11,018 research outputs found

    Modelling and validation of off-road vehicle ride dynamics

    Get PDF
    Increasing concerns on human driver comfort/health and emerging demands on suspension systems for off-road vehicles call for an effective and efficient off-road vehicle ride dynamics model. This study devotes both analytical and experimental efforts in developing a comprehensive off-road vehicle ride dynamics model. A three-dimensional tire model is formulated to characterize tire–terrain interactions along all the three translational axes. The random roughness properties of the two parallel tracks of terrain profiles are further synthesized considering equivalent undeformable terrain and a coherence function between the two tracks. The terrain roughness model, derived from the field-measured responses of a conventional forestry skidder, was considered for the synthesis. The simulation results of the suspended and unsuspended vehicle models are derived in terms of acceleration PSD, and weighted and unweighted rms acceleration along the different axes at the driver seat location. Comparisons of the model responses with the measured data revealed that the proposed model can yield reasonably good predictions of the ride responses along the translational as well as rotational axes for both the conventional and suspended vehicles. The developed off-road vehicle ride dynamics model could serve as an effective and efficient tool for predicting vehicle ride vibrations, to seek designs of primary and secondary suspensions, and to evaluate the roles of various operating conditions

    Dynamic analysis of road vehicle-bridge systems under turbulent wind by means of Finite Element Models

    Get PDF
    When an automobile passes over a bridge dynamic effects are produced in vehicle and structure. In addition, the bridge itself moves when exposed to the wind inducing dynamic effects on the vehicle that have to be considered. The main objective of this work is to understand the influence of the different parameters concerning the vehicle, the bridge, the road roughness or the wind in the comfort and safety of the vehicles when crossing bridges. Non linear finite element models are used for structures and multibody dynamic models are employed for vehicles. The interaction between the vehicle and the bridge is considered by contact methods. Road roughness is described by the power spectral density (PSD) proposed by the ISO 8608. To consider that the profiles under right and left wheels are different but not independent, the hypotheses of homogeneity and isotropy are assumed. To generate the wind velocity history along the road the Sandia method is employed. The global problem is solved by means of the finite element method. First the methodology for modelling the interaction is verified in a benchmark. Following, the case of a vehicle running along a rigid road and subjected to the action of the turbulent wind is analyzed and the road roughness is incorporated in a following step. Finally the flexibility of the bridge is added to the model by making the vehicle run over the structure. The application of this methodology will allow to understand the influence of the different parameters in the comfort and safety of road vehicles crossing wind exposed bridges. Those results will help to recommend measures to make the traffic over bridges more reliable without affecting the structural integrity of the viaduc

    Measurement methods and analysis tools for rail irregularities. A case study for urban tram track

    Get PDF
    Rail irregularities, in particular for urban railway infrastructures, are one of the main causes for the generation of noise and vibrations. In addition, repetitive loading may also lead to decay of the structural elements of the rolling stock. This further causes an increase in maintenance costs and reduction of service life. Monitoring these defects on a periodic basis enables the network rail managers to apply proactive measures to limit further damage. This paper discusses the measurement methods for rail corrugation with particular regard to the analysis tools for evaluating the thresholds of acceptability in relation to the tramway Italian transport system. Furthermore, a method of analysis has been proposed: an application of the methodology used for treating road profiles has been also utilized for the data processing of rail profilometric data

    Use of generated artificial road profiles in road roughness evaluation

    Get PDF
    In the evaluation of road roughness and its effects on vehicles response in terms of ride quality, loads induced on pavement, drivers’ comfort, etc., it is very common to generate road profiles based on the equation provided by ISO 8608 standard, according to which it is possible to group road surface profiles into eight different classes. However, real profiles are significantly different from the artificial ones because of the non-stationary feature of the first ones and the not full capability of the ISO 8608 equation to correctly describe the frequency content of real road profiles. In this paper, the international roughness index, the frequency-weighted vertical acceleration awz according to ISO 2631, and the dynamic load index are applied both on artificial and real profiles, highlighting the different results obtained. The analysis carried out in this work has highlighted some limitation of the ISO 8608 approach in the description of performance and conditions of real pavement profiles. Furthermore, the different sensitivity of the various indices to the fitted power spectral density parameters is shown, which should be taken into account when performing analysis using artificial profiles

    A Multi-Wavelength Study of the Jet, Lobes and Core of the Quasar PKS 2101-490

    Get PDF
    We present a detailed study of the X-ray, optical and radio emission from the jet, lobes and core of the quasar PKS 2101-490 as revealed by new Chandra, HST and ATCA images. We extract the radio to X-ray spectral energy distributions from seven regions of the 13 arcsecond jet, and model the jet X-ray emission in terms of Doppler beamed inverse Compton scattering of the cosmic microwave background (IC/CMB) for a jet in a state of equipartition between particle and magnetic field energy densities. This model implies that the jet remains highly relativistic hundreds of kpc from the nucleus, with a bulk Lorentz factor Gamma ~ 6 and magnetic field of order 30 microGauss. We detect an apparent radiative cooling break in the synchrotron spectrum of one of the jet knots, and are able to interpret this in terms of a standard one-zone continuous injection model, based on jet parameters derived from the IC/CMB model. However, we note apparent substructure in the bright optical knot in one of the HST bands. We confront the IC/CMB model with independent estimates of the jet power, and find that the IC/CMB model jet power is consistent with the independent estimates, provided that the minimum electron Lorentz factor gamma_min > 50, and the knots are significantly longer than the jet width, as implied by de-projection of the observed knot lengths.Comment: 16 pages, 10 figures, 6 table

    The Dark Matter Contribution to Galactic Diffuse Gamma Ray Emission

    Get PDF
    Observations of diffuse Galactic gamma ray emission (DGE) by the Fermi Large Area Telescope (LAT) allow a detailed study of cosmic rays and the interstellar medium. However, diffuse emission models of the inner Galaxy underpredict the Fermi-LAT data at energies above a few GeV and hint at possible non-astrophysical sources including dark matter (DM) annihilations or decays. We present a study of the possible emission components from DM using the high-resolution Via Lactea II N-body simulation of a Milky Way-sized DM halo. We generate full-sky maps of DM annihilation and decay signals that include modeling of the adiabatic contraction of the host density profile, Sommerfeld enhanced DM annihilations, pp-wave annihilations, and decaying DM. We compare our results with the DGE models produced by the Fermi-LAT team over different sky regions, including the Galactic center, high Galactic latitudes, and the Galactic anti-center. This work provides possible templates to fit the observational data that includes the contribution of the subhalo population to DM gamma-ray emission, with the significance depending on the annihilation/decay channels and the Galactic regions being considered.Comment: Published by PR
    corecore