172 research outputs found

    An Efficient Parallel Algorithm for Spectral Sparsification of Laplacian and SDDM Matrix Polynomials

    Full text link
    For "large" class C\mathcal{C} of continuous probability density functions (p.d.f.), we demonstrate that for every wCw\in\mathcal{C} there is mixture of discrete Binomial distributions (MDBD) with TNϕw/δT\geq N\sqrt{\phi_{w}/\delta} distinct Binomial distributions B(,N)B(\cdot,N) that δ\delta-approximates a discretized p.d.f. w^(i/N)w(i/N)/[=0Nw(/N)]\widehat{w}(i/N)\triangleq w(i/N)/[\sum_{\ell=0}^{N}w(\ell/N)] for all i[3:N3]i\in[3:N-3], where ϕwmaxx[0,1]w(x)\phi_{w}\geq\max_{x\in[0,1]}|w(x)|. Also, we give two efficient parallel algorithms to find such MDBD. Moreover, we propose a sequential algorithm that on input MDBD with N=2kN=2^k for kN+k\in\mathbb{N}_{+} that induces a discretized p.d.f. β\beta, B=DMB=D-M that is either Laplacian or SDDM matrix and parameter ϵ(0,1)\epsilon\in(0,1), outputs in O^(ϵ2m+ϵ4nT)\widehat{O}(\epsilon^{-2}m + \epsilon^{-4}nT) time a spectral sparsifier DM^NϵDDi=0Nβi(D1M)iD-\widehat{M}_{N} \approx_{\epsilon} D-D\sum_{i=0}^{N}\beta_{i}(D^{-1} M)^i of a matrix-polynomial, where O^()\widehat{O}(\cdot) notation hides poly(logn,logN)\mathrm{poly}(\log n,\log N) factors. This improves the Cheng et al.'s [CCLPT15] algorithm whose run time is O^(ϵ2mN2+NT)\widehat{O}(\epsilon^{-2} m N^2 + NT). Furthermore, our algorithm is parallelizable and runs in work O^(ϵ2m+ϵ4nT)\widehat{O}(\epsilon^{-2}m + \epsilon^{-4}nT) and depth O(logNpoly(logn)+logT)O(\log N\cdot\mathrm{poly}(\log n)+\log T). Our main algorithmic contribution is to propose the first efficient parallel algorithm that on input continuous p.d.f. wCw\in\mathcal{C}, matrix B=DMB=D-M as above, outputs a spectral sparsifier of matrix-polynomial whose coefficients approximate component-wise the discretized p.d.f. w^\widehat{w}. Our results yield the first efficient and parallel algorithm that runs in nearly linear work and poly-logarithmic depth and analyzes the long term behaviour of Markov chains in non-trivial settings. In addition, we strengthen the Spielman and Peng's [PS14] parallel SDD solver

    An Alon-Boppana Type Bound for Weighted Graphs and Lowerbounds for Spectral Sparsification

    Get PDF
    We prove the following Alon-Boppana type theorem for general (not necessarily regular) weighted graphs: if GG is an nn-node weighted undirected graph of average combinatorial degree dd (that is, GG has dn/2dn/2 edges) and girth g>2d1/8+1g> 2d^{1/8}+1, and if λ1λ2λn\lambda_1 \leq \lambda_2 \leq \cdots \lambda_n are the eigenvalues of the (non-normalized) Laplacian of GG, then λnλ21+4dO(1d58) \frac {\lambda_n}{\lambda_2} \geq 1 + \frac 4{\sqrt d} - O \left( \frac 1{d^{\frac 58} }\right) (The Alon-Boppana theorem implies that if GG is unweighted and dd-regular, then λnλ21+4dO(1d)\frac {\lambda_n}{\lambda_2} \geq 1 + \frac 4{\sqrt d} - O\left( \frac 1 d \right) if the diameter is at least d1.5d^{1.5}.) Our result implies a lower bound for spectral sparsifiers. A graph HH is a spectral ϵ\epsilon-sparsifier of a graph GG if L(G)L(H)(1+ϵ)L(G) L(G) \preceq L(H) \preceq (1+\epsilon) L(G) where L(G)L(G) is the Laplacian matrix of GG and L(H)L(H) is the Laplacian matrix of HH. Batson, Spielman and Srivastava proved that for every GG there is an ϵ\epsilon-sparsifier HH of average degree dd where ϵ42d\epsilon \approx \frac {4\sqrt 2}{\sqrt d} and the edges of HH are a (weighted) subset of the edges of GG. Batson, Spielman and Srivastava also show that the bound on ϵ\epsilon cannot be reduced below 2d\approx \frac 2{\sqrt d} when GG is a clique; our Alon-Boppana-type result implies that ϵ\epsilon cannot be reduced below 4d\approx \frac 4{\sqrt d} when GG comes from a family of expanders of super-constant degree and super-constant girth. The method of Batson, Spielman and Srivastava proves a more general result, about sparsifying sums of rank-one matrices, and their method applies to an "online" setting. We show that for the online matrix setting the 42/d4\sqrt 2 / \sqrt d bound is tight, up to lower order terms

    Domain Sparsification of Discrete Distributions Using Entropic Independence

    Get PDF
    We present a framework for speeding up the time it takes to sample from discrete distributions ? defined over subsets of size k of a ground set of n elements, in the regime where k is much smaller than n. We show that if one has access to estimates of marginals P_{S? ?} {i ? S}, then the task of sampling from ? can be reduced to sampling from related distributions ? supported on size k subsets of a ground set of only n^{1-?}? poly(k) elements. Here, 1/? ? [1, k] is the parameter of entropic independence for ?. Further, our algorithm only requires sparsified distributions ? that are obtained by applying a sparse (mostly 0) external field to ?, an operation that for many distributions ? of interest, retains algorithmic tractability of sampling from ?. This phenomenon, which we dub domain sparsification, allows us to pay a one-time cost of estimating the marginals of ?, and in return reduce the amortized cost needed to produce many samples from the distribution ?, as is often needed in upstream tasks such as counting and inference. For a wide range of distributions where ? = ?(1), our result reduces the domain size, and as a corollary, the cost-per-sample, by a poly(n) factor. Examples include monomers in a monomer-dimer system, non-symmetric determinantal point processes, and partition-constrained Strongly Rayleigh measures. Our work significantly extends the reach of prior work of Anari and Derezi?ski who obtained domain sparsification for distributions with a log-concave generating polynomial (corresponding to ? = 1). As a corollary of our new analysis techniques, we also obtain a less stringent requirement on the accuracy of marginal estimates even for the case of log-concave polynomials; roughly speaking, we show that constant-factor approximation is enough for domain sparsification, improving over O(1/k) relative error established in prior work

    An Alon-Boppana type bound for weighted graphs and lowerbounds for spectral sparsification

    Get PDF
    No abstract availabl

    Twice-Ramanujan Sparsifiers

    Full text link
    We prove that every graph has a spectral sparsifier with a number of edges linear in its number of vertices. As linear-sized spectral sparsifiers of complete graphs are expanders, our sparsifiers of arbitrary graphs can be viewed as generalizations of expander graphs. In particular, we prove that for every d>1d>1 and every undirected, weighted graph G=(V,E,w)G=(V,E,w) on nn vertices, there exists a weighted graph H=(V,F,w~)H=(V,F,\tilde{w}) with at most \ceil{d(n-1)} edges such that for every xRVx \in \R^{V}, xTLGxxTLHx(d+1+2dd+12d)xTLGx x^{T}L_{G}x \leq x^{T}L_{H}x \leq (\frac{d+1+2\sqrt{d}}{d+1-2\sqrt{d}})\cdot x^{T}L_{G}x where LGL_{G} and LHL_{H} are the Laplacian matrices of GG and HH, respectively. Thus, HH approximates GG spectrally at least as well as a Ramanujan expander with dn/2dn/2 edges approximates the complete graph. We give an elementary deterministic polynomial time algorithm for constructing HH

    Density Independent Algorithms for Sparsifying k-Step Random Walks

    Get PDF
    We give faster algorithms for producing sparse approximations of the transition matrices of k-step random walks on undirected and weighted graphs. These transition matrices also form graphs, and arise as intermediate objects in a variety of graph algorithms. Our improvements are based on a better understanding of processes that sample such walks, as well as tighter bounds on key weights underlying these sampling processes. On a graph with n vertices and m edges, our algorithm produces a graph with about nlog(n) edges that approximates the k-step random walk graph in about m + k^2 nlog^4(n) time. In order to obtain this runtime bound, we also revisit "density independent" algorithms for sparsifying graphs whose runtime overhead is expressed only in terms of the number of vertices

    Quantum Speedup for Graph Sparsification, Cut Approximation and Laplacian Solving

    Full text link
    Graph sparsification underlies a large number of algorithms, ranging from approximation algorithms for cut problems to solvers for linear systems in the graph Laplacian. In its strongest form, "spectral sparsification" reduces the number of edges to near-linear in the number of nodes, while approximately preserving the cut and spectral structure of the graph. In this work we demonstrate a polynomial quantum speedup for spectral sparsification and many of its applications. In particular, we give a quantum algorithm that, given a weighted graph with nn nodes and mm edges, outputs a classical description of an ϵ\epsilon-spectral sparsifier in sublinear time O~(mn/ϵ)\tilde{O}(\sqrt{mn}/\epsilon). This contrasts with the optimal classical complexity O~(m)\tilde{O}(m). We also prove that our quantum algorithm is optimal up to polylog-factors. The algorithm builds on a string of existing results on sparsification, graph spanners, quantum algorithms for shortest paths, and efficient constructions for kk-wise independent random strings. Our algorithm implies a quantum speedup for solving Laplacian systems and for approximating a range of cut problems such as min cut and sparsest cut.Comment: v2: several small improvements to the text. An extended abstract will appear in FOCS'20; v3: corrected a minor mistake in Appendix
    corecore