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Figure 1: Our geometry- and topology-aware boundary treatment supports simulating smooth flows in the presence of thin solid geometry and
narrow gaps on very coarse grids.

Abstract

Fluid animation methods based on Eulerian grids have long strug-
gled to resolve flows involving narrow gaps and thin solid features.
Past approaches have artificially inflated or voxelized boundaries,
although this sacrifices the correct geometry and topology of the
fluid domain and prevents flow through narrow regions. We present a
boundary-respecting fluid simulator that overcomes these challenges.
Our solution is to intersect the solid boundary geometry with the
cells of a background regular grid to generate a topologically correct,
boundary-conforming cut-cell mesh. We extend both pressure pro-
jection and velocity advection to support this enhanced grid structure.
For pressure projection, we introduce a general graph-based scheme
that properly preserves discrete incompressibility even in thin and
topologically complex flow regions, while nevertheless yielding
symmetric positive definite linear systems. For advection, we ex-
ploit polyhedral interpolation to improve the degree to which the
flow conforms to irregular and possibly non-convex cell boundaries,
and propose a modified PIC/FLIP advection scheme to eliminate
the need to inaccurately reinitialize invalid cells that are swept over
by moving boundaries. The method naturally extends the standard
Eulerian fluid simulation framework, and while we focus on thin
boundaries, our contributions are beneficial for volumetric solids as
well. Our results demonstrate successful one-way fluid-solid cou-
pling in the presence of thin objects and narrow flow regions even
on very coarse grids.
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1 Introduction

Compelling fluid animations often result from interactions with mov-
ing solid boundaries. However, standard grid-based discretizations
face difficulties when either the boundaries themselves or the spaces
between the boundaries are thin relative to the grid resolution. For
narrow flow regions, the challenge is that a typical voxelized view
of the domain simply cannot capture them correctly, either topolog-
ically or geometrically. For thin boundaries, the same difficulties
are exacerbated by the need to prevent flow on one side of an im-
permeable boundary from erroneously interfering with flow on the
opposing side. While in principle one could continually increase
the grid resolution until the thin feature or region is fully resolved,
this is tremendously expensive and impractical for most animation
scenarios. The poor scaling of volumetric simulation has motivated
recent efforts to capture as much detail as possible at free surface
boundaries while using much lower resolution underlying simula-
tion grids [Kim et al. 2009; Wojtan et al. 2010; Bojsen-Hansen and
Wojtan 2013; Edwards and Bridson 2014].

Our goal is philosophically similar: we seek to enhance the ability
of coarse grid-based Eulerian fluid simulators to resolve interesting
flows, but focus instead on solid boundaries which may be moving,
irregularly shaped, arbitrarily thin, and in close mutual proximity.

We take an embedded boundary or cut-cell approach: at each time
step, grid cells intersected by the triangle mesh representing the solid
boundary are clipped against it, potentially yielding multiple distinct
polyhedral sub-cells. The resulting hybrid simulation mesh closely
conforms to the geometry of the solid boundary and reduces to a
regular grid away from the boundary. Crucially, and in contrast to
existing fluid animation methods using regular grids, our approach
preserves the topology of the fluid domain, including thin solids and
slender narrow gaps between nearby solids. The practical advantage
this offers is a sharp reduction in the unnecessary coupling between
grid resolution and solid boundary topology present in previous
work; that is, fluid grid resolution can be artistically adjusted solely
to achieve the desired balance of fluid detail and computational cost,
without concern for whether an inaccurate solid discretization will
inadvertently disconnect or merge flow regions in the process.

We first introduce a topologically-accurate, graph-based discretiza-
tion for the pressure projection on the cut-cell mesh which can
resolve flows in difficult regions. Furthermore, it offers greater
fidelity than prior work on thin solids: it better accounts for the sub-
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grid geometry of the boundary, correctly recovers free-slip boundary
conditions, and is consistent with existing cut-cell approaches for
volumetric objects (e.g., [Batty et al. 2007; Ng et al. 2009]).

Secondly, to improve the handling of advection near boundaries
we develop a conforming velocity interpolant on arbitrarily-shaped
polyhedral cut-cells by relying on spherical barycentric coordinates
(SBC) [Langer et al. 2006]. This allows flow characteristics to more
closely respect boundary geometry than is possible with standard,
boundary-oblivious linear or cubic interpolation schemes, particu-
larly in narrow regions.

Lastly, we augment our approach with a tailored PIC/FLIP [Zhu
and Bridson 2005] advection scheme. Beyond its usual ability to
reduce numerical dissipation, this resolves a lingering difficulty with
semi-Lagrangian advection in the context of thin moving boundaries.
Specifically, grid cells swept over by solids lack valid velocity infor-
mation after semi-Lagrangian advection [Guendelman et al. 2005],
and must be filled back in by extrapolating from valid cells that may
be arbitrarily far away. Our use of Lagrangian particles ensures that
velocity data flows coherently with the boundaries themselves, so
that extrapolation is not required.

These enhancements substantially improve the detail that can be
achieved when simulating fluids interacting with solid boundaries,
while readily integrating into the dominant Eulerian staggered grid
fluid pipeline. Figure 1 shows examples of fluid animations con-
taining thin obstacles and gaps created with our technique on very
coarse grids. On the left, a very thin paddle successfully stirs smoke.
The image in the center shows smoke propagating through a narrow
tunnel in a low-resolution grid. On the right, we see flow through
two linked tori without mutual interaction.

To summarize, the technical contributions of our work include:
• The identification of key limitations of existing thin solid and

thin gap treatments, due to voxelized geometry and standard
interpolation strategies;

• A symmetric, graph-based cut-cell pressure projection method
that preserves the domain topology (Section 4). It is the first
to properly handle both thin obstacles and thin gaps between
obstacles within coarse 3-D grid cells, allowing the use of less
costly grids to animate flows in difficult geometries;

• An improved velocity interpolation scheme in polyhedral cut-
cells based on spherical barycentric coordinates (Section 5),
allowing flows to better respect irregular solid boundaries;

• A technique to improve velocity advection near thin moving
obstacles (Section 6). By combining Lagrangian PIC/FLIP
particles with our cut-cell scheme, velocity information is
correctly propagated despite the presence of moving geometry.

1.1 Overview

The structure of our technique is outlined in Algorithm 1, which gen-
erally follows the hybrid particle-grid approach of Zhu and Bridson
[2005]. After reviewing related work, we describe our cut-cell mesh
structure (Section 3) and explain how pressure projection (Section
4), interpolation (Section 5) and advection (Section 6) are modified
to best exploit it. We describe our algorithm in 3-D; the 2-D analogy
is straightforward.

2 Previous Work

2.1 Thin Solid Boundaries

While thin boundaries often arise in two-way coupling, we focus our
review on aspects relevant to the one-way (solid-to-fluid) coupling
problem addressed by our work.

Algorithm 1 Main Loop

while simulating do
Advect particles (Section 5) and advance solid position
Generate cut-cell mesh (Section 3)
Transfer particle velocities to the mesh (Section 6)
Add external forces to the mesh
Perform pressure projection on the mesh (Section 4)
Update particle velocities from the mesh (Section 6)

end while

The coupling of fluid to thin boundaries in computer graphics was
first addressed by Guendelman et al. [2005]. Their approach vox-
elized the geometry of thin shells onto the regular grid, and used a
one-sided extension of trilinear interpolation based on raycasting to
avoid mixing data from the opposite side of a boundary. They also
proposed an extrapolation approach to fill in data for fluid regions
that are swept over and invalidated by moving boundaries. Later
work by Robinson-Mosher et al. [2008; 2009] adopted essentially
the same one-sided interpolation mechanism. A similar raycasting
strategy has been applied to compressible flows in computational
fluid dynamics [Wang et al. 2012].

Robinson-Mosher et al. [2008] used a mass-lumping technique for
two-way coupling of thin shells to fluid on a regular grid. This
scheme sacrifices free-slip velocities even in the inviscid limit, so the
same authors proposed the use of ghost-velocities and a constraint-
based formulation to restrict only the normal component of velocity
[Robinson-Mosher et al. 2009]. Both methods use a voxelized
boundary approximation, and thus the topology of the fluid domain
used by the pressure solver is often incorrect in tight configurations.
Voxelization also leads the solid boundary velocity constraints to be
applied at grid face centres rather than on the actual boundary itself.
Qiu et al. [2015] proposed a two-way rigid-body-fluid coupling
scheme that extends the voxelized approach to thin gaps using lower-
dimensional advection and extra degrees of freedom, though it does
not consider thin objects.

Boundary-conforming Eulerian tetrahedral meshes (e.g., [Feldman
et al. 2005; Klingner et al. 2006; Elcott et al. 2007]) could potentially
simplify the treatment of thin boundaries during pressure projection,
at the cost of repeated and potentially costly remeshing, but to our
knowledge this has not been explicitly considered. The closest is
the work of Chentanez et al. [2006], who simulated the coupling
of fluid to deformable shells of modest thickness discretized with
tetrahedra using a conforming mesh approach. To reduce meshing
costs for liquid animation, Chentanez et al. [2007] later relied on
the efficiency of isosurface stuffing [Labelle and Shewchuk 2007];
however, isosurface stuffing conforms to an approximate isosurface
rather than the exact solid geometry. In general, while conform-
ing meshes simplify the pressure projection, their use in Eulerian
schemes does not inherently resolve interpolation and advection
issues near thin boundaries. In contrast to Eulerian methods, purely
Lagrangian methods that rely on conforming tetrahedralizations of
both fluid and solid are also possible [Misztal et al. 2010; Clausen
et al. 2013], and may better avoid these issues; again, this does not
appear to have been studied.

While beyond the scope of this work, thin objects have also been cou-
pled to SPH simulations (e.g., [Lenaerts and Dutré 2008]). Another
interesting alternative uses history-based forces to approximate the
effects of fluid on submerged cloth [Ozgen et al. 2010]; this does not
extend to scenarios where the fluid motion itself is also of interest.



2.2 Embedded Boundary Methods

Roble et al. [2005] proposed a two-dimensional finite volume-like
technique for irregular static boundaries, similar to much earlier
work by Purvis and Burkhalter [1979], in which the usual Poisson
stencil is augmented with per-face weights that account for the fluid
fraction of each face. Batty et al. [2007] presented a closely related,
variational technique that enabled stable two-way coupling in 3-D
with irregular volumetric rigid bodies. Ng et al. [2009] showed that
the finite volume variant of this scheme yields second-order accurate
pressures and first-order velocities. (This complements the ghost
fluid method for free surfaces [Enright et al. 2003] which achieves
the same.) In essence, our discretization applies and generalizes the
work of Ng et al. to thin boundaries and thin gaps.

Colella and collaborators [Johansen and Colella 1998; Schwartz
et al. 2006] developed a similar cut-cell method that additionally
interpolates velocities to lie at the centroids of partial faces. This
achieves second-order accurate velocities at the expense of more
complex stencils; however, these stencils yield non-symmetric sys-
tems and cannot be applied in narrow regions. Day et al. presented
an interesting partial extension of this idea to thin boundaries in two
dimensions, through the use of a more general graph structure and
extra ghost samples on the grid [Day et al. 1998]. Our pressure pro-
jection draws inspiration from this method, but differs in a few key
respects. We achieve a symmetric positive-definite system, provide
a direct extension to three dimensions, and support an arbitrary
number of disjoint components per cell.

Crockett et al. [2011] discussed the related idea of “multi-cells”
which arise during coarsening steps of a multigrid scheme for Pois-
son problems on irregular domains; work by Dick et al. [2016] is
similar in spirit. Weber et al. [2015] developed a multigrid solver
for the scheme of Ng et al., ensuring consistent discretization across
grid levels, but did not consider multi-cells or the treatment of thin
solids. Hellrung et al. [2012] presented a more complex virtual
node discretization for 3-D Poisson problems with discontinuities,
assuming a level-set description of domain boundaries which effec-
tively restricts the method to closed regions that do not possess thin
boundaries or gaps.

Ferstl et al. [2014] used a cut-cell tetrahedra-based finite-element
scheme with a multigrid solver, and similarly preserved the free
surface topology during coarsening, though solid boundaries were
treated as voxelized. Edwards et al. [2014] proposed an adaptive
discontinuous Galerkin scheme on cut cell meshes to handle detailed
free surface flow on coarse grids, potentially involving multiple
disjoint liquid components per original cell; they did not discuss thin
solids or thin gaps.

Outside of the fluid setting, topology-aware strategies have been
applied to simulate the dynamics of elastic deformable objects pos-
sessing multiple distinct deforming components inside a single finite
element [Teran et al. 2005; Nesme et al. 2009]. Though conceptually
related, they are inapplicable to the problem we consider.

2.3 Velocity Reconstruction and Interpolation

Staggered-grid projection methods recover only the face-normal
components of velocity rather than full vectors; this slightly com-
plicates interpolation and advection. In the regular grid case, mul-
tilinear interpolation can be applied on each velocity component
independently. However, for more general unstructured or poly-
hedral meshes, full velocities must first be reconstructed before
interpolating, typically through least squares fitting, as done by pre-
vious work on tetrahedral and Voronoi grids [Feldman et al. 2005;
Klingner et al. 2006; Elcott et al. 2007; Sin et al. 2009; Batty et al.
2010; Brochu et al. 2010]. We use a least squares fit to recover nodal

velocities from face fluxes on our polyhedral cells, which simplifies
velocity interpolation during advection.

Various velocity interpolation schemes have been proposed for use
during the advection step, the most common being simple bi/tri-
linear interpolation on a regular grid [Stam 1999]. Higher-order
extensions have been used to improve the retention of vorticity
[Fedkiw et al. 2001; Selle et al. 2008].

Guendelman et al. [2005] were the first to directly address the inter-
polation issues raised by thin boundaries. Subsequent related work
by Robinson-Mosher et al. [2008; 2009] relied on the same interpo-
lation technique. Raycasting is used to determine visibility between
an interpolation point and the position of a velocity sample it would
depend on; one-sided interpolation can then be performed using only
the visible data to robustly avoid polluting the result with data from
the opposite side of a thin boundary. However, since basic trilinear or
tricubic interpolation do not possess knowledge of the solid position,
fluid trajectories typically still cross boundaries; this necessitates
the frequent use of collision-processing during advection to prevent
data crossing over.

On staggered unstructured tetrahedral meshes, the velocity recon-
struction approaches are first used to determine velocities at de-
sired nodal points; these can then be applied within a mesh-based
barycentric interpolant. Given the velocities at tetrahedra centres
(i.e., Voronoi vertices), generalized barycentric interpolation is ap-
plied over the convex Voronoi elements [Klingner et al. 2006; Elcott
et al. 2007].

In the above methods, polyhedral interpolants were used for the
purpose of avoiding oversmoothing velocities, as compared to in-
terpolating over tetrahedra. By contrast, our primary motivation
for using polyhedral interpolation is that it enables the interpolated
velocity to closely conform to the geometry of solid boundaries.
Rosatti et al. [2005] presented a related two-dimensional technique
that fits boundary-respecting linear velocity fields to the triangular,
trapezoidal, and pentagonal cells resulting from the usual marching-
squares cases applied to an implicit representation of the solid bound-
ary. Our approach clips the regular grid against the solid boundary
triangle mesh, yielding arbitrary polyhedral cells. We can then use
an interpolant that handles non-convex polyhedra, i.e., spherical
barycentric coordinates [Langer et al. 2006].

3 The Cut-Cell Mesh

Given a triangle mesh representing the geometry of the solid bound-
ary, we perform clipping on all cells intersected by this bound-
ary. Each affected original grid cell may give rise to one or more
boundary-conforming polyhedral sub-cells. Clipping with triangle
meshes is a well-studied problem (e.g., [Aftosmis et al. 1998; Sifakis
et al. 2007; Wang et al. 2014]), most recently used by Edwards and
Bridson [2014] to support detailed liquid free surfaces. We there-
fore refer the reader to these works for implementation details on
generating cut-cell meshes, and simply summarize the properties of
the resulting mesh.

A principal difference between our cut-cell meshes and those used
by Edwards and Bridson is that we retain sub-cells on both sides of
the triangle mesh geometry. The solid geometry is also not required
to be a “closed” surface, and therefore the triangle mesh may cut
only partway through a cell. In this case, we subdivide the faces
through which it crosses, but do not partition the cell itself. We
will refer to the resulting faces as dangling interior faces. We will
refer to mesh faces that connect two fluid (sub-)cells as fluid faces;
these will always be axis-aligned. New faces produced by clipping
against the solid boundary will be called solid faces. We do not
tetrahedralize the resulting polyhedra, so cell faces may be general



planar polygons. Cells that are not intersected by the geometry are
left untouched, so as to be efficiently and conveniently treated with
standard methods.

Figure 2 illustrates these cut-cell concepts in 2-D, for two infinites-
imally thin solid boundaries with fluid on either side. In (a), the
thin boundaries are represented by polylines, shown in green with
bright green nodes. The original regular grid is shown in gray. Part
(b) illustrates the boundaries (in red) resulting from the raycasting
or voxelized view used by previous work [Guendelman et al. 2005;
Robinson-Mosher et al. 2008; Robinson-Mosher et al. 2009]. Both
the geometry and topology of the fluid domain are sacrificed: the gap
between the two solid boundaries has been entirely collapsed away.
Part (c) illustrates our cut-cell mesh with the new vertices created
during clipping (shown in black). Under our cut-cell view, both the
thin gap and the detailed geometry of the boundary are maintained.
Part (d) uses a graph (blue) to illustrate the neighbour relationships
between the resulting sub-cells. The segments in the partially cut
upper-left and lower-left cells are examples of dangling interior
faces; notice that, as illustrated in the graph view, these partially cut
cells are assigned only a single pressure sample although their faces
are subdivided.

(a) Geometry (b) Raycast

(c) Cut-cell (d) Graph

Figure 2: (a) Sub-grid thin boundaries (green) are represented by a
polyline mesh in 2-D. (b) Voxelization/raycasting yields inaccurate
axis-aligned boundaries (red). (c) Clipping the grid against the solid
boundary mesh instead yields a cut-cell mesh with multiple distinct
sub-cells, with new mesh nodes shown in black. (d) The connectivity
relationships between sub-cells can be visualized as a graph (blue).

This cut-cell mesh, with its support for multiple disjoint solid compo-
nents and multiple sub-cells in each grid cell, forms the infrastructure
with which we will handle narrow gaps and thin solids. An example
is shown for the Dragon in Figure 3.

4 Graph-Based Pressure Projection

Cut-Cell Pressure Projection The standard pressure projection
step solves the Poisson problem ∆t

ρ
∇ · ∇p = ∇ · u∗, in order to

find the pressure field that will correctly convert the intermediate
velocity field, u∗, into the nearest incompressible field, u. Having
found the pressure field p, its gradient is subtracted from the velocity
field: u = u∗ − ∆t

ρ
∇p.

Our approach to discretizing this problem on the cut-cell mesh
extends previous variational [Batty et al. 2007] and finite volume cut-

Dragon with Coarse Grid

Intersection Curves

Figure 3: (Top) The dragon solid geometry, shown with the regular
grid superimposed. (Bottom) The network of curves generated by
intersecting the two, with the dragon rendered transparent.

cell [Roble et al. 2005; Ng et al. 2009; Batty et al. 2010] techniques
for volumetric solids, which account for the flow through each face
of a given grid cell adjusted for the area of the faces that are blocked
by a solid obstacle.

In particular, we begin with the scheme of Ng et al. [2009] as the
basis of our approach as it yields symmetric positive definite linear
systems and pressure solutions that converge with second-order
spatial accuracy. The associated discrete divergence measure is:

∇ · u ≈
∑
iAi(u · n)i +

∑
j Aj(usolid · nsolid)j

Vcell
, (1)

where the index i runs over all fluid faces of a cell, and j runs over
all solid faces. Ak indicates the area of the k-th face, u is the fluid
velocity, usolid is the solid velocity, n is the fluid face normal vector,
nsolid is the solid face normal vector, and Vcell indicates the volume
of the cell. Face normals are assumed to be oriented outwards.
As usual, scaling each row of the discrete Poisson problem by its
corresponding cell volume cancels volume terms in the system;
we require only face areas (e.g., [Losasso et al. 2004]). Following
Guendelman et al. [2005] one must also take care to set the velocity
for the solid boundary condition to be the effective velocity computed
over the subsequent timestep rather than its instantaneous/analytical
velocity, to ensure that the resulting end-of-step velocities sync with
the motion of the solid during advection on the next step; their paper
provides further discussion.

Pressure gradients are computed using standard centered differences
between cell-centered pressures, ∇p ≈ pi+1−pi

∆x
, even near cut-

cell faces. Given these discrete divergence and gradient operators,
the Poisson problem can be directly discretized on the usual stag-
gered grid. Perhaps surprisingly, Ng et al. clearly show that this
projection scheme correctly converges even though the geometric
centers of cells and the midpoints of faces often lie outside the ac-
tual fluid domain (see Figure 4, top-left). This feature conveniently



preserves many of the benefits of the structured regular grid (symme-
try, positive-definiteness, primal-dual orthogonality, second-order
accurate pressures) as we extend it to more general topologies below.

Figure 4: Top-left: The method of Ng et al. for embedded volumetric
solid boundaries (green) converges despite using active face mid-
points (black dash) and cell centers (black disks) lying outside the
fluid domain (white). Top-right: A complementary dual geometry,
created by swapping fluid and solid domains, can also be easily
simulated with Ng’s method. Bottom-left: By conceptually superim-
posing the top two scenarios and duplicating the required degrees
of freedom, a pressure projection can be performed on the thin solid,
shown at the bottom-right, without interference across it.

Topology-Aware Pressure Projection The method of Ng et al.
implies a few restrictions. It assumes a level set description of the ge-
ometry, which limits it to volumetric objects and fluid regions larger
than a grid cell width to guarantee a faithful topological descrip-
tion of the domain. The strictly regular underlying grid structure
also means that each cell contains only a single active region and
corresponding pressure . We seek to relieve these restrictions.

To extend this strategy to multiple distinct flow regions within a sin-
gle regular grid cell, as produced by our mesh clipping strategy, we
take inspiration from recent virtual node [Molino et al. 2004; Hell-
rung et al. 2012] and topology-preserving [Teran et al. 2005; Nesme
et al. 2009] schemes. We allow multiple disjoint active sub-cells
within a single original cell, with additional pressure and velocity
degrees of freedom that conceptually coincide for consistency with
Ng’s discretization (see Figure 4). We assign one pressure to each
sub-cell, placing it at the original cell center’s location (i.e., not at
sub-cell centroids). Each original fluid face of the grid has multiple
fluid sub-faces which connect sub-cells of adjacent regular cells
together; each sub-face is assigned a velocity degree of freedom that
is geometrically positioned at the regular cell face midpoint (i.e., not
at the sub-face midpoint). This yields a more general graph structure
(see Figure 2d) on which we can perform the pressure projection,
yet the gradient and divergence operators remain axis-aligned. Ta-
ble 1 gives the explicit matrix representation of our discrete Poisson
equation for the small 2-D scenario shown in Figure 5. In large
examples, most of the mesh will exhibit the usual banded Poisson
matrix structure, with a few additional unstructured entries to treat
regions involving cut geometry.

Primal-Dual Orthogonality As highlighted by Batty et al. [2010],
orthogonality of the discrete gradient estimates with respect to the
face-normal velocity components is key to preserving accuracy in
staggered finite volume approaches. For example, staggered octree
schemes [Losasso et al. 2004] can lose accuracy at T-junctions due
to non-orthogonal gradients between large and small neighbor cells,
without a more careful treatment [Losasso et al. 2005]. By contrast,
the gradients we use between sub-cells are always computed be-
tween the geometric centers of their original grid cells, and therefore
preserve orthogonality with respect to the grid faces (see Figure 6).
This property is key to both our method and that of Ng et al.

c1,1

sc1 sc5

f1-2

f1-3

sc6

c2,1

sc4sc2
f2-4 f5-6

sc7
f4-7

sc3
f3-5

Figure 5: Geometry and notation used in our 2-D Poisson matrix
example (Table 1). The solid thin boundary is shown in green. ci,j
is a regular grid cell at row j, column i. sck is sub-cell k. fa-b is
the fraction of the fluid edge shared by sub-cells a and b.

Figure 6: Left: Naı̈ve octree discretizations yield face fluxes (blue)
and pressure gradients (red) that are not aligned. Right: Following
Ng, our cut-cell discretization co-locates all sub-cell pressures at
grid cell centers (filled black circle) rather than sub-cell centroids
(empty black circles). Thus our “T-junction-like” branching pre-
serves orthogonality and avoids artifacts. Similarly, face fluxes are
conceptually stored at original face midpoints (blue), rather than at
sub-face midpoints.

5 Conforming Interpolation on Cut-Cells

Both PIC/FLIP and semi-Lagrangian advection schemes rely on
the ability to interpolate velocities at arbitrary points in the fluid
domain. The interpolants used to estimate pointwise velocity values
in grid-based methods typically rely on simple piecewise linear or
cubic approximations [Fedkiw et al. 2001]. Though effective in free
flowing regions, such interpolants are fundamentally oblivious to the
domain geometry, regardless of either the order of the interpolant or
the accuracy of the pressure projection. As a result, the interpolated
fluid velocities do not necessarily satisfy the desired no-penetration
boundary condition ufluid · n = usolid · n, but are instead often
directed towards and through the boundary, a fact which is particu-
larly problematic for thin solids. The most common treatment is to
apply collision detection to directly clip particle trajectories against
solids (e.g., [Fedkiw et al. 2001; Guendelman et al. 2005]), although
this can exacerbate artificial clumping of particles and other data
[Rasmussen et al. 2004].

We instead aim to construct an improved interpolant so that the fluid
velocities themselves better respect the solid geometry, and reliance
on explicit collision-processing can be reduced. Figure 7 uses a
streamline visualization to compare one-sided bilinear interpolation
[Guendelman et al. 2005; Robinson-Mosher et al. 2009] against our
interpolation method. Although both approaches carefully avoid
mixing data from the wrong side of the thin boundary, the latter
yields a velocity field that conforms more closely to the boundary,
reduces grid-dependence, and can easily be set to satisfy either a
free-slip or no-slip condition as desired. By contrast, the results for
bilinear interpolation do not align with the boundary and exhibit
nearly identical results under free-slip and no-slip conditions.

We describe our interpolation approach below, and use it during the



c1,1 c2,1 sc1 sc2 sc3 sc4 sc5 sc6 sc7



c1,1 2 −1 −1 0 0 0 0 0 0
c2,1 −1 3 0 −1 0 0 0 0 −1
sc1 −1 0

∑
f1 −f1-2 −f1-3 0 0 0 0

sc2 0 −1 −f1-2
∑

f2 0 −f2-4 0 0 0
sc3 0 0 −f1-3 0

∑
f3 0 −f3-5 0 0

sc4 0 0 0 −f2-4 0
∑

f4 0 0 −f4-7
sc5 0 0 0 0 −f3-5 0

∑
f5 −f5-6 0

sc6 0 0 0 0 0 0 −f5-6
∑

f6 0
sc7 0 −1 0 0 0 −f4-7 0 0

∑
f7



p1,1

p2,1

psc1
psc2
psc3
psc4
psc5
psc6
psc7


=



d1,1

d2,1

dsc1
dsc2
dsc3
dsc4
dsc5
dsc6
dsc7



Table 1: The symmetric cut-cell pressure projection matrix that results from the 2-D configuration shown in Figure 5, assuming Neumann
boundary conditions on the domain perimeter. ci,j represents a regular grid cell at row j, column i. sck is sub-cell k. fa-b is the fraction of the
fluid edge shared by sub-cells a and b.

∑
fk is the sum of all fluid-edge fractions shared by sub-cell sck. pi,j and di,j are, respectively, the

pressure and divergence at grid cell ci,j . psck and dsck are the pressure and divergence at sub-cell sck.

(a) SBC (free-slip) (b) SBC (no-slip)

(c) Bilinear (free-slip) (d) Bilinear (no-slip)

Figure 7: Streamlines of a velocity field obtained using different
one-sided interpolation schemes, with a stationary flow on one side.
(a) SBC interpolation from nodal velocities using free-slip bound-
ary conditions leads to streamlines that flow smoothly along the
boundary. (b) SBC with no-slip likewise conforms to the boundary,
but both tangential and normal velocities drop to zero precisely at
the boundary. (c) and (d) show one-sided bilinear interpolation
from values stored at the regular grid corners for both free-slip and
no-slip. The bilinear results exhibit grid-dependence, and do not
differ appreciably from one another. Moreover, since the interpolant
is non-conforming, the relevant velocity components do not drop to
zero on the boundary curve.

particle advection step of Section 6.

5.1 Polyhedral Cut-Cell Interpolation

Away from solid boundaries, we apply standard trilinear interpola-
tion to the regular grid velocities. For polyhedral (sub-)cells abutting
the solid geometry, we will first reconstruct nodal velocity values
(Section 5.2), and use these values for interpolation.

To perform interpolation over potentially non-convex polyhedra with
general planar polygonal faces, we make use of spherical barycentric
coordinates (SBC) [Langer et al. 2006], which provide a convenient
generalization of standard barycentric coordinates to this case. We
select SBC over the more widely-known mean value coordinates [Ju
et al. 2005], because SBC supports polygonal rather than triangular
faces. This method is effective for the vast majority of cut cells, and
the result is a nicely conforming interpolant.

Unfortunately, SBC cannot be readily applied to the comparatively
small set of cells containing dangling interior faces, as this represents
a degenerate configuration (essentially two coincident but oppositely
oriented faces). The simplest way to treat this is to just thicken or
extrude the input geometry into a very slim volume before simulat-
ing. This naturally eliminates problematic dangling interior faces,
allowing SBC to work as usual. However, while the geometry is thin
it is no longer of infinitesimal width.

The alternative is to try to construct an interpolant that is effec-
tive in the presence of the problematic dangling faces. We exper-
imented with various approaches, including visibility-aware SPH
interpolation, visibility-aware Shepard [1968] (i.e., inverse distance-
weighting with a raycast check of mutual visibility) interpolation,
or simply ignoring the dangling geometry altogether and reverting
to trilinear interpolation similar to previous work. None of these
choices is entirely satisfactory, because none ensure a velocity field
that is consistent with interpolation on neighbouring cells, conforms
to the interior geometry, and avoids mixing data from opposing sides
of the geometry. For examples involving truly infinitesimal width
geometry, we used the Shepard interpolation approach; we highlight
this as an interesting challenge for future work.

5.2 Velocity Reconstruction

Free-Slip Case We distinguish two cases for reconstructing nodal
velocities on cut-cells: free-slip and no-slip. We consider free-slip
first, in which the solid velocity determines the normal component,
and fluid velocities must dictate tangential components.

We define three types of cut-cell nodes, illus-
trated to the right. Fluid nodes (cyan) are the
original nodes of the regular grid outside the
object, for which all incident faces are axis-
aligned fluid faces. Solid nodes (black) are
nodes on the solid for which all incident faces
are solid faces. Finally, mixed nodes (white)
are nodes incident on both solid and fluid faces generated by the



clipping process. Recovering a full velocity at fluid nodes is trivially
done by averaging from the staggered data on the incident fluid
faces.

For mixed nodes, we apply a weighted least squares fit to the normal
velocity components corresponding to the incident faces (solid and
fluid) on the same side of the solid boundary, similar to previous
work [Feldman et al. 2005]. We use the (inverse) distances from the
node to the face centre as the weights. The system can occasionally
be underdetermined if a mixed node has nearly co-planar faces;
however, this can be compensated for by incorporating extra face-
normal velocity samples from additional nearby faces.

If all of a node’s incident faces are solid faces, we extrapolate from
the nearby mixed nodes for which a valid velocity has been recon-
structed as described above; let us call these valid nodes. We call
invalid nodes the solids nodes for which we have yet to assign a
velocity. In 2-D, we perform this extrapolation by simply linear
interpolating along the solid boundary curve inside the cell.

In 3-D, the geometry is a set of surface triangles rather
than a piecewise linear curve, and we still have solid nodes
(black) and fluid nodes (cyan). However, we also distin-
guish two types of mixed nodes: edge-mixed nodes (white),
which lie on edges of the original grid, and face-mixed
nodes (magenta), which lie on faces of the original grid.
Starting from reconstructed velocity data at
edge-mixed nodes, we linearly interpolate
along the solid boundary curves so that every
face-mixed node on the boundary curve has
valid data. We label the internal (solid) nodes
of this surface patch to be initially invalid, and
perform a simple iterative averaging approach
to extrapolate into the interior solid geometry:
all invalid nodes with a valid neighbour are
set to the average of the valid neighbours, and then marked as valid.
This process is iterated until no invalid nodes are left. Once all
interior nodes have valid data assigned, we perform a few additional
iterations of repeated averaging to smooth the velocities towards a
steady distribution. To avoid the damping of velocities introduced by
this averaging process, we perform this step for vector magnitudes
and directions separately, re-combining them at the end.

We further improve the degree to which the interpolated velocity
remains tangent to the solid by directly projecting out the normal
component of the relative velocity between the solid and the fluid
for mixed and solid nodes (similar in spirit to constrained velocity
extrapolation [Houston et al. 2003; Rasmussen et al. 2004]). This
amounts to computing a new fluid velocity as

u′fluid = ufluid − ((ufluid − usolid) · nsolid)nsolid. (2)

We observe that even if nodal velocities are projected to be orthogo-
nal to vertex normals, the interpolated flow may still clearly cross
boundaries if the geometry is sharply concave. In 2-D, we further
handled this by treating sharp corners with a no-slip condition, and
smooth curves with the preceding approach; this can be observed in
our results. However, in 3-D such a treatment is not straightforward,
and we have not pursued it.

We do not reconstruct full velocities at face-mixed nodes, as they
may lack enough data to reconstruct a full 3-D fluid velocity. How-
ever, there are cases where a boundary loop consists of only face-
mixed nodes, and no edge-mixed nodes, e.g. a cylindrical tube with
diameter less than a grid cell width cutting horizontally through a
cell face. The face-mixed nodes on the boundary of the cylinder
have only one fluid face component, and the solid normal contribu-
tion may only reliably determine one of the remaining two axes. At

present, we are therefore limited to scenarios in which each such
a solid geometry patch includes at least one edge-mixed node on
its boundary. (A reasonable approach in severely under-resolved
cases would be to reconstruct the available dimensions, and set the
the remaining dimension to zero. In the cylindrical example, the
missing dimension would correspond to circular rotations around
the cylinder’s dominant axis, which is not provided by the fluxes
along the axis or the solid normal velocities perpendicular to it.)

No-Slip Case If no-slip interpolation is preferred for visual pur-
poses, fluid nodes are again treated using least squares, but all mixed
and solid nodes are directly assigned the solid velocity, including its
tangential component. However, note that no-slip conditions will
tend to rapidly damp out relative tangential flow in very slender gaps.
This is because fluid nodes are the only nodes that no-slip conditions
do not effect, and narrow gaps may contain relatively few such nodes.
Hence, velocities in these sub-cells will be totally dominated by the
solid, and will halt the flow entirely near static solids; an example
can be seen in Figure 10(d). (No-slip can also lead to extra particle
clumping, because it is fundamentally inconsistent with the inviscid
free-slip condition inherent in the pressure solve.)

Figure 8 illustrates the case of parallel line segments aligned with the
flow direction. Free-slip (top) allows the flow to pass undisturbed,
while no-slip (bottom) causes some drag and deflection in the veloc-
ity field. For free-slip, no velocity dissipation happens, regardless of
the number of parallel lines per cell, as long as a sufficient number
of particles is available (Figure 8 top). Table 4 shows, for a fixed 2D
grid resolution (16× 10), performance figures for 1, 8, and 64 lines
per cell over 5 cells (Figure 8 top). In such a scenario, as the percent-
age of cut cells relative to the regular 160 grid cells increases from
5% to 123.12% (24.62×), the cut-cell generation time increases
38×. Even for the 64-line case, the total time is still dominated by
pressure projection.

Free-slip

No-slip

Figure 8: Horizontal straight segments aligned with the flow. (Top)
Free-slip allows the flow to continue undisturbed. (Bottom) No-slip
causes drag on the fluid and a deflection in the flow.

6 Advection on Cut Cells

Having described our cut-cell interpolation method, we can use
it to trace out particle trajectories using forward Euler. This
allows us to construct a cut-cell-aware particle-based advection



scheme that addresses an issue faced by previous Eulerian and
semi-Lagrangian schemes in the presence of moving boundaries.
Specifically, solid boundaries that
sweep over the stationary Eulerian
grid leave behind cells lacking ve-
locity data. Consider the inset ex-
ample: a volumetric circular solid
(green) translates past to reveal the
formerly inactive central cell (light blue). It suddenly becomes ac-
tive again and its faces must be assigned valid velocity data before
continuing the simulation. Mittal and Iaccarino [2005] dub these
“freshly-cleared” cells. While physically, fluid velocities would sim-
ply advect along with the object and fill in the missing data, this
is not true in the discrete case for Eulerian and semi-Lagrangian
schemes.

For large volumetric solids, semi-Lagrangian advection suffices,
since the velocities previously extrapolated into the solid are often
reasonable. However, for relatively thin boundaries, (sub-)cell re-
gions often go from one side of a moving solid boundary to another
in a single step, and there is no extrapolated velocity already present
“inside” the object. Using semi-Lagrangian advection, the end-of-
trajectory velocity value which one would ordinarily use to begin
backtracing from lies on the wrong side of the boundary, where the
fluid may be flowing in entirely the wrong direction.

Guendelman et al. [2005] observe this issue, and instead reinitialize
these cells by using an iterative averaging procedure to extrapolate
data from nearby fluid cells on the same side which were not swept
over, and hence contain valid data. However, this choice has two
shortcomings illustrated in (Figure 9): in the case of closed invalid
regions, data must be created from scratch, or it may result in data
being extrapolated quite long distances (e.g., in narrow regions).

valid

invalid validvalid invalid

Figure 9: Failure cases for standard velocity extrapolation from
valid into invalid (uninitialized) cells. Left: Closed regions cannot
be extrapolated into. Right: Long narrow regions may require
extrapolation across arbitrary distances.

We observe that with an appropriate PIC/FLIP implementation, this
issue does not arise. Given a sufficient sampling of Lagrangian
particles, there is no need for backtracing or extrapolation; velocity
data carried by the particles travels forwards in tandem with the solid
boundary to fill the freshly cleared cells, much like in the physical
world. We maintain a good sampling of particles throughout by
placing a user-defined lower and upper bound on the number of
particles per unit area, and reseeding on each sub-cell independently.
To complete our advection scheme, we just need mechanisms to
transfer particle velocity data to and from the cut-cell mesh.

Transfer to Mesh We transfer velocity information carried by
the particles onto the simulation mesh nodes by setting each nodal
velocity to be a weighted average of the velocity of all particles in
the cells incident on that node. We use SPH kernels throughout, with
one minor twist in presence of solid geometry. We use a raycast to
check whether the node in question is visible from the particle, and
if not, we discard its contribution to that node. When face-normal
velocity components are needed by the pressure solve, they are
computed by interpolating the velocity vector from the cell nodes

and taking the dot-product with the corresponding face normal. We
use an SPH kernel radius of twice the grid cell width, although one
can safely use smaller kernels provided they cover one full cell.

Transfer to Particles Interpolation of data from the simulation
mesh back to the particles is performed using our enhanced inter-
polation scheme. This allows for a standard PIC or FLIP update to
be performed. We found that using FLIP in cut cells leads to insta-
bility, particularly for small cells; we conjecture that the inherent
instabilities in the FLIP scheme are exacerbated in the presence of
such small cells. Therefore, we revert to a pure PIC approach in cut
cells, using FLIP only in the broader domain.

As we discuss later in Section 8, truly ideal boundary-respecting
trajectories are infeasible with discrete time-integrators due to nu-
merical error; however, for the remaining particle trajectories that
do cross the boundary, it is necessary to rely on direct collision de-
tection and response as in previous work [Guendelman et al. 2005].
Nevertheless, because of our conforming velocity fields, the majority
of particles do not cross over or collide.

7 Results

We refer the reader to our supplemental video for various results in
both 2-D and 3-D, which we summarize below. Timings and settings
are given in Table 2; all our results are computed using a single core
of an Intel i7-2600 CPU at 3.4 GHz with 8GB memory. The robust
intersection processing needed for mesh generation is handled with
the CGAL library [CGAL 2016]. We simulated a single timestep
per frame.

While we focus primarily on coarse grids, Table 3 shows how our
technique scales with increasing grid resolution. It provides some
cut-cell statistics and performance numbers for a fluid flow around a
Bunny model (5,002 triangles) with grid resolutions ranging from
83 up to 2563. Timings were obtained by averaging five measure-
ments with identical settings. As expected, as the number of regular
cubic cells increases by a factor of 23 from one grid resolution to
the next, the number of cut cells only increases by a factor of 22.
Consequently, the percentage of cut cells (relative to the number
of grid cells) reduces by a factor of 2; that is, for any given solid
geometry, the relative overhead associated with handling irregular
cells decreases as grid resolution increases. The cut-cell generation
time is dominated by CGAL operations (ranging from 80% to 90%
of the time for resolutions up to 1283). The identification of all faces
(both mesh and grid ones) incident to each mixed node is currently
performed in a brute force and unoptimized fashion, and thus its cost
(column Mixed Nodes in Table 3) increases by a factor of roughly
15 from one resolution to the next; this rapid growth ultimately
causes it to reduce CGAL’s relative contribution to the overall time
at the 2563 grid level. We expect that optimizing this procedure will
significantly accelerate cut-cell generation at high resolutions. The
rightmost columns of Table 3 show the advection and projection
times involved in simulating a single time step.

Our simulations do not apply vorticity confinement or other artificial
turbulence-creation mechanisms, although these could be easily
added. Our 3-D examples use 64 or 128 PIC/FLIP particles per
cell, while our 2-D examples use 32 or 64 particles; these counts are
higher than normal because we want to ensure that even small or
skinny cells are sufficiently well-sampled. A smart adaptive particle
sampling scheme would likely bring these values down with minimal
impact on the results.



Example Advection Time Projection Time Total Time Meshing Grid Dims No. Cut-Cells
Linked Tori - Free Slip 0.372 0.040 0.597 0.443 (once) 7× 7× 7 88
Bunny - No Slip 0.343 0.004 0.516 1.527 (once) 7× 7× 7 78
Bunny - Free Slip 0.490 0.004 0.881 1.469 (once) 7× 7× 7 78
Dragon (fine) - Free Slip 1.124 0.301 2.686 7.984 (once) 19× 14× 11 1298
Dragon (coarse) - Free Slip 0.880 0.172 1.986 4.446 (once) 11× 9× 6 326
Disk - Free Slip 0.319 0.118 0.63 0.197 (per frame) 25× 21× 13 137
Disk - No Slip 0.296 0.105 0.554 0.200 (per frame) 25× 21× 13 137
Rotating Paddle - No Slip 0.290 0.148 0.597 0.153 (per frame) 23× 10× 6 67

Table 2: Timing and parameters for 3-D simulations. Timing information is in seconds per frame, and is computed as an average over the
first 3-4 frames. Total time excludes meshing, listed separately. For moving geometry, the cut-cell count is given for the first frame. For static
meshes, meshing occurs only once at the start. All examples use 64 particles per cell, except the Linked Tori with 128.

CC Generat. CGAL CGAL Mixed Advect Project
Grid Resolution # Cut-Cells % Cut-Cells # Polygons Time (sec) (sec) (%) Nodes (sec) (sec) (sec)

8× 8× 8 90 17.58 7,810 0.82 0.68 82.06 0.0004 0.54 0.006
16× 16× 16 316 7.71 10,636 1.31 1.15 87.95 0.0012 0.71 0.045
32× 32× 32 1,359 4.15 17,502 2.81 2.55 90.43 0.0168 1.24 0.956
64× 64× 64 5,260 2.01 32,342 7.85 6.62 84.36 0.2030 2.57 10.094

128× 128× 128 20,943 1.00 70,034 29.20 23.37 80.06 3.0822 7.80 47.218
256× 256× 256 83,518 0.50 176,584 172.33 111.12 64.48 49.0320 17.09 224.981

Table 3: Statistics for a fluid simulation around the Bunny model (5,002 triangles) on grids of various resolutions. For each grid resolution,
the table provides the number of cut cells (# Cut-Cells), its percentage with respect to the total number of cubic cells in the regular grid (%
Cut-Cells), the number of triangles in the Bunny mesh after intersecting with the grid (# Polygons), the total time in seconds required to
generate the cut cells (CC Generat. Time), the subset of the cut-cell generation time spent on CGAL operations (CGAL (sec)), the percentage of
the cut-cell generation time corresponding to CGAL operations (CGAL (%)), the time spent by our meshing algorithm in the key step of finding
all faces incident on each mixed node (Mixed Nodes), and the advection and projection times for simulating one time step.

7.1 Flow through narrow regions

Branching Tube Figure 10 shows a challenging example of flow
in a thin gap: a narrow tube, whose width is less than that of a
grid cell, turns and branches, creating numerous cut cells and a rich
topology. This illustrates the ability of our technique to handle flows
through complex regions defined by closely spaced thin boundaries.
Results are shown for interpolation using both free-slip (top) and
no-slip (bottom) rules. Here and elsewhere free-slip is generally
preferred for its superior behavior, but we show various examples
with no-slip for completeness.

Ghost in Maze A similar but more elaborate example in 2-D
features a complex maze structure, with a “ghost” character traveling
through. Again the fluid follows the solid geometry well on the
coarse grid.

Dragon and Linked Tori The teaser (Figure 1, middle and right)
shows two 3-D examples of flow through quite narrow regions
discretized with few cells: a passage through the dragon mesh (grid
dimensions: 11 × 9 × 6), and two linked tori (grid dimensions:
7× 7× 7). The forcing is provided by setting a velocity boundary
condition on a few faces at one end of the thin region. We ran
a second version of the dragon at approximately twice the grid
resolution in each dimension; while the flow is indeed smoother
at finer resolution, it flows in essentially the same fashion as its
less well-resolved counterpart. It is this tradeoff of quality and cost,
independent of the geometry, that we seek to provide the user.

7.2 Flow around irregular objects

Three Circles We demonstrate that our method is also effective for
standard solid volumetric objects in close proximity by simulating
flow through thin gaps between a set of three circles in 2-D.

Bunny Figure 11 illustrates the improved quality of flow around
coarse 3-D objects (5,002 triangles) as well. Conforming polyhedral

interpolation ensures a reasonable motion that follows the curves of
the bunny even on a 7× 7× 7 grid. Trading computational cost for
quality, Figure 12 shows how the level of turbulent detail increases
with higher resolution grids.

7.3 Flow around thin objects

Oscillating Lines A sequence of examples in our video feature
two vertical line segments oscillating back and forth horizontally. At
the closest point of their trajectories, the segments occupy the same
column of grid cells, dividing them into three sub-cells; even in this
extreme case the flow behaves naturally. We can see all our contribu-
tions in action: the cut-cell pressure projection yields proper fluxes,
our PIC/FLIP particles ensure coherent motion without velocity ex-
trapolation for swept-over regions, and our modified interpolation
yields particle motion that conforms closely to segments. A close-up
illustrates that with free-slip interpolation, the fluid flows vertically
even as it is squeezed out of the slender sub-cell narrow gap at the
closest position. With no-slip, the interpolated vertical velocities in
the gap drop to zero when the segments enter the same grid column,
since they are forced to match that the solid.

Diagonal Line We further illustrate the accuracy of the ideal free-
slip conditions with a 2-D example of a diagonal solid line embedded
in a perfectly tangential flow, showing that it does not disrupt the
flow unless it rotates.

Stirring Line To test free-slip in a related scenario where the
object is moving and the flow is stationary, our video includes a 2-D
example with a diagonal solid line translating tangentially without
disrupting the flow; later it begins to rotate and stir the surrounding
fluid. By contrast, no-slip conditions immediately induce flow.

Disk Slicing Smoke Extending the above scenario to 3-D, we
reproduce a test proposed by Robinson-Mosher et al. [2009] in
which a disk with infinitesimal thickness slices tangentially through
a block of stationary smoke (Figure 13). With ideal free-slip, the



(a) Free-slip (b) Free-slip Closeup

(c) No-slip (d) No-slip Closeup

Figure 10: Flow simulation on a turning and branching tube whose
width is smaller than a grid cell width. (a) Free-slip flows smoothly.
(c) No-slip halts in the tube. (b) and (d) show closeup views of the
highlighted regions.

Figure 11: Left: The fluid flow conforms to the irregular bunny
mesh due to our use of conforming polyhedral interpolation. Right:
The same bunny with black curves illustrating the coarse grid.

smoke should remain perfectly stationary as the disk slips through
edge-on; when it passes through a second time while rotating, the
smoke should be disturbed. The accuracy of the cut-cell pressure
solver allows our simulator to pass this stress test, in contrast to the
results in previous work.

Rotating Line and Paddle Our 2-D example of a rotating line
with no-slip conditions shows that the fluid is able to faithfully
react to and follow the moving geometry. In the 3-D variant of this
example shown in the teaser (Figure 1, left), a rotating thin paddle
translates back and forth through a fluid domain stirring up a volume
of smoke on a grid with dimensions 23× 10× 6. This example is
modeled after one proposed by Klingner et al. [2006] and used by
Batty et al. [2007], with the exception that our paddle is extremely
thin relative to the grid resolution. This compares favourably to the
work of Batty et al. who used as their lowest resolution a grid of
40× 20× 30 in order to ensure that their much thicker paddle was
adequately resolved at the grid scale. In this example, to avoid issues
caused by inadequate treatment of dangling interior faces provided
by Shepard interpolation, we assigned the paddle a finite but very
small thickness which ensures that SBC is used.

Lines # CC % CC CC Gen. Adv. Proj. Total
1 8 5.00 0.001 0.0016 0.023 0.0256
8 29 18.12 0.003 0.0028 0.035 0.0408

64 197 123.12 0.038 0.0120 0.063 0.1130

Table 4: For one step at a fixed 2D grid resolution (16× 10), 1, 8,
and 64 lines per cell crossing over 5 cells (as in Figure 8 top). # of
Cut-Cells (CC), percentage of CC relative to the regular 160 grid
cells. Times (sec) for: CC generation, advection, projection, and
total time.

8 Discussion and Conclusion

We have presented a method to improve the handling of moving
irregular solid boundaries in regular grid-based fluid animation, par-
ticularly when objects are thin or in close proximity on coarse grids.
While the additional processing is non-trivial, it need only be done
immediately around objects. Our approach should be extensible to
free surface flow and two-way coupling, and it would be natural
to incorporate sub-grid turbulence to eke out even greater apparent
detail on coarse grids.

Our pressure discretization ignores dangling interior solid faces aris-
ing from partially cut cells, as in previous regular grid schemes for
thin boundaries (e.g., [Day et al. 1998; Guendelman et al. 2005;
Robinson-Mosher et al. 2009]). Precisely accounting for this ge-
ometry would require generating a fully unstructured conforming
mesh within the cell. While coupling a regular grid MAC scheme to
a full FEM scheme is possible (e.g., [Zheng et al. 2015]), it would
sacrifice the numerical and implementation benefits of our chosen
nearly-regular grid discretization.

When tunnels between solid geometry within a single cell become
very small or labyrinthine, a sufficient number of particles may
fail to flow into or through gaps. Hence, truly extreme scenarios,
such as flow through stacked pages of a book or pores of a sponge,
remain impractical; porous flow or homogenization schemes may
be preferable.

Although our interpolation method improves the interpolated ve-
locities and resulting trajectories, it cannot guarantee trajectories
never cross, due to truncation error in time integration. For free-slip
conditions on cells with sharp corners, the interpolated velocity may
also still have trajectories that do not satisfy ufluid · n = usolid · n
at all points along the perimeter of the cell. More broadly, our in-
terpolants cannot ensure pointwise divergence-free velocity fields,
which can lead to uneven particle distributions or poor flows near
high-frequency geometry. However, for open regular grid regions,
even standard trilinear and tricubic interpolation do not yield point-
wise divergence-free fields. This highlights an interesting challenge
for future work: can one construct interpolants which simultaneously
(a) respect the discrete face velocities from the pressure solve, (b)
accurately conform to boundaries, and (c) satisfy pointwise incom-
pressibility? This holds out the potential to produce significantly
improved visual results even in extremely under-resolved regions.
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