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Abstract 

In this paper we propose using planar and spherical Bernstein polynomials over tri- 
angular domain for radiative transfer computations. In the planar domain, we propose 
using piecewise Bernstein basis functions and symmetric Gaussian quadrature formulas 
over triangular elements for high quality radiosity solution. In the spherical domain, 
we propose using piecewise Bernstein basis functions over a geodesic triangulation to 
represent the radiance function. The representation is intrinsic to the unit sphere, and 
may be efficiently stored, evaluated, and subdivided by the de Casteljau algorithm. The 
computation of other fundamental radiometric quantities such as vector irradiance and 
reflected radiance may be reduced to the integration of the piecewise Bernstein basis 
functions on the unit sphere. The key result of our work is a simple geometric integration 
algorithm based on adaptive domain subdivision for the Bernstein-Bkzier polynonlials 
over a geodesic triangle on the unit sphere. 

CR Categories and Subject Descriptors: 1.3.5 [Computational Geometry and Object 

Modeling]: Geometric Algorithms; 1.3.7 [Computer Graphics]: Three-Dimensional Graphics 

and Realism. 

Additional Key Words and Phrases: barycentric coordinates, barycentric subdivision, 

Bernstein polynomials, de Casteljau algorithm, Gaussian quadrature, radiance, radiosity 

method, spherical integration, spherical triangle, vector irradiance. 



1 Introduction 

The representation of radiance and reflectance functions on the unit sphere is essential in 

radiative transfer problems [23]. Available techniques include spherical harmonics, geodesic 
subdivision, spherical wavelets, and spherical monomials. 

The spherical harmonics [21] are the products of associated Legendre functions with 

periodic trigonometric functions. Since they form an orthonormal basis in the Hilbert space 

over the unit sphere, it is often convenient to use them to describe and manipulate direction- 

dependent functions. In computer graphics, spherical harmonics have been used to represent 

bidirectional reflectance distribution functions (BRDFs) [B, 301, incident radiance functions 

[8], reflected radiance functions [26], and scattering radiance functions in volume densities 

LIB]. 
Because the basis functions are globally supported over the entire unit sphere, the 

spherical harmonic representation is often prone to the Gibbs phenomenon [27, p. 2721, 

especially for discontinuous and highly directional functions. In addition, since BRDFs 
and reflected radiance functions are usually defined on the hemisphere, the overshoot and 

oscillations may be worsened along the equator, although the symmetry in the basis functions 

can be cleverly exploited to a certain extent [30]. When spherical harmonics are used to 

describe incident radiance functions, the situation may be even worse. By analogy with 

the radiosity method, it is like using a single element for the whole environment. Except 

for simple and special cases, we know that the results will be largely undesirable. It is 
also noted that the spherical harmonic representation is not intrinsic; in other words, it is 

coordinate-dependent. 
A different approach is to use discrete data structures rather than smooth basis functions. 

Recently, a hierarchical geodesic sphere construction with adaptive subdivision has been 

proposed to approximate the BRDFs in terms of reflected and incident flux density ratios [15]. 

This representation tends to be more compact and accurate but lacks analytical expressions. 

New techniques, such as spherical wavelet algorithms [20, 251, may be used to further 

compress the data. 
A direct motivation of this paper is Arvo's recent work on irradiance tensors [5]. Due 

to the generalized Stokes's theorem, the key result of the irradiance tensor paper is a 
recurrence relation for spherical monomials x i y j z k  integrated over any measurable region 
on the sphere. For certain geometries such as polygons, it is shown that the resulting 

boundary integrals can be expressed in closed form. This implies that for BRDFs and 

incident radiance functions that are polynomials over the sphere, the reflected radiance 
functions can be evaluated analytically in polyhedral environments. In particular, when the 
integrated functions are defined as the moments about an axis (which form a special class 
of spherical polynomials), direct lighting effects such as illumination from directional area 
sources and view-dependent Phong-like glossy reflection can be simulated analytically. 



In general, however, it is not numerically efficient and stable to represent an arbitrary 

spherical function such as an incident radiance function in terms of spherical polynomials, 
for two identified reasons. First, like spherical harmonics, the spherical polynomials are 

globally supported over the sphere and the representation is coordinate-dependent. Second, 

there is an approximate linear dependence between the members of the spherical monomial 

family {x$jz"). If we use the least squares approximation, this approximate linear depen- 

dence implies that the resulting matrix equation will be ill-conditioned and the round-off 
errors may be amplified significantly. For the simplest monomials xi defined in a line seg- 

ment, it is known that it is virtually hopeless to solve the least squares matrix equation for 

the closest polynomial of degree ten [28, p. 1781. For the same reason, there may also be 

difficulties in using the approximating polynomial representation for computing values of 
the original function [lo, p. 1191. 

From a different point of view, if we want to approximate a function a t  a point and its 

immediate neighborhood, by the Taylor expansion f (z) = ~z~~ f ( i ) ( ~ ) / i ! ,  the set of mono- 

mials xi should be a natural choice for basis functions (power basis). However, if we want to 
approximate a function over an interval or a region, instead of using derivatives, we need 

integrals. For efficient approximation, this requires orthogonality or good linear indepen- 

dence for basis functions. One choice is to use globally supported orthogonal bases such as 

harmonic functions and Legendre polynomials. Another choice is to sacrifice the orthogonal- 
ity for basis functions with local support, good regularity, and strong linear independence. 

A popular choice in this camp is the piecewise polynomials. This is the choice that we are 

going to investigate in this paper. 

We propose using the piecewise spherical Bernstein basis functions over a geodesic tri- 
angulation to represent the radiance function. The representation is intrinsic to the unit 

sphere, and may be efficiently stored, evaluated, and subdivided by the numerically stable 
de Casteljau algorithm. The computation of other fundamental radiometric quantities such 
as vector irradiance and reflected radiance may be reduced to the integration of the piecewise 

Bernstein basis functions on the unit sphere. The key result of our work is a simple geo- 

metric integration algorithm based on adaptive domain subdivision for the Bernstein-Bezier 

polynomials over a geodesic triangle on the unit sphere. 

2 Bernstein Polynomials 

2.1 Planar Triangle 

Let a, b, c be vertices of a nonsingular triangle in plane P in R ~ .  For any point p inside the 
triangle, there always exist nonnegative real numbers u, v, w such that 



and 

u + v + w = l .  

Since triangle Aabc is nonsingular, by solving the linear system (1) and (2) (note that 
point p is constrained in the plane of Aabc), we have 

area (Apbc) area (Aapc) area (Aabp) 
u = v = W = 

area (Aabc) ' area (Aabc) ' area (Aabc) ' (3) 

where 

The uniquely defined (u, v, w) are called the barycentric coordinates of point p with 

respect to a,  b, c [12]; see Figure 1. With the geometric interpretation from the equations 
in (3), it is clear that barycentric coordinates are intrinsic, i.e., they only depend on the 

relative position of point p in Aabc; in other words, they are coordinate-free or coordinate- 

independent. 

In terms of barycentric coordinates, we may define the Bernstein polynomials of degree 
n over domain Aabc 

1 
area (Aabc) = - 

2 

and B;j,k(u, v ,  w) = 0 if any of i, j, k is negative [121. Note that they are bivariate functions 

because of the identity (2). By induction on the degree n, it can be shown that Btjlk(u, v ,  W) 

are linearly independent. That is, they form a basis for all polynomials of total degree n that 
are defined over Aabc. We list some basic analytical properties of the Bernstein polynomials; 

for details and other elegant geometric properties such as de Casteljau algorithm, degree 

elevation, subdivision formulas, and continuity conditions, see, e.g., [12, 111. 

a,  bz c ,  

a,  b, c ,  
1 1 1  

1. Recursion: 

2. Partition of unity: 

3. Differentiation: 

where DG,,,,, is the mth order directional derivative along vector (u, v, w) = (u2 - 

ul, v2 - v l , w 2  - wl) for two points (ul ,  vl, wl) and (u2, v2, w2) in domain Aabc. Notice 
that u + 5 + w = 0. 



4. Integration: 

where A is the area of domain Aabe. Notice that ("i2) is the dimension of Bernstein 

polynomials over the triangle. This means that the Bernstein polynomials partition the 

unity with equal integrals over the domain; in other words, they are equally weighted 
as basis functions. 

Bernstein polynomials over triangular domain (Bezier triangle) are extremely important 
in surface design, data fitting and interpolation, and elsewhere. I t  has been shown that 

numerically they are inherently much more stable than the monomials [13, 141. In high 
quality radiosity solution, they may be a natural choice for piecewise basis functions over 

triangular elements generated by discontinuity meshing [17, 191 or isolux meshing [4]. 

To evaluate the kernel projections in radiosity method, the Gaussian quadratures [lo, 
p. 3021 may be used. They have also been derived for simplexes [16]. The formulas can be 

made symmetric in barycentric coordinates, i.e., if a sample point ([, 7,  C) occurs, so do all 

its permutations. Figure 2 lists the first few quadrature rules over a triangle of area A, 

where (ti, q;, (i) are the barycentric coordinates of the ith sampling point and w; is the weight 

associated with it. For higher order formulas, see [91. 

2.2 Spherical Triangle 

Let s2 be the unit sphere in R~ with center at  the origin, and a, b, c be a set of linearly 

independent unit vectors which form a nonsingular geodesic triangle Aabc on s2; see Fig- 
ure 3. For any unit vector p that points inside the spherical triangle, there always exist 
nonnegative real numbers u, v, w such that 

p = u a + v b +  wc. (11) 

Since a, b, c are linearly independent, by solving the linear system (ll), we have 

U = det (P, b, c) 
'u = det (a, P, c) 

W = det (a, b, P) 
det (a, b, c )  ' det (a, b ,  c)' det (a, b, c )  ' 

where 



The uniquely defined (u, v, w) are called the spherical barycentric coordinates of spherical 

point p with respect to a, b, c. They were first introduced by Mobius in the last century and 

rediscovered recently by Alfeld et al. [21, from where we adopt the definitions. 
The equations in (12) also give a geometric interpretation of the spherical barycentric 

coordinates, i.e., 

volume (0 {p, b, c)) volume ( 0  {a, p, c)) 
'U; = volume (0 {a, b, p)) 

u = II = 
volume (0 {a, b, c )  ) ' volume (0 {a, b, c}) ' volume (0 {a, b, c ) )  ' (14) 

where O{a, b, c) denotes the (planar) tetrahedron defined by the origin and spherical points 

a, b, c. This implies that the definition is intrinsic, i.e., the spherical barycentric coordinates 
are invariant under rotation or are coordinate-free. 

Notice that, in the planar case the barycentric coordinates interpolate points in a plane 

P in R ~ ,  but in the spherical case they interpolate points on the unit sphere ,y2 in R~ 
or equivalently interpolate unit vectors in R ~ .  Although the definitions look similar, s2 
is always special. First, from the equations in (12), it is easily seen that the spherical 

barycentric coordinates u, v, w are homogeneous linear functions of p. Second, they are 

linearly independent (let p be a, b, c respectively in a linear combination of u, v, w). Third, 

for any unit vector p that points inside the spherical triangle. This is immediate from the 
geometric interpretation (14). Consequently, the spherical barycentric coordinates are not 

barycentric coordinates in the conventional sense. They do not partition the unity. In fact, 

it has been proved that such coordinates (satisfying a basic set of conditions drawn from 

fundamental properties of barycentric coordinates in the plane) do not exist on the sphere 
[7]. Here we clearly see the imprint of S2. Recall that, e.g., cr + /3 + y > n, where a ,  j3, y 

are three internal angles of a spherical triangle (consider Girard's formula for the area of 

spherical triangle). 

Similar to the planar case, in terms of spherical barycentric coordinates, we may define 
the spherical Bernstein polynomials of degree n over domain Aabc 

and B,"lj,k(u7 v, w) = 0 if any of i ,  j ,  k is negative. I t  is shown in [2, 31 that they are 

homogeneous trivariate basis functions and possess virtually all of the properties of the 

classical planar Bernstein polynomials, despite the results in [71. However, formulas (7) and 
(9) are no longer valid. The failure of partition of unity is because of the inequality (15). We 
shall discuss the integration over spherical triangle in the next section. 



3 Radiative Transfer Computations 

3.1 Radiance Representation 

Radiance [23, p. 281, denoted by L(x, p), describes the flow of radiant flux into a unit projected 

area a t  point x E R~ through a unit solid angle in direction p E s2 [W - m-2 . sr-l]. It is 

considered the most important radiometric concept since all other radiometric quantities 

can be naturally defined and calculated in terms of it. The totality of all values L(x, p) as p 

ranges over the unit sphere is called the radiance distribution function [23, p. 291 a t  point 

x, denoted by L(x, .). 
We propose to represent L(x, .) in terms of piecewise Bernstein polynomials over a spher- 

ical triangulation (a set of geodesic triangles in which any two of them intersect only a t  a 

common vertex or along an edge). Like their planar counterparts, the spherical Bernstein 

polynomials can be efficiently stored, evaluated, differentiated, subdivided, and joined to- 
gether. We shall not go into details of various aspects of the representation techniques, e.g., 

interpolation or approximation. For a sophisticated discussion, see [3]. 
Without loss of generality, we may assume that x is located a t  the origin (and thus drop it 

from L(x, p)) and consider the radiance distribution function over a single spherical triangle 

Aabc, 

L(P) = c i , j , k B t j , k ( ~ ,  w ) ,  
i + j + k = n  

where unit vector p points inside the triangle, and c;,j ,r ,  are real coefficients of the Bernstein 

basis functions. I t  is also called a spherical Bernstein-B6zier polynomial of degree n [2]. 
Geometrically, the function L(p) may be viewed as a surface over domain Aabc whose 
radial height is its value. 

To evaluate the radiance distribution function at  a direction p with spherical barycentric 

coordinates (u, v, w),  we may use the classical de Casteljau algorithm [21. 

de Casteljau Algorithm. 

0 
C;,j,k = c i , j , k  ; 

forr = 1,2, . . . ,  n :  

f o r i + j + b = n - r :  
- u * C T - ~  

z , ~ , k  - z + l , j , k  + V * ~ : y : ~ , ~  + W * c:,T,:+~ ; 
L(P) = c;,o,0 ; 
end 

The algorithm is surprisingly simple. Numerically, it is also very efficient and stable due 
to the geometric nature of barycentric interpolation. The round-off error bound grows only 



linearly with degree n, even though the number of arithmetic operations grows quadratically 

[131. 
Once again, we emphasize that the radiance representation is intrinsic to s2. 

3.2 Vector Irradiance 

Irradiance [23, p. 241, denoted by H(x, n), describes the flow of radiant flux into a unit area 
at  point x on a real surface with normal n [W . mP2]. Net irradiance [23, p. 381, denoted 

by ~ ( x ,  n), describes the flow of radiant flux into a unit area a t  point x on a hypothetical 

surface with normal n [W . m-2]. By definition, we have 

P 

and 
H(x, n) = L2 L(x, P) n .  p dR(p), 

where S;(~I) denotes the unit hemisphere defined by n, and O(p) denotes the solid angle 

measure in direction p. 

In terms of radiance, we may define another useful irradiance function, vector irradiance 

[23, p. 391, as 

(20) 

In contrast with radiance, vector irradiance gives a measure of the predominant direction 
of radiant flux a t  point x without emphasizing the magnitude of various component flows. 

From Equations (19) and (20), we have 

The same equation holds for irradiance H(x, n) if vector irradiance is integrated over the 

hemisphere above a real surface a t  point x. For this reason, the vector integration (20) is 
funda.menta1 in many radiative transfer problems. 

When the radiance distribution function is represented by Equation (17), with the same 

assumptions, we have vector irradiance at  the origin 

= C ~ i , j , k ] ~ ( ~ ~ : ~ , k ( ~ ,  V ,  W )  a + vB&,k(ur w) b + wB:j,k(u, V ,  w)  C)  dA, (22) 
i+j+k=n 

where A is the area of domain Aabc. Since a, b, c are constant unit vectors and 

i + l  
UBC~,~(U,  v,  w) = - B ~ + ' .  (u ,  v ,  w), n + 1 "1>37" 



the evaluation of vector irradiance H may be reduced to the integration of Bernstein basis 

functions over a spherical triangle. 

Unfortunately, as noted in [3], evaluating spherical polynomials is considerably more 

difficult than in the planar case and a simple explicit formula like (9) does not seem to exist. 

In general, the integrals of spherical Bernstein polynomials depend on not only the shape 

of the spherical triangle but the individual basis functions as well. Recurrence relations, 

however, may probably exist. We have found them for the circular Bernstein polynomials 
[I]; though in two dimensions, the formulas are already quite complicated. We decide to 
give up the effort after observing the following: 

Because of the inequality (15), the integrals of the basis functions diverge as n increases. 

Also note that u, v, w are not bounded (they approach infinity as planar triangle Aabc gets 
close to the origin). Numerically, these are not encouraging signs for an effective integration 

scheme. 

In [3], a brute-force method has been suggested, i.e., first projecting the spherical poly- 

nomials from Aabc onto Aabc and then using standard numerical integration techniques 
for the planar triangle. 

In the next subsection, we shall seek a geometric integration approach that is coherent 

with the spherical barycentric coordinate system. 

3.3 Spherical Integration 

In the previous subsection, we have noticed that the integrals of spherical Bernstein basis 
functions diverge as degree n increases. By the nature of the radiance distribution function 

and Bernstein polynomials, however, integrals such as 

should converge as n goes to infinity. The value of above integral is called the scalar 
irradiance (denoted by h(x) [We m-2]) [23, p. 391. Divided by the speed of light, it describes 
the radiant energy per unit volume a t  point x, called the radiant energy density (denoted by 
,u(x) [J . mP3]) [23, p. 391. 

The same argument goes to vector irradiance and other physically meaningful integrals. 
This leads us to investigate an integration algorithm that directly applies to the spherical 



Bernstein-BQzier polynomials rather than individual Bernstein basis functions. That is, we 

consider using the coefficients c ; j , k  to control and stabilize the integration. 

We begin with barycentric domain subdivision [6, I, p. 821. The barycentric subdivision 
of a planar triangle Aabc is a set of six triangles having one vertex a t  the center (a  f b f c) /3  

and opposite sides equal to each line segment in the barycentric subdivisions of edges ab, 

bc, ca. We may iterate the process and generate a hexatree of triangles; for the first three 

levels, see Figure 4. Intuitively, the maximum diameter of all triangles approaches zero as 
the level of hexatree increases. 

Similarly, we may define barycentric subdivision of a spherical triangle. For a nonsingu- 
lar spherical triangle Aabc, we may use 

for the center vertex and 
a + b  b t c c + a  

Ila + bll ' Ilb + c I I  ' I I c  + all 
for three additional middle vertices at  the edges. Here I (  - 1 )  denotes the Euclidean norm in 

R ~ .  Figure 5 shows a second level barycentric subdivision of a spherical triangle. 
Next, we decompose the spherical Bernstein-Bezier polynomial in accordance with the 

subdivided domains. I t  turns out to be surprisingly simple due to the classical subdivision 

theorem [2]. 

Subdivision Theorem. Suppose Ci+j+k,, ~ ; , j , ~ B ; ~ , ~ ( u ,  v ,  w) is a spherical Bernstein- 
Bezier polynomial over domain Aabc, and ~ : , ~ , ~ ( r  = 0,1, . . . , n) are the intermediate de 

Casteljau coefficients with respect to a point v lying in the spherical triangle. Then, for any 
spherical point p = ua + vb + wc E Aabc, we have 

+ +  c , , ~ B , ~ ( u ' ,  v I ) ,  p = u'v + v'b + w'c E Avbc, 

ci,j,kB:j,k(~~ v, w) = Ci+j+t=n C;~,~B:~,~(U' ,  v', w'), p = u'a + v'v + w'e E Aavc, 
i+j+k=n 

Zi+j+k., c ~ ~ , ~ B ~ ~ , ~ ( u ' ,  v', w'), p = "'a + v'b + W'V E Aabv. 

(28) 
The implication of above theorem to barycentric subdivision is obvious. We may proceed 

with the basis function decomposition in two steps, first using the center vertex and then the 
three additional edge vertices. I t  is noted that the three decompositions in the second step 
with respect to edge vertices are degenerate cases of the subdivision theorem. One circular 

Bernstein-BBzier polynomial [I] is generated in each decomposition. They may be simply 
discarded. 

Based on the hierarchical barycentric subdivision, we may iterate the decomposition pro- 
cess and generate a hexatree of spherical Bernstein-Bezier polynomials. Intuitively, as the 
level of hexatree increases, Aalblcl tends to Aalblcl (where I indexes the leaf triangles) with 
the maximum diameter of all triangles approaching zero. At the same time, the barycentric 
coordinates (ul(p), vl(p), wl(p)) with respect to Aalblcl approach (u;(pf), vE(pf), wf(pf)) with 



respect to Aal blcl, where pi E Aalblcl is the radial projection of spherical point p E Aal blcl; 

see Figure 3. The proof is straightforward with the help of geometric interpretations (3) and 

(14). 
I t  follows that for a sufficiently small spherical triangle Aal blcl, we may approximate 

the spherical Bernstein-Bkzier polynomial by its planar counterpart; from Equation (9), 

where Al is the area of Aalblcl. After a few steps of preliminary integral manipulations, it 
may be shown that the relative error ~f of above approximation is in the order of 

which retains its maximum value along vector a1 + bl + cl (again, think about the geometric 

interpretations (3) and (14)). This immediately leads to a global relative error measure 6 ,  

which may be used as the terminating condition: 

or equivalently, 
max n(@:, + 06, + @,), 

1 

where O,, , Ob,, O,-, are angles between vector a1 + bl + cl and vectors al, bl, cl, respectively. 
The relative error 6, does not depend on c;,j,k while the absolute error t, clearly does. Also 

note that the degree of basis functions and the area of domain triangle are reciprocal for a 
constant relative error measure. This is consistent with the observation (24). 

The area of a spherical triangle may be obtained by Girard's formula [6,II, p. 2781 

and the fundamental formulas of spherical trigonometry(spherica1 cosine laws) [6,II, p. 2861 

cos a = cos b cos c + sin b sin c cos a ,  

cosb = cosccosa + sincsinacosp, 

cosc = cosacos b + sinasinbcosy, 

where a ,  /3,y and a, b, c are displayed in Figure 3. 
The following is the pseudo-code of the integration algorithm. 

Integration Algorithm. 



if Termination(a, b, c) then 
return ci,j,k) * ~rea(Aabe) /  (ni2) ; 

else 
Subdivision (Aabc) ; 
return ~ f = ~  Integral(BBP(Aai bici)) ; 

end 

It  should be noted that the corner angles are repeatedly subdivided in each level of 

the barycentric subdivision; see Figure 5. This may not be desirable in practice. For its 

conceptual simplicity, we choose to use barycentric subdivision to illustrate the integration 

algorithm. A simple binary subdivision scheme in accordance with the largest angle, though 

asymmetrical, may be a better choice for practical usage; see Figure 6. 
Also note that the domain subdivision implies a simple visibility determination algorithm 

C291. 
Because the approximating planar triangles are inscribed about the unit sphere, the 

integral computed in above algorithm increases monotonically. Richardson extrapolation 

[ lo ,  p. 2691 may be used to accelerate the convergence. 

3.4 Reflectance Function 

Consider a surface point located a t  the origin with normal n. Let L(p) in Equation (17) 
be the radiance distribution function over a spherical triangle Aabc. Then the reflected 

radiance at  the surface point in the direction q may be expressed as 

~ ( q )  = J p ( p + q ) ~ ( ~ ) n . ~ d ~  A 

= L P ( P i 4 )  c c;,j,kBtj,k(u, v ,  ,w) (n . au + n . bv + n - cw)  dA, (35) 
i+j+k=n 

where p denotes the bidirectional reflectance distribution function. Clearly, if p(p i q)  is 

represented as a polynomial of u, v, w then the reflected radiance L(q) may be evaluated by 

the integration algorithm developed in the previous section. 

For instance, when the reflectance admits the Phong distribution [22], i.e., 

where v = (2nnT - I)q is the mirror reflection of vector q with respect to surface normal n, we 
see that it is a Bernstein-BBzier polynomial. For energy conservation, the above distribution 
should be normalized by constant 27r/(n + 2) [51. 



4 Conclusions 

We have proposed using planar and spherical Bernstein polynomials over triangular domain 

for radiative transfer computations. In the planar case, we have proposed using piecewise 
Bernstein basis functions and symmetric Gaussian quadrature formulas over triangular 

elements for high quality radiosity solution. In the spherical case, we have proposed using 

piecewise Bernstein basis functions to obtain an intrinsic radiance distribution representa- 

tion. Under the representation, the computation of vector irradiance and reflected radiance 

may be reduced to the integration of the Bernstein-B6zier polynomials over a geodesic tri- 

angle on the unit sphere. We have presented a simple and efficient algorithm by adaptive 

domain subdivision for this spherical integration. Due to the geometric nature of the de 
Casteljau algorithm, the evaluation and integration of the radiance function are numeri- 

cally stable. 
The generalization of barycentric coordinates and basic theory of the Bernstein polyno- 

mials to higher dimension is immediate [l l] .  I t  may be a natural topic to investigate the 

applications to radiosity method in the presence of a participating medium [24]. 
Another interesting problem for future research is the design of spherical wavelet al- 

gorithms for the Bernstein polynomials. The task may be benefited from the integration 
algorithm presented in this paper. 
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Figure 1: Planar barycentric coordinates. 

Figure 2: Gaussian quadrature formulas for the triangle. 
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Figure 3: Spherical barycentric coordinates. 

level 0 
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Figure 4: Planar barycentric subdivision. 
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Figure 5: Spherical barycentric subdivision. 

Figure 6: Spherical binary subdivision. 
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