5,908 research outputs found

    The Beauty of Symmetry: Common-mode rejection filters for high-speed interconnects and balanced microwave circuits

    Get PDF
    Common-mode rejection filters operating at microwave frequencies have been the subject of intensive research activity in the last decade. These filters are of interest for the suppression of common-mode noise in high-speed digital circuits, where differential signals are widely employed due to the high immunity to noise, electromagnetic interference (EMI) and crosstalk of differential-mode interconnects. These filters can also be used to improve common-mode rejection in microwave filters and circuits dealing with differential signals. Ideally, common-mode stopband filters should be transparent for the differential mode from DC up to very high frequencies (all-pass), should preserve the signal integrity for such mode, and should exhibit the widest and deepest possible rejection band for the common mode in the region of interest. Moreover, these characteristics should be achieved by means of structures with the smallest possible size. In this article, several techniques for the implementation of common-mode suppression filters in planar technology are reviewed. In all the cases, the strategy to simultaneously achieve common-mode suppression and all-pass behavior for the differential mode is based on selective mode-suppression. This selective mode suppression (either the common or the differential mode) in balanced lines is typically (although not exclusively) achieved by symmetrically loading the lines with symmetric resonant elements, opaque for the common-mode and transparent for the differential mode (common-mode suppression), or vice versa (differential-mode suppression).MINECO, Spain-TEC2013-40600-R, TEC2013-41913-PGeneralitat de Catalunya-2014SGR-15

    Investigation of Compact Low Pass Filter with Sharp Cut–Off using Metamaterial

    Get PDF
    In this paper a new compact microstrip Bessel low pass filter (LPF) is experimentally validated using complementary split ring resonator (CSRR) which has sharper cut-off and improved spurious band suppression characteristics. The Richard’s transformation and Kuroda’s identities are used for realizing distributed Bessel LPF from the lumped element Bessel LPF. Traditionally Butterworth and Chebyshev LPFs are used in communication systems. Those LPFs exhibits high reflection in the pass-band and it is also very difficult to achieve sharper cut-off. Because of its poor cut-off and non linear phase characteristics, it will create cross talk between microwave systems. In order to overcome the above issues our proposed LPF which has linear phase and sharper cut-off behavior is on ideal subsystem in future microwave systems. Furthermore, to prove its practical viability of the proposed design, a compact microstrip Bessel LPF was designed, simulated, fabricated and measured. It was observed from the experimentally compared results of the proposed Bessel LPF with CSRR has better sharper cut-off characteristic than the without CSRR structure

    Miniature distributed filters for software re-configurable radio applications

    Get PDF
    This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available

    Backscattering in silicon microring resonators: a quantitative analysis

    Get PDF
    Silicon microring resonators very often exhibit resonance splitting due to backscattering. This effect is hard to quantitatively and predicatively model. This paper presents a behavioral circuit model for microrings that quantitatively explains the wide variations in resonance splitting observed in experiments. The model is based on an in-depth analysis of the contributions to backscattering by both the waveguides and couplers. Backscattering transforms unidirectional microrings into bidirectional circuits by coupling the clockwise and counterclockwise circulating modes. In high-Q microrings, visible resonance splitting will be induced, but, due to the stochastic nature of backscattering, this splitting is different for each resonance. Our model, based on temporal coupled mode theory, and the associated fitting method, are both accurate and robust, and can also explain asymmetrically split resonances. The cause of asymmetric resonance splitting is identified as the backcoupling in the couplers. This is experimentally confirmed and its dependency on gap and coupling length is further analyzed. Moreover, the wide variation in resonance splitting of one spectrum is analyzed and successfully explained by our circuit model that incorporates most linear parasitic effects in the microring. This analysis uncovers multi-cavity interference within the microring as an important source of this variation

    Wide tuning-range planar filters using lumped-distributed coupled resonators

    Get PDF

    A Compact 1:4 Lossless T-Junction Power Divider Using Open Complementary Split Ring Resonator

    Get PDF
    This paper presents the size miniaturized and harmonic suppressed lossless 1:4 T-junction unequal power divider using an open complementary split ring resonator (OCSRR). By embedding the OCSRR structure in the microstrip transmission line, slow wave effect is introduced and thereby size reduction is achieved. The dimensions of OCSRR are optimized to reduce the length of high impedance and low impedance quarter-wavelength transmission lines. In our design high impedance line length is reduced to 58.6%, and low impedance line length is reduced to 12% when compared to the conventional quarter wavelength lines. The proposed power divider is having small dimensions of 0.18 λg × 0.33 λg and is 51.94% smaller than the conventional unequal power divider

    Fundamental suppression of backscattering in silicon microrings

    Get PDF

    Miniaturized Resonator and Bandpass Filter for Silicon-Based Monolithic Microwave and Millimeter-Wave Integrated Circuits

    Get PDF
    © 2018 IEEE. © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.This paper introduces a unique approach for the implementation of a miniaturized on-chip resonator and its application for the first-order bandpass filter (BPF) design. This approach utilizes a combination of a broadside-coupling technique and a split-ring structure. To fully understand the principle behind it, simplified LC equivalent-circuit models are provided. By analyzing these models, guidelines for implementation of an ultra-compact resonator and a BPF are given. To further demonstrate the feasibility of using this approach in practice, both the implemented resonator and the filter are fabricated in a standard 0.13-μm (Bi)-CMOS technology. The measured results show that the resonator can generate a resonance at 66.75 GHz, while the BPF has a center frequency at 40 GHz and an insertion loss of 1.7 dB. The chip size of both the resonator and the BPF, excluding the pads, is only 0.012mm 2 (0.08 × 0.144 mm 2).Peer reviewe
    corecore