29,096 research outputs found

    The MaggLite Post-WIMP Toolkit: Draw It, Connect It and Run It

    Get PDF
    International audienceThis article presents MaggLite, a toolkit and sketch-based interface builder allowing fast and interactive design of post-WIMP user interfaces. MaggLite improves design of advanced UIs thanks to its novel mixed-graph architecture that dynamically combines scene-graphs with interaction- graphs. Scene-graphs provide mechanisms to describe and produce rich graphical effects, whereas interaction-graphs allow expressive and fine-grained description of advanced interaction techniques and behaviors such as multiple pointers management, toolglasses, bimanual interaction, gesture, and speech recognition. Both graphs can be built interactively by sketching the UI and specifying the interaction using a dataflow visual language. Communication between the two graphs is managed at runtime by components we call Interaction Access Points. While developers can extend the toolkit by refining built-in generic mechanisms, UI designers can quickly and interactively design, prototype and test advanced user interfaces by applying the MaggLite principle: "draw it, connect it and run it"

    The design of sonically-enhanced widgets

    Get PDF
    This paper describes the design of user-interface widgets that include non-speech sound. Previous research has shown that the addition of sound can improve the usability of human–computer interfaces. However, there is little research to show where the best places are to add sound to improve usability. The approach described here is to integrate sound into widgets, the basic components of the human–computer interface. An overall structure for the integration of sound is presented. There are many problems with current graphical widgets and many of these are difficult to correct by using more graphics. This paper presents many of the standard graphical widgets and describes how sound can be added. It describes in detail usability problems with the widgets and then the non-speech sounds to overcome them. The non-speech sounds used are earcons. These sonically-enhanced widgets allow designers who are not sound experts to create interfaces that effectively improve usability and have coherent and consistent sounds

    A toolkit of mechanism and context independent widgets

    Get PDF
    Most human-computer interfaces are designed to run on a static platform (e.g. a workstation with a monitor) in a static environment (e.g. an office). However, with mobile devices becoming ubiquitous and capable of running applications similar to those found on static devices, it is no longer valid to design static interfaces. This paper describes a user-interface architecture which allows interactors to be flexible about the way they are presented. This flexibility is defined by the different input and output mechanisms used. An interactor may use different mechanisms depending upon their suitability in the current context, user preference and the resources available for presentation using that mechanism

    Correcting menu usability problems with sound

    Get PDF
    Future human-computer interfaces will use more than just graphical output to display information. In this paper we suggest that sound and graphics together can be used to improve interaction. We describe an experiment to improve the usability of standard graphical menus by the addition of sound. One common difficulty is slipping off a menu item by mistake when trying to select it. One of the causes of this is insufficient feedback. We designed and experimentally evaluated a new set of menus with much more salient audio feedback to solve this problem. The results from the experiment showed a significant reduction in the subjective effort required to use the new sonically-enhanced menus along with significantly reduced error recovery times. A significantly larger number of errors were also corrected with sound

    Sonically-enhanced widgets: comments on Brewster and Clarke, ICAD 1997

    Get PDF
    This paper presents a review of the research surrounding the paper “The Design and Evaluation of a Sonically Enhanced Tool Palette” by Brewster and Clarke from ICAD 1997. A historical perspective is given followed by a discussion of how this work has fed into current developments in the area

    Sonically enhanced interface toolkit

    Get PDF
    This paper describes an on-going research project investigating the design of a user-interface toolkit composed of sonically enhanced widgets. The motivation for this work is the same that motivated the creation of graphical interface toolkits, which was to simplify their construction, allowing designers who are not experts to create such interfaces; to ensure the sonically enhanced widgets are effective and improve usability; and to ensure the widgets use sound in a clear and consistent way across the interface
    corecore