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The quality of road pavements influences noise and vibration emissions caused by tire-road interactions. This affects the 
drivers, passengers and load but also health and well-being of residents near these roads. Road pavement quality degrades 
over time due to wear, accidents, and infrastructure works. Monitoring road pavement state can rely on dedicated vehicles 

equipped with a CPX trailer (Close-Proximity method) or with laser texture scanning. However, using this approach, it 
remains difficult to cover the whole road infrastructure network at regular intervals. In this paper, an opportunistic approach 
is proposed: equipping cars that are on the road for other purposes with noise and vibration sensors. This way, personnel 
costs are avoided, and timeliness of the information could be increased. The proposed method collects spectral sound and 
vibration data from a sensor box placed near the rear wheel of the car. These data are transmitted over 3G to a central server. 
The box is also equipped with a GPS tracker that allows locating the vehicles on a road map and deriving their driving 
speed. Data analytics accounts for modifiers such as the driving speed and the transfer function between the tire and the 
microphone. Features related to the roughness of the pavement are extracted and the abundance of data is used to eliminate 

confounders such as the engine noise and vibrations, other cars and trucks driving near the sensor box, or music and voices. 
The resulting texture indicators for each 20-meter road segment correlate very well to CPX and laser texture measurements. 
The difference between worn-out roads (>15 years) and new pavements (<5 years) is statistically significant. 
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1. Introduction 

Rolling noise is caused by the complex interaction of tires with the pavement [1]: macro texture inter-

acts with the tire groves reducing or increasing air-pumping effects while mega texture causes tire vibra-

tions. Car vibrations at the other hand are determined by waviness and irregularity of the road surface 

[2]. Both noise and vibrations limit comfort of the driver and passengers. Strong vibrations may even 

cause cargo damage. Sound and vibration also affect health and well-being of the residents near the roads 

[3]. Hence, an appropriate choice of pavement should be made when new roads are constructed. How-

ever, road surfaces degrade over time and thus also a timely maintenance is required to keep noise and 

vibrations within limits. Road administrators therefore use standardized measurement methods to moni-

tor this degradation (see Section 2). However, such methods (CPX, laser scanning) are time consuming 

and require specialized equipment. Hence, it is difficult to cover all roads in a timely manner. 

In this paper, an opportunistic sensing approach is presented to assess pavement degradation more 

efficiently and with much more spatial coverage. Previous research has introduced similar approaches, 

such as Roadroid [4], which uses accelerometer data from smartphones attached to the dashboard of 
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vehicles, or SENSOVO [5], which uses dashboard cameras and accelerometers placed in regular vehi-

cles. Similarly, our proposed opportunistic approach is minimally invasive, while focusing on data qual-

ity. To this end, a fleet of cars is equipped with a sensor box which is continuously monitoring sound and 

vibrations inside the trunk of the car. Opportunistic measurement, however, faces several confounders 

and modifiers (Fig. 1) that must be removed by exploring the abundancy of the acquired data. In previous 

work, we used the same opportunistic sensing to label road surfaces according to their noisiness [6]. 

This paper starts by reviewing standards for pavement quality. Then, a simple model relating road 

texture to sound and vibration, is presented. Finally, results from a pilot project showing that the system 

is capable of distinguishing different roads and degradation, is discussed.  
 

 

Figure 1: Confounders and modifiers that need to be accounted for in the opportunistic monitoring of the road 

pavement quality. 

2. Quality indicators for road pavement texture 

Road texture is defined as “deviation of a pavement surface from a true planar surface”. Road texture 

is classified according to its spatial, i.e. longitudinal wavelength. Standard ISO 10844:2014 [7] defines 

micro texture, macro texture, mega texture and irregularity ( 

). In this paper, we focus on the 5cm to 10m range (mega texture and irregularity). In every texture 

band, several road features account for the amplitude of the texture (such as the aggregate, binder, pot-

holes, etc.). The longitudinal road profile can be measured accurately using laser texture measurements 

[8]. 

Table 1: Overview of the road texture classification according to ISO 10844:2014 [7]. 
 

 Spatial  

wavelength range 

Common  

amplitude range 
Road features Related parameters 

Micro texture <0.5mm  aggregate skid resistance 

Macro texture 0.5mm – 5cm 0.1mm – 2.0cm aggregate and mortar 
macro texture depth, 

mean profile depth 

Mega texture 5cm – 50cm 0.1mm – 5.0cm potholes, waviness texture profile level 

Irregularity >50cm  
structural integrity, foun-

dations 

ISO 8608:2016 [10] road  

classes, waviness, IRI 
 

Several spectral texture standards are in place. The texture profile level is the amplitude spectrum of 

the longitudinal road profile in third octave bands [9]. On the other hand, for irregularity up to 90m, ISO 

8608:2016 defines road quality classes A-F based on the peak spectral density of the road profile [10]. 

For instance, irregularity must be smooth to accommodate high velocity traffic (classes A and B) [11]. 

On the other hand, for local roads, irregularity is less important, while roads classified as F are mostly 

unpaved. There is quite some discussion on whether the parameters listed in ISO 8608:2016 reflect the 
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actual road profiles [11]. On the other hand, the European Committee for Standardization defines numer-

ical methods to predict the ISO 8608:2016 road surface class, given the road profile [12]. 

Several single value indicators are also defined, which are based on the road profile and construction 

materials. For instance, skid resistance is defined as the ratio of the horizontal friction of the surface to 

the vertical load force [13]. Skid resistance is mostly related to the micro texture of the road. As an 

example: frequent traffic polishes micro texture which results in a decrease in skid resistance. Macro 

texture is related to water draining and wet roads also cause a decrease in skid resistance. 

Another standard measure is the international roughness index (IRI) measured in m/km [14]. IRI is 

the relative velocity between the axle and the sprung mass of a reference car. The golden car model is a 

quarter car model with parameters related to the reference car. This model includes a stiffer suspension, 

in order to decrease the amount of resonances in the model. In addition, this property can be calculated 

from the power spectral density roughness as there exists a linear correlation between the two [14]. 

Moreover, a mean profile depth (MPD) is defined by ISO 13473-1:2019 [15], which is only related to 

the macro texture. MPD is the average value of the height difference between the profile and a horizontal 

line through the highest peak (the peak level) over a 100mm long baseline in a macro texture range.  

A final ISO measure is a dynamic load coefficient (DLC) [16]. DLC is defined as the standard devia-

tion of the dynamic forces in a whole-body to the static forces. DLC focusses on comfort for humans in 

vibrations and low frequency sound. Vibrations from 0.1Hz to 0.5Hz relate to motion sickness, while on 

the other hand, vibrations from 0.5Hz to 80Hz are relevant for health, comfort and perception. 

Based on this discussion, it can be expected that the proposed opportunistic sensing would be suitable 

to estimate road quality classes, IRI, DLC, and to a lesser extend texture profile level, but that it is prob-

ably not informative for MPD and skid resistance. 

3. Methodology 

As computation power, data storage, and wireless data transfer are decreasing in cost, opportunistic 

sensing and big data is on the advent. In addition, a landscape of open source software frameworks (Pan-

das, TensorFlow, NumPy, SciPy, scikit-learn, etc.) provide the scientific community with the necessary 

tools to utilize big data, machine learning and artificial intelligence algorithms. 

In this paper, an opportunistic approach is proposed: equipping cars that are on the road for other 

purposes with noise and vibration sensors to assess road quality. For this, sensor boxes equipped with a 

microphone, a tri-axial accelerometer and a GPS sensor are put in the trunk of the fleet of cars. Using 3G 

connection, acquired data is transferred to the analysis server.  

The response of the tire/car combination to the road surface texture depends on the spatial wavelength 

and the driving speed. To cover the range of interest (Error! Reference source not found.), acceleration 

is measured from 1Hz to 40Hz, while sound is collected from 25Hz to 4kHz. Third octave band spectra 

are calculated at 50Hz sampling rate and used to determine statistical indicators such as mean, median, 

percentile-values and equivalent level over one-second intervals. Vibration (17 values) and sound spec-

trum (23 values) are concatenated into a combined spectrum 𝐿 containing 37 third octave bands. A linear 

weighting method is applied for the three overlapping bands. 
 

 

Figure 2: Relationship between rolling noise and car vibrations to the road profile. 
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3.1 Pavement texture 

In this section, the relative texture profile level 𝑑𝑇(𝑖, 𝜆) [dB] is introduced which represents the devi-

ation from the average road profile in the study area at a spatial wavelength 𝜆 [m]. In this study, the 

spatial wavelength λ ranges from 1cm to 10m expressed in third octave bands. The combined vibration 

and sound spectrum 𝐿(𝑖, 𝑐, 𝑡, 𝑓) [dB], defined by third octave bands from 1Hz to 4kHz, is measured per 

car c, on road segment i, during trip t and at the centre frequency 𝑓. This spectrum is used to make an 

estimate 𝑑𝑇′(𝑖, 𝜆) [dB] of the relative pavement texture profile. Moreover, each trip represents a moment 

in time and a dependency of the current situation in and around the car (e.g. music, engine noise, passen-

gers and other cars on the road). In addition, v(t) [m/s] is a measure of the instantaneous speed obtained 

each second from the GPS sensor. 

3.1.1 Removing known dependencies 

The two most important modifiers: car transfer function and dependence on driving speed are then 

removed from the measurements. For this work, the car transfer function,  𝐻𝑐(𝑓) [dB], is assumed to 

relate the excitation of the tire at frequency f to the measurement inside the car. Using a transfer function 

implies linearity and time invariance, which is not necessarily the case. Hence, we expect a rather poor 

model, especially for the phase, and thus we opt for using only the magnitude of 𝐻𝑐  averaged over third 

octave bands. Since 𝐻𝑐  cannot be easily determined for the fleet of cars participating in the opportunistic 

sensing, it is approximated by  for the N the amount of samples taken: 

 𝑯𝒄(𝒇) ≈ 𝑯′𝒄(𝒇) =
𝟏

𝑵
∑ 𝑳(𝒊(𝒕), 𝒄, 𝒕, 𝒇)𝒕 . (1) 

This approximation relies on the hypothesis that the tire excitation will be close to white noise if a 

random sample of the distribution of road surfaces, driving styles and speeds is taken. In this paper, the 

first three hours of driving faster than 30 km/h and slower than 125 km/h for vibrations are selected. For 

sound, the first three hours of driving with speed ranging between 50 km/h and 125 km/h are used. 

Using Eq. (2) we can define 𝑇′(𝑖, 𝑐, 𝑡, 𝜆) which is the approximation of 𝑇(𝑖, 𝜆), i.e. the actual surface 

texture of the road in dB: 

 𝑻′(𝒊, 𝒄, 𝒕, 𝝀) = 𝑳 (𝒊, 𝒄, 𝒕,
𝒗(𝒕)

𝝀
) − 𝑯′𝒄(𝒄,

𝒗(𝒕)

𝝀
) ≈ 𝑻(𝒊, 𝝀). (2) 

Note that 𝑇′ selects the frequency band 𝑣(𝑡)/𝜆 of the combined spectrum 𝐿. Doing so, this selects the 

sound or vibration band for which the current surface wavelength 𝜆 produces excitement. It is thereby 

assumed that the tire is an infinitesimal point (in contrast to the real tire) and therefore, vertical acceler-

ations (and sound) are directly related to the height of the road surface texture at that frequency. 

Driving speed not only determines the frequency of tire excitation but also the strength of this excita-

tion. This is a main reason for remaining variance amongst the approximations T’ over cars and trips. 

For example, the rolling noise level typically shows a power law dependence that depends on tire treat 

and road surface type [17]. However, the proposed model ignores explicit dependence on road type and 

assumes a more general driving speed dependence. Hence, the driving speed dependence for each car – 

and tire type – can be obtained for the average roads that the car has been driving on. By subtracting from 

the approximation T’, an approximation for the relative texture profile level 𝑑𝑇′ can be obtained as: 

 𝒅𝑻′(𝒊, 𝒄, 𝒕, 𝝀) = 𝑻′(𝒊, 𝒄, 𝒕, 𝝀) − 𝑮𝑨𝑴𝑻′(𝒗(𝒕), 𝒄, 𝝀). (3) 

There, 𝐺𝐴𝑀𝑇′ is a Gaussian additive model function eliminating remaining effects of the speed from 

the equation. 𝐺𝐴𝑀𝑇′ is then fitted on 𝑇′ with varying speeds (30 minutes of driving in 0-30, 30-50, 50-

70, 70-90 and 110-130 km/h ranges). Finally, 𝑑𝑇′(𝑖, 𝜆) for each road segment is obtained by averaging 

over all cars and all trips that pass that road segment hereby assuming that these are independent obser-

vations. 
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3.1.2 Calibration with the laser profiler 

To translate the relative texture profile level to a quantified texture profile levels, a calibration step is 

performed using laser profiling measurement conducted by the Belgian Road Research Institute (BRRI). 

The laser equipment is expected to be accurate for wavelengths lower than 1m. On the other hand, the 

opportunistic approach is expected to be applicable only for λ above 2cm because the tire is expected to 

filter out micro and macro texture, while at the same time the air-pumping effects are more related to this 

spatial texture range. Thus, the useful range for calibration lies between 2cm and 1m. 

 

 

Figure 3: Road sections in Gent, Belgium measured with laser profiler and used for calibration of the road tex-

ture profile levels measured using opportunistic sensing. 

During the dry weather in winter 2018/2019, a calibration run with a laser profiler vehicle has been 

performed. Several trajectories shown in Figure 3 have been chosen to accommodate a wide variety of 

pavement materials and degradation (new/worn). Simultaneously, three cars with the sensor box installed 

followed the laser profiler vehicle: car 1 – Kia Niro (hybrid engine gasoline/electric, year 2018), car 2 – 

Volvo XC90 (gasoline, year 2018) and car 3 – Peugeot 406 (diesel, older than 10 years). During a first 

passage on the calibration run, car 1 drove electric therefore no combustion engine noise was present. 

On the other hand, during the second passage, the gasoline engine was turned on for car 1. The laser 

profiler was mounted on the backside of measurements car near the right rear tire. Using the laser profiler 

contactless method [15], a single line was traced sampling every millimeter. 

Statistics on the profiler need to be taken over longer stretches of road to account for the variations 

due to one-dimensional trace. In literature, statistics are calculated over lengths of 100m [18-19], 152.4m 

[20] and even 1000m and are used for measuring irregularity of roads. In this paper, the laser data were 

processed to third octave band texture profile levels in dB(μm), 𝑇𝑙(𝑖, 𝜆), with the spatial index i referring 

to 20m intervals that roughly coincided with the segments used in the opportunistic sensing approach. 

Due to the poor spatial match, regression analysis on the 20m interval data could not be used for calibra-

tion, hence the approximate texture level 𝑇′′(𝑖, 𝜆) is defined: 

 𝑻′′(𝒊, 𝝀) = (𝒅𝑻′(𝒊, 𝝀) − 𝝁′) 𝝈𝒍/𝝈′ + 𝝁𝒍 . (4) 

Quantities 𝜇𝑙 , 𝜎𝑙 , 𝜇′and 𝜎′ in Eq. (4) are defined using Eqs. (5)-(6), while N represents the number 

of overlapping segments: 

 𝝁𝒍(𝝀) =
𝟏

𝑵
∑ 𝑻𝒍(𝒊, 𝝀); 𝝈𝒍(𝝀) = √

𝟏

𝑵
∑ (𝑻𝒍(𝒊, 𝝀) − 𝝁𝒍(𝝀))𝟐

𝒊  (5)

 𝝁′(𝝀) =
𝟏

𝑵
∑ 𝒅𝑻′(𝒊, 𝝀); 𝝈′(𝝀) = √

𝟏

𝑵
∑ (𝒅𝑻′(𝒊, 𝝀) − 𝝁′(𝝀))𝟐

𝒊  (6) 
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3.2 Noisiness index 

In previous work [6], the same opportunistic sensing has been used to label roads according to their 

noisiness. A noisiness index was defined as the sum over the frequency range 350Hz till 1250Hz of the 

relative noise level: 

 𝒅𝑳𝒊(𝒇, 𝒊) =
𝟏

𝑵
∑ 𝒅𝑳(𝒇, 𝒊, 𝒕, 𝒄)𝒕,𝒄 , for 𝒕, 𝒄|𝒗(𝒕, 𝒊) ∈ [𝒗𝒊,𝟖𝟓, 𝒗𝒊,𝒍𝒊𝒎] (7) 

The relative noise level dL in Eq. (7), is calculated using an equation similar to Eq. (3). 

4. Results and discussion 

Fig. 4 shows the longitudinal road texture spectrum averaged over each of the segments represented 

in Figure 3. The graph on the left presents the opportunistic sensing measurements T” (Eq. (4)), while 

the laser measurements Tl are displayed on the right. As explained before, above a spatial frequency of 

about 30cycles/m the results obtained from opportunistic sensing could not be trusted. It can clearly be 

seen that the texture determined from the laser measurements is more similar between roads or even 

crosses at higher spatial frequencies, while this is not the case for T”. One could indeed expect a reverse 

dependence of sound on texture at these frequencies due to air pumping. At λ equal to 1m, a peak is 

visible in both results (due to μl (1m)) which could be amplified by the laser measurement car dynamics. 

Considering the individual segments, several observations can be made. The outlier trajectory of seg-

ment E, which consist of concrete plates, is obvious in both spectra. Moreover, due to the painted cycle 

lane in this segment, the laser that samples a single line only, records a smoother pavement at the higher 

frequencies while this is not visible in the opportunistic sensing approach which samples both wheel 

tracks. Trajectory G is a local road with a new SMA and thus has a smooth macro texture but at the same 

time it has a higher irregularity than the highway segments. Trajectory D is a worn DAC which shows a 

higher amplitude in the macro texture range in both measurement models (the aggregate becomes lose). 

Trajectory I, a worn concrete, shows a high macro texture for both measurement methods. The largest 

differences between both methods in the range 2 to 30cycles/m are found for the highways. In particular, 

for trajectories A and B, opportunistic method overestimates the mega texture while for trajectory C it 

underestimates the mega texture. It should be noted that trajectory C differs from general highway pave-

ment, since this is a viaduct with a lot of bridge joints at set distances. As explained by Múčka et al. [11], 

high-speed highways require smooth surfaces, in irregularity texture range.  

 

 

Figure 4: Left: results of calibrated opportunistic measurements 𝑻′′(𝒊, 𝝀) (Eq. (4)), right: reference laser meas-

urements 𝑻𝒍(𝒊, 𝝀). Both are averaged over all segments 𝒊 per segments defined in Fig. 3. The dotted black line 

on the right graph represents 𝝁𝒍 (Eq. (5)). 

Maps of selected third octave bands (Figure 5) of road texture level shed some light on different as-

pects of the state of the road. Mega texture (0.1m and 0.5m wavelengths are shown) gives an indication 
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of wear, but also identifies cobblestone pavement that are used for some of the inner-city roads in Ghent. 

Waviness (2.5m wavelength is shown) may indicate problems with the road’s foundation but it is also 

systematically found on roads such as the ring road around the city. Fig. 5 also shows the noisiness clas-

ses. As expected, visual inspection of the maps shows that noisiness is higher for the road segments with 

high amplitude mega texture. 

 

 

 

Figure 5: Spatial representation of the pavements using opportunistic sensing measurements around the city of 

Ghent (clockwise from top right): level at 𝝀 = 𝟎. 𝟏𝐦, level at 𝝀 = 𝟎. 𝟓𝐦, level at 𝝀 = 𝟐. 𝟓𝐦, road nosiness 

class. 

5. Conclusion and outlook 

This paper shows that the opportunistic sensing of noise and vibration using many cars allows to 

estimate the road texture level quite accurately even when a very simple model for relating it to the 

measured quantities is used. Nevertheless, this comparison is done using the data obtained in good driv-

ing conditions: the car audio system was not in use and the drivers and passengers were not talking. 

Moreover, it can be assumed that during the test drive, the engine was not strongly loaded by the fast 

acceleration or high driving speeds as the speed was kept constant. Thus, future research on removing 

confounders would still be needed. Finally, more precise models for relating the measurements to texture 

level may allow to extend the measurement range to lower and higher spatial wavelengths. 
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