38 research outputs found

    Bernstein Polynomials for Radiative Transfer Computations

    Get PDF
    In this paper we propose using planar and spherical Bernstein polynomials over triangular domain for radiative transfer computations. In the planar domain, we propose using piecewise Bernstein basis functions and symmetric Gaussian quadrature formulas over triangular elements for high quality radiosity solution. In the spherical domain, we propose using piecewise Bernstein basis functions over a geodesic triangulation to represent the radiance function. The representation is intrinsic to the unit sphere, and may be efficiently stored, evaluated, and subdivided by the de Casteljau algorithm. The computation of other fundamental radiometric quantities such as vector irradiance and reflected radiance may be reduced to the integration of the piecewise Bernstein basis functions on the unit sphere. The key result of our work is a simple geometric integration algorithm based on adaptive domain subdivision for the Bernstein-Bézier polynomials over a geodesic triangle on the unit sphere

    Барицентрические координаты Пуассона — Римана

    Get PDF
    The article deals with the problem of finding barycentric coordinates for arbitrary, simply connected, closed, discrete regions that are defined in and . Barycentric coordinates are given by a set of scalar parameters that unambiguously define a point of the affine space inside a simply connected, closed, discrete region through a specified point basis, which is given by the vertices of the region. Barycentriс coordinates being defined for the simply connected, closed, discrete region are harmonic and satisfy the properties of affine invariance, positive definiteness and equality to unit. The solution is based on the Riemann theorem on the uniqueness of conformal mapping and the Poisson integral formula for the ball. The paper shows the examples of approximation of the potential inside arbitrary, simply connected, closed, discrete regions using the proposed method, compared with the approximation using the finite element method.В статье выполнено решение задачи нахождения барицентрических координат для произвольных односвязных замкнутых дискретных областей, заданных в и . Барицентрические координаты задаются набором скалярных параметров, однозначно определяющих точку аффинного пространства внутри односвязной замкнутой дискретной области через заданный точечный базис. Точечный базис задается вершинами односвязной замкнутой дискретной области. Определяемые барицентрические координаты для односвязной замкнутой дискретной области являются гармоническими и удовлетворяют свойствам аффинной инвариантности, положительной определенности и равенстве единице. Решение основано на теореме Римана о единственности конформного отображения и интегральной формуле Пуассона для шара. Приведены примеры аппроксимации потенциала внутри произвольных односвязных замкнутых дискретных областей по предложенному методу в сравнении с аппроксимацией методом конечных элементов

    On some interactive mesh deformations

    Get PDF
    Techniques devoted to deform 3D models are an important research field in Computer Graphics. They can be used in differentstages: the modelling phase, the animation process and also during some special simulations. Additionally, some applications may require the manipulation of 3D models under certain restrictions to preserve the volume of the modified object. Hence, thepresent PhD Dissertation explores new algorithms to perform flexible, robust and efficient 3D deformations. Apart from this, it also researches on a new methodology to restrict these deformations so that the volume of the manipulated model remains constant. Some of the most used methods to achieve smooth deformations are those included in the Cage-Based Deformation paradigm. Cage-based deformations enclose the model to be deformed in a coarse polyhedron, the cage. Then, they usually rely on Generalized Barycentric Coordinates to relate the model with the vertices, and other geometric elements, of this cage, which are the control points or the deformation handles. Finally, every time that one of these handles is dragged, the model is deformed accordingly. Although this paradigm is simple, elegant and performs efficient deformations, some cage-free space deformation techniques have recently appeared. They increase the flexibility of the deformation handles, which do not need to be connected, and define powerful tools that make the deformation process more versatile and intuitive. In this context, the Dissertation introduces new Generalized Barycentric Coordinate systems specially designed to be used in a cage-free environment. Any user who wants to use the presented schemes only needs to locate a set of control points in the vicinity of the model that he or she wants to deform. These handles can be placed wherever he or she considers mode suitable and the only requirement is that the model has to be enclosed in their convex hull. Up to now, there are few techniques to produce volume-preserving space deformations. However, in recent years there has been a growing interest in performing constrained deformations due to their more realistic and physically plausible results. Our contribution to this research line consists in a deformation framework that preserves the volume of the 3D models by means of its gradient and a control surface to restrict the movement of the handles. Moreover, the proposed methodology is not restricted to the cage-based schemes, but it can also be used in a cage-free environment. Finally, our research can be specially useful for spatial deformations of biological and medical models. This kind of models represent real organs and tissues, which are often soft and lack an internal rigid structure. In addition, they are elastic and incompressible. Any application designed to deal with this group of models and to train or assist doctors must be flexible, robust, efficient and user-friendly. The combination of the proposed cage-free systems with the presented volume-preserving deformation framework satisfiesLes deformacions de models 3D s'utilitzen en diverses etapes de la generació de continguts digitals: durant la fase de modelatge, durant el procés d'animació i en alguns tipus de simulacions. A més a més, hi ha aplicacions que necessiten que la manipulació dels models 3D es faci tenint en compte certes restriccions que permeten la conservació del volum de l'objecte modificat. Tot plegat fa que les tècniques de deformació 3D siguin un camp d'estudi molt important dins del món dels Gràfics. Per aquesta raó, aquesta Tesi Doctoral estudia nous algorismes que permetin realitzar deformacions 3D de manera flexible, robusta i eficient i que, a més a més, permetin conservar el volum dels objectes modificats. Un dels paradigmes més utilitzats per tal de realitzar deformacions suaus és el conegut amb el nom de Deformacions Basades en un Poliedre Englobant. Aquesta família de mètodes embolcalla el model que es vol deformar, normalment representat com una malla de triangles, dins d'un poliedre simple, amb poques cares. Un cop fet això, estableix un sistema de Coordenades Baricèntriques Generalitzades per tal de definir els vèrtexs del model a partir dels vèrtexs del poliedre englobant, els quals s'anomenen punts de control o controls de la deformació. D'aquesta manera, cada cop que s'arrossega o es modifica un d'aquests punts de control, el model que es troba dins del poliedre englobant es deforma segons el sistema de coordenades que s'ha definit. Tot i que aquest paradigma és simple, elegant i eficient, des de fa ja uns anys han començat a aparèixer noves tècniques que no necessiten el poliedre englobant per tal de realitzar la deformació. El seu principal objectiu és augmentar la flexibilitat dels controls de la deformació i definir eines que facin que el procés de deformació sigui més versàtil i intuïtiu. Tenint en compte aquest factor, aquesta Tesi també estudia sistemes de Coordenades Baricèntriques Generalitzades dissenyats per realitzar deformacions sense la necessitat de definir el poliedre englobant. D'aquesta manera, qualsevol usuari que vulgui utilitzar els mètodes que es presenten en aquesta Dissertació només s'ha d'encarregar de definir un conjunt de punts de control al voltant del model que vol deformar, podent-los posar allí on consideri més oportú segons la deformació que vulgui obtenir. L'únic requeriment necessari és que el model ha de quedar dins de l'envolupant convexa d'aquests punts de control. Actualment existeixen pocs mètodes que realitzin deformacions 3D amb preservació del volum. No obstant això, d'un temps ençà ha augmentat l'interès per realitzar deformacions subjectes a certes restriccions que fan que el resultat sigui més realista i físicament versemblant. La contribució d'aquesta Tesi dins d'aquesta línia de recerca consisteix en un sistema de deformació que preserva el volum dels objectes 3D gràcies a còmput del seu gradient i a una superfície de control que restringeix el moviment dels punts de control. Aquest mètode es pot aplicar tant als sistemes de deformació que necessiten un poliedre englobant com als que no el necessiten. Finalment, i ja per acabar, la recerca realitzada pot ser especialment útil per tal de realitzar deformacions de models mèdics i biològics. Aquests tipus de models poden representar òrgans i teixits reals, els quals, normalment, són tous, mancats d'una estructura rígida interna, elàstics i incompressibles. Qualsevol aplicació dissenyada per treballar amb aquest tipus de models i per entrenar i donar assistència a usuaris mèdics hauria de ser flexible, robusta, eficient i fàcil d'utilitzar. La combinació dels mètodes de deformació proposats conjuntament amb el sistema de preservació de volum satisfà totes aquestes condicions. Per aquesta raó es creu que les contribucions realitzades poden esdevenir eines importants per produir deformacions mèdiques.Postprint (published version

    Preserving Geometry and Topology for Fluid Flows with Thin Obstacles and Narrow Gaps

    Get PDF
    © ACM, 2016. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Azevedo, V. C., Batty, C., & Oliveira, M. M. (2016). Preserving Geometry and Topology for Fluid Flows with Thin Obstacles and Narrow Gaps. Acm Transactions on Graphics, 35(4), 97. https://doi.org/10.1145/2897824.292591Fluid animation methods based on Eulerian grids have long struggled to resolve flows involving narrow gaps and thin solid features. Past approaches have artificially inflated or voxelized boundaries, although this sacrifices the correct geometry and topology of the fluid domain and prevents flow through narrow regions. We present a boundary-respecting fluid simulator that overcomes these challenges. Our solution is to intersect the solid boundary geometry with the cells of a background regular grid to generate a topologically correct, boundary-conforming cut-cell mesh. We extend both pressure projection and velocity advection to support this enhanced grid structure. For pressure projection, we introduce a general graph-based scheme that properly preserves discrete incompressibility even in thin and topologically complex flow regions, while nevertheless yielding symmetric positive definite linear systems. For advection, we exploit polyhedral interpolation to improve the degree to which the flow conforms to irregular and possibly non-convex cell boundaries, and propose a modified PIC/FLIP advection scheme to eliminate the need to inaccurately reinitialize invalid cells that are swept over by moving boundaries. The method naturally extends the standard Eulerian fluid simulation framework, and while we focus on thin boundaries, our contributions are beneficial for volumetric solids as well. Our results demonstrate successful one-way fluid-solid coupling in the presence of thin objects and narrow flow regions even on very coarse grids.Conselho Nacional de Desenvolvimento Científico e Tecnológico, Natural Sciences and Engineering Research Council of Canad

    Transfinite mean value interpolation in general dimension

    Get PDF
    AbstractMean value interpolation is a simple, fast, linearly precise method of smoothly interpolating a function given on the boundary of a domain. For planar domains, several properties of the interpolant were established in a recent paper by Dyken and the second author, including: sufficient conditions on the boundary to guarantee interpolation for continuous data; a formula for the normal derivative at the boundary; and the construction of a Hermite interpolant when normal derivative data is also available. In this paper we generalize these results to domains in arbitrary dimension

    Transfinite mean value interpolation in general dimension

    Get PDF
    AbstractMean value interpolation is a simple, fast, linearly precise method of smoothly interpolating a function given on the boundary of a domain. For planar domains, several properties of the interpolant were established in a recent paper by Dyken and the second author, including: sufficient conditions on the boundary to guarantee interpolation for continuous data; a formula for the normal derivative at the boundary; and the construction of a Hermite interpolant when normal derivative data is also available. In this paper we generalize these results to domains in arbitrary dimension

    Construction of smooth maps with mean value coordinates

    No full text
    Bernstein polynomials are a classical tool in Computer Aided Design to create smooth maps with a high degree of local control. They are used for the construction of B\'ezier surfaces, free-form deformations, and many other applications. However, classical Bernstein polynomials are only defined for simplices and parallelepipeds. These can in general not directly capture the shape of arbitrary objects. Instead, a tessellation of the desired domain has to be done first. We construct smooth maps on arbitrary sets of polytopes such that the restriction to each of the polytopes is a Bernstein polynomial in mean value coordinates (or any other generalized barycentric coordinates). In particular, we show how smooth transitions between different domain polytopes can be ensured

    3D model deformations with arbitrary control points

    Get PDF
    Cage-based space deformations are often used to edit and animate images and geometric models. The deformations of the cage are easily transferred to the model by recomputing fixed convex combinations of the vertices of the cage, the control points. In current cage-based schemes the configuration of edges and facets between these control points affects the resulting deformations. In this paper we present a family of similar schemes that includes some of the current techniques, but also new schemes that depend only on the positions of the control points. We prove that these methods afford a solution under fairly general conditions and result in an easy and flexible way to deform objects using freely placed control points, with the necessary conditions of positivity and continuity.Peer ReviewedPostprint (author's final draft
    corecore