305 research outputs found

    A Method to determine secondary codes and carrier phases of short snapshot signals

    Get PDF
    Recently, the Snapshot Real-Time Kinematic (SRTK) technique was demonstrated, which aims at achieving high accuracy navigation solutions with a very short signal collection. The main challenge in implementing SRTK is the generation of valid carrier-phase measurements, which relies on a data bit ambiguity (DBA) resolution process. For pilot signals, this step is equivalent to the correct selection of secondary code indexes (SCIs) from the ambiguous sets obtained from a multi-hypotheses (MH) acquisition process. Currently, SCI ambiguities are solved independently for each satellite. However, this method is ineffective when the snapshot signal is relatively short. In order to tackle this problem, this article proposes a new method that makes use of assistance data and processes information from all satellites to jointly solve the DBA issue. This new method is shown to be more effective in determining the correct SCI and enabling valid snapshot carrier-phase measurements, largely expanding the scope of high-accuracy snapshot positioning.This research was supported by the Albora Technologies and Universitat Politècnica de Catalunya with industrial PhD grant number DI 082 from the Generalitat de Catalunya and the project RTI2018-094295-B-I00 funded by the MCIN/AEI 10.13039/501100011033 which is co-funded by the FEDER programme. P.C. has been partially supported by the NSF under Awards CNS-1815349 and ECCS-1845833.Peer ReviewedPostprint (published version

    Contributions to high accuracy snapshot GNSS positioning

    Get PDF
    (English) Snapshot positioning is the technique to determine the position of a Global Navigation Satellite System (GNSS) receiver using only a very brief interval of the received satellite signal. In recent years, this technique has received a great amount of attention thanks to its unique advantages in power efficiency, Time To First Fix (TTFF) and economic costs for deployment. However, the state of the art algorithms regarding snapshot positioning were based on code measurements only, which unavoidably limited the positioning accuracy to meter level. The present PhD research aims at achieving high-accuracy (centimetre level) snapshot positioning by properly utilizing carrier phase measurements. Two technical challenges should be tackled before such level of accuracy can be achieved, namely, satellite transmission time inaccuracy and the so-called Data Bit Ambiguity (DBA) issue. The first challenge is essentially originated from the lack of absolute timing accuracy in the receiver, as only the coarse time information is available from an external assistance module and its error can be up to a few seconds. Applying a conventional Coarse Time Filter (CTF) can increase this timing accuracy to millisecond level. However, this is still not enough for carrier-phase based positioning since the satellite position errors introduced by such timing errors range up to one meter, which certainly impedes the carrier phase Integer Ambiguity Resolution (IAR). A method is proposed to set a global time tag and correspondingly construct the pseudoranges with full period corrections. The second challenge is caused by the fact that snapshot measurements are generated based on the results of the correlation between the received signal and the local replicas. Multiple replicas are typically produced in snapshot positioning following the Multi Hypothesis (MH) acquisition architecture. It may happen that more than one local replica (i.e. hypothesis) result in the maximum correlation energy. Hence, we need to identify the actual secondary codes or data bit symbols encoded in the received signal, i.e. to resolve the DBA. Particularly, when the local replica is generated with exactly opposite symbols to the actual ones, the resulting carrier phase measurement contains a Half Cycle Error (HCE) and impedes also the IAR step. A method has been proposed in this PhD to resolve the DBA issue for pilot signals with encoded secondary codes. This method attempts to form a consensus among all satellites regarding their secondary codes under the assistance of their flight time differences. A different approach has been developed for data signals. It amends the carrier phase HCEs one after another by an iterative satellite inclusion procedure. This approach uses the Real Time Kinematics (RTK) LAMBDA Ratio Factor (LRF) as an indicator to evaluate the potential existence of the HCEs. The present PhD focuses on implementing the so-called Snapshot RTK (SRTK) technique. As in the classic RTK technique, SRTK cancels most of the measurement errors through the Double-Differenced (DD) process. The workflow details of SRTK are explained incorporating the aforementioned new algorithms. Several experiments were performed based on real world signal recordings and the results confirm the feasibility of obtaining SRTK fix solutions. The performance of SRTK is numerically demonstrated under different parameters of signal bandwidth, integration time and baseline distance. The SRTK fix rates can reach more than 90% in most of the scenarios, with centimetre-level positioning errors observed in the fixed solutions. It can be concluded that upon the implementation of the global time tag method, high accuracy snapshot positioning becomes feasible with the SRTK technique and its performance varies depending on the SRTK configuration. The algorithms developed for the DBA issue and carrier phase HCEs also prove to effectively improve the performance of SRTK.(Español) El posicionamiento instantáneo es la técnica para determinar la posición de un receptor del Sistema Global de Navegación por Satélite (GNSS) utilizando solo un intervalo muy breve de la señal recibida. En los últimos años, esta técnica ha recibido una gran atención gracias a sus ventajas únicas en eficiencia energética, tiempo hasta la primera posición (TTFF) y reducidos costes económicos para la implementación. Sin embargo, el estado del arte de los algoritmos relacionados con el posicionamiento de señales instantáneas utilizaron solo medidas de código, lo que inevitablemente limitó la precisión del posicionamiento a al nivel del metro. La presente Tesis Doctoral tiene como objetivo lograr un posicionamiento instantáneo de alta precisión (nivel centimétrico) mediante las medidas de fase de la portadora. Para ello, deben abordarse dos desafíos técnicos antes de que se pueda alcanzar ese nivel de precisión: resolver la inexactitud del tiempo de transmisión del satélite y el llamado problema de ambigüedad de bit de datos (DBA). El primer desafío se origina esencialmente por la falta de precisión de tiempo absoluto en el receptor, ya que solo está disponible la información del tiempo aproximado desde un módulo de asistencia externo y su error puede ser de hasta unos segundos. Así, se propone un método para establecer una etiqueta de tiempo global y construir correspondientemente los pseudorangos con correcciones de período completo. El segundo desafío se debe al hecho de que las mediciones instantáneas se generan en función de los resultados de la correlación entre la señal recibida y las réplicas locales. Las múltiples réplicas generalmente se producen en el posicionamiento de instantáneas siguiendo la arquitectura de de adquisición de el Múltiples Hipótesis (MH). Por lo tanto, se necesita identificar los códigos secundarios reales o los símbolos de bits de datos codificados en la señal recibida, para resolver el DBA. En particular, cuando la réplica local se genera con símbolos exactamente opuestos a los reales, el resultado de la medición de la fase de la portadora contiene un error de medio ciclo (HCE) e impide también la resolución de ambigüedad entera (IAR). Se ha propuesto un método en esta Tesis Doctoral para resolver el problema de DBA para señales piloto con códigos secundarios. Este método intenta formar un consenso entre todos los satélites con respecto a sus códigos secundarios bajo la asistencia de sus diferencias de tiempo de vuelo. Un enfoque diferente ha sido desarrollado para señales que contienen datos del mensaje de navegación. Se modifica los HCE de la fase de portadora uno tras otro mediante un procedimiento iterativo de inclusión de satélites. Este método utiliza el factor de relación LAMBDA (LRF) utilizado en posicionamiento relativo en tiempo real (RTK) como indicador para evaluar la existencia potencial de los HCE. La presente tesis doctoral se centra en implementar la técnica denominada Snapshot RTK (SRTK). Se realizaron varios experimentos basados ?en ?señales del mundo real. Las grabaciones y los resultados confirman la viabilidad de obtener soluciones SRTK con IAR. El rendimiento de SRTK es numéricamente demostrado bajo diferentes parámetros tales como el ancho de banda de señal, tiempo de integración y distancia de línea de base. Las tasas de fijación IAR de SRTK pueden alcanzar más del 90% en la mayoría de los escenarios, observándose errores de posicionamiento centimétricos en las soluciones fijas. Se puede concluir que tras la implementación del método de etiqueta de tiempo global, que el posicionamiento de instantáneas de alta precisión se vuelve factible con la técnica SRTK y las prestaciones varían dependiendo de la configuración. Los algoritmos desarrollados para la resolución de DBA y los HCE de fase portadora también demuestran que mejoran efectivamente el rendimientoCiència i tecnologies aeroespacial

    GPS snapshot techniques

    Get PDF
    Software-defined radio receivers are becoming a more and more attractive technology in the GPS field. The idea of minimizing hardware components and handing over the signal processing load to programmable devices which support modifiable software is very appealing. The motivation of the present project is to study and develop GPS snapshot techniques, in particular, focused on a single application: photograph geo-tagging for digital cameras

    Dual-Polarized Synthetic Antenna Array for GNSS Handheld Applications

    Get PDF

    Security Evaluation of GNSS Signal Quality Monitoring Techniques against Optimal Spoofing Attacks

    Get PDF
    GNSSs have a significant impact on everyday life and, therefore, the are increasingly becoming an attractive target for illicit exploitation. As such, anti-spoofing algorithms have become an relevant research topic within the GNSS discipline. This Thesis provides a review of recent research in the field of GNSS spoofing/anti-spoofing, designs a method to generate an energy optimal spoofing signal and evaluates the performance of the anti-spoofing signal quality monitoring techniques against it

    GNSS Integrity Monitoring assisted by Signal Processing techniques in Harsh Environments

    Get PDF
    The Global Navigation Satellite Systems (GNSS) applications are growing and more pervasive in the modern society. The presence of multi-constellation GNSS receivers able to use signals coming from different systems like the american Global Positioning System (GPS), the european Galileo, the Chinese Beidou and the russian GLONASS, permits to have more accuracy in position solution. All the receivers provide always more reliable solution but it is important to monitor the possible presence of problems in the position computation. These problems could be caused by the presence of impairments given by unintentional sources like multipath generated by the environment or intentional sources like spoofing attacks. In this thesis we focus on design algorithms at signal processing level used to assist Integrity operations in terms of Fault Detection and Exclusion (FDE). These are standalone algorithms all implemented in a software receiver without using external information. The first step was the creation of a detector for correlation distortion due to the multipath with his limitations. Once the detection is performed a quality index for the signal is computed and a decision about the exclusion of a specific Satellite Vehicle (SV) is taken. The exclusion could be not feasible so an alternative approach could be the inflation of the variance of the error models used in the position computation. The quality signal can be even used for spoofinng applications and a novel mitigation technique is developed and presented. In addition, the mitigation of the multipath can be reached at pseudoranges level by using new method to compute the position solution. The main contributions of this thesis are: the development of a multipath, or more in general, impairments detector at signal processing level; the creation of an index to measure the quality of a signal based on the detector’s output; the description of a novel signal processing method for detection and mitigation of spoofing effects, based on the use of linear regression algorithms; An alternative method to compute the Position Velocity and Time (PVT) solution by using different well known algorithms in order to mitigate the effects of the multipath on the position domain

    Delay Trackers for Galileo CBOC Modulated Signals and Their Simulink-based Implementations

    Get PDF
    Galileo will be the future European Global Navigation Satellite Systems (GNSSs), which is going to provide high availability, increased accuracy and various location services. This new satellite system proposes the use of a new modulation, namely the Composite Binary Offset Carrier (CBOC) modulation, which motivates the research on GNSS receiver with this new modulation. Code tracking is one of the main functions in a GNSS receiver and its task is to give an accurate estimation of the code delay. The accuracy of this code delay estimation is strictly connected with the accuracy of user position computation. One typical code tracking structure is the code tracking loop. The code tracking algorithms or delay trackers used in code tracking loop are the main aspect, which affects the performance of code tracking loop. Various typical delay trackers are studied in this thesis. Simulation is one important issue in the design and analysis of any communication system or navigation system. One method for testing delay trackers and effects from different tracking algorithms can be realized in the simulation tool, such as a software receiver. The simulation tool makes it convenient to test various algorithms used in the receiver and to investigate the receiver performance before the algorithms are built in the real devices. On the other hand, the implementation of delay trackers in a software receiver can be also helpful for further developing the simulation tool. The goal of this thesis has been to develop and analyze the implementations of various code delay trackers for Galileo systems via Simulink tool. The analysis has also helped to further develop the model in order to include realistic receiver constraints for mass-market application. The performance of the delay trackers is measured in terms of Root Mean Square Error (RMSE), tracking error variance and Multipath Error Envelopes (MEEs). /Kir1

    Infrared ranging in multipath environments for indoor localization of mobile targets

    Get PDF
    Esta tesis aborda el problema de la medida de diferencias de distancia mediante señales ópticas afectadas por multicamino, aplicada a la localización de agentes móviles en espacios interiores. Los avances en robótica, entornos inteligentes y vehículos autónomos han creado un campo de aplicación específico para la localización en interiores, cuyos requerimientos de precisión (en el rango de los cm) son muy superiores a los demandados por las aplicaciones de localización orientadas a personas, en cuyo contexto se han desarrollado la mayor parte de las alternativas tecnológicas. La investigación con métodos de geometría proyectiva basados en cámaras y de multilateración basados en medida de distancia con señales de radiofrecuencia de banda ancha, de ultrasonido y ópticas han demostrado un rendimiento potencial adecuado para cubrir estos requerimientos. Sin embargo, todas estas alternativas, aún en fase de investigación, presentan dificultades que limitan su aplicación práctica. En el caso de los sistemas ópticos, escasamente estudiados en este contexto, los trabajos previos se han basado en medidas de diferencia de fase de llegada de señales infrarrojas moduladas sinusoidalmente en intensidad. Una infraestructura centralizada computa medidas diferenciales, entre receptores fijos, de la señal emitida desde el móvil a posicionar, y calcula la posición del móvil mediante trilateración hiperbólica a partir de éstas. Estas investigaciones demostraron que se pueden alcanzar precisiones de pocos centímetros; sin embargo, las interferencias por multicamino debidas a la reflexión de la señal óptica en superficies del entorno pueden degradar esta precisión hasta las decenas de centímetros dependiendo de las características del espacio. Así pues, el efecto del multicamino es actualmente la principal fuente de error en esta tecnología, y por tanto, la principal barrera a superar para su implementación en situaciones reales. En esta tesis se propone y analiza un sistema de medida con señales ópticas que permite obtener estimaciones de diferencias de distancia precisas reduciendo el efecto crítico del multicamino. El sistema propuesto introduce una modulación con secuencias de ruido pseudoaleatorio sobre la modulación sinusoidal típicamente usada para medida de fase por onda continua, y aprovecha las propiedades de ensanchamiento en frecuencia de estas secuencias para reducir el efecto del multicamino. El sistema, que realiza una doble estimación de tiempo y fase de llegada, está compuesto por una etapa de sincronización que posibilita la demodulación parcialmente coherente de la señal recibida, seguida de un medidor diferencial de fase sobre las componentes desensanchadas tras la demodulación. Las condiciones de multicamino óptico típicas en espacios interiores, con una componente de camino directo claramente dominante, permiten que el proceso de demodulación recupere más potencia del camino directo que del resto de contribuciones, reduciendo el efecto del multicamino en la estimación final. Los resultados obtenidos demuestran que la aplicación del método propuesto permitiría realizar posicionamiento a partir de señales ópticas con el rendimiento adecuando para aplicaciones de robótica y guiado de vehículos en espacios interiores; además, el progresivo aumento de la potencia y el ancho de banda de los dispositivos optoelectrónicos disponibles permite esperar un incremento considerable de las prestaciones de la propuesta en los próximos años

    Performance of precise marine positioning using future modernised global satellite positioning systems and a novel partial ambiguity resolution technique

    Get PDF
    The International Maritime Organisation (IMO) established a set of positioning requirements for future Global Navigation Satellite System (GNSS) constellations in IMO resolution A.915. It is important to be able to determine if these requirements can be met, and what shore infrastructure would be required. This thesis describes the collection of data in a marine environment and the analysis of these data with regards to the requirements. The data collection exercise was held at the beginning of May 2008 and saw THV Alert navigate into Harwich Harbour whilst Global Positioning System (GPS) observation data were recorded from onboard the vessel and from shore-based reference stations. Additional data were obtained from nearby Ordnance Survey reference stations, and two total stations were used to track the vessel’s passage to provide a truth model. Several modernised GPS satellites were tracked. The data were processed under different scenarios, using software developed at UCL, and the positioning performance was analysed in the context of the IMO requirements. Potential performance improvements from modernised GPS and Galileo were then discussed. Providing integrity through single-epoch real-time kinematic positioning, required to meet the strictest IMO requirements, is particularly difficult. The identification of phase observation outliers is not possible before the integer ambiguities are resolved, but an undetected outlier could prevent successful ambiguity resolution. It will not always be necessary to fix all the ambiguities to achieve the required positioning precision, particularly with a multi-GNSS constellation. This thesis introduces a new algorithm for partial ambiguity resolution in the presence of measurement bias. Although computationally intensive, this algorithm significantly improves the ambiguity resolution success rate, increasing the maximum baseline length over which the highest requirements are met with dual-frequency GPS from 1 km to 66 km
    corecore