure of) dispersion in the equalized sequence Yn is the most studied and 

practised idea in the context of equalization. The classical mean-squared-error (MSE) 

criterion minimizes the dispersion in Yn away from the delayed version of the true channel 

input an, that is an-, (where ~ is the bulk belay). The criterion is thus given by [41] 

(2.2.1) 

The equalizer iteratively minimizes the MSE cost-function (2.2.1) in which the error is 

defined as an-, - Yn and weight update is given by 

(2.2.2) 
= Wn + J.L [(aR,n-_ - YR,n) - J (aI,n-, - YI,n)] X n· 

If the MSE is so small after training that the equalizer output Yn is a close estimate of the 

true channel input an-" then the decision device output an-, = Q[Yn] can replace an-, 
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in a decision-directed algorithm (DDA) that continues to track modest time variations 

in the channel dynamics (this idea was suggested by Niessen in 1967 [100]). 

In blind equalization, the channel input an-, is unavailable, and thus different mini­

mization criteria are explored. The crudest blind equalization algorithm is the decision­

directed scheme that updates the adaptive equalizer coefficients according to 

Wn+l = Wn + J-L (Q[Yn]- Yn)''' Xn, 
(2.2.3) 

= Wn + J-L [( Q[YR,n]- YR,n) - J (Q[YI,n] - YI,n)] X n· 

where Q[Yn] == Q[YR,n] + JQ[YI,n] is the estimated transmit signal aR,n-, + JaI,n-,' 

The performance of the decision-directed algorithm depends on how close Wn is to its 

optimum setting W[*] under the minimum MSE or the zero-forcing criterion [37]. The 

closer Wn is to wl*j, the smaller the lSI is and the more accurate the estimate Q[Yn] = 

an-, is to an-,' Consequently, the algorithm in (2.2.3) is likely to converge to w[*] if Wn 

is initially close to W[*]. The validity of this intuitive argument is shown analytically in 

[88, 87, 70]. 

2.2.1 Sato Algorithm and its Variants 

The first adaptive blind equalizer for real-valued multilevel PAM signals was introduced 

by Sato [114] which suggested to minimize dispersion in Yn away from two statistical 

points ± R. For M-level PAM signals, it is defined by the update 

(2.2.4) 

where R = E [a2] IE [lal]· In essence, it is identical to the decision-directed algorithm 

when the PAM input is binary (±1). Clearly, the Sato algorithm effectively replaces the 

ideal delayed transmitted data an-, with R sgn [Yn], leading to the cost-function 

(2.2.5) 

It is clear that the convergence of the Sato algorithm depends on how often the two 

quantities an-, and R sgn [Yn] have identical signs. 

In the year 1984, Benveniste and Goursat [19], while exploiting Sato's principle, 

generalized the algorithm (2.2.4) to two-dimensional signals (like QAM) and formulated 

separate error terms for quadrature components, as follows: 

(2.2.6) 
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where RL = E [a~J IE [laLl] . Clearly the algorithm (2.2 .6) minimizes the dispersion in 

Yn away from four statistical points ± RR ± J RJ. For this reason, the algorithm (2 .2.6) 

is usually termed as reduced constellation algorithm (RCA). For a symmetrical QAM 

constellation, the cost behind the update (2.2.6) can be expressed as: 

(2 .2.7) 

However, it should be noted that, in the formulation of (2 .2.6), authors have assumed 

that 1) the real and imaginary parts of the transmitted data an are independent of 

each other (as in the case of square-QAM) and 2) the correlation between the real and 

imaginary parts of the lSI is small. The contour plot of the cost (2 .2.7) is depicted in Fig. 

2.1 for 16-QAM signal. In order to improve the convergence properties of update (2.2.6), 

Figure 2.1 : Contour plot of cost (2 .2.7) for 16-QAM (RL = 2.5) . 

two important variants have appeared in the literature - [105] and [2]. The first one 

is called "stop-and-go" methodology, and it was proposed by Picchi and Prati [105] 

in the year 1987. The idea behind the stop-and-go algorithms is to allow adaptation 

"to go" only when the error-function is more likely to have the correct sign for the 

gradient descent direction. Given several criteria for blind equalization, one can expect 

a more accurate descent direction when more than one of the existing algorithms agree 

on the sign (direction) of the error-functions. When the error signs differ for a particular 

output sample, parameter adaptation is "stopped" . In [105] , Picchi and Prati combined 

the Sato and the decision-directed algorithms with faster convergence results through 



the corresponding error-function 

<I>(Yn) =~ [ (Q[YR,n] - YR,n) + IQ[YR,n] - YR,nl sgn [,8 sgn [YR,n] - YR,n]] 

+ ~ [ (Q[YI,nj- YI,n) + IQ[YI,nj- YI,nl sgn [,8 sgn [YI,nj- YI,nj] 
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(2.2.8) 

where,8 > O. In [7], it is suggested to use ,8 = max{laLI} to obtain fastest convergence. 

Note that, given the number of existing algorithms, the stop-and-go methodology can 

include many different combinations of error-functions, refer to a number of stop-and-go 

algorithms reported in [58, 3]. 

The second important variant of algorithm (2.2.6) was proposed by Abrar [2] in the 

year 2004, who suggested to infuse the error-functions of RCA and DDA. Therefore, the 

resulting error-function was aware of the dispersion of YL,n away from the decision symbol 

Q[YL,n] as well as the statistical constant RL, it led to the following error-function: 

where a ::; c::; 1 was a positive constant and RL = E [al]/E [laLI1+C]. Note that by 

selecting c = 1 and c = 0, the error-function (2.2.9) becomes equivalent to the error­

functions in the updates (2.2.3) and (2.2.6), respectively. In [2], it was shown that 

by selecting an appropriate value of c, usually 0.25 < c < 0.5, one can obtain better 

convergence than RCA for a number of QAM sizes. The resulting algorithm was named 

as Compact Constellation Algorithm (CCA). It was because of the fact that there are 

as many statistical points on the constellation map as the number of distortion free 

QAM symbols. Refer to the Fig. 2.2 for the contour plot of CCA for 16-QAM. Clearly, 

CCA minimizes dispersion in YL,n away from a sliced-statistical constant RL Q[YL,n]c, 

In [5], Abrar and Axford suggested to select a small value of c (close to zero) at the 

beginning and smoothly increase the value of c (up to unity) in steady-state. Successful 

implementation of this idea is recently reported by Lim [78]. Finally, note that the 

update/error-functions (2.2.6), (2.2.8) and (2.2.9) have been found to be capable of 

recovering carrier-phase along with blind equalization. 
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Figure 2.2: Contour plot of the algorithm CCA for 16-QAM (RL = 2.0 and c = 0.26) . 

2.2.2 Godard A lgor ithms and its Variants 

In the year 1980, the Sato cost-function (2 .2.5) was generalized by Godard into another 

class of algorithms that are specified by the cost-function [53] 

(2.2 .10) 

where RP = E [\a\2P] IE [\a\P]. Using the stochastic gradient descent approach, the Godard 

(family of) algorithms is given by 

(2.2.11) 

For p = 2, the special Godard algorithm was developed as the constant modulus algorithm 

(CMA) independently by Treichler and co-workers [129, 130] using the philosophy of 

properly-restoml. In the sequel, we will refer to (2.2.11) as CMA(p,2) . For channel 

input signal that has a constant modulus \an \ = R, the CMA(p,2) equalizer penalizes 

output samples Yn that do not have the desired constant modulus characteristics. 

This modulus restoral concept has a particular advantage in that it allows the equal­

izer to be adapted independent of carrier recovery. Because the CMA(p, 2) cost-function 

is insensitive to the phase of Yn, the equalizer parameter adaptation can occur inde­

pendently and simultaneously with the operation of the carrier recovery system. This 

property also makes CMA(p,2) applicable to analog modulation signals with constant 

amplitude such as those using frequency or phase modulation [130] . 
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In [73J, Treichler and Larimore suggested a more generalized constant modulus cost­

function, with two degrees of freedom, viz 

JCMA(p,q) = E [liYniP - RPn ' (2.2.12) 

and studied its convergence characteristics for (p, q) E {(I, 1), (1,2), (2, 1), (2, 2)}. More 

rigorous closed-form expressions for the cost JCMA(p,q) appeared in [123J. 

It is interesting to note that, only one of the members of CMA(p, q), that is CMA(2,2), 

has been widely studied [149, 150, 56]. In fact, there exists very few references [72, 142, 

64, 80], where other members of CMA(p, q) have also been studied and compared with 

CMA(2,2). In a series of articles [12, 13, 14, 15], Bellanger focussed on the relative per­

formances of CMA(I,2) and CMA(2,2). In [13], for QPSK signals, he established that if 

output-signal-to-noise-ratio is less than 8dB, then CMA(2,2) can be employed, otherwise 

CMA(I,2) criterion is preferable. In [15], for square-QAM signals while acquiring the 

same level of excess MSE, he quantified that CMA(2,2) may converge in less than half 

of the number of iterations as required by CMA(I,2). 

In the year 2006, Li and Zhang [76] proposed a generalized constant modulus cost­

function with three degrees of freedom, as given by 

JGCMA(I,p,q) = E [\iYnlf - RPn ' 
_ ( 1 1)1/1 where iYnil = iYR,ni + iY[,ni , 1 ~ 1. 

(2.2.13) 

Although, they have not reported any new (and better) algorithm (with appropriate 

selection of parameters p, q and l), but they proved affinity among many existing blind 

equalization algorithms, like CMA(2,2), constant square algorithm [127], sign Godard 

algorithm (also known as constant diamond algorithm) [133J, RCA [19] and multimodulus 

algorithm [139]. Interestingly, in the year 2007, Goupil and Palicot [55] independently 

proposed the same cost-function (2.2.13); however, they remarkably obtained the optimal 

value of I for several APSK/QAM signals given p = q = 2. In Fig. 2.3, we depict the 

(only) zero-error contours of the cost (2.2.13) for an arbitrary signal and 1 = 1,2,6 and 

1 -+ 00. Note that, due to minimizing dispersion away from non-circular zero-error 

contours, for I = 1,6 and I -+ 00, the resulting algorithms have been shown to be 

capable of restoring the carrier-phase in the equalized sequence with needing a separate 

phase-acquisition/tracking block [76, 55]. 
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Figure 2.3: Zero-error contours of cost (2.2.7) for 1 = 1,2,6 and 1- 00. 

2.2.3 Wesolowski Algorithms and its Variants 

In the year 1987, Weoslowski proposed a modified form of Godard dispersion-directed 

criterion (2.2.10) as follows: 

JW,rol~k; ~ E [ (IYR.nIP - RP)'] + E [ (IYI.nIP 
- R~)'] , (2.2.14) 

The idea behind this cost-function, as compared to the CMA(p, 2) cost-function (2.2.10) 

is that both the real and imaginary parts of the signal are forced to a constant value 

and, therefore, the random phase ambiguity of the CMA(p,2) now becomes only 90°. 

This is meaningful in pure phase modulation, in which case the CMA may converge 

to an arbitrarily phase-shifted solution. For QAM though, the 90° symmetry of the 

constellation makes it possible for both algorithms to converge to a 90° phase-shifted 

solution. The minimization of (2.2.14) provides the following gradient-based weight 

update algorithm 

W n+1 =Wn + JL[(Rh -IYR,nIP) IYR,nIP- 2YR,n - J(R~ -IYI,nIP) IYI,nIP- 2YI,n] Xn (2.2.15) 

where RP = E [a~] IE [laLIP]. Interestingly, a decade later, the cost (2.2.14) was in­

dependently proposed by Oh and Chin [102, 103] and Yang et al. [139, 138, 141]. In 

[139, 138], the term multimodulus algorithm (MMA) was coined for the update (2.2.15). 

In the sequel, we will refer to update (2.2.15) as MMA(p,2). 

The stationary points of MMA(2,2) and its carrier-phase recovery capability is ex­

plored in detail in [137, 143] and [75]. It was shown that MMA(2,2) cost-function has 
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only four local (hence, global) minima. Hence, a gradient search algorithm for minimiz­

ing J MMA(2,2) is expected to converge to the only four global minima that correspond to 

the desired response. The key lies in the fact that the cost-function of the MMA(2,2) 

includes a term which contains the phase information of the blind equalizer output 

[143]. Therefore, the MMA may solve a possible phase-ambiguity problem inherent in 

the CMA. However, the existence of that phase-sensitive term may appear to result in 

one potential disadvantage of the MMA(2,2), because four additional saddle points are 

generated. As a result, the MMA, using the stochastic gradient-descent method, may be 

first attracted toward the vicinity of one of the saddle points, around which it exhibits 

slow convergence, before converging to the desired minimum. 

Also note that there exist numerous simulation-based studies which have reported 

the potential of MMA{2,2) and its variants for acquiring faster convergence than existing 

algorithms. Examples of such studies for 16/64/256-QAM are in abundance and widely 

known [49, 140, 5, 8,4,6]; for the case of 1024-QAM signalling, however, one can refer 

to [66, 71, 61, 44, 42]. 

2.3 Notion of Constrained Energy Optimization 

Historically, Allen and Mazo [10] were the first who showed that the optimization of 

output energy of an anchored equalizer is unimodal in achieving an open eye solution for 

blind equalization. This proposal appeared an year before the appearance of Sato's work 

(Sato's work appeared in 1975 [114]). According to Allen-Mazo criterion, in contrast to 

(2.2.1), blind equalization may be achieved by solving 

(2.3.1) 

subject to keeping a tap value Wo = 1. Thus no knowledge of the input sequence 

{an-t;} was required while anchoring was required to avoid all-zero solution. Note that 

the cost (2.3.1) serves as the first ever proposal for blind equalization; however it simply 

failed to get any attention. In fact, to the best of our knowledge, no article, discussing 

the issue of blind equalization, has ever provided any pointer to this important proposal. 

Probably, the works of Sato and Godard successfully captured all the attentions. 

Allen and Mazo [10] have analytically shown that the optimization of (2.3.1) may 

possibly invert the propagation channel provided the channel belongs to a specific class 
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and the equalizer has a certain structure. Specifically 1) the channel must be minimum 

phase, and 2) the equalizer must be one-sided. A two-sided equalizer (which is the 

conventional one in data transmission) is certainly capable of giving an even smaller 

value to the criterion (2.3.1); the resulting taps will simply not be those that invert the 

channel [9]. 

Seventeen years later, in 1991, Sethares et al. [119] independently proposed the 

criterion (2.3.1) and argued that, at the point of minimum energy, the equalizer may fail 

to open the eye even when an open eye solution exist. They concluded in the following 

words: 

Minimizing the energy (12 minimization) of the equalizer output (under a fixed 

tap constraint) cannot be guaranteed to open the eye (to reliably unscramble 

the message) because it tends to converge to an equalizer setting that contains 

a reflection of the unstable zeros inside the unit circle. 

Quite concurrently, Feyh and Klemt [43] proposed the following similar problem: 

B 

rr.Un L IYnI2 , subject to IIwll~ = 1, (2.3.2) 
n=l 

where B denoted the number of equalized samples used in the optimization. An eigen­

vector based block processing algorithm was obtained using subroutines from the NAG 

library. The simulation studies in [43] reported a failure of (2.3.2) in the following words: 

If the time span of the adaptive filter w was larger than the symbol duration, 

the algorithm tended to gather runs of one symbol into one "super-symbol". 

On the other hand symbol changes were not followed as closely as they should 

have been, thus single symbols in between two runs of symbols were completely 

lost. 

Now it is important to know that whether energy optimization is an admissible idea 

for blind equalization or not. We believe that it was not the failure of the cost (2.3.1), 

but it was the failure due to the type of constraint used. A properly selected constraint 

may possibly lead to an admissible criterion!' 

Recently, in the year 2009, Meng et al. [90] proposed an 12-maximization based 

method for blind channel equalization without requiring tap-anchoring. Their cost­

function is given as: 

m~ E[lYnI2
], s.t. max ({IYR,nl}) = max ({IYI,nl}) :5 "Y (2.3.3) 
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where max ({IYRI}) and max ({IY[,nl}) denote respectively the largest absolute values of 

the in-phase and quadrature components of equalized sequence {Yn}, and the parame­

ter 'Y denotes the maximum quadrature component of the transmitted data an. They 

formulated the cost as a quadratic programming problem for blind equalization of square­

QAM and reported better results than those obtained from linear programming based 

solutions [38, 86]. Note that the constraints in (2.3.3) have been shown to be convex in 

w [38,69,86]. Also note that, due to using separate constraints for in-phase and quadra­

ture components of equalized sequence, the Meng's block-processing equalizer was jointly 

capable of recovering the carrier-phase. 

2.4 Summary 

This Chapter has recalled some aspects of cost-function based blind equalization problem, 

concentrating on adaptive methods and has made a review of constant modulus and 

multimodulus algorithms. The notion of dispersion minimization and energy 

optimization is explained and examples of existing relevant methods are described. 

The purpose of this thesis is to study such methods and develop new algorithms along 

similar lines. 



Chapter 3 

Dispersion Minimization: 
Adaptive Constant Modulus 
Algorithms 

3.1 Introduction 

In this Chapter, we propose a dispersion minimization based family of adaptive constant 

modulus algorithms for blind equalization of complex-valued communication channels. 

We first suggest a new composite dispersion measure which is a weighted sum of dis­

persion measures composed of a priori as well as a posteriori equalizer outputs (Section 

3.2.1). The proposed dispersion measure is then used to define a novel deterministic 

(minimum-disturbance) constrained optimization criterion (Section 3.2.2). We solve the 

proposed criterion by satisfying the constraints in a soft or relaxed manner to obtain a 

new algorithm, cCMA(P) (Section 3.2.2). The proposed algorithm cCMA(p) is shown to 

exhibit modulus driven zero-memory continuous nonlinearity, where p is free (positive­

valued) parameter. 

We discuss the analytical behavior of cCMA(p) in detail. We evaluate the disper­

sion constants in the presence as well as the absence of convolutional noise, leading to 

closed-form interesting formulas for specific cases of p (Section 3.3). We discuss the 

stochastic stability of a generic CMA leading to the derivation of a closed-form simple­

to-evaluate bound on step-size (Section 3.4). We discuss the stability of cCMA(P) from 

system theoretic point of view and present an interesting theorem describing the effect 

of parameter p on dispersion minimizing performance of cCMA(p) (Section 3.5). We 

also discuss the influence of parameter p on lSI mitigation capability of cCMA(p). Here, 

22 
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we explicitly prove that the residual lSI level may be lowered further by increasing the 

value of free parameter (Section 3.6). We finally validate most of our theoretical results 

through computer simulations (Section 3.7). 

3.2 Proposed Cost-Function 

3.2.1 A Composite Dispersion Measure 

The Godard's cost-function can be written as [53]: 

(3.2.1) 

where ~~,p is defined as the pth-order a priori dispersion error. The criterion (3.2.1) 

minimizes the dispersion of the modulus of a priori output Yn away from a statistical 

dispersion constant R. The cost yields the following stochastic gradient algorithm: 

(3.2.2) 

where RP = E[la\2p ]/E[la\P] [53] in a noise-free scenario. The stochastic gradient algo­

rithm (3.2.2) drops the expectation operator and minimizes (3.2.1) by performing one 

iteration per symbol period. It is interesting to note that only two members of this 

family, namely CMA(I, 2) and CMA{2,2), have been widely and till recently discussed 

and studied [12, 13, 15]. 

For higher-order two-dimensional signals like QAM, the instantaneous error-function 

~~,p\Yn\P-2y~ is usually enormous and leads to a high steady-state fluctuation even if 

the equalizer converges successfully (refer to the steady-state jitter analysis of CMA(P,2) 

in [110]). However, it is possible to post-process this error-function to estimate some 

a posteriori dispersion error in such a way that useful information can be obtained on 

the actual error present in the equalization solution [111]. Clearly, if such an error can 

be estimated, then it should be possible to enhance the equalization so as to reduce the 

error. Let 

(3.2.3) 

be a generic weight-update where <I>(y, Y·) = 'l1(Yn, y~) - Yn is a memory-less nonlinear 

blind estimate of prediction error, and the nonlinearity 'l1(Yn, y~) be selected such that, 

upon convergence, equalizer restores the actual signal energy [17]. Let Sn = w:!+lxn 
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be the a posteriori output of the equalizer. Taking Hermitian transpose of (3.2.3) and 

post-multiplying with X n , we obtain 

(3.2.4) 

where ji = JLllxnll~. This shows that Sn is a linear combination of Yn and w(Yn, y~). 

Hence, the dispersion of Sn away from w(Yn, Y~) will be less than the dispersion of 

Yn away from w(Yn, y~), where 'ji E (0,1] controls the extent to which Sn approaches 

W(Yn, y~). Let 

cP = RP -Is IP 
~n,p n (3.2.5) 

be the pth-order a posteriori dispersion error. Now consider CMA(2,2) equalizer where 

we have W(Yn'Y~) = (e~,2 + 1)Yn. Exemplary, if we assume IYnl 2 = R2 - C,C > 0, then 

e~,2 = R2 - IYnl 2 = c and e~,2 = R2 -lsnl2 = [R2 - (1 + 'jie)2(R2 - e)] will be positive 

and less than c, provided 

Clearly, by considering a posteriori quantities it should be possible to enhance the quality 

of equalization. 

In the past, exploiting a posteriori quantities, deterministic and constrained cost­

functions have been proposed to obtain variants of normalized CMA for QPSK [104] and 

APSKjQAM signals [125]. In this work, we instead suggest to formulate a deterministic 

cost-function constituting both a priori and a posteriori quantities. For this purpose, we 

propose a (PI + P2)th-order composite dispersion error 

CC = RPl+P2 -Is IP1ly IP2 
~n,Pl ,P2 n n, (3.2.6) 

where PI and P2 are positive integers. Notice that the e~'Pl,p2 can be expressed in terms 

of e~'Pl and e~,p2 as follows: 

(3.2.7) 

which indicates that e~,pl,p2 is a sort of weighted composition of €~'Pl and e~,p2' Note 

that expressions (3.2.6) and (3.2.7) are identical. 
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3.2.2 The Cost-Function and its Relaxed Optimization 

After having the equalizer estimate W n , we aim to minimize an instantaneous determin-

istic cost: 

(3.2.8) 

It is obvious that the above cost (3.2.8) can perfectly be minimized while leaving Wn+1 

largely undetermined. To fix the degree of freedom in Wn+1, we can impose that wn+1 

remains as close as possible to its prior estimate W n , while satisfying the constraints 

imposed by the new data, Le., ~;'Pt,P2 = O. Using Lagrange multipliers, we formulate 

the following constrained optimization problem: 

(3.2.9) 

For a tractable derivation, we suggest to use PI = 2 and P2 = 2p - 2, it gives 

(3.2.10) 

Now, differentiating (3.2.10) with respect to Wn+1 and setting the result equal to zero, 

(3.2.11) 

Transposing (3.2.11) and post-multiplying it with Xn leads to 

(3.2.12) 

Solving (3.2.12) yields the optimum Lagrange multiplier, A[.], 

(3.2.13) 

and the update reads 

(3.2.14) 

At each n, the hard constraint in (3.2.9) enforces Sn = RPIYnl-PYn. Therefore the opti­

mum Lagrange multiplier in (3.2.13) becomes 

A - ~~,p 
[.] - Rp IYnI2p-2I1xnll~ (3.2.15) 

At this stage, using the approach of [125], we deviate a little and introduce a relaxation 

factor, 1], in (3.2.15) to control the degree of constraint satisfaction. It implies that the 
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constraint on Sn is now retained as a soft constraint. By introducing 7], we have a relaxed 

Lagrange multiplier, and the corresponding update equation reads 

ca * _ I"n,pSn Xn 
Wn+1 - Wn + ""---W;-lIxnll~ (3.2.16) 

Taking Hermitian transpose and post-multiplying (3.2.16) with Xn we obtain 

Yn RP 
Sn = RP _ ca ' (3.2.17) 

""I"n,p 

which leads to 
ca * _ I"n,pYn Xn 

Wn+1 - Wn + ""RP _ ca -II -112 (3.2.18) 
7]l"n,p Xn 2 

The computational complexity of algorithm (3.2.18) is little higher than that of CMA(p, 2). 

This complexity can be reduced by observing that, for.,., « 1, the denominator can be 

approximated as RP - 7] €~,p ~ RP. Also, by removing the normalization factor and 

denoting J-L = 7]/ RP, the following simplified variant is obtained: 

(3.2.19) 

We denote (3.2.19) as pth-order composite constant modulus algorithm, cCMA(P). The 

derivation of the dispersion constant in (3.2.19) will be discussed in Section 3.3. The 

difference between CMA(p, 2) and cCMA(P) is that, the later one lacks the factor IYnIP- 2 • 

Obviously, this factor has no effect on the direction of adaptation; removing it, may have 

an advantageous effect of reducing the magnitude of adaptation. The two algorithms are 

equivalent only for p = 2. Clearly, due to the removal of factor IYnIP- 2 , at each update, 

the cCMA(p) requires lesser real-valued multiplications by an amount of 1 + log2 ( ~) 

than CMA(P,2) for p = 2,4,6, .. '. 

3.3 Evaluation of Dispersion Constants 

The dispersion constants are considered as the statistical gain of equalizer which con­

tain embedded information about the true energy of the transmitted signal. Accord­

ing to Bellini [16], the (dispersion) constant, which controls the equalizer amplification, 

is chosen to give zero tap-gain increments when perfect equalization is achieved, i.e., 

E[<I>(Yn)* Xn-i] = O. We assume a converged equalizer such that Yn = an -<; + Un, where 

Un is convolutional noise and is assumed to be zero-mean Gaussian [51]. We get 

E [<I>(a,,-< + un)' (~ h.an-.-i + iln) ] = o. 
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We note that the expected values in the sum are zero whenever n - ~ i n - k - ij on the 

other hand, considering channel coefficients constant, we get 

If we assume that Un and {)n are highly correlated then 

(3.3.1) 

Exploiting (3.3.1) and considering <I>(z) = (RP-lzIP) z, we can obtain an expression 

for the dispersion constant of cCMA(p). Let the amplitude of Yn = an' + Un be Yn, 

and it is expressed as Yn = Rn + Un, where Rn = lanl and Un is the random amplitude 

component due to Un. Note that, the data and noise sequences are assumed to be 

independent and identically distributed (LLd.) with zero-means. 

For a zero-mean complex-valued (narrow-band) Gaussian noise with total variance 

2(7, the probability density function of the amplitude, Un, is known as the Rayleigh 

distribution and is given by [109] 

- (-2 ) 
Pu(-u) = :2 exp - 2:2 ' (3.3.2) 

Now consider the amplitude Rn is perturbed by a narrow-band Gaussian noise Un, the 

resulting pdf is referred to as Rice distribution and is expressed as [109]: 

_ ii (ii2 + R2) (iiR) 
py(y) = (72 exp - 2(72 10 (72 ' ii>O (3.3.3) 

where 100 is the modified Bessel function of first kind with zero order. Consider that 

the distortion free M-symbol QAM signal an comprises L number of unique moduli, 

such that, Ri E {Rl,' .. ,Rd and Mi denotes the number of unique symbols on the ith 

modulus Ri' As a result, the conditional amplitude pdf of QAM signal is expressed as 

- (-2 + R2) ( -~) py(yI~) = :2 exp - Y 2(72 i 10 Y(72' (3.3.4) 

Using (3.3.4) we can compute statistical moments of equalizer output Yn, like 

E llYn I'] ~ E [~] ~ E", [100 

i7' pyWIR;)dii 1 ~ ! ~ M;1°O if py(iilR;)dii. (3.3.5) 

For cCMA(l), we obtain 

= E [exp( -llaI2(7-2) {(2(72 + laI 2 )10(llaI2(7-2) + lal2 h (llaI2(7-2)} ] 
(3.3.6) 



Using the following property (for a E {0,1} and f3 > 0): 

we can show that 

y'xexp (~) 
lim () -. J27rf3 x-+O I f!. 

a x 

lim R -. E[\aI
2
] 

u-+O E[lal] 

Similarly, for cCMA(2), we obtain 

R2 = E [IYnI4
] = E[\aI4

] + 80-2E[laI2
] + 80-4 

E [\YnI 2] E[\aI2] + 20-2 

We can show that 
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(3.3.7) 

(3.3.8) 

(3.3.9) 

(3.3.10) 

We used MATLAB® for the evaluation of (3.3.6) and (3.3.9). Denoting ii, 0- and ~ 

with y, s and a, respectively, the following script was used to obtain (3.3.9): 

syms gsa; 
R2 =simple(int(yA5*exp(-(yA2+aA2)/2/sA2)*besseli(O,y*a/s-2),y,O,inf)/ ... 

int(yA3*exp(-(yA2+aA2)/2/sA2)*besseli(O,y*a/sA2),y,O,inf»; 

pretty(sort(R2» 
» 

4 2 2 4 
a + 8 a s + 8 s 

R2 = -------------------
2 2 

a + 2 s 

where Io(z) = besseli (0 ,z). 

In a noiseless environment, we can obtain a closed-form solution for dispersion con­

stants by exploiting Goupil and Palicot principle [55], which states that the dispersion 

constant R must be selected in such a way that the perfect equalizer is the minimum of 

the cost-function E[.J), mathematically, it says 

E [a.J(d' an) I ] = 0, 
ad (d=l) 

(3.3.11) 

where d is the overall system gain. 

Note that the cCMA(P) update can directly be obtained by minimizing stochastically 

the following cost-function: 

J = E [lYnIP+2
] _ RPE [lYnI2

] 

p+2 2 
(3.3.12) 



Replacing Yn with d· an in the cost (3.3.12) and solving (3.3.11), we obtain 

E [laIP+2] 
RP = E[laI2] • 

which is consistent with (3.3.8) and (3.3.10) for p = 1 and p = 2, respectively. 

3.4 Stochastic Stability of cCMA(p) 
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(3.3.13) 

Note that, for higher value of p, the cCMA(p) requires a smaller step-size for its stability. 

In a noise-free scenario, however, the cCMA(p) can be ensured to adapt stochastically 

stable if 0 < JJ < JJbound, where 

2E [(p + 2)lalP - 2RP] 1 

JJbound = E [((p+ 2)lalP _ 2RP)2] tr[R] 
(3.4.1) 

and R = E [Xnx~] is the autocorrelation matrix. Note that, based on a recent study 

[36], we deduce that both CMA(p,2) and cCMA(p) are fundamentally always unstable 

(for all values of p) when the noise is not bounded (as, e.g., Gaussian noise). 

3.4.1 Derivation of the Bound 

Let Wn+1 = Wn + JJ<P(y, y*)*xn be a generic weight-update. Subtracting the zero­

forcing solution W[*) from both sides, we obtain wn+1 = Wn - JJ<P(y, y*)*xn, where 

Wn = wH - W n • For an algorithm in CM family, a generic error-function can be 

expressed as <P(y, Y*)* = y* f(lyl) [11], where f(lyl) is a real function about IYI. With 

ea = Yn - an/eJo = (-I)w~xn being small enough, a first-order complex-valued Taylor 

series expansion of <P can be written as [54] 

if.. ( *)* '" <P( *)* + a<p(a, a*)* * a<P(a, a*)* 
'J:'Y,y '" a,a ea ay +ea ay* (3.4.2) 

Using second-order odd-symmetry property of QAM signal [79, Lemma 1], we can show 

that 
E [a<P(a,a*)*] = !E [1'(lal) ( *)2] _ 

ay 2 lal a - 0 (3.4.3) 

Exploiting (3.4.2)-(3.4.3), we get 

(3.4.4) 
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Taking the expected value of this expression, we can find a recursion for E [w n ]. By 

virtue of the Bussgang properly, we have E [<I> (a, a*)*xn] = 0 (refer to [17] for proof); 

this leads to 

(3.4.5) 

where we have assumed that the vectors Xn and Wn are independent of each other. The 

stability of recursion (3.4.5) requires 

(3.4.6) 

as a necessary condition. Denoting w = (-l)a<I>(a, a*)* jay*, we express (3.4.5) as 

follows: 

(3.4.7) 

where I is the identity matrix. Following the classical reasoning in least-mean-squares 

adaptive filtering, an estimation of the time constant can be obtained as T ~ (JL>'min E [wj)-l 

and the algorithm converges in the mean if the step-size is selected such that 0 < JL < 

(>'max E [w])-l, where >'min and >'max are respectively the minimum and maximum eigen­

values of the autocorrelation matrix R = E [Xn x {{] . 

Multiplying (3.4.4) by its conjugate transpose and taking the expected value, we 

obtain a recursion for the autocorrelation Y n ~ E [wn w{{] : 

Yn+l = Yn - JLE[w] (RYn + YnR) + JL2 E [X] R 

+ JL2 E [w2
] (RY nR + tr[RY n] R) 

(3.4.8) 

where tr[·] stands for the trace of the bracketed matrix and X = I <I> (a, a*W. The evalu­

ation of (3.4.8) assumes that the channel is long enough for the fourth-order moments of 

Xn to be well approximated by those of a Gaussian vector [46]. Now using the Fisher's 

diagonalizing theorem [46], we can transform (3.4.8) to a diagonalized-matrix difference 

equation 

nn+! = nn - 2JLE [w] Ann + JL2E [X] A 

+ JL2 E [w2
] (A2nn + tr[AS1n ] A) 

(3.4.9) 

where, by using orthogonal transformation U, we diagonalize Rand Y, such that, 

UH RU = A and UHyU = S1. Defining A = diag [A] = [>'1 ••. >'NV and Wn = 

diag Inn] = [Wn ,l ••• Wn,N]T and equating the diagonal elements of the matrix on the 
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left side of (3.4.9) with the corresponding diagonal elements of the matrix sum on the 

right side of this equality yields the vector difference equation 

(3.4.10) 

The convergence of Wn+l depends on the matrix F. It will converge if and only if the 

eigenvalues of F are all within the unit circle. Following the steps provided in [46] and 

ensuring eigenvalues lie within the unit circle, the range of step-size that guarantees 

stability of (3.4.10) is thus obtained as 

(3.4.11) 

The mean-square stochastic stability bound (3.4.11) generalizes the work in [99] in 

two aspects; firstly, we considered complex-valued quantities and (due to which) our 

result differs from the real-valued case in [99], and secondly, we presented the result for 

an arbitrary (constant modulus) Bussgang error-function. Also, comparing our result 

(3.4.11) with the bound evaluated in [40] for real-valued CMA(2,2), it is noticed that 

our evaluation procedure as well as the result (3.4.11) are noticeably much simple and 

meaningful. Moreover, the intermediate result (the time constant T) can be noticed to 

be in agreement with [15] and further generalization to complex-valued CMA(2,2). In 

our case, we have w = (P!2) lalP - RP, requiring V p :::: 1, 

E[lalp+2] (p + 2) 
(-I)E [w] = E[laI2] - -2- E [laIP

] < 0 (3.4.12) 

which is always true for QAM signals due to their sub-Gaussian nature; substituting the 

values of E [w] and E [w2], we can readily obtain (3.4.1). 

3.5 Convergence Analysis of cCMA(p) 

The convergence behavior of stop-and-go1 (selective) update CMA(2, 2) has been studied 

by Rupp and Sayed [112]. They showed that for transmitted signals with constant 

modulus R, the equalizer implementing CMA(2,2) is capable of making its outputs to 

lie within the circle of radius R..jC infinitely often, for some value of c that is slightly 

INotice that this stop-and-go principle is devised for the sake of convergence analysis in [112] 
and it has nothing to do with the conventional Bussgang-type stop-and-go adaptation strategy 
as appeared in [105] and [58]. 
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larger than one. Due to the similarity between CMA(p,2) and cCMA(p), we intend to 

carry out this analysis for cCMA(p) to gain some insight into its convergence behavior. 

At the end, we would be able to show that a larger value of p in cCMA(p) has an 

advantageous effect of forcing c to come close to unity. 

The corresponding active update steps of cCMA(p) have the form 

if IYnl ~ Ry'c 

then k = k + 1, 

ek = (RP - IYkIP) Yk, 

Wk+1 = Wk + /-Lkekxk. 

(3.5.1) 

Assume we run the above algorithm infinitely often (Le., n -+ 00), and let K. denote the 

maximum number of active updates that occurred in the process. We now prove that, 

by properly designing the step-size sequence, K. can be made finite, which in turn means 

that the condition IYnl < Ry'c will hold infinitely often. Let w[*] denote the weight 

vector of the optimal equalizer and let Zk = W~JXk = ak' is the optimal output so that 

IZkl = R. Define further the a priori and a posteriori estimation errors 

a -H ek = Zk - Yk = Wk Xk 

et = Zk - Sk = wf!+l Xk 

where Wk = W[*] - Wk· We introduce a complex-valued function j[z}, Z2]: 

Using j[".J and some algebraic manipulations, we obtain 

ek = (J[Zk' YkJ - RP) ek 

et = (1- ;: (J[Zk,YkJ - RP)) ek 

(3.5.2) 

(3.5.3) 

(3.5.4) 

(3.5.5) 

where Jik = l/lIxkll~ denotes the reciprocal of the input energy at the iteration k. We 

have pointed out that the a posteriori output Sn (or Sk) is closer to the blind estimate 

than a priori output Yn (or Yk), which requires that letl < lekl. To ensure it, we need to 

select the step-size sequence J-Lk so as to guarantee for all k 

(3.5.6) 
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for all possible combinations of Zk and Yk, the value of p and for some positive scalar d. 

Let I R[Zk, Yk] and /J[Zk, Yk] denote the real and imaginary parts of J[Zk' Yk], respectively; 

from (3.5.6) we obtain 

~~ (/J[Zk, Yk])2 + (1- '!:.k (fR[Zk, Yk] - RP)) 2 < 1 (3.5.7) 
~k ~k 

The values of ~k for which (3.5.7) can be ensured, we have the following theorem: 

Theorem 1 (Stop-and-Go cCMA(p)J: Assume Yk stays uniformly bounded from above 

for all k, say 

for some P ;::: JC > 1. Choose a positive number 130 in the interval 

36p2p - €2 m~/p 
----~4/,- < 130 < 1. 
36p2p + €2 mo p 

and compute an a o via 

(3.5.8) 

(3.5.9) 

6(1 - 13o)PP 
a o = 2/ (3.5.10) 

€ mo P 

Choose further the step-size ~k for the active update from within the interval 

2{1-/30) a o 
2/ < ~k < II 12 (3.5.11) 

IIxll~p€mo P RP x 12 (p + 1) PP RP 

It then holds that }(, < 00. That is, IYnl < Ry'C holds infinitely often. 

Prool: Let a and 13 be any two positive numbers satisfying 

We need to find a /-lk that satisfies 

and 

11 - ~: (fR[Zk,Yk]- RP)I < /3 

From [112], it is straightforward to prove that2 

IR[Zk,Yk];::: RP (1 +€m~/pr/2, 
Ih[Zk, Yk]1 < RP{1 + p)PP. 

(3.5.12) 

(3.5.13) 

(3.5.14) 

2Constants f and rna are related to c as given by c = rn;; P + fj where rna = min and '" 2/ (l+rp+l) 
rE(O,l) 1 + r 

O<f«1. 
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We can satisfy (3.5.13) and (3.5.14) by selecting ILk such that 

1 - /3 R-P a R-P 

Ilxll~ (1 +€ m~/pr/2 -1 < ILk < IIxll~ (p+ 1)PP-1 

Notice that for a < € « 1 and p ~ 1, we can write 

( 1 + € m 2/ P)P/2 ~ 1 + P.. € m 2/ p 
o 2 0 

Also notice that P ~ JC > 1 and p ~ 1 give 

1 1 
(p+ l)PP < (p+ 1)PP-1 

we found a simpler bound on ILk as given by 

2 (1- (3) a 
/ < ILk < 

Ilxll~P€m~ P RP Ilxll~ (p + 1) PP Rp 
(3.5.15) 

which gives 
1 - /3 P€ m~/p € m~/p 
--< <--

a 2(p + 1)PP 2PP 
(3.5.16) 

Let for some {ao , /30} we have 

1- /30 1 €m~/p €m~/p 
~=3' 2PP = 6PP (3.5.17) 

We obtain the value of ao as given by 

6(1 - /3o)PP 
a o = 2/ €mo P 

(3.5.18) 

Then, {ao, /30} satisfy (3.5.16). Substituting into (3.5.12), we see that /30 must be such 

that 

If we find a /30 that satisfies this inequality, then a pair of {ao , /30} satisfying (3.5.12) 

and (3.5.16) exists. So consider the following quadratic function 

g(/3) = (6(1- ~)pp)2 + (/3)2 -1. 
€m/

p 

It has a negative minimum and it crosses the real axis at the positive roots 



Hence, f30 can be chosen as any value in the interval 

36p2p - f.2m~/P 
----....::....,..../ < f30 < 1. 
36P2p + f.2m~ p 
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(3.5.19) 

For p = 2 and mo = 3/4, the above result (3.5.19) can be found consistent with [112, 

Equation (51)]. The bounds on J-Lk are thus justified. DOD 

Remarks: From Theorem 1, we can say that, for suitably chosen step-sizes, the stop­

and-go cCMA(P) produces a sequence of estimates Yk that lies inside the circle of radius 

R..jC with probability one. We notice that the choice of J-Lk is small and it becomes even 

smaller for large values of p. However at the same time, a larger p is beneficial in making 

c come close to unity. We have 

A [ • (1 + rP+l )] -: c= mm +e 
rE(D,I) 1 + r (3.5.20) 

Notice in Table 3.1, the corresponding values of c are decreasing monotonically and 

approaching unity with an increase in p. 

Table 3.1: Values of p and C 

P 1 2 3 4 5 6 
C-f. 1.4571 1.3333 1.2635 1.2185 1.1868 1.1634 

p 7 8 9 10 11 00 

C-f. 1.1452 1.1308 1.1190 1.1092 1.1009 1 

3.6 lSI Mitigation Capability of cCMA(p) 

In this section, we analyze the effect of parameter p on the lSI mitigation capability 

of cCMA(p). Let wl*j be the zero-forcing solution of the blind equalization problem, 

such that W[*] = argminw Ey[.J] subject to lI{w[*] ® h}ll~ = 1, where h = {h} is the 

channel impulse response. Let Wn be a stochastic approximation estimate based on the 

particular (finite) realization of data Yn at time index n, such that Wn = argmin.J for 
w 

which IItn II~ = II {w~ ® h} II~ =1= 1. The equalization quality in terms of residual lSI can 

be expressed as [24, Eq. (14)] 

Ell { w[*l ® h ® a - w~ ® h ® a} 112 
lSI ~ 2 

E II{h ® a}lI~ 
(3.6.1) 
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where {h ® a} is the received sequence. Defining Wn = W[*] - Wn as an error in the 

estimation of equalizer coefficients, we further obtain [24, Eq. (11)] 

lSI ~ Ellwnll~ = N· var{w) = tr[E [WnW~]] (3.6.2) 

Assuming Ilwll~ is small and using second-order Taylor expansion; the linearization of 

"VwoJ around w, gives 

"Vw':J == :~* Iw=wn ~ :~* IW=Wlol + (wn 
- W[*J) a;2:wT Iw=wn (3.6.3) 

'---' 
::::::0 

Equation (3.6.3) can concisely be written as: 

Therefore, the error covariance matrix E [wnw~] can be approximated as 

Under perfect signal recovery assumption, Yn = an, 

E ["V wkJ("V WjJ)*] = E[<I>(a, a*)* Xn-l x~_k <I> {a, a*)], 

_ { E [I<I>{a,a*W] . E [IXn_kI2
] , 

E [I<I>{ a, a* W] . E [Xn-l X~_k] , 

for k = I 

for k t= I 

Next we find 

E ["V~kWiJ] = E[<I>'{a,a*)Xn-1X~_k]' 

= { E [<I>'(a, a*)*]. E [lxn-kI2] , 

E [<I>'(a, a*)*]. E [Xn-l x~_k] , 

Combining Equations (3.6.2), (3.6.5)-{3.6.7), we obtain 

lSI ~ E [I<I>{a,a*W] tr[R-1] 

IE [<I>'{a, a*)*lI 2 

for k = 1 

for k t= 1 

(3.6.4) 

(3.6.6) 

(3.6.7) 

(3.6.8) 

where R = E [XnX~]. Using (3.6.8), we obtain the lSI expression for cCMA{p) as 

follows: 

(3.6.9) 
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Substituting the value RP = E[JaJP+2]/E[laJ2] in (3.6.9), we obtain 

E [JaJ2p+2] E [JaJ2] - E2 [JaJP+2] _ _ 
lSI = t r[R 1] = g(p) tr [R 1] 

(( 1 + ~) E [laJP] E [laJ2] - E [laJp+2]) 2 -
(3.6.10) 

The above asymptotic performance result is analogous to those in [39, 115, 117,23]. In 

Fig. 3.1, we depict the values of metric g(p) against p for some QAM/ APSK signals . Note 

that the metric g(p) has a consistent decreasing trend for larger values of parameter p. 

-6- 8- APSK 
-O-- 16- QAM 
--D- V.29 (16- APSK) 
-0- 32- QAM 

-4 
,........ 
CO 
:£ -6 
() 

.;:: 
...... 

- 8 Q) 

E 
Cf) -10 

-12 

-14 

-16 
1 2 3 4 5 6 7 8 9 10 

p 

Figure 3.1: lSI metric g(p) vs p for some QAM/ APSK signals. 

An interesting result may be obtained from (3 .6.10), if we consider a real-valued 

cCMA(p). For a real-valued case, we can show 

_ E [a2p+z] E [a2] - E2 [aP+2] 

g(p) - ((1 + p) E laP] E [a2]- E [aP+ 2])2 
(3 .6.11) 

Note that the factor (1 + ~) is replaced with (1 + p) and JaJ is replaced with a. Now 

consider a large (dense) PAM signal, where the P DF of a may be considered to be 

continuous and uniformly distribution. To illustrate an asymptotic performance for such 

PAM signal, we consider the particular case of the generalized Gaussian distribution. A 

random variable Z is said to obey the generalized Gaussian distribution with parameters 

a, f3 > 0 if its PDF is given by 

a (JzJO) ( 1 )-1 pz(z) = -exp - - r -
2{3 {30 a (3.6 .12) 
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where a and {3 are respectively (shape and size parameters, and r(a) = Jooo xa-1e-xdx 

is the Euler Gamma function. It can also be shown that 

E[lZIP]={3pr(P~I) r(~)-l (3.6.13) 

Exploiting (3.6.13), we obtain the following expression for g(p) in (3.6.11): 

r (~) r (2P : 3) _ r2 (P: 3) 
g(p) = ---~-~-..!....--~-~----=-

((1 + p)r (~) r (p ~ 1) _ r (~) r (p ~ 3) ) 2 
(3.6.14) 

For a » 1, the distribution of Z tends to be uniform as we require for the dense PAM 

signal under consideration. For a » p, we can use the approximation r (~) ~ ~; it 

leads to a simple expression 

g(p) = 
(i) (2Ph) - (Ph) 2 1 3 

( (a) ( a) (a) ) 2 = a2 
• 2p + 3 ex: p 

(l+p) 3" p+l -a· p+3 

1 
(3.6.15) 

which indicates that an increment in p may yield a reduced residual lSI floor for the given 

filter length. Such a result is important from both theoretical and practical viewpoints. 

More delicate analysis is required to include the effect of other equalizer perimeters and 

settings like step-size, initialization strategy, over-sampling, or the number of channel 

observations used in the evaluation of signal statistics, etc. Interestingly, in a very recent 

article [106], author has carried out a different but a detailed analysis, incorporated the 

step-size parameter and finally obtained a closed-form steady-state lSI expression for 

Bussgang-type adaptive blind equalization algorithms. 

3.7 Simulation Results 

3.7.1 Experiment 1: lSI Performances of CMA(p, 2) and cCMA(p) 

We evaluate lSI performances of CMA(p, 2) and cCMA(p) for various values of p. We 

use a complex-valued seven-tap equalizer and initialize it so that the center tap is set 

to one and other taps are set to zero. The propagation channel is a (short) voice-band 

seven-tap telephone channel and is taken from [105]. The signal to noise ratio (SNR) is 

taken as 30dB at the input of the equalizer. The residual intersymbol interference (lSI) 

[121] is measured for an 8-APSK signal and compared. The lSI is defined as 

_ 2:lltll2 
lSI - max ({ltd2}) - 1, (3.7.1) 
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where {tl} is the overall channel-equalizer impulse-response. Signal alphabets belong 

to the set {±1 ± ],12(1 + V3)(±1 ± ])}. Each lSI trace is the ensemble average of 

400 independent runs with random initialization of noise and data source. Figure 3.2 

depicts the converged constellations for various values of p in cCMA(p); note that the 

equalized symbols are more aggregated for larger p. Figure 3.3 depicts the residual lSI 

performances of CMA(p, 2) and cCMA(P) and also shows the values of step-sizes used in 

the simulations. Note that the performance gets better in terms of steady-state residual 

lSI when larger p is used in both cases. The CMA(p, 2) yielded stable performance for 

p = 1,2, .. , ,4 and it failed to give any stable convergence for p > 5. The convergence 

behavior of cCMA(P) is even more attractive in the sense that it provided a smooth 

tradeoff between the complexity and performance; we can go up to P = 9 in this specific 

experiment. 

Channel observation p = J 3 .... ... .... ... ~ . ... ; ... ...... : 3 .... ...... .. ....... .. ........ . p=2 3 ...... .... .. ..... .. .. ........ . . . . . 

~~ E . - ~ ~ : .~ 
o .... ..... ;&: .~.~ .. ~~ .... : 

"., : ... ~ . . , : 

- 3 
- 3 o Re[ y.l 3 

-3 
-3 o 

-3~------
RelYn] 3 - 3 o 

Figure 3.2: Scatter plots for cCMA(p) 

3.7.2 Exp eriment 2: Validating t he Stability Bound for cCMA(p) 

In this experiment, we validate the upper-bound (3 .4.1) for p = 1 and 2. In addition to 

the channel we used in Fig. 3.3, we also consider the first thirty odd-index d coefficients 

of a (long) microwave terrestrial channel (chan2. mat) taken from SPIB database [1]. 

In all cases, the simulations were performed with 5000 iterations, Nrun = 400 runs, 
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and no noise. In Fig. 3.4-3.5, we plot the probabilities of divergence Pdiv for four 

different equalizer lengths, against the normalized step-size, J.Lnorm = J.LI J.Lbound· The Pdiv 

is estimated as Pdiv = NdivlNrun, where Ndiv indicates the number of times equalizer 

diverged. In our simulations, we label a given run of the algorithm as "diverging" if Yn 

overflows. Equalizers were initialized as zero-forcing solution and step-sizes were varied 

in the range 0.5J.Lbound < J.L < 2.0J.Lbound. It can be seen that the approximate bound does 

guarantee a stable performance when J.L < J.Lbound, equalizer and channel are long enough, 

and p is small. 

3.8 Summary 

A new constant modulus algorithm, cCMA(P) , has been presented for blind equaliza­

tion of complex-valued communication channels. The proposed algorithm was obtained 

by solving a novel deterministic constrained optimization criterion, based on the joint 

minimization of so-called a priori as well as a posteriori dispersion errors, leading to 

an update equation having a particular zero-memory continuous nonlinearity. We also 

derived a simple expression for the range of step-sizes for which a generic complex-valued 

constant-modulus algorithm remains stable. We studied the effect of free parameter p 

on the steady-state performances of cCMA(P). We validated our theoretical model with 

several simulations, for long and short filters and channels. 
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(Long) Microwave Channel: chan2(l:2:60), 8-APSK, p = 1. 
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(Long) Microwave Channel: chan2(l:2:60), 8-APSK, p = 2 
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Figure 3.4: Probability of divergence as a function of the step-size for 8-APSK and 
p = 1, 2 on long microwave terrestrial channel. 
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(Short) Voiceband Telephone Channel: 8-APSK, p = 1 
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Figure 3.5: Probability of divergence as a function of the step-size for 8-APSK and 
p == 1,2 on short voice-band telephonic channel. 



Chapter 4 

Dispersion Minimization: 
Adaptive Multimodulus 
Algorithms 

4.1 Introduction 

Having presented the background on the dispersion minimization based multimodulus 

algorithms (MMA) in Chapter 2, we are now ready to go into details. We start our study 

in MMA by generalizing the Wesolowski dispersion minimization criterion (2.2.14) and 

add a second free parameter into it to gain two degrees of freedom (Section 4.2). By 

virtue of this generalization, we prove the existence of affinity among several blind equal­

ization algorithms [19, 136, 102, 140, 135, 65], which, in the past, have been mistakenly 

considered to be fundamentally different from each other. We also show that, by select­

ing appropriate values of free parameters, it is possible to obtain faster and yet simpler 

adaptive blind equalization algorithms. This is our first proposed family of algorithms, 

which we term as MMA(p, q). The MMA(p, q) has a similar sort of error-function as that 

of CMA(p, q). It is important to note that, unlike CMA(p, q), the proposed MMA(p, q) 

has not been realized and studied in the past. 

Moreover, we obtain a second family of MMA which exhibits a very similar form as 

that of cCMA(P). To appreciate this similarity, we term the second family of algorithms 

as cMMA(P). However, unlike cCMA(P), cMMA(p) is obtained by solving a very different 

optimization problem. In essence, cMMA(P) is obtained by modifying an existing convex 

cost-function which was suggested by Kennedy and Ding [69] for square-QAM signals. 

We demonstrate that cMMA(p) is not only capable of achieving successful equalization 

44 
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but is also capable of recovering carrier-phase and restoring true signal energy without 

needing extra mechanisms or hardware, which are conventionally required by the original 

Kennedy-Ding algorithm [69]. We explore that cMMA(p) can provide a consistent trade­

off between lSI mitigation and computational complexity. We also highlight the existence 

of a close affinity among cMMA(p) and some existing blind equalization algorithms 

[95,8,6]. 

In this Chapter, we provide detailed evaluation of dispersion constants for MMA(p, q) 

and cMMA(p) (Section 4.4). We analytically explore their carrier-phase recovery capa­

bilities (Section 4.2.1 and 4.3.1). And most importantly, we provide dynamic convergence 

analysis to evaluate the MSEjISI convergence behavior of the existing as well as proposed 

MMA equalizers (Section 4.5). A number of Monte-Carlo experiments are provided on 

several square-QAM signals to validate our analytical findings (Section 4.6). 

4.2 The First Proposed Family of Algorithms: MMA(p, q) 

Here we present the first of the two proposed families of MMA. For this particular 

case, we gained motivation from different generalization of Bussgang blind equalization 

algorithms existing in literature. For example, a) generalization of Sato's [114] cost­

function for real-valued signals by Serra and Esteves [118], b) generalization of Godard's 

constant modulus criterion [53] with two degrees of freedom by Larimore and Treichler 

[73] and, more recently, work on non-circular generalized modulus cost-functions by Li 

and Zhang [76] and Goupil and Palicot [55] have been a driving force for this present 

idea. 

We propose the following generalized dispersion minimization based (split) cost-

function: 

(4.2.1) 

where p and q are free (positive) parameters. Cost (4.2.1) can be considered as the 

generalization of Wesolowski's cost-function [136] with two degrees of freedom or the 

split version of Larimore and Treichler constant modulus cost-function [73]. Note that 

none of the existing generalizations [73, 76, 55] can be represented in the split form as 

expressed in (4.2.1). The corresponding stochastic gradient-based adaptive algorithm for 



the cost-function (4.2.1) is given by 

Wn+1 = Wn + P [11~,nl- R~lq-2IY~~:1 (R~ -Iy~,nl) YR,n 

- J Ily~,nl- R~lq-2Iyj~21 (Rj -Iyj,nl) YI,n] Xn 
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(4.2.2) 

where RR and RI are chosen in accordance with Bussgang-condition using the statistics 

of transmitted data (and noise). Clearly, a multitude of algorithms can be obtained 

for different choices of p and q, providing a possible flexibility in the design of blind 

equalizers. In the sequel, we will refer to (4.2.2) as MMA(p,q). Now we show that how 

(4.2.2) generalizes a number of existing adaptive blind equalization algorithms. 

1. For p = 1, q = 2, the cost (4.2.1) reduces to an equivalent form of Benveniste­

Goursat cost-function (1984) [19]. We denote the resulting algorithm as MMA(I,2), 

viz 

( 4.2.3) 

2. For p = q = 1, the cost (4.2.1) reduces to an equivalent form of the cost-function 

independently proposed by Weerackody et al. (1991) [135] and 1m et al. (2001) [65]. 

We denote the resulting algorithm as MMA(1,1), viz 

Wn+1 = Wn + p[sgn [RRsgn [YR,n]- YR,n] - Jsgn [R1sgn [YI,n] - YI,n]] Xn (4.2.4) 

3. For p = q = 2, the cost simplifies to the cost-function independently proposed by 

Wesolowski (1987) [136], Chin and Oh (1995) [102], and Yang (1997) [138]. We 

denote the resulting algorithm as MMA(2,2), viz 

(4.2.5) 

In fact, by considering relevant values of p and q, some new blind equalization algorithms 

can be obtained. An interesting choice is (p = 2, q = 1), and the resulting MMA(2, 1) 

update is given by 

Wn+l = Wn + P [sgn [Rk - Yk,n] YR,n - Jsgn [RJ - Yl,n] YI,n] Xn, 

= Wn + P [sgn [RR - IYR,nll YR,n - J sgn [RI - IYI,nll YI,n] Xn. 

( 4.2.6a) 

(4.2.6b) 
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Similarly, for (p = 3, q = 1), we obtain MMA(3, 1), 

Wn+1 = Wn + J.L [sgn [R~ -Iy~,ni] I YR,n I YR,n - J sgn [R~ - Iy~,n l] IYI,nl YI,n] x n, 

(4.2.7a) 

= Wn + J.L [sgn [RR -IYR,ni] IYR,nl YR,n - J sgn [RJ -IYI,nl] IYJ,nl YJ ,n] Xn' 

(4.2.7b) 

The expressions (4.2.6b) and (4.2. 7b) are respectively simplified versions of (4.2.6a) and 

(4.2.7a). 

-R 
L 

"-
I ... 

-MMA(1,1) 
- - - MMA(1,2) 
·_·_ ·MMA(2,2) 
- MMA(2,1) 
---MMA(3,1) 

'. 

Figure 4.1 : Plots of MMA(p, q) error-functions. 

Note that the cost (4.2.1) or the updates (4 .2.6)-(4.2.7) are not known to have been 

realized in the past. A possible reason is that, in the past, the existing algorithms (4.2.3) 

and (4.2.5) have been mistakenly believed to be different from each other. For example, 

Yang [138] described that the algorithms (4.2.3) and (4.2.5) minimize the dispersion 

in equalized sequence away from four points and four lines, respectively. Later, this 

description propagated to many subsequent important publications [141, 49, 140]. It is 

just recently that Thaiupathump [126] proved thi description was wrong and established 

that the cost-functions of both algorithms exhibit four-point zero-error contour. In 

Figure 4.1, we depict the error-function ¢(YL) = IIY~I - R~lq-2IYr21(Ri - IYLIP)YL of 

MMA(p, q) for an arbitrary square-QAM. Note that all of these error-functions satisfy 

the properties as discussed in Section 2.1.2. 
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4.2 .1 MMA(p, q) : Phase Recovery Capability 

In Fig. 4.2, we depict the mesh plots of MMA(p, q) cost-surfaces for four exemplary 

members. It is clear that MMA(p, q) cost-surface exhibits consecutive four minima (or 

maxima) 7f /2 radians apart. In fact, it is an important feature which enables these costs 

to fix the phase-offset introduced by the channel with an ambiguity of ±90° or its integer 

multiples. Suppose () is a residual phase-offset error (in the absence of noise and lSI), it 

gives Yn = an' exp(JI'1). Due to four-quadrant symmetry of square-QAM, it is desirable 

that the cost JI exhibits local minima at 0 = 0, 7f /2, 7r and 37r /2; similarly, local maxima 

are required to occur at () = 7f / 4, 37r / 4, 57f /4, and 77r /4. 

p=1,q=2 p=2, q=2 
.. ,:, 

p=l, q=l p=2, q=l 

Figure 4.2: Mesh plots of MMA(p, q) cost-function for four exemplary cases. 

Consider MMA(2, 2), we can show that [82] 

JI (0) = ~ E [ak + aj - 6akaJ] cos( 40) + ~ons~ant~ (4.2.8) 
w.r.t . (} 
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Note that E [ak + aj - 6aha~] is always negative for QAM signals (due to its sub­

Gaussian nature); consequently, the cost (4.2.8) exhibits desired stationary points. Since 

similar results as that in (4.2.8) is difficult to be obtained when p = 1 or q = 1, we pro­

vide the phase-sensitivity of other members of JI , obtained by simulation, as depicted in 

Fig. 4.3. 
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4.3 The Second Proposed Family of Algorithms: cMMA(p) 

The cost-function based Bussgang blind equalization algorithms have been studied to be 

non-convex in nature when implemented using finite-length adaptive filters and found 

to be converging to undesirable local minima resulting in insufficient removal of channel 

distortion [132, 77]. A convex cost-function which has been specifically designed for 

QAM is that of Kennedy and Ding [69], which suggested to minimize the following: 

(4.3.1) 

Since (4.3.1) cannot be exactly evaluated in practice with finite data length, the following 

approximation was used: 

rr:},n {E [IYR,nI P+
2

] + E [IYI,nI P
+

2
]} , 

s.t. R[wn,i] + ~[wn,i] = 1, (for large p) 

(4.3.2a) 

(4.3.2b) 

where W ~ is the ith tap anchored in a specific way to avoid all-zero situation. Nota-
n,' 

tions R[·] and ~[.] indicate the real and imaginary parts of the enclosed complex entity, 

respectively. Expression (4.3.2a) is based on the fact that, given a large pi, the global 

minimum of the Ipl norm will be close to the global minima of the 100 norm. Using a 

polar representation, Kennedy and Ding [69] suggested to adapt wn,i as follows: 

/-tl (IYR,nIPYR,nCR -IYI,nIPYI,nCf) 
'Wn+1 = 'Wn - - 2 

7Jn (cos 'Wn+1 + sin 'Wn+d 
(4.3.3a) 

exp (JWn+l) 
W - - ---=-.:::.-~...:;..:.--

n+I,i - cos 'Wn+1 + sin 'Wn+1 ' 
(4.3.3b) 

where (-1[/4 < 'Wn < 31[/4), CR = ~[xn_i] - R[xn_il and CI = ~[xn-il + R[xn_il. For 

0:::; (i =f i) :::; N - 1, viz 

(4.3.4) 

where /-t1, /-t2 > 0 and 7Jn = max{IYnIP+1} was updated after every 100 iterations. We 

refer to (4.3.3)-(4.3.4) as Kennedy-Ding algorithm (KDA). Note that the KDA required 

a separate automatic-gain control (AGe) mechanism to restore the signal's true energy. 

Based on a number of experiments for 4/16-QAM on various channels, we found that the 

performance of KDA is largely improved if higher p is selected. However, for higher-order 

QAM (2: 64-QAM), the convergence was either not achieved or only achieved by allowing 
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a very small step-size. In this work we aim to modify the constraint (4.3.2b). According 

to [121], if Pa is the true signal energy, then we can use the constraint E [lYn 12] = Pa to 

restore the true energy. This consideration leads to the following optimization problem: 

(4.3.5) 

where -X is the Lagrangian multiplier. The stochastic gradient descent minimization gives 

the second family of algorithms, cMMA(p), as follows: 

( 4.3.6) 

where R~ = -2-X/{p + 2) is a constant. Note that cMMA(P) would not require separate 

tap-anchoring and AGe (for true energy conservation), provided the constant R~ (or 

equivalently -X) is properly evaluated. We would discuss this evaluation in detail sepa­

rately in Section 4.4. Note that cMMA(P) generalizes a number of existing algorithms. 

Like, for p = 1, cMMA{l) is equivalent to the algorithm proposed by Abrar et al. [8]. 

For p = 2, cMMA(2) becomes equivalent to MMA(2,2). Moreover, cMMA{p) can be 

considered as a simplified version of the algorithms proposed by Satorius and Mulligan 

[116] and Abrar and Shah [6].1 

4.3.1 cMMA(p): Phase Recovery Capability 

Note that the cost E[lYR,nlp+2] + ElIY[,nIP+2] is sensitive to phase-offset 'tip ;::: 2; however, 

this sensitivity can be expressed analytically only for even values of p. For p = 2, we 

lIn the year 1993, Satorius and Mulligan [116] made use of uniformly most powerful statistical tests 
and came up with a phase-sensitive scale-invariant cost-function for square-QAM. The details of the 
resulting adaptive algorithm, which they termed as Rectangular-Constellation-based Blind Equalization 
(RECBEQ), appeared six years later in a NASA technical report [95], viz 

Wn+1 = Wn + JL.B [Ry~ - (IYR,nIPYR,n - JIYI,nIPYI,n)J Xn (4.3.7a) 

h R _ E~=n-B+l {IYR,kl
p+2 + IY],klp

+
2

} 
were - ~n { 2 2}' (4.3.7b) 

L.,.,k=n-B+1 YR,k + Y/,k 

where q = (p + 2)/(p + 3). The algorithm RECBEQ is not known to have appeared in open literature. 
In the year 2006, Abrar and Shah [6J presented the following family of algorithms by optimizing a 
constrained cost-function which made use of both a priori and a posteriori equalizer coefficient vectors: 

+ [ 
YR,n (R'k -IYR,nIP) YI,n (R~ -IYI,nIP

) ] Xn 
Wn+l=Wn JL P (P I I -) --, RR - JL RR - YR,n p) R~ - J.L (R~ -IYI,nlp) IIxnll~ 

(4.3.8) 
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obtain a same expression as given in (4.2.8). For p = 4, we get 

In(O) = ~E [a~ + a~ - 5(a~a1 + ata~)] cos(40) + ~ (4.3.9) 

w.r.t. ° 
The quantity E [a~ + a~ - 5(a~a1 + aka7)] is negative for all square-QAM, like, it yields 

-3, -495 and -36063 for 4-, 16- and 64-QAM, respectively, ensuring that cMMA(4) 

exhibits desirable stationary points. Similar evidences for higher even values of p can 

easily be obtained. 

Next we investigate the phase recovery capability for a generic p. Assume a QAM 

signal an contains four alphabets a(1) = OR + )0[, a(2) = -OR + )0[, a(3) = OR - )O[ 

and a( 4) = -OR - )0[, where OR, O[ > O. We consider OR and o[ are not fixed-valued. 

The cost IR[an]lp+2 + p[an]IP+2 maps these four points to the same point as (OR,OI)' 

The expectation E[lR[anJIP+2 + 1~[anJIP+2] can be written as ~o,p == 2:t=l (IR[anJIP+2 + 
p[an]IP+2])P[an = a(i)] to yield 

(4.3.10) 

Now assume that the equalizer output is subjected to a phase-offset 0, such that, 

Yn = anleJo. For the moment, we restrict 0 to be in a range such that both an' and Yn 

lie in the same quadrant. If ¢ = arctan(oJ/OR), then this restriction corresponds to 

- min[¢, 7r /2 - ¢] ~ 0 ~ min[¢, 7r /2 - ¢l (4.3.11) 

We further define 

4 

~o,P == L(IR[YnlIP+2 + 1~[YnlIP+21)P[Yn = a(i)eJ°] (4.3.12) 
i=l 

to describes the effect of phase-offset on the cost (4.3.5), it leads to 

~ =!(o~ + onp
/
2
+l 

o,p 2 (4.3.13) 
. [I cos(O + ¢)IP+2 + I cosCO - ¢)IP+2 + I sinCO + ¢)IP+2 + I sin(O - ¢W+21 

since P[Yn = a( i)eJO] = 1, Vi. For 0 =1= 0, ~o,p is expected to be greater than ~o,p. 

However, it is observed that Eo,p may become smaller than Eo,p for some values of 0, 

especially around the axes. This behavior is illustrated in Fig. 4.4, where we depict the 

signal space in its first quadrant. Observe that it is the middle region (specified with 
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Figure 4.4: The restriction on e (left) and the behavior of ~o,p and ~o,p (right) in the 

first quadrant . 

angle <P2, 'rip ~ 1, in the first quadrant), where the value of ~o,p is higher than ~O'P ' We 

also observe two lines at which LO ,p = Lo,p. 

In Fig. 4.5, at the line closer to x-axis, we have <P = <PI = e, whereas at the line 

closer to y-axis, we have <P = <PI + <P2 = 7r /2 - e. Equating (4.3.10) and (4.3 .13) together 

and solving for the lower line with substitution <P = <PI = e, we get 

1 IP+2 + 1 IP+2 
1 cos(2<Pdlp+

2 + 1 sin(2<PI)l
p
+

2 + 1 = 2 ~~ 2)t~2)/2 
O'.R + a] P 

(4.3.14) 

Letting e = p + 2, we take the eth root on both sides of (4.3.14). Under the limit 

e = p + 2 -t 00, we obtain for (4.3 .14), 

L.R.S. = lim (I cos (2<pd Ie + 1 sin(2<pI)le + 1)I/e -t 1 
e--+oo 

(4.3 .15) 

and 

(4.3 .16) 

Due to considering the lower line, the equation max{ O'.R, a] } -t J O'.h + 0'.1 has a unique 

solution a] -t 0; which implies <PI = arctan ( a] /O'.R) -t 0 and <P2 = 7r /2 - 2<Pl -t 7r /2. It 

is an important result which describes that, due to the expansion of the middle region, 

phase recovery capability improves with an increment in p. 
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4.4 Evaluation of Dispersion Constants 

4.4. 1 D erivation of RL for MMA(p, 1) 
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We need to solve the following to obtain the value of RL for MMA(p, 1) in the presence 

of convolutional noise, 

(4.4 .1) 

We first consider MMA(l, 1); denoting 

Iv = (av)2;)-l exp(-v2/(2a~)), (4.4.2) 

we evaluate 

= E [_ j-RL-aL + j-aL _ j RL-aL + [ 00 aLfvdV] 
- 00 -RL-aL -aL J RL-aL 

( 4.4.3) 

and find the following to solve for RL in MMA(l, 1): 

(4.4.4) 

where Q(z) = (1/,;2;) Jzoo exp (-O .5t2) dt. Next we consider the case p = 2 and obtain 

the following expression to solve for RL in MMA(2, 1) : 

( 4.4.5) 
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Finally, we consider the case p = 3, and obtain the following expression to solve for RL 

in MMA(3, 1): 

(4.4.6) 

(4.4.7a) 

(4.4. 7b) 

(4.4.7c) 

In a noiseless environment, we can obtain a closed-form solution for RL by exploiting 

Goupil-Palicot principle [55]. Considering the case of one of the quadrature components, 

aL, we evaluate for MMA(p, 1): 

2 vfK7/2 I RP I JI = - " (2j - l)P dP _ L ../M f=r (2j - 1)p 

The gradient of (4.4.8) with respect to d can be computed as 

aJI = 2pdP- L (2j -1)P - L(2j -1)P 
1 [vfK7/2 % ] 

ad ../M j=%+1 j=1 

where z is a positive integer, which satisfies [65]: 

RL d RL ----< <--
2(z+1)-1 2z-1 

(4.4.8) 

(4.4.9) 

(4.4.10) 

According to [55], the coefficient d should converge to 1 in order to recover the true 

energy of the signal. Substituting (d = 1) in (4.4.10) we get 2z - 1 < RL < 2z + 1. 

Thanks to 1m et al. [65], (4.4.10) can be solved by using the relation r z 1 ~ z + 1; where 

r z 1 is the smallest positive integer greater than or equal to z, it gives 

RL = 2rzl-1, (4.4.11) 

where the value of z is obtained by solving aJI/ ad = 0, viz 

v'M/2 % 

L (2j - l)P - L(2j - l)P = 0 (4.4.12) 
j=%+1 j=1 
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For p = 1, we can readily get z = JM/8. It gives RL = 3,5 and 11 for 16-, 64- and 256-

QAM, respectively. Similarly, for p = 2, we get to solve ((M -1)/2)+((2z-8z3 )/VM) = 

0; solution of which is obtained as z = (zI/12) + (l/z l ), where for Z2 = 0.5VM(M -1), 

Zl is given as Zl = {j108z2 + 12J81z~ - 12. It gives RL = 3,7 and 13 for 16-, 64- and 

256-QAM, respectively. Also, for p = 3, we solve 32z4 
- 16z2 + 2M - M2 = 0 and get 

Z = 0.25)4+ 2J2M2 - 4M + 4. It gives same values for RL as we obtained for p = 2. 

4.4.2 Derivation of RL for MMA(p,2) 

Here we discuss the evaluation of RL for MMA(p,2), we need to solve 

(4.4.13) 

to obtain the value of RL in the presence of convolutional noise. Consider p = 1, we 

readily get RL = 0.5E [alJ IE [aLQ (-aLI lTv) J, which exploits the fact that E taL v] = 

E [v] = E [aLl = O. Now consider a high output-SNR case, i.e., lTv -+ 0, it implies 

E [aLQ (-aLIlTv)] will approach 1 and 0 for (aL > 0) and (aL < 0), respectively. Since 

E[laLI] = 2E[aL](aL>O) = 2E[-aL](aL<O), it yields RL = E[ai]/E[laLI], which is a well­

known result [19] and we obtained it in a limiting case (of vanishing convolutional noise). 

For p = 2, we obtain an even simpler result, RL = y'E[ai]/E[aiJ + 3lT~. Under the 

limiting case, it simplifies to the value that appeared in [137]. Finally, exploiting Goupil­

Palicot principle, we obtain the value of RL (for a generic p) in a noise free environment, 

viz 

(4.4.14) 

From (4.4.14), with p = 1, we obtain RL = 2.5,5.25 and 10.63 for 16-, 64- and 256-QAM, 

respectively. Similarly, with P = 2, we obtain RL = 2.86,6.08 and 12.34 for 16-, 64- and 

256-QAM, respectively. 

4.4.3 Derivation of RL for cMMA(p) 

Here we discuss the evaluation of RL for cMMA(p), we need to solve 

( 4.4.15) 
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to obtain the value of RL in the presence of convolutional noise. Consider p = 1, we 

have E[adaL + v)(laL + vl- RL)] = 0, which readily gives the solution for cMMA{I): 

[ 
2 2) (a L

) f2 2 (a1 )] E 2aL(aL + av Q -;;;; + V -:;,aLav exp -~ 

RL = E [al] (4.4.16) 

Under the limit av tends to zero, (4.4.16) simplifies to the value that appeared in [8]. 

Finally, exploiting Goupil-Palicot principle, we obtain the value of RL (for a generic p) 

in a noise free environment, viz 

p _ E[laLIP+2] 
RL - E[a1J (4.4.17) 

From (4.4.17), for p = 1, we obtain RL = 2.8,5.9 and 11.95 for 16-, 64- and 256-QAM, 

respectively. For p = 2, we obtain similar values of RL as we obtained in MMA(2,2). 

Also, for p = 3, we obtain RL = 2.9,6.22 and 12.63 for 16-, 64- and 256-QAM, respec­

tively. Now we determine the value of oX in (4.3.5), in a noise-free scenario, we obtain 

oX = -0.5(p + 2) E [laL IP+2]!E [al], where the negative sign indicates that we need to 

maximize the equalizer output energy while minimizing the higher-order moments. 

In order to compare the expressions we obtained for RL, we define the following 

quantity: 

R 
. RL(noisy) 

attoR = -...::..:~.-.:....:-­
RL (nmse free) 

(4.4.18) 

For noisy scenario, we consider solutions of (4.4.1), (4.4.13) and (4.4.15) for MMA(p, 1), 

MMA(P,2) and cMMA{p), respectively. For noise-free scenario, we consider expressions 

(4.4.11), (4.4.14) and (4.4.17) for MMA(P,I), MMA(p,2) and cMMA(p), respectively. 

In Fig. 4.6, we show the values of RatioR versus output-SNR. Note that the RatioR 

deviates from unity significantly at low output-SNR which indicates that a minimum 

mean-fluctuation in equalizer coefficients can only be ensured by using the values of RL 

computed with the consideration of convolutional noise. Finally, we emphasize that, at 

high output-SNR, the values of RL obtained for noisy scenario coincide perfectly with 

those for noise free scenario (i.e., RatioR --+ 1 when av --+ 0). 

4.5 Dynamic Convergence Analysis 

Due to the nonlinear nature of MMA(p, q) or cMMA(p), especially for odd values of p 

and q, it is quite difficult to study their general formulation, stationary points, desired 
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Figure 4.6: Plots of RatioR as a function of output SNR: (a) 16- and (b) 64-QAM. 

global minima and unstable equilibria. The literature provides such a study only for 

one tractable case, that is MMA(2, 2), [137, 143, 75]. So we prefer to carry out ordinary 

difference equation analysis to gain some understanding in the dynamic convergence 

behavior. Although, thi analysis leads to complicated recursions, it is fully capable of 

handling nonlinear and discontinuous error-functions. For the sake of conciseness, we are 

providing only the final expressions which are necessary for the evaluation of performance 

measures. In the sequel, we use the notation [B]ij to denote the element of matrix B in 

its ith row and jth column, and [b]i to denote the ith element of array b. Also we define 



R as the channel matrix having full-rank (N + K - 1): 

H= 

o 0 ho 

o 
o 
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(4.5.1) 

The covariance matrix of regressor is R = E [Xnx~] = PaRRH + P{)IN, where Pa 

and Pf) are respectively the average energies of the signal an and additive noise '!9 n ; IN 

is identity matrix of order N. Exploiting eigen-decomposition, we obtain R = U H AU, 

where A is a diagonal matrix whose diagonal elements are the eigenvalues of R, and 

U is an orthonormal matrix. Using U, the transformed update is given as Wn+l = 

Wn + p~(Yn)·Xnl where wn == UWn, xn == UXn and Yn = wt;xn' The correlation 

matrix C w of wn is 

it=j 

i=j 
( 4.5.2) 

where mn == E [wn] = [mn,O,'" I mn,N-l], r n,i == E [IWn,iI2
] I (i = 0,··· ,N - 1) and 

r n = [r n,Ol'" I r n,N-l]' The first- and second-order moments of wn give 

mn+1,i = mn,i + pE [~(Yn)"'Xn-i] I (4.5.3a) 

r n+1,i = r n,i + p2E [I<I>(Yn)12Ixn_iI2] 

+ 2pE [~ [W~,i<I>(Yn)·Xn-i]] . (4.5.3b) 

To evaluate (4.5.3a)-(4.5.3b), we obtain the conditional mean and covariance expressions 

for Yn and xn [48]: 

Pyia,w == E [Ynlanl wn] = anwt; TI = PR + JPI 

O'~ia,w == var (Ynlanl wn) = pTr n - PaTlH C w"" = 20'L 

ILxia,w == E [xnlanl w n] = anTI 

( 4.5.4a) 

(4.5.4b) 

(4.5.4c) 

(4.5.4d) 

where p = diag [A] and"., = Uh. Using (4.5.3a)-(4.5.3b), the instantaneous mean 

square error (MSE) is given by [134]: 

MSEn = E [iYnl2lanl w n] + E[lan I2]- 2~ [E[Yna~lanl w n]] 

= pTrn + Pa - 2Pa~ [m;;TI] ( 4.5.5) 
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Below we present an approximate expression for the instantaneous residual lSI (deduced 

from [134, page: 858-9]): 

var (Ynlan, w n) - E [I ~i 'I9n-iW~,iI2Iwn] 
ISIn ~ E[lan I2] 

pTfn - Pa7]H Cw7] - P19 1Tfn 
~ Palm!t7]12 

(4.5.6) 

where 1 is an N-element column-vector of ones. Making use of (4.5.4) and defining 

pn = m;; 7], we list the three expectation quantities which appear in (4.5.3a)-( 4.5.3b) as 

follows [74]: 

E [w;xn-i<I>(Yn)*] = m~,il7iE [an9o] + (E [9Il - Pn E [an90]) 

. [ [Cxla] ii r n,i + m~,i L [Cxla] ik mn'k] 0";2 
kfi 

E [IXn _iI21<I>(Yn)12] = [Cxla]ii E [92] + Il7il2E [lanI292] 

R [17; [CxlamnL(E[a~93]- Pn E [lanI292])] 
+2 2 

(4.5.7) 

( 4.5.8) 

O"y 
( 4.5.9) 

+ (E [94]- 23l [p~E [a~93]] + IPnl 2E [lanI292] - O"~E [92]) 

. [[ICxlal2Lrn,i + L [CxlaLk [Cila] .. mn'km~,j]u;4 
kfj lJ 

Next denoting H21 = E [¢(YL,n)], HP = E [YL,n¢(YL,n)], H22 = E [¢2(YL,n)]' HP = 

E [YL,n¢2(YL,n)] , H12 = E [YL,n¢2(YL,n)] , 9i'S are given by 90 = H~l + JHJ1, 91 = 
Hk1 + Hj1 + J(I-lIH~l - I-l RHJ1), 92 = H~2 + HJ2, 93 = Hk2 + I-lRHJ2 + J(HP + J-lIH~2), 
and 94 = HJl + HP + (uh + I-lh)HJ2 + (0"7 + 1-l~)H~2. Depending on the type of error­

function, HZ is defined in Table 4.1 for all cases of algorithms, we have used an auxiliary 

variable G;; for this purpose. In Table 4.2, we describe how to compute G;; as a function 

of yet another auxiliary variable Sk, where Sk is defined as: 

~ ~ 1 rf3 k 
Sk(a, (3) == ...j2i JCi (ULX + I-lL) exp [-0.5x2] dx (4.5.10) 
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Table 4.1: MMA(p, q) and cMMA(p): Values of H;! in terms of G£". 

MMA(I,I): MMA(I,2): 

1~ . Ctk(a,{3) = 1~ Xi (Rk - x)i h(x)dx Ci(a,{3) = x'h(x)dx 

H;! == Ci(O,RL) +Ci(-oo,-:-Rd H;! = ct (-~, 0) + C~2(0, 00), Rk = (_I)k RL 
+ (-1)' [CL(RL' 00) + CL( -RL,O)] 

MMA(2,1): MMA(2,2): 

Ct(a,f3) = J: xi+; h(x)dx Ct(a,{3) = 1~ xi+; (Rl_x2)i h(x)dx 
.• ,. Q 

H;! = ct( -RL, RL) " Hi == C'1 (-00, 00) 
+ (_l)i [C1(RL, 00) + Ci(-oo,-RL)] 

MMA(3,1): eMMA(I): 

Ct(a,{3) = J: Xi+
2i 

Jdx)dx 
1~ . Ctk(a, (3) = xi+i (RL - (_I)kx)' h(x)dx 

H;! == ct(O, RL) + Ci(-oo,-:-:Rd H;! ==ct(-~,0)+Ct2(0,00) 
+ (_I)i [C1 (RL' 00) + C'1( -RL, 0)] 

eMMA(3): eMMA(S): 

Ctk(a,{3) = L~ xi+i (Rt - (_I)kx3)i h(x)dx Ct(a,{3) = 1~ xi+i (Rl- (-I) kx 5r h(x)dx 

H;! == ct(-oo,O) + C'1
2
(0, 00) H;! == ct(-~,O) + ct2(O,00) 

eMMA(4): where we have denoted 

Ct(a,{3) = J: xi+i (Ri - x
4
)i h(x)dx hex) = _1 exp [_ (x - ~L r] 

y'2;uL v'2uL 

H;! == ct (-00, 00) 

4.6 Simulation Results 

4.6.1 Experiment: MSE/ISI Analytical/Simulated Performances 

To compare performances of existing and new equalizers and to validate the dynamic con­

vergence analysis, we estimate lSI and MSE convergence trajectories for five members of 

each of the families MMA(p, q) and cMMA(P). We consider 16/64/256-QAM signalling 

over a complex-valued voice-band telephonic channel [105]. The input-SNR is taken as 

30dB for 16-QAM and 34dB for 64/256-QAM. A seven-tap equalizer is used and initial­

ized with central single-spike. We consider estimates of output-SNR, in the computation 

of RL, only for the members of MMA(p, 1) because the RL of the addressed members 

of MMA(p, 2) and cMMA(P) have been found to be less sensitive to convolutional noise. 

We experimentally obtain the steady-state value of output-SNR to be equal to 24.5, 25.0 

and 25.5 [dB] for 16-, 64- and 256-QAM, respectively, based on trial-and-error method, 

such that two conditions are satisfied upon successful convergence: c1) Elly\2] ~ Fa and 
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Table 4.2: MMA(P, q) and cMMA(p): Values of GL" in terms of Sk. 

MMA(l,I): Gl(a, (3) = Sk(ii, (3), (k - 0,1,2) 
MMA(2,1): 
d}} (a, (3) = Sl(o.,jj) 
GP(a,(3) = S2(o.,jj) 
GOZ(a,(3) = S2(o.,jj) 
G};(a,(3) = S3(ii,jj) 
Gj,2(a,(3) = S4(o.,jj) 

MMA(3,1): 
G~l(a, (3) =S2(o., jj) 
Gl1 (a, (3) =S3(o., jj) 
G~2(a, (3) =S4(o., jj) 
Gi2(a,(3) =S5(O,.8) 
G'i2(a, (3) =S6(0,.8) 

cMMA(I): Ck = (-I}'" 
G~lk(a, (3) =RLSl(o.,~) -CkS2(o., ~), (k= 1, 2) 

Gi1k(a, (3) = RLS2(0, f!)-CkS3(ii,(3) ~ ~ 
GOZk(a, (3) = R'iS2(0, (3) -2ckRLS3(ii, f!) +S4(ii, f!) 
GFk(a, (3) = RiS3(0,jj)-2ckRLS4(ii, ~)+S5(0,~) 
Gj,2k (a, (3) = R'iS4(o., jj) -2Ck RLS5(ii, (3) +S6(O, (3) 

MMA(2,2): 
G~l (a, (3) = RiSl (ii, jj) -S3(O, jj) 
G}.i(a, (3) = R'iS2(o., jj)-S4(o., jj) 

02 4 ~~ 2 ~~ ~~ 
GL (a, (3) = RLS2(a,(3)-2RLS4 (a, (3) +S6(a, (3) 

Gl,2(a, (3) = RiS3(0,.8) -2RiS5(O, .8)+S7(0,.8) 
m,2(a, (3) = RiS4(0, 13) -2R'iS6(O,.8) +S8(0,.8) 

c2) the initially assumed output-SNR (which was required in the computation of RL) is 

close to its analytical value (4.6.1).2 The analytical and simulated ISI/MSE traces for 

MMA(P, q) and cMMA(P) are depicted in Fig. 4.7-4.12. Each simulated trace is obtained 

as an ensemble average of over 200 Monte-Carlo realization with independent generation 

of noise and data symbols. Importantly, note that the analytical ISI/MSE trajectories 

are in good conformation with those obtained from Monte-Carlo experiments. 

In Fig. 4.7, both MMA(2,1) and MMA(3,1) are providing faster convergence for 16-

QAM than other three members. For 64-QAM (Fig. 4.8), the MMA(2,2) is converging 

2Since the convolutional noise has energy E[lu12) = 2C7~, we define 

(4.6.1) 

where it} is joint channel-equalizer impulse response. The instantaneous estimation of output-SNR is 
not simple as it requires information about additive noise and residual lSI. In real scenarios, existing 
residual lSI estimation methods [22, 91) can be used to estimate output-SNR. 
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Table 4.3: MMA(p, q): Values of RL and J-l used in simulation. 

RL J-l 
(p, q) 16 64 256 16 64 256 
(1,1) 2.91 5.34 11.14 4.8e-4 1.2e-4 4.0e-5 
(1,2) 2.50 5.25 10.63 2.3e-4 4.8e-5 7.0e-6 
(2,1) 2.97 6.58 12.81 2.9e-4 3.0e-5 4.8e-6 
(2,2) 2.86 6.08 12.34 3.4e-5 1.8e-6 7.0e-8 
(3,1) 2.99 6.76 13.20 1. 12e-4 1.0e-5 4.6e-7 

Table 4.4: cMMA(p): Values of RL and J-l used in simulation. 

RL J-l 

P 16 64 256 16 64 256 
1 2.80 5.90 11.95 2.0e-4 1.2e-5 1.2e-6 
2 2.86 6.08 12.34 4.0e-5 1. 44e-6 6.5e-8 
3 2.90 6.22 12.63 1.5e-5 2.0e-7 4.0e-9 
4 2.92 6.32 12.87 6.0e-6 2.8e-8 3.0e-1O 
5 - 6.40 13.06 - 4.0e-9 2.0e-ll 

faster than MMA(2,1) while MMA(3,1) is still the fastest candidate. For 256-QAM (Fig. 

4.9), MMA(2,2) is performing better than all other members. Noticeably, the perfor­

mances of MMA(1,1) and MMA(1,2) are very poor for 64- and 256-QAM. In an another 

set of experiments, we simulated MMA(p, q) equalizers for a number of fractionally­

spaced microwave channels [1] and we have noticed a very similar trend in performance 

as depicted in Fig. 4.7-4.9. 

In Fig. 4.10-4.12, the cMMA(P) is depicted to exhibit a very consistent behavior 

for all the three addressed QAM sizes. We note that, with an increased value of p, the 

equalizer is found to be converging faster while requiring more computation in its error­

function. It clearly indicates that the cMMA(P) is capable of providing a performance­

complexity trade-off. Also note that, unlike KDA which worked satisfactorily only for 

small QAM sizes (4/16-QAM), the proposed cMMA(p) is working satisfactorily for both 

small and large QAM sizes. 

Due to the nonlinear structure of MMA(p, q), it is difficult to explain why MMA(2,1), 

MMA(3,1) and MMA(2,2) performed respectively better than others for 16-, 64- and 256-

QAM. Or why MMA(1,1) performed poorer for constellations higher than 16-QAM. We 

intuitively realized that an MMA with a higher dispersion constant (RL) is capable of 

performing better in terms of convergence. For an equalizer implementing MMA(p, q), 
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this intuition is found to be true (only) for 16-QAM, but, on the other hand, we find 

this intuition very true for cMMA(p), where a higher p always yielded a larger dispersion 

constant and faster convergence. 

4.7 Summary 

We have proposed two families of multimodulus Bussgang-type adaptive algorithms, 

MMA(P,2) and cMMA(p) , for joint blind equalization and carrier-phase recovery of 

square-QAM signals over complex-valued transmission channel. The main contribution 

resided in the generalization of an existing dispersion-directed cost-function as well as the 

modification in a convex cost-function leading to newer algorithms capable of yielding 

faster convergence. Evaluation of equalizer gain and dynamic convergence has been 

described in detail and also shown to be in conformation with simulation results. 

Clearly, based on the results reported in our study, it is possible to achieve faster con­

vergence than known adaptive equalizers (especially for 16/64-QAM) and the discussed 

dynamic convergence analysis can help us select the best equalizer among the members of 

MMA(p, q) and cMMA(P) for the given channel, equalizer parameters (length, step-size, 

initialization), QAM-signal, noise condition and computational requirements. Finally, 

we like to comment that the performances of MMA(p, 2) and cMMA(p) have been found 

to be more robust to channel noise than those of MMA(p, 1). 
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Figure 4.9: Simulated and analytical ISI/MSE traces for MMA(p , q) with 256-QAM. 
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Chapter 5 

Energy Maximization: Adaptive 
Constant Modulus Algorithm 

5.1 Introduction 

In Chapter 2 (Section 2.3), we briefly summarized constrained energy optimization based 

blind equalization techniques. In the past, energy optimization with tap-anchoring has 

been implemented as a block-processing algorithm and reported to be an inadmissi­

ble method for blind equalization [43, 119]. However, just recently in the year 2009, 

Meng et al. [90] formulated the energy maximization of equalizer output as a block­

processing quadratic programming problem (without requiring direct tap-anchoring), 

used geometrical knowledge of quadrature components of square-QAM constellation as 

a properly-restoration constraints and reported several impressive results on blind equal­

ization, blind source separation and blind beamforming. The work of Meng et al. [90] 

may be considered a breakthrough in I2-optimization based blind signal processing. 

Motivated by the successful work of Meng et al. [90], in this Chapter, we propose 

an energy maximization cost-function and use modulus based geometrical knowledge 

of QAM signals as a property-restoration constraint. In essence, the proposed cost­

function maximizes the output energy under the constraint that the largest modulus of 

the equalized sequence does not exceed the largest modulus of the transmitted signal 

(Section 5.2.1) and also discuss its feasibility (Section 5.2.2). We obtain an elegant 

adaptive constant modulus algorithm by optimizing a modified version of the proposed 

cost-function (Section 5.2.4). We show that the proposed algorithm is fully capable of 

opening the closed-eye with successful restoration of signal energy. Finally, we provide 

evidence of good performance in comparison to existing established adaptive methods, 

71 
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like CMA(2,2) and three of its variants through simulations (Section 5.3). 

5.2 The Proposed Cost-Function 

5.2.1 A New Quadratic Cost with Convex Constraint 

Let tl = 2:f[=-K hkW~,l_k be the Ith element of overall impulse response {tl}' Now 

consider the following function: 

g(w) ~ R;;lmax({IYnl}) = LltLi = IItlll (5.2.1) 
l 

where Ra = max ({Ianl}) is the largest modulus of transmitted signal an. We have the 

following theorem: 

Theorem 5.1: g(w) is convex in w [113]. 

Proof: Suppose, we have IItlli = 2:ll2:k hkWi_kl, noting the t weights are linear function 

of the w equalizer taps; so write t == t(w). Let w a E h, w b E h, and 0 ::; 1/ ::; 1. Then 

g(w) = IIt((l-1/)wa + 1/wb)lh 

= L: \ L: hk ((1 - 7])( wl-k)* + 1/( wt-k)*) \ 
I k 

:::; (1-1/) L \ Lhk(Wi-k)*\ + 1/ L \ Lhk(u;t-k)*\ 
I k I k 

(5.2.2) 

= (l-1/)lIt(wa )III + 7]lIt(wb)lh. DOD 

We are now ready to formulate 12-optimization with constraint on the modulus for 

blind channel equalization as follows: 

(5.2.3) 

Note that this problem can be formed using only the channel output X n , which implies 

its applicability in a blind equalization setting. The cost-function to be maximized in 

(5.2.3) is quadratic, and the feasible region is a convex set. 

5.2.2 Comparison with Allen-Mazo Cost and Admissibility 

We define lSI = (2:l Itd2 jmax ( {ltd2
} )) - 1. Introducing the channel autocorrelation 

matrix 1-£, whose (i,j) element is given by 'Hij = 2:k hk-ih'k_j' i,j E {-K, K}, we can 

show 2:lltd2 = w!!1-£wn . The equalizer has to make one of the coefficients of {t/}' say, 
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to = w:f1£. to be unity and others to be zero. where h = [h-K. h-K+l • ...• hOt hI • 

. . , • hK]T and we assume N = 2K + 1. We obtain [9] 

(5.2.4) 

Now consider Allen-Mazo cost-function [10]: 

I rr.:},n E [IYnI2
] s.t. Wo = 1\ (5.2.5) 

Since E[lYnI2] = Fa L:lltd2 and Fa = E[la I2], we can re-express (5.2.5) in an equivalent 

form as follows: 

EQ.A: mJn L Itl12 s.t. Wi = 1, (5.2.6) 
I 

where EQ.A is a label, and i is either zero or N - 1. Using Lagrangian multiplier '\, we 

optimize L:lltd2 + >'Wi with respect to w~ to get Wn = ->.1£-lg , where [g]k = o(k - i)j 

it leads to 

(5.2.7) 

Now consider our proposed cost-function with equality constraint 

(5.2.8) 

The cost (5.2.8) can be written in an equivalent form 

m~ L Itd2 s.t. L ltd::; 1. (5.2.9) 
I I 

Unfortunately, due to the nonlinear constraint in (5.2.9), it is difficult to analyze it in 

matrix form. Note that, however, by assuming LI¥O ltd « Itol, we can re-express (5.2.9) 

as follows: 

EQ.B: mJn L Itd2 s.t. to = 1. (5.2.10) 
I 

Incorporating Lagrangian multiplier>. in (5.2.10) and differentiating with respect to w~, 

we get Wn = _,\1£-lhj this solution yields 

(5.2.11) 

To appreciate the possible benefit of solution (5.2.11) over (5.2.7), consider a channel 

h-I = 1 - e, ho = e and hI = 0, where 0 ::; c ::; 1. Without equalizer, we have 

lSI = (1 - c)2 + c2 
_ 1 

max{1-c,c)2 . (5.2.12) 
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The lSI approaches zero when c: is either zero or unity. Since c: < 0.5 places the zero 

inside the unit circle of the z-plane (no precursors) and c: > 0.5 places the zero outside 

the unit circle (no tail distortion); the initialization of equalizer EQ.A requires 

[ I
T { [I OlT when 0 < c: < 0.5 

Wo Wl = 
[0 IjT when 0.5 < c: < 1 

From solution (5 .2.7), the lSI for equalizer EQ.A is obtained as 

{ 

c:2(1- e;)-6 (2 - 8e; + 14e;2 -12c:3 + 5c:4 ) I 
ISIEQ.A = I ~<O.5 

(1 - c:)2C6 (1- 4c: + 8c:2 - 8c:3 + 5c:4
) 

~>O.5 

On the other hand, from (5 .2.11), the lSI for EQ.B is obtained as 

ISlE B = c:
2
(1 - c:)2 

Q. 1 - 4c: + 6c:2 - 4e;3 + 2c:4 • 

5 ... . . ....... . ......... . .. . ...... .. ...... ~ .... . .. . 
j • 
. . \ ,:-

4 .... ........ .... .... ...... ... .... ... ... .. .. :. \ ...... .... . 
. ' : \ , . . 

- - - Unequalized 
.- ._ .. EQ.A: w. = 1 

1 

-EQ.B: to= 1 
. : \ 

3 ... ... .... . .. ....... ....... ........... , ... : . .. , 
1-'4 I \ 

(5 .2.13) 

(5 .2.14) 

(5 .2.15) 

~ I \ 

Wo = I, WI = 0 .. .. .. >' .""' .. ' .. '.,. WOfo=r .. ~'>Wol .=5 iJ ............ ::. 
for e < 0.5 f. ./ ... . /. ~ . v 

",., . ,. . ..... '" 

2 

1 

-.-
0.5 
£ 

Figure 5.1: lSI of EQ.A and EQ.B compared to the unequalized case. 

1 

We depict expressions (5.2 .14) and (5.2 .15) in Fig. 5.1; note that the equalizer EQ.A 

has actually made the lSI worse than if it were not used. On the other hand, the 

proposed equalizer EQ.B has reduced residual lSI and it appears admissible. Note that 

the problem (5.2.3) is non-convex and may have multiple local maxima. Nevertheless, 

we have the following theorem. 

Theorem 5.2: Assume w t is a local optimum in (5 .2.3) , and tt is the corresponding 

total channel equalizer impulse-response and channel noise is negligible. Let l, It E 

{-K, . .. ,K} , then it holds Itll = 51- It . 
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Proof: Without loss of generality we assume that the channel and equalizer are real­

valued. We re-write (5.2.9) with in-equality constraint as follows: 

w t = argm~ I: Ittl2 s.t. I: ltd ~ 1. (5.2.16) 
I I 

Now consider the following quadratic problem in t 

tt = argmax I: Itd2 s.t. I: ltd ~ 1. 
t I I 

(5.2.17) 

Assume t f is a feasible solution to (5.2.17). We have 

(5.2.18) 

and 

(I:I ltd) 2 = I:I Ittl2 + I: I: It II tl21 
11 12, 12#11 

(5.2.19) 

The first equality in (5.2.18) is achieved if and only if all cross terms in (5.2.19) are zeros. 

Now assume that t k is a local optimum of (5.2.17), i.e., the following proposition holds 

3.s> 0, \:It!, lit! - tklb ~ .s 

=> I: It~12 ~ L It{12
• 

I I 

Suppose t k does not satisfy Theorem 5.2. Consider tC defined by 

(5.2.20) 

We also assume that tf2 < tf1· Next, we have IW - tkll2 = .s, and Elltfl = Ellt~1 ~ 1. 

However, one can observe that 

L It~12 - L Itfl 2 = V2.s (t~ - t~l) - c2 < o. (5.2.21) 
I I 

which means t k is not a local optimum to (5.2.17). Therefore, we have shown by a 

counterexample that all the local maxima of (5.2.17) should satisfy Theorem 5.2. DOD 
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5.2.3 Energy Maximization With a Differentiable Constraint 

The cost (5.2.8) can be expressed as a quadratic problem using B blocks of channel 

observations 

(5.2.22) 

and can be solved by exploiting established tools [84J. However, due to the widespread 

popularity of adaptive algorithms in practical receivers [131 J, we are interested in opti­

mizing (5.2.8) using a stochastic gradient-based method. 

For such an implementation, we modify (5.2.8) to involve a differentiable constraint 

and propose the following differentiable cost-function: 

(5.2.23) 

where, for some a, bE C, the function fmax is defined as! 

fmax(lal, Ib!) == Iial + Ibll + Iial-Ibil = { lal, if lal ~ Ibl 
2 Ibl, otherwise. 

Employing the Lagrangian multiplier A, we obtain 

(5.2.24) 

Referring to Fig. 5.2, it is clear that if the equalizer output Yn is inside the circular 

region, centered at origin with radius Ral then the constraint fmax (Ra, IYn!) - Ra = 0, 

and the cost (5.2.24) simply involves the maximization of E[IYnI 2J. However, if IYnl > Ra, 

then the constraint is violated and the computation of new update W n+1 (with the aid of 

Lagrange multiplier A) will require to bring the a posteriori output Sn = W;;+l Xn inside 

or onto the perimeter of circle such that fmax (Ra, ISnD - Ra = O. In this manner, the 

cost (5.2.23) will not only be able to maximize E[lYnI 2J but also minimize the dispersion 

in Yn away from the constant modulus Ra. 

IThe fmax is differentiable (below sgn denotes the signum function) 

8 fmax(lal, Ibl) _ a(l + sgn(lal - Ibl)) _ {a/lal, ~f lal > Ibl 
8 • - 21 I - a/(2Ial), If lal = Ibl 

a a 0, if lal < Ibl 
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Figure 5.2: Optimization of (5.2.23) results in forcing the instantaneous equalizer output 
Yn radially towards the modulus Ra (direction of which is shown by a s t of arrows with 

arbitrary magnitudes). 

5 .2.4 Derivation of an Adaptive Algorithm: ,8-CMA 

Let maxw E[.J], .J E jR+ be a maximization problem, for which the (stochastic approx­

imate) gradient-based solution is obtained as Wn+l = Wn + /-La.J /aw~, where ast risk 

(*) denotes the complex conjugate of the base entity and /-L > 0 is a small st p-size. 

Note that a.J /aw~ = (a.J /ay~)*xn, and a.J /ay~ = 0.5 (a.J /aYR,n + Ja.J /aYI ,n ). The 

gradient-based maximization of cost (5.2.24) is readily obtained as: 

(
A 9n) * Wn+l = Wn + /-L 1 + 41Ynl ynxn (5.2.25) 

where 9n == 1 + sgn (IYnl- Ra). If IYnl < Ra, then 9n = 0 and we have wn+l = 

Wn + /-Ly~xn. If IYnl = Ra, then the property-restoration condition (max ({IYnl}) = 

Ra) is satisfied and we stop the adaptation. Since 9n = 1, we require A = -41Ynl 

to ensure Wn+l = Wn· Otherwise when IYnl > Ra , with 9n = 2, we get wn+l = 

Wn + /-L (1 + A/(2IYnl)) y~xn. As mentioned earlier, in this case, we have to compute A 

such that Sn lies inside the circular region without sacrificing the output en rgy. Such an 

update can be realized by minimizing IYnl 2 and satisfying the Bussgang condition. One 

of the possibilities is A = -2(1 + ,B)IYnl, ,B > 0, which leads to wn+l = Wn + /-L( -,B)y~ x n · 
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The Bussgang condition requires 

E [YnY~-i] + (-{3) E [YnY~-i] = 0, Vi. 
~, '" ' 

(5.2.26) 

IYnl<R.. IYnl>R.. 

In steady-state, we assume Yn = an -<; + Un, where ~ is the bulk-delay and Un is convo­

lutional noise. For i =f 0, (5.2.26) is satisfied due to uncorrelated an and independent­

and-identically distributed samples of Un. Consider that the distortion free M-symbol 

an comprises Z moduli {Rl,'" ,Rz}, such that ° < Rl < R2 < ... < RZ-l < Rz, and 

Mz denotes the number of unique symbols on the zth modulus. So the largest modulus 

is Rz = Ra and L::=1 Mz = M. Now assuming negligible Un and solving (5.2.26) for 

i = 0, we get 

;1 (MIRi + M2R~ + ... + MZ-IR~_l + ~MzR~ - ~ MzR~) = ° (5.2.27) 

The last two terms indicate that, when IYnl is close to Rz, it would be equally likely to 

update in either direction. Noting that 

1 z 
M LMzR; = Pa, 

z=l 
(5.2.28) 

is the energy of the transmitted signal. Next the simplification of (5.2.27) gives a dimen­

sionless value for {3 

(5.2.29) 

Finally, we summarize our algorithm as follows: 

{

I, if IYnl < Ra 

f= 0, if IYnl = Ra 

-(3, otherwise. 

(5.2.30) 

Note that the resulting error-function of algorithm (5.2.30) has 1) finite derivative at 

the origin, 2) becomes zero solely at Ra, 3) is increasing for IYnl < Ra and 4) decreasing 

for IYnl > Ra· In [11], these properties 1)-4) have been tabulated as essential features 

of a generic CMA. This motivates us to denote (5.2.30) as ,B-CMA. 
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5.2.5 Cost-Function Interpretation 

If the error-function in (5 .2.30) is integrated back with resp ct to Yn, then the following 

cost-function is obtained: 

J {3_CMA = m~ {~ + ~-/J)E [1~n I 2J + ~}. 
IYnl<Ra IYnl>Ra 

(5.2.31) 

where c is the constant of integration. So, depending on the value of IYnl whether it is 

less or greater than Ra , we need to respectively maximize or minimize the m an equalizer 

energy. In Fig. 5.3, we depict the mesh and quiver plot of the cost (5.2.31) to demon­

strate how the cost maximizes the energy of the equalized sequence while minimizing 

the dispersion away from the modulus Ra· 

.: . 
.. :' 

-1 . 2 1<L£:..c..u.:..c..u..LJLJ..LL.J..LL.J..l..W...1..l...l...1..l...l00U-\.l....U~~ 
- 1.2 -0.6 0 0.6 1.2 

Re[y ] 
n 

Im[y ] 
n 

Figure 5.3: Mesh (left) and quiver (right) plots for an arbitrary signal with Ra = 1, /J = 2 
and c = 3. In mesh plot, note that the cost is maximized when IYnl = R a· In quiver 
plot, note that the arrows of gradient vectors are directing radially towards the modulus 

as predicted in Fig. 5.2. 

5 .3 Simulation Results 

5.3.1 Experiment 1: lSI Performance with TSE 

We compare /J-CMA with the traditional CMA(2,2) [53] and three of its variants: (un­

normalized) relaxed CMA (RCMA) [125, Eq.(14)], Shtrom-Fan algorithm (SFA) [122, 

Eq.(4 .7)] and generalized CMA (GCMA) [28, Eq.(1l)].2 We consider transmission of 
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amplitude-phase shift-keying (APSK) signals over a symbol-space complex-valued voice­

band telephonic channel (taken from [105]) and evaluate the average lSI traces (at SNR 

= 30dB). We use a seven-tap equalizer with central spike initialization. Results are 

summarized in Fig. 5.4-5.6 using three different APSK signals. Not that the proposed 

{3-CMA performed significantly better with much lower lSI floor than other counter­

parts. Also refer to Fig. 5.7, where we have depicter the scatter plots for converg d 

constellations for all algorithms for 16-APSK. Note that the constellation obtain d form 

proposed algorithm is more aggregated compared to others. In Table 5.1, we provide the 

average energy recovered by the addressed equalizers in this experim nts. Notably, the 

proposed equalizer (3-CMA has recovered the highest amount of energy. 

-1 2 
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--RCMA: ~ = 0.0030 
- - GCMA: ~ = 0.0034 

Test signal 
2 . . : ... : ..... : ............. . . ., : 
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Figure 5.4: lSI traces for 8-APSK signal. 

2The following four algorithms have been used for comparison with proposed a lgorithm (5.2.30): 

RCMA: W n+ l = Wn + J1. (Rl -IYni) Y~Xn, where Rl = E[laI3]/E[laI2]. 

CMA(2,2): W n+ l = Wn + J1. (R~ - lynI
2
) Y~Xn, where R~ = E[laI

4
]/E[laI2]. 

SFA: Wn+l = W n + J1. (R(n -IYnI2) Y~Xn, where R = E[laI 4]/E2[1aI 2
]. 

GC <fA : W n+l = W n + J.£ (Cn - IYn I2) ((:. Y~Xn - lyn l2Xn) C~3, 
~ ~ 1 (I 12 ~) ~ ~ 1 

where ( n = (n- l + ~ Yn - (n- l and Xn = Xn-l + ~ (Y~Xn - Xn- l) . 
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Figure 5.5: lSI t races for 16-APSK signal. 
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Figure 5.6: lSI traces for star-16-APSK (V .29) signal. 

Table 5 l ' Average energy recovered (%) @ SNR = 30dB . . 
RCMA CMA(2,2) SFA GCMA {3-CMA 

8-APSK 99.5 99.7 77.0 36.0 99.9 
16-APSK 99.6 99.7 70.5 37.0 99.8 

star-16-APSK 99.6 99.5 79.0 28.0 99.7 
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Figure 5.7: Scatter plots for 16-APSK signal each containing last 2000 converged sym­

bols. 
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Figure 5.8: lSI traces for 16-APSK signal with fractionally-spaced equalization. 
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5.3.2 Experiment 2: lSI Performance with FSE 

We test ,8-CMA on a complex channel commonly used in previous works [69, 38, 86]. 

In the simulation, we use an Li.d. input of 16-APSK modulation, and assume an over­

sampling ratio by two and sub-equalizer order of fifteen at the receiver (so the equalizer 

is fractionally-spaced with total number of taps N = 30). In Fig. 5.8, we compare the 

lSI performance of ,8-CMA and traditional CMA(2,2). Note that ,8-CMA is offering a 

slightly faster convergence as compared to CMA(2,2). 

5.4 Summary 

By exploiting the 12-optimization (Le., energy maximization) of equalizer output, we have 

proposed two cost-functions for blind equalization of complex-valued channels, which are 

respectively suitable for off-line block-processing and online gradient-based implementa­

tions. These costs differ in the way whether we constrain a block of equalizer outputs or 

only its instantaneous value from exceeding the largest modulus of data signal. 

We have shown how to obtain an online adaptive algorithm (,8-CMA) and have 

demonstrated it performing better, in terms of lSI removal under the presence of noise 

for APSK signals, than existing established solutions, like CMA(2,2), RCMA, GCMA 

and SFA. We have also shown that the ,B-CMA is fully capable of recovering the true 

value of signal energy upon successful convergence. Also note that the computational 

complexity of ,B-CMA is less than the existing addressed equalizers (like CMA(2,2), 

RCMA, GCMA and SFA). The ,B-CMA may be considered as the first ever successful 

adaptive implementation of an 12-optimization criterion for (constant modulus) blind 

channel equalization. 



Chapter 6 

Energy Maximization: Adaptive 
Multimodulus Algorithm 

6.1 Introduction 

This Chapter is the sequel of Chapter 5, where we have proposed and discussed an energy 

maximization based constant modulus algorithm, ,B-CMA. Here, we propose and discuss 

an energy maximization based multimodulus algorithm, ,B-MMA. Clearly, the proposed 

algorithm ,B-MMA is required to achieve blind channel equalization and carrier-phase 

recovery jointly. The ,B-MMA is obtained from Meng et al. cost-function (Eq. (2.3.3)) 

with necessary modification to include a differentiable constraint (as we have discussed 

in Chapter 5, Section 5.2.3). 

Unlike Chapter 5, where we have ignored the effect of convolutional noise in the 

evaluation of gain .13, here we consider the effect of convolutional noise to determine 

.13 for ,B-MMA (Section 6.3.2). It is important because, in this Chapter, we evaluate 

performances of ,B-MMA and some existing MMAjCMA solutions for higher-order QAM 

signals, where the effect of convolutional noise cannot be ignored. We provide evidence of 

good performance exhibited by ,B-MMA in comparison to existing established methods, 

like MMA(1,2), MMA(2,2) and CMA(2,2) through computer simulations for higher-order 

QAM signalling on symbol- and fractionally-spaced channels (Section 6.4). 

6.2 Meng-Tuqan-Ding 12-0ptimization Criterion 

Recently, in the year 2009, Meng, Thqan and Ding [90] proposed an l2-maximization based 

method for joint blind channel equalization and carrier-phase recovery without requiring 

84 
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tap anchoring. Their cost-function is given as: 

max E[lYnI2
], s.t. max ({IYR,nl}) = max ({IYI,nl}) ~ , 

w 
(6.2.1) 

where max ({IYRI}) and max ({IYI,nl}) denote, respectively, the largest absolute values of 

the in-phase and quadrature components of equalized sequence {Yn}, and the parameter 

, denotes the maximum quadrature component of the transmitted data an. They formu­

lated the cost as an iterative block-processing quadratic programming problem for blind 

equalization of square-QAM and reported better results than those obtained from linear 

programming based solutions [38, 86]. Note that the constraints in (6.2.1) have been 

shown to be convex in W [38, 69, 86]. Also note that, due to using separate constraints 

for in-phase and quadrature components of equalized sequence, the reported iterative 

block-processing equalizer was jointly capable of recovering the carrier-phase. 

6.3 Differentiable Cost-Function and Adaptive Algorithm 

The cost (6.2.1) is not directly suitable for stochastic gradient-based adaptive imple­

mentation, since the constraints are applied on a block of equalized sequence. So, in 

accordance with the ideas discussed in Section 5.2.3, we modify the cost (6.2.1) and 

present a new deterministic cost-function, involving instantaneous constraints, for blind 

equalization and carrier-phase recovery, viz 
r---------------------------~ 

maxlYnl2
, subject to fmax(!, IYR,nl) =, 

w 

and fmax(!, IYI,nl) =, 
where, for some a, b 2: 0, fmax is defined as 

( b) 
_ la + bl + la - bl _ { a, 

fmax a, = 2 -
b, 

ifa~b~O 

if b ~ a 2: 0 

(6.3.1) 

(6.3.2) 

The usefulness of fmax in (6.3.1) can be understood by referring to Fig. 6.1, where we 

depict resulting values of fmax on YR-YI plane. Clearly, if Yn falls inside the central square 

region, that is the region-C, centered at origin with perimeter 8" then both constraints 

in cost (6.3.1) are satisfied; we simply need to maximize IYnI 2
• However, when Yn lies 

outside region-C, then depending on the region where Yn is residing, region-B(D) or A, 

either one or both of the constraints is/are violated. In such a case, an ideal update 

Wn+l would ensure that the resulting a posteriori output w;[+lxn lies inside region-C 

and E[IYnI2] stays close to true signal-energy. 
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Figure 6.1: Values of frnax(r, IYL,nl) on YR-YI plane for an arbitrary M-ary square-QAM, 
where, = v'M - 1, and the four dots designate the (distortion-free) corn r symbols of 

square-QAM. 

6.3.1 D erivation of ,B-MMA 

The fmax is differentiable. For some a, b E JR, we can show 

: a fmax(lal, Ibl) = s~[a] (1 + s gn[lal - Ibl]), (6.3 .3) 

where sgn[·] is the standard signum function. Next employing the Lagrangian multipli­

ers, AR and AI , we obtain 

(6.3 .4) 

The derivative of (6.3.4) with respect to y~ gives <l>(Yn) = - HAR9R + JAI9I + 4Yn) , 

where gL = (1 + sgn[IYL,n l - ,]) sgn[YL,n] (subscript L denotes either R or 1). From the 

error-function <l> (Yn), we devise the following adaptive algorithm: 

(6.3.5) 

If IYL,nl < " then gL = 0' the constraint is effortlessly satisfi d . On the other hand , the 

condit ion IYL ,nl > , yields 9L = 2 sgn[YL,n]; here, we suggest to compute AL such that 

the Bussgang condit ion is satisfied. This consideration leads to 

E [(O.5ALSgn [YL,n] + YL ,n) YL,n- i] + E [YL ,nYL ,n-i] = 0, Vi. 
, V' ' _____ 

(6.3.6) 

IYL ,nl>, IYL,nl<, 
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The evaluation of (6.3.6) can be simplified by assuming that the update (6.3.5) is in 

the vicinity of an open-eye solution [17, Section 2.8]. As a result, the output Yn is the 

sum of delayed source signal an' and convolutional noise Un· Note that this assumption 

is commonly employed in the computation of statistical (dispersion) constants for blind 

adaptive algorithms [53, 19, 140]. For i i= 0, Eq. (6.3.6) is satisfied due to the identical­

and-independent distribution property exhibited by an' and Un; for i = 0, however, the 

constraints may be satisfied by assuming 

AL = -2(1 + f3)IYL,nl, (f3 > 0) (6.3.7) 

where the negative sign is used to update in the opposite direction to bring the symbol 

either inside or close to the corner-points of region-C (c.f. Fig. 6.1), and the f3 is 

introduced to limit the growth of E[lYnI2
]. Due to the four-quadrant symmetry of QAM 

signal (Le., E[a~] = E[a~] and E[aRaI] = 0), note that the expression (6.3.7) directs us 

to look for a single parameter f3 for both AR and AI. 

6.3.2 Evaluation of Gain f3 

Denoting Vn as one of the components of Un, we write YL,n = aL,n' + Vn. The Vn is 

considered to be zercrmean Gaussian with variance u~ and pdf Iv = . d:: exp (-~). 
y211"a" 2a" 

Now combining (6.3.6)-(6.3.7), we get 

(6.3.8) 

Further, £1 = E [I-=-~-aL + J;aL (aL + v)2 Ivdv] and £2 = E [J2~~~L (aL + v)2 Ivdv] 

are evaluated as 

£2 = E [(ai + u;) (1- Q (~ :v
aL

) - Q (~ :v
aL

)) 

-uv(T - aL)S ('Y :v
aL

) - uv(~ + aL)S (~ :v
aL

) ] 

£1 = E [(ai + u;) ( Q (~ :v
aL

) + Q (~ :v
aL 

)) 

+uv(T - aL)S ('Y ~vaL ) + uv( ~ + aL)S (~ :v
aL 

) ] 

where Q(z) == Jzoo S(t)dt and S(t) == (1/v'21r)exp (-0.5t2).1 
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Note that the {3 has an asymptotic value for small noise. Considering a square-QAM, 

aL E AL = {±1,±3, .. · ,±I'}, and assuming YL > 0 and small v, we evaluate (6.3.8) to 

get 
(1 + v)2 + (3 + v)2 + ... + h - 2 + v? 

, y f 

(~IALI-l) terms 

1 1 
+ 2h + v)2 + 2(-{3)b + v)2 = 0, 
~, Y' ' 

(6.3.9) 

if v<O if v>O 

where \AL\ = I' + 1. Assuming a diminishing noise, we get 

lim {3 --+ {3lim == 1'2 + 2 = M - 21M + 3 
v-O 31' 31M - 3 

(6.3.10) 

In Fig. 6.2, we demonstrate that {3 --+ {3lim when (1v --+ O. 

Finally, we summarize our proposed algorithm as follows: 

Wn+1 = Wn + J.L (fR YR,n + J ff Yf,n)* Xn 

{

I, if \YL,n\ < , 
fL = 0, if \YL,n\ = I' 

-{3, if \YL,n\ > I' 

(6.3.11) 

Note that the polarity of variable fL determines the direction of adaptation such that the 

dispersion in Yn is minimized away from four corner points {±I' ± I'J} and this property 

has a major role in carrier-phase recovery. In [140], a term multimodulus was coined for 

the algorithm which can jointly solve blind equalization and carrier-phase recovery; we 

use this terminology to denote (6.3.11) as {3-multimodulus algorithm ({3-MMA). 

Note that another adaptive realization is also possible if constraints are imposed 

on a posteriori output Sn == w:f+1Xn. Taking conjugate-transpose of (6.3.5) and post­

multiplying it with X n , we get 

(6.3.12) 

If (\YL,n\ > 1'), then the requirement (\SL,n\ ~ ,) yields 

AL ~ 2al'- 2(1 + a) \YL,n\, (6.3.13) 

1 For the given square-QAM signal and convolutional noise level, the required f3 can be pre-computed 
and stored in receiver memory. In equilibrium, 2(1~ ~ (1~lIwooll~ is closely true, where (1~ is the variance 
of additive noise and IIwooll~ is the steady-state value of IIwnll~· More accurate estimation of (1~ is 
possible by carrying out excess mean-s~uare analysis [79] to incorporate the contributions of channel 
eigen-values, equalizer length and step-sIze. 
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where a = 1/ (J.LllxnIlD. Note that AL is favorably negativ for iYL,ni > "Y, and is similar 

to (6 .3.7). 
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Figure 6.2: Values of {3 versus SNRout for some square-QAM. 

6.3.3 C ost-Function Interpretation and Phase Recovery Capability 

If the error-function in (6.3.11) is integrated back with r spect to Yn, then the following 

cost-function is obtained: 

J {3.MMA = m~ {~ + ~-(3) E [y~,n] + CR, + ~ + ~-(3) E [:,7,11] + CI,} 
IYR,nl<, IYR,nl>, IYI,nl<, IYI ,nl>"Y 

(6 .3.14) 

where CR and CI are constants of integration. So, depending on the value of iYL,ni wh ther 

it is less or greater than I , we need to respectively maximize or minimize E [YI,n]' In 
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Fig. 6.3, we depict the mesh and quiver plot of the cost (6.3.14) to demonstrate how 

the cost maximizes the energy of the equalized sequence while minimizing th disp rsion 

away from four corner points ±,),±yy. Interestingly, the cost-function expr sion (6.3.14) 

'Y = 1 .. ~= h~nd c =;2 

<: 
~ 

2 

~I 0 .· 
co. -, 

-2 . 

-4 

-2 

2 

Figure 6.3: Mesh (left) and quiver (right) plots for an arbitrary signal with')' = 1, (3 = 1 
and c = 2. In mesh plot, note that the cost is maximized when YL = ±')' = ±l. 

can be used to observe the carrier-phase recovery capability of {3-MMA. In Fig. 6.4, we 

depict the sensitivity of {3-MMA to (residual) phase-offset for some square-QAM. Note 

that there is no local minima (i.e., false-lock), and consequently, {3-MMA appears to be 

capable of fixing phase-offset in the range -1r / 4 ~ () ~ 1r / 4. 

6.3.4 Dynamic Convergence Analysis 

First of all, note that the proposed (3-MMA has a remarkable similarity with the algo­

rithm MMA(2, 1) we discu ed in Chapter 4. Notably by substituting {3 = 1 in weight 

update expression of (3-MMA, we obtain exactly MMA(2, 1) . Based on this observation, 

we find that ordinary difference equations (ODE) of (3-MMA can easily be obtained 

from that of MMA(2, 1) by simply introducing the parameter {3 in the d finition of th 

auxiliary variable H2 it gives 

H;! = efL (-" ')') + (- {3)j [GZ (-y, 00) + GZ (-00, - ,)] 

where GZ(Xl,X2) = l x2 

xi+j JL(x)dx. 
Xl 

(6 .3.15) 
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Figure 6.4: Sensitivity of ,8-MMA to (residual) phase-offset for some squar -QAM. 

6.4 Computer Experiments 

We simulate adaptive equalizers implementing MMA(1,2), CMA(2,2), MMA(2,2), and 

the proposed one ,8-MMA, while considering square-QAM t ransmission over complex­

valued symbol- and fractionally spaced (normalized) channel, evaluating (transient) lSI 

[121, Eq.(50)] and (steady-state) symbol-error rate (SER) performanc s. 

6 .4.1 Exp eriment 1: lSI P erformances with TSE/FSE 

Firstly, we consider ymbol-spaced equalization (TSE) of a telephonic channel [105] . A 

seven-tap equalizer is used with central spike initialization. Each of the traces has been 

obtained by taking average of 300 Monte-Carlo realizations with ind pendent generation 

of noise and data samples. Also, the step-sizes have been select d such that all algorithms 

reached steady-state requiring almost equal number of iterations. We have marked the 

point of convergence by a dashed vertical line. 

The converging lSI traces are summarized in Fig. 6.5(a)-(b) for 16- and 64-QAM, 

respectively. Note that the ,8-MMA is providing much lower lSI floor than all others 

while the t raditional MMA(2,2) is performing better than MMA(l,2) and CMA(2,2) . 
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Secondly, we consider fractionally-spaced equalization (FSE) of a long (300-coefficients) 

T/2-spaced microwave radio channel (channel-1, SPIB [1]). We follow the multichannel 

equalizer architecture as described in [26] and implement a 42-tap equalizer, where we 

have 21 taps each in even and odd sets of coefficients with central spike initialization 

in even-set of coefficients. The converging lSI traces are summarized in Fig. 6.6(a)-(b) 

for 16- and 64-QAM, respectively. Note that the ,B-MMA is providing remarkably much 

lower lSI floor than all others while the MMA(2,2) is consistently performing better than 

MMA(1,2) and CMA(2,2). 

6.4.2 Experiment 2: SER Performances with TSE/FSE 

The evaluation of SER can provide the performance comparison over a range of SNR 

values and it can incorporate any degradation due to imperfect restoration of carrier­

phase and/or signal-energy. Here we simulate MMA(2,2) and ,B-MMA over the same 

two channels as used in Experiment 1. Step-sizes have been selected such that, for TSE, 

both MMA(2,2) and ,B-MMA acquire stable convergence around 3000th, 6000th and 

20,OOOth iteration for 16-, 64- and 256-QAM, respectively, and for FSE, both MMA(2,2) 

and ,B-MMA acquired stable convergence around 1500th, 3000th and 1O,OOOth iteration 

for 16-, 64- and 256-QAM, respectively. At lower SNRin, the ,B exhibits smaller value 

which slows down the convergence and may lead to an unfairly better solution. To avoid 

it, we increased Jl such that the product of ,B and Jl is kept constant for all SNRin' 

In Fig. 6.7(a), we depict SER performances for 16/64/256-QAM over the telephonic 

channel. Observe that at lower SNR values, both MMA(2,2) and ,B-MMA performed 

almost identical; but, for higher SNR values, ,B-MMA outperformed MMA(2,2) for all 

QAM sizes. In Fig. 6.7(b), we depict SER results over the microwave radio channel. 

Again, we observe that ,B-MMA is yielding much lower SER than MMA{2,2). 

6.4.3 Experiment 3: Validating MSE/ISI Convergence Analysis 

In this experiment, we compare the analytical ISI/MSE performance of ,B-MMA with 

those obtained from Monte-Carlo simulations for 16/64-QAM. We use the same experi­

mental setup we used in subsection 6.4.1. Results are summarized in Fig. 6.8, note that 

the simulated and analytical traces are in full conformation with each other for both 

MSE and lSI performance measures. 
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6.5 Summary 

We have proposed a new MMA algorithm by exploiting the 12-optimization (Le., energy 

maximization) cost-function for joint blind equalization, carrier-phase recovery and en­

ergy restoration of square-QAM signals. The quadrature components of the equalized 

sequence are constrained not to exceed the largest real part of the transmitted signal. 

We optimized the cost to yield an adaptive multimodulus algorithm, which we termed 

as ,B-MMA. The parameter ,B is evaluated by considering the presence of convolutional 

noise at equalizer output. We have experimentally showed that the resulting new algo­

rithm (,B-MMA) can give better solution in terms of removing lSI and lower SER values 

under the presence of noise than existing established adaptive algorithms like MMA(1,2), 

CMA(2,2) and MMA(2,2). 

We have also shown that the ,B-MMA is fully capable of recovering the true value of 

signal energy upon successful convergence. Also note that the computational complexity 

of ..6-MMA is less than the existing addressed equalizers (like MMA(1,2), CMA(2,2) 

and MMA(2,2)). The ,B-MMA may be considered as the first ever successful adaptive 

implementation of an 12-optimization criterion for joint blind channel equalization and 

carrier-phase recovery. 
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Figure 6.6: Plots of lSI convergence on fractionally-spaced channel with 16/ 64-QAM. 
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Figure 6.7: Plots of SER ver u SNRin for MMA(2,2) and ,B-MMA with 16/64/256-QAM. 



Q) 
u 
c 
(\j 

E 

0 .. ··· 

o -20 
't 
Q) 

0... 

· . . 
TSE: 16QAM, SNR. = 30dB, ~ = 1.126, · . m · . 
:~ = 1.42e-4, SNRout '" 28.2dB, N = 7, 'Y = 3. 

. . . . . . . . . . . . . . . . . . . . . . . . . . \ . . . . . . . . . . , " , . ,. ..... . . .. · . . . 
:Black solid: :ODE Analysis of ~-MMA 
:Thick grey jagged: Monte Carlo Sim;ulation 
· . . 

lSI 

.. ~ .... ... ... . 
-30 L-__ ---L----~------~-----L------L------

4000 6000 5000 3000 
Iteration 

o 

~ 

CO 
:£ 
~ 0 . 
~ 

:::l 
(/) 
(\j 
Q) 

~ 

1000 2000 

(a) 

)SE: 64-QAM, SNR. ,,; 35dB, ~ = 2.353, . . m . . . 
··; I1 =·1·53e-5 · SNR ··· · .. 3·3·2dB · N =7 · 'Y '= 7 .... ... : :r ' :' out : ' , : ' . ; 

. ' 

:Black solid::ODE AnalySis of ~-MMA 
Thick grey jagged: Monte Carlo Simulation 

. .. . .. . . ~ 

MSE 

~ -1 0 r"'~~~: 'S" ~" ~"~' ....... : ........ . 
E 
~ 

o 
't 
~ - 20 

L-~~~~~~~~ 
-300 2000 4000 6000 8000 

Iteration 
10000 12000 

(b) 

97 

Figure 6. : ISI/ lISE traces of ,B-MMA: analysis versus simulations with 16/64-QAM. 



Chapter 7 

Blind Source Separation: 
Iterative Methods with 
Optimized Cumulants 

7.1 Introduction 

In the field of blind source separation, joint-diagonalization based approaches constitute 

an important framework [35,32,34]. Recently, some authors have shown how to perform 

diagonalization by simultaneously using cumulants of third- and fourth-order [21]. In this 

Chapter, we extend these results to the optimal composition of third- and fourth-order 

cumulants. \Ve introduce free parameters (or weights) {3 in combining the cumulants 

(of pair-wise mixed signals) and evaluate its optimal value such that the mean-square 

estimation of Given's rotation is minimized. We show that the optimal value of {3 depends 

on the a priori statistical knowledge of the mixing signals. However, based on several 

computer experiments, we notice that (even) in the absence of such a priori knowledge, 

the use of an approximate value of {3 (obtained directly from the statistics of the observed 

source) may lead to satisfactory performance and yield better results than some existing 

algorithms (which do not consider such optimization). 

7.2 Background and Preliminaries 

The problem of blind source separation (BSS) arises in many signal processing applica­

tions like communications, array processing, speech analysis and speech recognition. In 

all these instances, the underlying assumption is that several linear mixtures of unknown , 

random, zero-mean, and statistically independent signals, called sources, are observed; 
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the problem consists of recovering the original sources from their mixtures without a 

priori information of coefficients of the mixtures and knowledge of the sources. The 

principle involved in the solution to this problem is nowadays called independent compo­

nent analysis (lCA), which can be viewed as an extension of the widely known principal 

component analysis (PCA). The independence between the recovered sources is measured 

by their mutual information (M1). The M1 measures the information that one variable 

contains about another one, i.e., the reduction of uncertainty of a magnitude when an­

other one is known. The Ml is zero if and only if the sources are independent. A natural 

criterion to measure the mutual independence between M variables (say y = {Yi}f!1) 

is the divergence between the joint probability density and the product of the marginal 

ones. If we follow the Kullback-Leibler divergence, it ends up with the M1 [32]: 

(7.2.1) 

where p(y) and Pi(Yi) are the multivariate and marginal PDF of y and Yi, respectively. 

Consider an ]\f-input ]\f-output memory less channel described by x(n) = As(n), where 

n E Z is the discrete time, x(n) is an M x 1 vector of the observed signals, s(n) is an 

M x 1 vector of the (original) sources, and A E lRMxM is an unknown (invertible) mixing 

matrix. Our goal is to determine a separation matrix B E lRMxM such that y(n) = 

Bx(n) = BAs(n) = Cs(n) recovers the source signal up to a permutation and scaling, 

where C ia a global matrix representing a mixing-nonmixing structure. Source separation 

is typically carried out in two-step. First, whitening or standardization projects the 

observed vector x( n) on the signal subspace and yields a set of second-order decorrelated, 

normalized signals z(n) = Wx(n) such that E[zzT] = 1M. As a result, the source 

and whitened vectors must be related through a unitary transformation z(n) = Qs(n). 

The separation problem thus reduces to the computation of unitary matrix Q, which is 

accomplished in a second step. The lCA approach to nss consists of computing Q such 

that the entries of the separator output y(n) = Cs(n) = QTWx(n) = QT z(n) = Qz(n) 

are as independent as possible.
1 

IThe philO6Ophy behind this two-step strategy is described by Cardoso [27]; he emphasized that 
components that are as independent a:> possible according to some measure of independence are not 
necessarily uncorrelated because exact mdependence cannot be achieved in most practical applications, 
Thus, if de-correlation is desir~, i~ must b~ enforced explicitl~, Interestingly, this approach leads to a 
'mple implementation; the whltenmg matrix W can be obtamed straightforwardly by computing the 

51 ' 'f d matrix square root of the inverse covariance matrix 0 x, an the orthonormal matrix QT can be obtained 
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Comon [32] studied the separability condition for this problem, and pointed out that 

for statistically independent non-Gaussian sources, the separation can be achieved by 

restoring the independence. He proposed using Ml as a tool to measure the indepen­

dence of the output signals, and to use an Edgeworth expansion to approximate the 

probability density function in the Ml criterion. The Edgeworth expansion of the Ml of 

a standardized (i.e. after whitening) real variable, up to an additive constant 10 and as 

a function of standardized cumulants'l, is given as follows [32]: 

-I[y] ~ 10 + L (4X:;ii(Y) + X:;iii(Y) + 7x:tii(Y) - 6X:;ii (Y)X:iiii (y)) 
i 

(7.2.2) 

where X:iii(Y) and X:iiii(Y) are the third-order and fourth-order marginal cumulants of 

each entry of y, i.e., X:iii(Y) = E[y?] and X:iiii(Y) = E[yt]- 3E2[y;]. Comon [32] have 

shown that the cumulants are contrast. By definition, a contrast .:J(y) is a mapping 

from the set of densities {Pi (Yi) , Y E EM} to JR, where M is the number of sources, 

such that if Y has independent components, then .J(y) ~ .J (Ay), VA nonsingular, 

with equality if and only if A is nonmixingj also, .J(y) is invariant to permutation or 

scaling of the components of y. Thus the maximization of specific cumulants would 

result into a successful blind separation for particular type of sources3
• For example, if 

the sources are asymmetrical (skewed) then the maximization of third-order cumulant 

K;ii(Y) would be enough to ensure successful separationj similarly, for symmetric sources, 

the maximization of fourth-order x:riii(Y) would be sufficient. This is 

{ 

LK;ii(Y), 

.J(y) = i 2 
~ Kiiii(Y)' 

for asymmetrical sources 

for symmetrical sources 
(7.2.3) 

There exist number of ways to find the unmixing matrix Q such that the contrast (7.2.3) 

is maximized. The lCA algorithms based on the maximization of third- and fourth-order 

cumulants are reported in [32] and [33] by Comon, respectively. The contrast (7.2.3) is 

by the Jacobi technique s~bject to the maximization of some suitable criterion for independence. In short, 
whitening (second-order mdependence) solves the BSS problem up to an orthogonal transformation. 

2For zero-mean random variables X"Xj,X",X" third- and the fourth-order cumulants are defined 

respectively as: K.]"(~) ~~ (um(X"Xj,X,,) = E[X,XjX,,] and Kij"I(X) ~f (um(Xi,Xj,X",X,) = 
E(X,XjX"X,] - E(X.XjlE(.\:".~,] - E(X,X"lE(Xj~,] - E[~,X,]E(XjX"l. 

3If a certain criterion for bhnd ~ur~e sep~atlOn q~ahfies .to. be a contrast then it is not necessary 
that it approximates the }'II too. SImIlarly, If a certam statIstIcal quantity approximates MI then it 
does not necessarily qualifies for a contrast. Notice that the expression (7.2.2) which is a pretty good 
approximation to MI is not a proven contrast (as a whole). 
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discriminating over the set of random vectors y if they have at most one null third-order 

(resp. fourth-order) marginal cumulant for skewed (resp. symmetrical) sources [32, 33]. 

Just recently, Blaschke & Wiskott showed that the joint use of third- and fourth-order 

cumulants is an admissible choice for a contrast [21]: 

m~.l(y): .l(y) = L (4~;ii(Y) + ~;iii(Y)) 
Q i 

(7.2.4) 

The Blaschke-\Viskott's ICA algorithm is known as CuBICA. The contrast (7.2.4) pro-

vided a good mean to handling the symmetric and asymmetric sources simultaneously. 

In the same year when CuBICA appeared, Comon obtained a more generalized result; 

he showed that CuBICA is a special case of the following contrast [34, Theorem 13]: 

.l(y) = L wiJi(y) (7.2.5) 
i 

where, 'ii, Wi is a strictly positive number and Ji(y) is a contrast; i.e., the weighted sum 

of contrasts is also a contrast. The literature witnesses several efforts where researchers 

proposed a number of contrasts, obtained by the weighted sum of contrasts. For example, 

in [94], Moreau and Thirion-Moreau suggested a weighted contrast using the fourth-order 

statistics, as given by: 

.l(y) = 

M 

c L Wi"'iiii(y) 
i=1 
M 

c LWiE[yt] 
i=1 

(7.2.6) 

where c indicates the sign of kurtosis and Wi are free parameters. In (7.2.6), it was 

assumed that all sources have same sign of kurtosis. For the case M = 2, they showed 

how to obtain the optimal values of weight parameters. Moreover, some higher-order 

(including the third-order) generalization and complex-valued extension of (7.2.6) were 

also discussed in [94,93]. In [124], Stoll and Moreau proposed a yet another generalized 

form of weighted fourth-order contrast function, as given by 

.l(y) = t ~;iii(Y) + 2 (WI .L "';iij(y) + W2 .L "';ijj(Y) + W3 L "';ijk(Y)) 
i=1 I,J=1 I,J=1 i j k=l (7.2.7) 

#i j>i k-i#i 
k>j 

The contrast (7.2.7) is an attempt to combine the autocumulants and cross-cumulants. 

In general, autocumulants and cross-cumulants are assumed to be maximized and mini­

mized, respectively. In [124], it was experimentally shown that it is possible to get better 
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performance (in some cases) by selecting appropriate binary values for weight parame­

ters. However, it was not suggested analytically that how to obtain the optimal values of 

these parameters for given source statistics. Moreover, closed-form near-optimal/optimal 

fourth-order estimators using weighted-centroid appeared recently in [96] and [146]. 

It is interesting to notice that all of the aforementioned weighted contrasts were 

based on fourth-order statistics; fourth-order statistics are more suitable for symmetric 

sources than asymmetric ones. Notice that asymmetric sources arise in many practical 

scenarios, such as in sonar signal processing [101] or source separation of urban images 

[151] (see also [67] and [68]). In some cases, digitized speech signals have non-zero 

skewness; and separation of such signals get benefit from third-order statistics [30]. Also, 

in biomedical applications, skewness is sometime more important to just non-Gaussianity 

for certain categories of signals, say, certain artifacts (like eye-blinking) and, some known 

components in electrocardiograms and electroencephalograms are not symmetric. 

Due to the importance of asymmetry, in this Chapter, we present a weighted form of 

third- and the fourth-order contrast (7.2.4) which is capable of handling the symmetric 

and asymmetric sources jointly in an optimal manner. The proposed weighted contrast 

and the derivation of optimal weight parameter is described in Section 7.3, the resulting 

ICA algorithm is given in Section 7.4, and the performance comparisons are provided 

in Section 7.6. We conclude briefly in Section 7.7. All simulations were done with 

MATLAB; analytical calculations in Section 7.4 were supported by Symbolic toolbox of 

MATLAB. 

7.3 Proposed Weighted Contrast And Optimal Weight Pa­
rameter 

At the end of last section, we emphasized over the importance of weighted contrasts in 

source separation and the presence of asymmetrical sources in various engineering prob­

lems. In this section, for the blind separation of mixture of symmetric and asymmetric 

sources, we propose a weighted contrast which jointly diagonalizes the third- and the 

fourth-order cumulants as a generalization of the contrast (7.2.4) as given by 

hi 

.J(y) = L (Ws,iKrii(Y) + WK,iKriii(Y)) (7.3.1) 
i=l 
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The contrast (7.3.1) does not arise directly from the MI criterion, but it is weighted com­

bination of two solutions (refer to equation (7.2.3)) which are not only contrast but also 

approximate 111 under specific assumptions. However, in the absence of those assump­

tions, it is possible to obtain better results using (7.3.1) with appropriately selecting the 

values of free parameters. This improved efficacy is possible because the other contrasts 

(7.2.3) are only approximate 1\11 solutions. The algebraic nature of cumulants is tenso­

rial (with symmetry) [89]; thanks to the multilinearity of cumulants K. .. (y) in K ... (Z), the 

criterion (7.3.5) becomes an implicit function of the elements of the unitary matrix Q, 

we obtain: 

Kiii(Y) = I: QijQikQilKjkl(Z) 

jkl 

Kiiii(Y) = I: QijQikQiIQimK,jklm(Z) 

jklm 

(7.3.2a) 

(7.3.2b) 

where the unitary transformation matrix Q = QT is modeled as Givens rotation which 

is a rotation around the origin within the plane of two selected components /-L and v, and 

has the matrix form, 

M-l M 

Q = II II QJlV 
Jl=l v=Jl+l 

cos rpJlV, for ( a, b) E {(/-L, /-L), (v, v)} 

- sinrpJlv, for (a, b) E {(/-L, v)} 

sin rpJlV, for ( a, b) E {(v, /-L)} 

c5ab , otherwise 

(7.3.3a) 

(7.3.3b) 

with Kronecker symbol c5ab and rotation angle rpJlv, Q is a product of (M{M - 1)/2) 

Givens (or plane) rotation matrices QJlv. The estimation of the plane rotation rpJlV 

is obtained by an iterative Jacobi method over the set of orthonormal matrices. The 

orthonormal transforms are thus obtained as a sequence of plane rotations. Each plane 

rotation is applied to a pair of coordinates, such that, YJl +- YJl cos rpJlV + Yv sin rpJlV and 

Yv +- -YJl sin rpJlV + Yv cos 4>JlV' while leaving the other coordinates unchanged4. Thus, 

- 4This data-based Jacobi algorithm for leA works through a sequence of sweeps on the whitened data 
ntil a given orthogonal contrast is optimized; sweep is defined to be a one complete pass through all the 

~f(.M - 1)/2 possible pairs of di~tinct indices. In simple words, the Jacobi-iteration spans the whole set 
f rotation matrices in a sequential manner. It is mentioned in [27] that the updating step on a pair po, II 

o artially undoes the effect of previous optimizations on pairs containing either po or II. For this reason, it is necessary to go through several sweeps before optimization is completed. 
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the Jacobi approach considers a sequence of two-dimensional rCA problems. Considering 

the subspace of only two selected components, the Givens rotation matrix becomes: 

Q = [ cos 1> sin 1> ] 
- sin 1> cos¢ 

(7.3.4) 

That is, for Af = 2, we get 

(7.3.5) 

Notice that the number of free parameters have been reduced to four. It can further 

be reduced to three, if the contrast is normalized by anyone of the four parameters; 

however, the expression (7.3.5) has the advantage that any of the free parameters can be 

set to zero. In the blind scenario, where we usually have no a priori knowledge of mixing 

signals, the tuning of these weight parameters is not trivial. Suppose it is known that the 

mixing sources are highly skewed then we can limit the search space of these parameters 

by setting WS,l = 1, WK,l = WK,2 = 0, and look for the optimal value of WS,2. Similarly, if 

it is known that the sources are symmetrical then we can set WS,l = WS,2 = 0, WK,l = 1, 

and look for the optimal value of WK,2· 

In an earlier attempt, Nandi studied the contrast (7.3.5) for a two-source scenario 

and put forward the following suggestions [98]: 

1. WS,l = WS,2 and WK,l = WK,2, 

3. aWS,i + WK,i = 1 (normalized), i = 1,2 and a E JR. 

Exemplary, he suggested the following simple and suboptimum expressions (i = 1,2): 

(7.3.6a) 

(7.3.6b) 

The expressions (7.3.6) did provide better results in number of experiments; however, 

due to their heuristic nature, it is difficult to consider them a suitable choice for a general 

ICA problem. Interestingly, the study of the single weight parameter for the optimized 
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use of a fourth-order contrast function has been studied in [94, 96, 146]. Motivated by 

the convincing results reported in these works, we also limit our search to a single weight 

parameter. \Ve select WS,l = WS,2 = 1 and WK,l = WK,2 = /3, which lead to the following 

contrast: 

(7.3.7) 

The optimal value of the single weight parameter /3 can be obtained by performing 

small error analysis; i.e., the value of /3 is optimum if it minimizes the asymptotic (large­

sample) mean-square error. Thanks to the work reported in [94], this analysis can easily 

be carried out. First, we consider that the mixing matrix is orthonormal so that the 

prewhitening stage is not necessary. FUrther, the asymptotic analysis is carried out for 

the case of two real sources, subject to the planar (Givens) rotation. In such a case, it 

is assumed that a first stage has already realized the normalization of the observation 

vector, i.e., z is supposed to be a white vector. 

Thus, we have to estimate an angle </J according to the maximization of .J(.), i.e., 'J = 

argmax</>.J(¢), where 'J is an estimate of the true (separation) value ¢. In practice, the 

maximization of contrast function does not provide the exact value of the parameter ¢, 

since the true cumulants are actually approximated by the sample estimates. Replacing 

the expectations by sample averages leads to the empirical version of .J(y), which is 

denoted j(y) and is given by 

j(</J) = Kill (y) + K~22(Y) + /3( Killl (Y) + K~222(Y)) (7.3.8) 

where Kiii(Y) = ~ L:~=l yr(k), and Kiiii(Y) = -3 + ~ L:~=l yt(k), i = 1,2. As a result, 

an estimation error is involved in the estimation of the true value ¢. The estimated 

angle 'J is actually the solution of the estimating equation j'('J) = aj('J)/8</J1r/J=~ = O. 

Approximating this derivative around the true value ¢ by means of its Taylor series 

expansion yields: j'('J) ~ j'(¢) + J"(¢)('J - ¢), where J"(¢) = aJ'(</J)/8</J1r/J='i> and 

j'(¢) = aj(</J)/8</J1<t>=4>' Assuming 'J to be in the neighborhood of ¢, we obtain J'([» ~ 
_j"(¢)((p - ¢). The mean square error (MSE) is given by 

MSE= 
E [(J'(¢)f] 

(E [J"(¢)]f 
(7.3.9) 
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When ¢ = 4>, y = s. The MSE expression (7.3.9) is generalized and is thus valid for 

any two-dimensional contrast for lCA problem. Further, the strong law of large number 

ensures that j''(4)) converges with probability one to its expected value. As N --+ 00, 

we have 

E[j''(4))]--+ - (Bo + Bd3) 

where 

Bo = 3 (Krll (s) + K~22(S)) 

BI = 4 (Krl1l(S) + K~222(S)). 

Next we obtain E[(jl(4»)2] as follows: 

E [ (j/(4» f] --+ Ao - 2At + A2t3
2 

where 

Ao = 9 (Krll(S)E [st] + K~22(S)E [s~] - 2Krl1(S)K~22(8)) 

Al = 12 (Krn(S)K2222(S)E [s~] + K~22(S)Kllll(S)E [s1] 

-Kll1 (S)Kllll (s)E [s~] - K222(S)K2222(S)E [8~)) 

A2 = 16 (Krlll (s)E [s~] + K~222(S)E [s~] - 2KllU(S)K2222(S)E [81] E [s~]) 

(7.3.10) 

(7.3.11a) 

(7.3.11b) 

(7.3.12) 

(7.3.13a) 

(7.3.13b) 

(7.3.13c) 

The MSE depends on the statistics of the sources and on the parameter 13. We now 

easily derive the optimum value of 13, denoted 13*, such that the MSE is minimum by 

solving the equation /:I11SE = 0, i.e., 

AoBI + AIBo 4Ao (Krll1 (8) + K~222(S)) + 3AI (Kill (8) + K~22(8)) 
13'" = A2 Bo + AIBI = 3A2 (Kill (8) + K~22(S)) + 4AI (KrIll (s) + K~222(8)) (7.3.14) 

which indicates that the 13* depends on the statistics of mixing source and is independent 

of the coefficients of unknown mixing matrix. Hence, given the source statistics, we 

can obtain a contrast with minimum asymptotic MSE. In the scenario that nothing is 

known a priori about the source statistics, a possible simple strategy is to use statistical 

properties of the observed sources for the evaluation of 13"', and the separation can be 

repeated until 13'" converges. 

Notice a resemblance among the expressions (7.3.6) and the optimal 13 (7.3.14), 

the denominators in these expressions can be seen to be equal, if Q is selected to be 
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3A2/(4Ad. Also notice that if the two sources 81 and 82 have the same statistics, then 

f3* = 1, and this is quite natural because in that case, nothing enables to make any 

statistical distinction between 81 and 82. The experiments in Section 7.6 will illustrate 

the validity of the asymptotic expression (7.3.9) and the performance improvements that 

can be derived from the use of the optimal weight parameter (7.3.14). 

1.4 Derivation of the Proposed leA Algorithm 

We consider the case of real mixtures and assume that the angle of rotation is required 

to lie in the interval {-1r /2, 1r /2]. Considering the pairwise estimation of angle of rota­

tion, the optimization problem reduces to a one-dimensional search. Looking carefully 

at the optimization criterion (7.3.5) reveals that stationary points can be obtained by 

mere polynomial rooting technique (as initially suggested in [32]). First, we reformulate 

expressions (7.3.2) in a matrix form for the ease of derivation as given by 

Qi1Qk1 

QilQk2 

Qi2Qk1 

Qi2Qk2 

T 

1I':121{Z) 1I':112{Z) 1I':122(Z) 1 
11':221 (z) 11':212 (z) 1I':222(Z) 

Qj1Qk1 

Qj2Qk1 

Qj1Qk2 

Qj2Qk2 

1I':1111{Z) 1I':1112(Z) 1I':1211(Z) 1I':1212{Z) 

1I':1121{Z) 1I':1122(Z) 1I':1221{Z) 1I':1222(Z) 

1I':2111(Z) 1I':2112(Z) 1I':2211(Z) 1I':2212(Z) 

11':2121 (z) 1I':2122(Z) 11':2221 (z) 1I':2222(Z) 

(7.4.1a) 

QnQj1 

Q12Qj1 

Ql1Qj2 

Ql2Qj2 

(7.4.1b) 

To avoid trigonometric functions in Q (7.3.4), we adopt the following form from [32]: 

- 1 [1 ()] 
Q = viI + (}2 -() 1 

(7.4.2) 

where () is an auxiliary variable defined as () ~f tan cf>. Now, we expand the squares of 

third-order cumulants as a function of (): 

1 6 
Ws,lll':Iu (Y) + WS,211':~22{Y) = ( 2 a I: q()i 

1 + (J) i=O 

(7.4.3) 

wherecti = ws,2b6+wS,1b~, Cs = 2(Ws,1b2ba-ws,2bobl), C4 = ws,1(2b1ba+b~)+wS,2(2bob2+ 

bi), CO = ws,lb5 + ws,2b~, C3 = 2(WS,1 - ws,2){boba + b1b2), C2 = wS,2{2b1b3 + b~) + 



108 

ws,I(2bob2 + bn, and CI = 2(WS,lbobl - WS,2 b2b3)' We define, for the sake of simplicity, 

bo = /illl(Z), bl = 3/il12(Z), b2 = 3/il22(Z) and b3 = /i222(Z). Similarly, we expand the 

squares of fourth-order cumulants: 

8 

WK,I/iIul (Y) + WK,2/i~222(Y) = (1 +1(2)4 ~ diO
i (7.4.4) 

where dg = wK,la~+wK,2a5, d7 = 2(wK,la3a4-wK,2al ao), d6 = 2(wK,la4a2+wK,2aoa2)+ 

wK,2ai+wK,la~, d5 = 2wK,1(ala4+a2a3)-2wK,2(a3ao+ala2), d4 = (WK,l +WK,2)(2a3al + 

2a4ao + a~), d3 = 2wK,I(a3ao + ala2) - 2wK,2(ala4 + a2a3), d2 = WK,2(2a4a2 + a~) + 

WK,I(2aoa2 + an, d1 = 2(WK,lalao - wK,2a3a4), and do = wK,la5 + wK,2a~. We define: 

ao = /ill11 (z), al = 4/i1112 (z), a2 = 6/i1122(Z), a3 = 4/il222(Z) and a4 = /i2222(Z). 

Combining (7.4.3) and (7.4.4), we obtain 

(7.4.5) 

where eg = CS + dg, e7 = C5 + d7, e6 = C4 + d6 + cs, e5 = C3 + d5 + C5, e4 = C2 + d4 + C4, 

e3 = Cl + d3 + c3, e2 = CO + d2 + C2, el = dl + ct, and eo = do + CO· Taking the derivative 

of (7.4.5) with respect to () and setting that to zero, we obtain the following: 

g 

n(()) = L Ik()k = 0 (7.4.6) 
k=O 

where Is = e7, h = 2e6-8es, 16 = 3e5-7e7, 15 = 4e4-6e6, 14 = 5e3-5e5, h = 6e2-4e4, 

h = 7el - 3e3, It = 8eo - 2e2 and 10 = -el· The expression (7.4.6) is eighth-order; 

however, the proposal WS,1 = WS,2 and WK,l = WK,2 will help it to get reduced to fourth­

order. By selecting WS,1 = WS,2, we notice that C6 = CO, C5 = -Ct, C3 = 0 and C4 = C2; 

similarly, with WK,1 = WK,2, we obtain ds = do, d7 = -db d6 = d2, d5 = -d3, it makes 

us write (7.4.5) as follows: 

(

(CO + do)(Og + 1) - (CI + dt)(07 - 0) ) 

+(CO + C2 + d2)(()6 + ()2) - (d3 + q)(()5 _ ()3) 

+(2C2 + d4)e4 

.J(()) = (1 + ()2)4 

(7.4.7) 

Thanks to Comon [32J for the substitution, ~ = () - 1/(), which simplifies (7.4.7) into a 

reduced-order form as a function of auxiliary variable ~, given by: 

4 

.J(C) - 1 "'" h ci 
<" - (4+e)2 ~ i<" 

(7.4.8) 
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where h4 = eo + do, h3 = -(CI + d1), h2 = 5eo + C2 + 4do + d2, hI = -(4CI + 3d1 + d3) 

and ho = d4 + 4C2 + 4eo + 2do + 2d2· Taking the derivative of (7.4.8) with respect to ~ 

and setting that to zero, we obtain the following polynomial: 

4 

n(~) = L9k~k = 0 (7.4.9) 
k=O 

where 94 = -h3/8, 93 = 2h4 - h2/4, 92 = 3h3/2 - 3hI/8, 91 = h2 - ho/2 and 90 = hI/2. 

The explicit analytical solutions to the roots of polynomial (7.4.9) can be found with 

standard algebraic procedure such as Ferrari's formula [108]. Preliminary experiments 

point out that, although complex-valued roots may appear as favorite, the best real­

valued candidate root should typically be preferred. At most two of the roots correspond 

to the maxima of .J(~). Similar to the findings in [35], there are in general only two real 

roots to polynomial n(~) and the contrast :J(f,,) admits in general a single maximum. 

After finding the roots of (7.4.9) and the corresponding value of the contrast, we retain 

~ that maximizes the contrast, and compute the () (which corresponds to the tangent of 

the rotation angle) by solving 

()2 _ ~() _ 1 = 0, (7.4.10) 

we retain () which satisfies () E (-1,1] and finally compute the rotation matrix (7.4.2). 

Next, we consider two cases of the proposed ICA algorithm as follows: 

1. First, we assume constant values for free parameters: WS,1 = WS,2 = 4, WK,l = 

WK,2 = 1, (or equivalently, WS,1 = WS,2 = 1, WK,1 = WK,2 = ~). It results 

into the same contrast as in (7.2.4); however, unlike CuBICA, we have used root­

finding method for the maximization of contrast. The resulting ICA algorithm 

is named composite-order IGA algorithm (based on third- and fourth-order cumu-

lants), GOIGA. 

2. Secondly, we assume WS,l = WS,2 = 1 and WK,l = WK,2 = {3, where {3 is an 

optimized weight parameter, as we derived in Section 7.4. The resulting ICA 

algorithm is nanled optimized composite-order IGA algorithm (based on third- and 

fourth-order cumulants), OGOIGA. 
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7.5 A Closed Form Estimator and Background Noise 

In the fundamental real-valued two-source scenario, the ICA problem reduces to the iden­

tification of a single parameter, the unknown angle characterizing the Given's-rotation 

mixing matrix. A variety of closed-form methods for the estimation of this angle have 

been proposed in the literature [31, 144, 57, 147, 50, 148, 62, 97, 145]. These estimators 

consist of simple formulas involving straightforward operations on certain statistics of 

the whitened sensor output. Most of these share the common feature of being based on 

the fourth-order statistics of the whitened sensor output. It is interesting to note that 

all of the aforesaid closed-form estimators were based on fourth-order statistics. 

We restate the weighted contrast (7.3.7) as follows: 

(7.5.1) 

Owing to [21], it is possible to express the contrast (7.5.1) as the function of rP as follows: 

.J(rP) = Ao + A4 cos(4rP + <P4) + As cos(8rP + rPs) (7.5.2) 

where Ao, A4 and As are constants and depend upon the statistics of mixing signals. 

On the other hand, <P4 and <Ps are such constants which also contain the information 

of Given's rotation. Note that the first term Ao plays no role in the estimation of rP. 

Similarly constants As and rPs do not comprise of third-order statistical information and 

contribute no significant role if the mixing sources are asymmetrical in nature. One can 

refer to [21] for the detailed expressions for these constants which are obtained for the 

specific case (3 = 1). Importantly, the constant rP4 in the middle term not only comprise 

of third- and fourth-order statistics but can be used to obtain a closed form estimator 

for the separation of mixed symmetrical/asymmetrical sources [93]. The angle rP that 

maximizes A4 cos( 4rP + <P4) is 

A rP4 1 
rP = -4" = -4 arctan(So + (3S},Co + (3Cl) (7.5.3) 

which exploits the relations So + (3S1 = sin <P4 and Co + (3C1 = cos rP4. Also arctan(y, x) is 

the unique angle a E (-7t', 7t'] for which cos(a) = (x/ Jx2 + y2) and sin(a) = (y/ Jx2 + y2). 
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Constant So, SI, Co and C1 are computed as: 

So = 24(KIU(Z)K112(Z) - KI22(Z)K222(Z)) 

SI = 4( 7(Kllll(Z)KI112(Z) - K1222(Z)K2222{Z)) 

+ 6K1l22 (Z)(K1l12(Z) - Kl222(Z)) + K1111 (Z)Kl222(Z) - K1112(Z)K2222(Z)) 

CO = 6(K~11(Z) + K~22(z) - 3(K~l2(Z) + K~22(Z)) - 2(Kll1(Z)Kl22(Z) + K112(Z)K222(Z))) 

C1 = 7(K~lll (z) + K~222(Z)) - 36KrI22(Z) - 2Kl111 (Z)K2222(Z) - 32Kl112(Z)KI222(Z) 

- 12(Kl111 (Z)K1l22(Z) + K1122(Z)K2222(Z)) - 16(K~112(Z) + K?222 (z)) 

If we consider {3 = 1, then the closed-form estimator (7.5.3) provides an equivalent for­

mulation of ICA algorithm as CuBICA34a [21J; however, note that unlike CuDICA34a, 

which is a search-based algorithm, the proposed expression (7.5.3) is a closed-form esti-

mator. 

In practice, the mixing model should also take into account a possible additive noise. 

This is considered hereafter because we want to take into account both the measurement 

noises and errors resulting from the first stage of whitening. Hence, now, the mixing 

model we consider reads x = As + g, where g is the vector of additive noise. In a 

two-source scenario, each noise gi, i E {1,2} is a zero-mean, independent and identically 

distributed Gaussian random signal with equal power, i.e., E[g?J = E[g~J = u 2 • Moreover, 

gi, i E {1,2} are assumed statistically mutually independent and independent of the 

sources Si, i E {1,2}. 

The formula of optimal weight {3* remains same as we derived in Section 7.3: 

(3* = AoBI + AIBo 
A2Bo + AIBI' 

However, the auxiliary variables now include the statistics of noise, viz 

(7.5.4) 

Ao = 9 (Bou6 + 3Bou4 + (3Bo + do) u
2 + Bo + do - 2c6) (7.5.5a) 

Al = 12 (d1U6 + (3dl - lOdo) u
4 - (d3 - d2 - 3dl + 20do) u2 - d3 + d2 + dl - lOdo) 

(7.5.5b) 

A2 = 16 ((145 HI - 18cl) u8 + (15B1 - 72cl) u6 + (d5 - d4 + 940 Bl - lO8cl) u4 

+ (d7 + d6 + 2d5 - 2d4 - 72CI + 15H!) u2 + d7 + d6 + d5 - d4 - 2c~ - 18cI + ~5 B I) 

(7.5.5c) 



where auxiliary variables are defined as 

Bo = 3 (K:~l1(s) + K:~22(S)) 

Bl = 4 (K:~l1I (s) + K:~222(S)) 

CO = K:Ill(S)K:222(S) 

Cl = K:1111(S)K:2222(S) 

do = K:~11 (S)K:l111 (s) + K:~22(S)K:2222(S) 

d1 = 3 (K:rll (s )K:2222 (s) + K:~22(S ) K:ll 11 (s)) 

d2 = K:r11 (S)K:~222(S) + K:~22(S)K:r11I (s) 

d3 = K:I11 (8 )K:1111 (S )K:I1111 (S) + K:222(S )K:2222 (8 )K:22222 (S) 

d4 = 6 (K:rll 1 (S)K:2222(S) + K:~222(S)Kllll(S)) 

d5 = 15 (K:~llI(S) + K:~222(8)) 

d6 = 10 (K~l1(S)K~llI(S) + K~22{S)K~222(S)) 

d7 = KrIll (S)Kllllll (s) + K~222(S)K222222(S) 
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(7.5.6a) 

(7.5.6b) 

(7.5.6c) 

(7.5.6d) 

(7.5.6e) 

(7.5.6f) 

(7.5.7a) 

(7.5.7b) 

(7.5.7c) 

(7.5.7d) 

(7.5.7e) 

(7.5.7f) 

which indicates that the f3* depends on the statistics of mixing source and additive noise, 

and is independent of the coefficients of unknown mixing matrix. Hence, given the source 

and noise statistics, we can obtain a contrast with minimum asymptotic m.s.e. Finally, 

with the help of f3* (7.5.4), the optimum value of Givens rotation is estimated as: 

4>* = -~ arctan(So + f3* S1, Co + f3*CI ) (7.5.8) 

The estimator (7.5.8) is named Closed-Form OCOICA (CF-OCOICA). 

7.6 Simulation Results 

In order to illustrate the potential benefits of the proposed algorithms, some computer 

simulations are now presented. We intend to compare the performance of COICA and 

OCOICA with the joint diagonalization of third-order cumulant matrices (Com3) [33], 

the joint diagonalization of fourth-order cumulant matrices (Com4) [32], and the joint 

diagonalization of third- and fourth-order cumulant matrices (CuBICA) [21]. The per­

formance measure, interference-to-signal ratio (ISR), introduced in [29], has been used 
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in our simulation to characterize the restitution quality quantitatively. The performance 

index reads 

ISR = ~ (L:j=1ICijI2 -1) 
L...J max ·ICi .12 
i=l J J 

(7.6.1) 

where Cij represents the element (i,j) of the global mixing-unmixing matrix C. In the 

two-signal case, the ISR approximates the MSE of the angle estimates around any valid 

separation solution [146]. 

We consider two cases of sources: 

1. A parameterized source: We borrow a parameterized source 8(0:) from [93]. This is 

a discrete Li.d. signal that takes its values in the set {-I, 0, o:} with the respective 

probability {1/(1 + a), (a - 1)/a, 1/(a(1 + a))}. The real parameter 0: is called 

cumulant parameter, 0: ;::: 1. It can easily be shown that E[8] = 0, E[s2] = 1, 

K3(S) = a - 1 and K4(8) = 0:
2 - 0: - 2. Note that various (discrete) distributions 

can be obtained with appropriate values of a as given by: 

• a > 2 gives Leptokurtic (1"4 > 0) 

• a < 2 gives Platykurtic (K4 < 0) 

• a = 2 gives Mesokurtic (11:4 = 0) 

• a> 1 gives Asymmetrical (11:3 f. 0) 

• a = 1 gives Symmetrical (11:3 = 0) 

2. Synthetic sources: Random sources with desired skewness and kurtosis are gener­

ated by Fleishman's method [47]. The sources used in simulation are labeled 1 to 

30 and are listed in Table 1. Except for signals, labeled 5,6,7 and 11, all signals are 

skewed; similarly, except for signals, labeled 7,12 and 13, all signals have non-zero 

kurtosis. All signals are drawn with zero-mean and unit-variance. 

Fleishman proposed a form of the transformation on normal deviate w '" N(O, 1) 

which is s = a + bw + cw2 + dJ.,;3. If 11:3 (s) and 11:4 (8) are the desired skewness and 

kurtosis, respectively, then the four coefficients {a, b, c, d} are computed by solving 
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Figure 7.1: Parameterized source: (a) elements probabilit ies, and (b) skewness and 

kurtosis versus a. 

simultaneously the following four equations :5 

f-Ls = 0 = a + c, 

a; = 1 = b2 + 6bd + 2c2 + 15d2
, 

1>:3(S) = 2c(b2 + 24bd + 105d2 + 2), 

1>:4(S) = 24[bd + c2(1 + b2 + 28bd) + d2(12 + 48bd + 141c2 + 225d2
) ] 

7.6.1 Exp eriment 1: ISR versus Cumulant Parameter 

For case-l of sources, the sample size (number of observations) is held constant, and we 

plot the estimated ISR performance as a function of cumulant parameter a . The mixing 

matrix is two-by-two, and both signals are drawn (independently) from the case-1 of 

sources. The mixing matrix is taken fixed for all Monte-Carlo experiments, and is given 

by: 

(7.6.2) 

The condition number of the matrix (7.6.2) is 38; which is pretty high for these types 

of simulation. The ISR is computed for 50 different values of a ranging from 1 to 2.5 as 

- 5The solution of these equations can be found within a space, which can be described by a parabola 

defined by [47J 

",~(s) < 0.0629576"'4(8) + 0.0717247 

This is the limitation of the Fleishman's method. 
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Table 7.1: Skewness and kurtosis of the source data 

Source 1 2 3 4 5 6 7 8 
Skew. 1.75 0.25 0.25 1 0 0 0 -1.75 
Kurt. 3.75 -1 2.25 2 3.75 -1 0 3.75 

Source 9 10 11 12 13 14 15 16 
Skew. -0.25 1 0 0.75 0.25 1.5 -1.75 1.5 
Kurt. -1 1 2 0 0 3.75 3.75 3.5 
Source 17 18 19 20 21 22 23 24 
Skew. -1.5 1.25 -1.25 0.75 -0.75 0.5 -0.5 0.5 
Kurt. 3.5 2 2 2 2 -0.25 -0.25 -0.5 

Source 25 26 27 28 29 30 

Skew. -0.5 0.25 -0.25 -0.25 0.25 -0.25 

Kurt. -0.5 -0.25 -0.25 -1 -0.75 -0.75 

depicted in Fig. 7.2. The sample size N is taken to be 5000 for all algorithms and each 

trace of ISR is averaged over 700 Monte-Carlo realizations. 

Notice that the ISR floor of Com3 is decreasing with an increase in a, which is quite 

natural, as the magnitude of third-order cumulant increases with a. For a close to 1, the 

poor performance of Com3 is due to the fact that the third-order cumulants do not bring 

sufficient statistical information since their values are near zero. For a > 2, however, 

the performance of Com3 can be seen to be much better than Com4 and slightly better 

than CuBICA and COICA. The better performance of Com3 over Com4 (for a > 2) 

is quite justified based on the findings of [63], where it was shown that by considering 

the asymmetric nature of sources, one can gain better performance over solely fourth­

order schemes. Moreover, the better performance of Com3 in comparison to CuBICA or 

COICA makes it clear that merely a joint (un-optimized) use of third- and fourth-order 

cumulants can not guarantee a better performance. 

Notice that the performance of Com4 becomes very poor in the neighborhood of 

a = 2. This is not surprising, because, the fourth-order cumulants do not bring sufficient 

statistical information since their values are near zero. Moreover, in spite of the difference 

in their algorithmic formulation, the performance of CuBICA and COICA can be seen 

to be exactly the same for all values of a. 

Notice that the performance of the OCOICA, in comparison to Com3, Com4, Cu­

BICA and COICA, is almost (or totally) insensitive to the variation in the statistics of 

the sources. For 1 ~ a < 1.5, the ISR floor of OCOICA is almost equal to those of 
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Com4, CuBICA and COICA. Moreover, for a ~ 1.5, the ISR floor of OCOICA is lower 

than those of others by at least 5 dB. The performance gain, achieved by OCOICA, is 

significant. It is important to notice that the calculation of {3 in OCOICA algorithm was 

carried out by directly using the observed (mixed) data and no a priori information of 

source statistics was assumed to be known to the algorithm. 

Parameterized Signal: 2x2 mixing, N = 5000, Me = 700 
~ O---------.--------r-------,,-------.--------~------~ co 
:2. 
a: 
(j) 

o -10 
'ro 
a: 

1 

--- Com3 
----- Com4 

... ....... ···* ··· CuBICA 

·· 0 ·· COICA 
-'t'- OCOICA 

.... ' .. . ..... . :. .. . ... . .... . . .. : . .. ...... . .... . -: .. . .. . 

1.25 1.5 1.75 2 
Cumulant parameter, ex 

2.25 2.5 

Figure 7.2: ISR performance for parameterized signal in 2-signal mixing scenario. 

7.6.2 Experiment 2: ISR versus Cumulant Parameter for various Sam­
ple Sizes 

This experiment provides a detailed account on the ISR performances, partially inves­

tigated in Experiment 1. Here, we obtained the ISR performances of Com3, Com4, 

COICA and OCOICA for various sample sizes (N = 125 x 2i , i = 0,1" , . , 7) versus cu­

rnulant parameter a E [1 3]. Results obtained for Com3, Com4, COICA and OCOICA 

are depicted in Figures 7.3(a), 7.3(b), 7.4(a) and 7.4(b), r spectively. Notice in Fig. 
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7.3(a) that Com3 exhibits a satisfactory performance for all values of N (even as small 

as N = 125). However, when 0 - 1, the distribution comes close to symmetry, and 

Com3 stops working and results with an ISR as high as 5dB. So, if it is not known a 

priori that the sources are symmetrical, which is the case here when 0 - 1, then Com3 

is not an appropriate ICA algorithm for BSS. 

Similarly, in Fig. 7.3(b) notice that Com4's performance deteriorates (significantly) 

not only at 0 = 2 (where K4 = 0) but in the large vicinity around it (which is 1.5 < 
o < 2.5). So, if it is not known a priori that the sources are mesokurlic (distribution 

with zero kurtosis), then Com4 is not an appropriate ICA algorithm for BSS. Also notice 

that, for small N (N < 500), the Com4 is found to be unable to perform satisfactory 

when 0 -1. 

Notice the performance of the proposed algorithm COICA in Fig. 7.4(a); the COICA 

can be seen to exhibit an impressive behavior for all values of N with no significant 

deterioration observed either in the vicinity of a = 1 or that of a = 2. Though ISR 

floors can be seen to be lifted a little around a = 2, but still (in this vicinity) the 

performance is as good as that of Com3. 

There are several important points to be noticed in Fig. 7.4(b) , which depicts the 

performance of OCOICA. First notice that, for the number of samples less than 500, the 

OCOICA exhibits very weak performance in the vicinity of 0 = 1 and 0 = 2. These are 

the points where skewness and kurtosis vanish, respectively. The reason behind the weak 

performance is quite simple; the computation of optimal weight, j3*, requires to compute 

fifth- and sixth-order moments which cannot be obtained with reasonable accuracy using 

a small set of samples. Moreover, instead of mixing signal statistics, the algorithm is 

using observed signal properties to compute j3*, which is already a suboptimum way 

to go with. Secondly, notice that, after being held constant irrespective of the value of 

0, the ISR floor starts increasing. Let the point (Le., the value of 0) after which ISR 

floor departs from a constant level be termed as take-off value of a, denoted as aN. 

Before we answer why this departure behavior occurs, we would like to highlight that 

if Nl and N2 are two different sample sizes, with N2 > N 1, then aN2 > aNI. This is a 

very important property of OCOICA, which tells that, if a large enough sample-set is 

ensured, then irrespective of the value of 0, OCOICA is capable of giving a successful 

source separation, with separation quality much better than those of Com3, Com4 and 
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COlCA (including CuBlCA). 

It is evident from this experiment that, with the parameterized signal in considera­

tion, the performance of OCOICA will ultimately go degraded after a certain a > aN 

for some sample-size N. The reason is that with an increase in the value of a, both 

the skewness and kurtosis increase. The variance in the estimation error of (3* increases 

with the magnitude of kurtosis, since the variance in the estimation error of fifth- and 

sixth-order moments depends on the magnitude of kurtosis. 

7.6.3 Experiment 3: ISR versus Sample Size 

For case-1 of sources, now the cumulant parameter is held constant, and we plot the 

estimated ISR performance as a function of sample size. In Fig. 7.5(a), we use a = 1.7 

(this case corresponds to a negative fourth-order cumulant), whereas in Fig. 7.5(b), we 

use a = 2.5 (this case corresponds to a positive fourth-order cumulant). The mixing 

matrix is again two-by-two, and both signals are drawn (independently) from the case-

1 of sources. The mixing matrix, as specified in (7.6.2), was used in the simulation. 

This experiment shows that the proposed algorithm is capable of giving better results 

for both skewed sub-Gaussian and skewed super-Gaussian signals when the number of 

observations is moderate, i.e., all around 500 (or more). 

7.6.4 Experiment 4: Contrast Parameter versus Cumulant Parameter 

The optimal value of the contrast parameter {3, {3*, can be computed in a closed form 

for case-1 source. It can easily be shown that E[s5] = a3 
- a 2 + a - 1 and E[s6] = 

04 _ a 3 + a2 - a + 1, which lead us to obtain the following expression: 

(3* = 3 1 
4(1+a)(2-a) 

(7.6.3) 

The expression (7.6.3) is plotted in Fig. 7.6. To conform the analytical value of {3* in 

(7.6.3), we obtained its estimated values under the same mixing scenario as specified in 

Experiment 1 except that N = 500,000. The analytical and simulated values can be 

seen to be conforming with each other for all values of a. 
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Figure 7.3: ISR performance for various N versus the cumulant parameter a for Com3 
and Com4. 
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Figure 7.4: ISR performance for various versus the cumulant parameter a for COrCA 

and OCOICA. 
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7.6.5 Experiment 5: MSE versus Contrast Parameter 

The MSE expression (7.3.9) can be used to obtain the MSE performance of the proposed 

algorithm OCOICA for the parameterized signal. We obtain the following: 

(7.6.4a) 

(7.6.4b) 

From expression (7.6.4b), it is clear that, irrespective of the value of Q, if j3 = j3*, 

then MSE would be (theoretically) zero. In this set of experiment, we are interested 

in comparing the analytical MSE (7.3.9) with those obtained from computer simulation 

for two cases Q < 2 (sub-Gaussian) and Q > 2 (super-Gaussian). In both cases, we 

select the two signals with same Q and are mixed through the unitary transformation 

with ¢> = 15°. The results of MSE performance are depicted in Figure 7.7(a) and (b) 

for Q = 1.8 and 2.2, respectively. The values of sample-size and Monte-Carlo runs are 

mentioned in the figures. It is clear from these results that our analytical findings are in 

complete conformation with simulation results and the use of optimal weight parameter 

{3 can provide significant improvement for both types of distributions (sub- and super-

Gaussian). 

7.6.6 Experiment 6: ISR versus Sample Size 

For case-2 of sources (as listed in Table I), we experimented with several combination 

of signals and estimated the ISR performance as a function of sample size. The mixing 

matrix was taken to be of order AI x M, where M = 2, 5 and 10. These matrices were 

generated from normal distribution with zero-mean and unit-variance. The following 

MATLAB code was used to generate A: 

c = 51;while c>50; r. M=2,5 or 10; 
A = randn(M,M); c = cond(A); end; 

where the condition number of A was constrained to be less than 50. The mixture 

is first whitened via PCA based on the singular value decomposition of the observed 

data matrix. The ISR performance is obtained for several sample sizes N. The curves 

have been averaged v independent Monte Carlo runs. The value of the product vN 

is selected to be 1 . 108
, 1 . 106 and 5 . 105 for M = 2, 5 and 10, respectively. The 
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Figure 7.7: Analytical and estimated MSE of OCOICA versus contrast parameter (3 
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values of f3 have been computed from the statistical knowledge of observed-sources. 

Results are depicted in Figures 7.8, 7.9 and 7.10 for M = 2, 5 and 10, respectively. 

Each of these figures compares the performances of COICA and OCOICA with Com3, 

Com4 and CuBICA. Notice that, in spite of the differences in optimization method, the 

proposed COICA algorithm is similar to CuBICA in performance. Secondly, notice that 

the proposed OCOICA algorithm is outperforming all other algorithms. Finally notice 

that the improvement in ISR reduction achieved by OCOICA is consistent even though 

the parameter f3 has been computed from observed-sources. 

7.6.7 Experiment 7: ISR versus Sample Size 

We estimate the ISR performance of CF-OCOICA as a function of sample size. The 

mixing matrix was taken to be of order 2 x 2. Matrices (A) are generated from normal 

distribution with zero-mean and unit-variance. The condition number of A is constrained 

to be less than 50. Two cases are considered - no noise (T = 0 and with noise (J' = 0.0316 

[i.e., SNR=30dB]. The mixture is first whitened via PCA based on the singular value 

decomposition of the observed data matrix. The curves have been averaged over 2000 

independent Monte Carlo runs. The weight parameter f3 has been computed from the 

statistical knowledge of whitened-sources. Results are depicted in Figure 7.11 comparing 

the performance of the CF-OCOICA with those of Com3, Com4 and CuBICA. 

In Figure 1(a), original sources are highly asymmetric in nature, that is why Com3 

is performing better than Com4 and CuBICA, while in Figure l(b), original sources are 

moderately skewed and CuBICA is performing better than Com4 and Com3. Notice that, 

the CF -OCOICA is performing better than Com3, Com4 and CuBICA algorithms in 

both noise-free and noisy scenarios. Finally notice that the improvement in ISR reduction 

achieved by the proposed estimator is consistent even though the free parameter f3 has 

been computed from whitened-sources. 

7.7 Summary 

This Chapter explored the combination of third- and fourth-order cumulant based tensor 

diagonalization in an optimal sense. A free parameter f3 is introduced in combining 

the third- and fourth-order cumulants and its optimal value is calculated such that 

the mean square estimation of Given's rotation is minimized. Computer simulation for 
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Figure 7. ISR performance for 2-source mixing scenario. 
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Figure 7.9: ISR performance for 5-source mixing scenario. 
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the separation of two and more real and skewed sources is provided. For the case of 

two real-source, the optimal value of (3 is calculated from the a priori knowledge of 

the mixing signals, while for more than two-source mixing scenario, the approximate 

value of (3 is calculated directly from observed (mixed) signals. For both cases, the 

proposed algorithm performs better than three existing lCA algorithms. We have shown 

that OCOICA can handle symmetric and asymmetric distributed sources, and exhibits 

better performance with little excess computational overhead. It may be a good general 

algorithm for performing lCA. 



Chapter 8 

Conclusions and Outlook 

8.1 Summary and Conclusions 

This thesis has explored the problem of designing cost-functions and deriving associated 

adaptive algorithms for blind channel equalization (Chapter 2-6). It also explored the 

problem of obtaining iterative diagonalization of cumulant matrices for instantaneous 

blind source separation (Chapter 7). 

For blind channel equalization, the thesis focused on cost-function based stochastic 

gradient-based adaptive algorithms for blind channel equalization as well as carrier-phase 

recovery in APSK/QAM communication system. Cost-function based algorithms are at 

the center of adaptive blind equalization and they implicitly incorporate higher-order 

statistics of signal and noise components. The choice of these cost-functions has a direct 

impact on the complexity and performance of the associated algorithms. In Chapter 2, 

the cost-function based blind equalization algorithms have been broadly classified into 

two groups: 1) those which can only equalize and are insensitive to carrier-phase offset, 

and are termed as constant modulus algorithms (CMA), and 2) those which can equalize 

and jointly remove the carrier-phase offset, and are termed as multimodulus algorithms 

(MMA). Next, the notions of a) dispersion minimization and b) energy maximiza­

tion have been provided to design new cost-functions for blind channel equalization 

with/without carrier-phase recovery. 

In Chapter 3, a new constant modulus algorithm, cCMA(P), has been presented for 

blind equalization of complex-valued communication channels. The proposed algorithm 

was obtained by solving a novel deterministic constrained optimization criterion, based 

on joint minimization of so-called a priori and a posteriori dispersion errors, leading to 
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an update equation having a particular zero-memory continuous nonlinearity. The dis­

persion constant of cCMA(P) has been evaluated in closed-form with the consideration 

of convolutional noise (Section 3.3). This is a new result, because in the past, disper­

sion constants in CMA type algorithms have usually been evaluated and computed by 

assuming a noise-free scenario. Further, the stability of cCMA(p) has been studied and 

an easy-to-compute (generic) bound is derived for the range of step-sizes for which the 

proposed algorithm may be kept stable if initialized in the vicinity of zero-forcing solu­

tion (Section 3.4). An interesting theorem is provided in Section 3.5. According to that, 

by properly designing a range of step-size, the cCMA(p) may be kept converged such 

that 0 < IYnl < RJC holds infinitely often, where R is dispersion constant and c is a 

constant which approaches unity for larger p. Further, the effect of free parameter p on 

the steady-state lSI performances has also been studied and it is shown that a metric in 

residual lSI is inversely proportional to p (Section 3.6). The implication of this result is 

that, for the given filter length, a lower residual lSI floor may be obtained by selecting a 

larger p and an appropriate step-size without sacrificing the convergence speed. Most of 

the theoretical results have been validated by computer simulations, for long and short 

equalizers and channels with APSK signaling (Section 3.7). 

In Chapter 4, two new families of MMA algorithms, MMA(p, q) and cMMA(p), are 

presented for joint blind equalization and carrier-phase recovery of square-QAM signals 

over complex-valued transmission channel. The main contribution resided in the gener­

alization of an existing dispersion-directed cost-function as well as the modification in a 

convex cost-function leading to newer algorithms capable of yielding faster convergence. 

Evaluation of dispersion constants and dynamic convergence has been described in de­

tail and also shown to be in conformation with simulation results. Clearly, based on 

the results reported in this study, it is possible to obtain fast converging MMA equal­

izers (especially for 16/64-QAM). Also the discussed dynamic convergence analysis can 

help us select the best equalizer among the members of MMA(p, q) and cMMA(p) for 

the given channel, equalizer parameters (length, step-size, initialization), QAM-signal, 

noise condition and computational requirements. Finally, it is observed that MMA(p, 2) 

and cMMA(p) are more robust to channel noise than MMA(p, 1). Section 4.6 provided 

detailed simulation results using symbol-spaced as well as fractionally-space channels in 

the presence of additive noise. 
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Under the notion of energy maximization (Chapter 5 and 6), this thesis presented 

both CMA as well as MMA class of adaptive algorithms, where the energy of the 

equalized sequence is maximized subject to the restoration of some signal property (or 

properties). In Chapter 5, by exploiting the energy maximization principle, two new 

cost-functions have been proposed for blind channel equalization, which are respectively 

suitable for off-line block-processing and online gradient-based (constant modulus) im­

plementations. These costs differ in the way, whether a block of equalizer outputs or 

only its instantaneous value is constrained from exceeding the largest modulus of data 

signal. An online adaptive algorithm (t3-CMA) is obtained and has been shown to be 

performing better, in terms of lSI removal under the presence of noise for APSK signals, 

than existing established solutions like CMA(2,2) and three of its variants. It is also 

shown that the t3-CMA is fully capable of recovering the true value of signal energy 

upon successful convergence. The computational complexity of ,B-CMA is noticeably 

much less than those of others addressed equalizers. The t3-CMA may be considered 

as the first ever successful adaptive implementation of an 12 optimization criterion for 

(constant modulus) blind channel equalization. 

Similarly, in Chapter 6, a new adaptive multimodulus algorithm, t3-MMA, is pre­

sented by exploiting energy maximization principle for joint blind equalization, carrier­

phase recovery and energy restoration of square-QAM signals. The quadrature compo­

nents of the equalized sequence are constrained not to exceed the largest real part of the 

transmitted signal. The parameter t3 is evaluated by considering convolutional noise at 

equalizer output. It is experimentally shown that the proposed t3-MMA can yield better 

solution in terms of removing lSI and lower SER values under the presence of noise than 

existing established adaptive algorithms like MMA(1,2), CMA(2,2) and MMA(2,2). It is 

also shown that the t3-MMA is fully capable of recovering the true value of signal energy 

upon successful convergence. Also note that the computational complexity of t3-MMA is 

less than the existing addressed equalizers (like MMA(1,2), CMA(2,2) and MMA(2,2)). 

The t3-MMA may be considered as the first ever successful adaptive implementation of an 

12 optimization criterion for joint blind channel equalization and carrier-phase recovery. 

Finally, in Chapter 7, the optimal combination of third- and fourth-order cumulant 

based tensor diagonalization is studied for blind source separation. A free parameter t3 

was introduced in combining the third- and fourth-order cumulants and its optimal value 
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was calculated such that the mean square estimation of Given's rotation is minimized. 

Computer simulation for the separation of two and more real and skewed sources was 

provided. For the case of two real-source, the optimal value of f3 is calculated from the a 

priori knowledge of the mixing signals, while for more than two-source mixing scenario, 

the approximate value of f3 is calculated directly from observed (mixed) signals. For both 

cases, the proposed algorithm performs better than three existing ICA algorithms. A 

closed-form estimator was also obtained. The proposed algorithm can handle symmetric 

and asymmetric distributed sources, and exhibits better performance with little excess 

computational overhead; it may be a good general algorithm for performing ICA. 

8.2 Future Suggestions and Outlook 

The following is a list of possible points which could lead the continuation of the present 

investigations: 

• The investigation of the equilibria of the cost-functions has been disregarded in this 

work. Such study is classified as static convergence analysis. The static convergence 

analysis of CMA(p,2) has been rigorously provided in [37]. Similar study can be 

carried out for our proposed algorithm cCMA(P). 

• According to the analysis provided in [37], for a given channel and step-size, there is 

an optimum length for an equalizer to minimize the intersymbol interference. The 

results imply that a longer-length blind equalizer does not necessarily outperform 

a shorter one, as contrary to what is conventionally conjectured. Future work may 

investigate the determination of this length blindly. 

• Timing error has been assumed perfect in this thesis. Future work may focus 

to updating the equalizer taps and timing offset jointly to minimize the mean 

dispersion and inter symbol interference. 

• Some communication systems embed pilot tones into data spectrum to aid the 

receiver in synchronization, which may result in a DC offset of the basedband data 

[128]. Future work may focus on the estimation of the DC offset in CMA and 

MMA types of algorithms. 
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• In Chapter 5, the proposed cost (5.2.3) was not optimized. It may be optimized 

using quadratic programming by linearizing the constraint. It would be an im­

portant future topic to explore. Similar to the work of Meng et ai. [90], the 

block-processing optimization of proposed cost (5.2.3) may be extended to other 

applications like blind source separation and blind beamforming . 

• The cross-correlation and constant modulus algorithm has been proven to be an 

effective approach in the problem of joint blind equalization and source separation 

in a multi-input and multi-output system [85]. Future work may focus on studying 

the feasibility of this method for the proposed energy maximization based algo­

rithms, IJ-CMA and IJ-MMA. 
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