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Abstract

This dissertation presents a study of quantum algorithms for problems that can be posed
as matrix function tasks. In Chapter 1 we demonstrate a simple unifying framework for
implementing of smooth functions of matrices on a quantum computer. This framework
captures a variety of problems that can be solved by evaluating properties of some function of
a matrix, and we identify speedups over classical algorithms for some problem classes. The
analysis combines ideas from the classical theory of function approximation with the quantum
algorithmic primitive of implementing linear combinations of unitary operators.

In Chapter 2 we continue this study by looking at the role of sparsity of input matrices
in constructing efficient quantum algorithms. We show that classically pre-processing an
input matrix by spectral sparsification can be profitable for quantum Hamiltonian simulation
algorithms, without compromising the simulation error or complexity. Such preprocessing
incurs a one time cost linear in the size of the matrix, but can be exploited to exponentially
speed up subsequent subroutines such as inversion.

In Chapter 3, we give an application of this theory of matrix functions to the problem of
estimating the Renyi entropy of an unknown quantum state. We combine matrix function
techniques with mixed state quantum computation in the one-clean qubit model, and are able
to bound of the expected runtime of our algorithm in terms of the unknown target quantity.

In addition to the theme of analysing the complexity of our algorithms, we also identify
instances that are of practical relevance, leading us to some problems of machine learning.
In Chapter 4 we investigate kernel based learning methods using random features. We work
with the QRAM input model suitable for big data, and show how matrix functions and the
quantum Fourier transform can be used to devise a quantum algorithm for sampling random
features that are optimised for given input data and choice of kernel. We obtain a potential
exponential speedup over the best known classical algorithm even without explicit assumptions
of sparsity or low rank.

Finally in Chapter 5 we consider the technique of beamsearch decoding used in natural
language processing. We work in the query model, and show how quantum search with advice
can be used to construct a quantum search decoder that can find the optimal parse (which
may for instance be a best translation, or text-to-speech transcript) at least quadratically
faster than the best known classical algorithms, and obtain super-quadratic speedups in the
expected runtime.
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Introduction

Algorithm design is a discipline that epitomises creativity. Algorithmists enjoy the opportunity
to tackle abstractions of problems that instantiate themselves in a staggeringly wide range of
subjects. Quantum information theory occupies a unique position in algorithmics, promising
efficient algorithms on novel quantum devices that could perform computational tasks that
are intractable by means of classical computing, especially in quantum chemistry and physics.
To understand the extent of overlap between classical and quantum computing, and delineate
their boundaries, one may take two distinct, yet intertwined, directions of research: for some
chosen task, (1) constructing (efficient) quantum algorithms and analysing their complexity,
and (2) proving lower bounds on the complexity of any quantum algorithm possible.

Since 2009, when the work of Harrow et al. showed that an exponential speedup could be
expected in quantumly solving linear algebraic problems, the quantum algorithm community
has been abuzz with excitement about quantum linear algebra and its applications. The
research that has gone into this thesis was originally motivated by this body of work, and has
focused primarily on point (1) above. We have attempted to take up the twin perspectives of
devising algorithms to tackle problems that are immediately relevant (e.g. natural language
processing), and studying upper bounds on the complexity for representative tasks of special
importance (e.g. entropy estimation).

Quantum computing is now well known to be able to provide significant computational
benefits over classical computing for a variety of tasks, including integer factorisation, search
problems, and the solution of systems of linear equations, amongst others. In this thesis we
expand on the capabilities of quantum computers by identifying further examples of tasks for
which efficient classical algorithms are not known, but for which we are able to give efficient
quantum algorithms. These tasks are drawn mainly from the areas of matrix analysis and
machine learning.

What do matrix analysis and machine learning have to do with quantum computation?
A decade of research has thrown up so many connections that quantum linear algebra and
quantum machine learning are considered fields in their own right today. Let us take a quick
look at them below.

Quantum linear algebra: Quantum computers embed information in the state of quantum
systems, and then manipulate this information by engineering the quantum dynamics of the
system. This quantum dynamics is mathematically manifest as the unitary evolution in a
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Introduction

Hilbert space. We restrict ourselves to unitary dynamics so that computations are reversible
and adiabatic, in keeping with the time evolution of a closed system. The only non-unitary
operation allowed in standard quantum computing is measurement.

To augment the list of potential applications of quantum computers, it is important to
study the encoding of classical computational problems in a quantum framework. In such an
exploration, it is useful to ask how to ‘implement’ or perform computations that may not
be directly representable as the unitary evolution of a quantum state. The classic example
of such an operation is the inversion of an arbitrary (invertible) matrix A, arising as a step
in the solution to a system of linear equations, say A~x = ~b. The matrix A here need not be
unitary, or even Hermitian. We may encapsulate this and other problems of a similar spirit in
the question of how to quantumly implement smooth functions of Hermitian matrices.

This leads us straight to the idea of quantum linear algebra. Linear algebraic problems
can be formulated as questions about the properties of matrices and their functions, such as
their traces, determinants, and quadratic forms evaluated on different vectors. On the other
hand, the theory of finite dimensional quantum systems happens to be exactly complex linear
algebra. Thus it does not come as a surprise that it must be possible to harness the behaviour
and time evolution of quantum systems to carry out linear algebraic computations.

What does come as a non trivial observation is the fact that such quantum linear algebraic
computations can sometimes be exponentially faster than their classical counterparts; in
particular, for sparse and well conditioned input matrices that correspond to locally computable
graphs (i.e. graphs in which each node can efficiently list all of its neighbours). What is
more, there is evidence to believe that if some of these exponentially faster algorithms can
be simulated by equally fast classical ones, all of quantum mechanics becomes classically
simulable, an outcome that we believe to be highly unlikely.

The exponential speedup is primarily in the dimension of the input matrix, meaning that
sublinear, poly-logarithmic runtimes are attained by these algorithms. It stands to be clarified
that such speedups are only possible when a global property of the solution vector or matrix
are desired to be evaluated — since simply writing down a vector of size N will require time
that is linear in N . A further insight that has been developed over the last few years has
allowed for a retention of an exponential speedup in the precision to which solutions are
obtained — and the key here is to reformulate the problem in an essentially quantum way, so
that quantum linear algebraic algorithms are typically described as outputting a quantum
state that encodes the classical vector that solves a problem, thereby sidestepping the issue of
having to write down all of its components explicitly in classical memory.

Over the last decade, several quantum algorithms demonstrating quantum speedups for
linear algebra have been invented, ranging from principal component analysis and matrix
inversion, to a variety of regression algorithms. Linear algebra is the life breath of a plethora
of science and engineering applications. Chief among these in modern times has been machine
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learning. Naturally, the quantum algorithms community has taken cognizance of this applica-
bility, and the field of quantum machine learning in the form it is studied today was birthed
around the same time as quantum linear algebra.

Quantum machine learning: Statistical learning theory studies the ‘learnability’ of func-
tions from a few example input-output pairs. Researchers started enquiring over two decades
ago whether learning from quantum examples, input-output pairs that are given in the form of
quantum superpositions, gives any advantage over classical examples. This model is essentially
one of oracles and query complexity, and although we now have numerous upper and lower
bounds that illuminate quantum statistical learning theory, it appears to have so rich a
structure that we are able to prove more things about it than may be useful in practice.

At the other end of the spectrum lies modern machine learning, based on large volumes of
data, popularly called ‘big data’. We have only glimmers of understanding of the theory behind
how the hugely successful learning models, most famously those based on neural networks,
learn. The landscape is peppered with heuristic algorithms and recipes that are able to achieve
such astonishing feats of prediction from data that they have nearly become synonymous with
the title of artificial intelligence.

The challenges of learning from big data are manifold, but the sheer volume of data and the
high dimension thereof stand out among them. It is on this stage that the exponential speedups
of quantum algorithms make an entrance. Early applications of the quantum linear systems
solver were to problems of solving differential equations by finite difference methods. But soon,
linear and other forms of regression were also studied, with promising results. Regression is
a form of supervised classification, one of the cornerstones of machine learning. This lead
to further studies of clustering and unsupervised learning methods. But provable speedups
proved hard to come by, and where they were obtained, proved to be too straightforward an
application of matrix inversion.

The breakthrough that reinvigorated quantum machine learning came in 2016, when
Kerenidis and Prakash demonstrated an exponential speedup for the recommendation systems
problem, a particularly useful type of matrix completion and principal component analysis
problem. They considered several linear algebraic problems in an input model that mirrors
classical random access memory. Data is assumed to be collected in advance and preprocessed
for storage in a carefully chosen data structure. For data described by an arbitrary N ×N
matrix, this collection will take time at least linear in the number of non-zero entries. However,
processing the data, given such a data structure, is significantly cheaper, depending only
poly-logarithmically on N . This is popularly known as the QRAM input model.

Several new quantum algorithms have since been formulated in the QRAM model, achieving
large speedups. However, a common thread that ran through them was the assumption that
the matrices being manipulated had low rank. In the last two years, breakthrough work of
Tang has shown that for low rank data, a classical oracle that mimics the ability of QRAM to
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sample from the distribution defined by the squared amplitudes of a vector’s components can
be constructed efficiently, and used to achieve exponentially faster classical algorithms for the
same problems. These have come to be known as quantum inspired classical algorithms. It is
worth noting however, that while these algorithms achieve exponential speedups in asymptotic
runtime, they are slower than their quantum counterparts by large polynomial factors, with
degrees of over thirty. Quantum machine learning has thus already shed much light on the
power of both classical and quantum computing within the last five years.

The assumption of low rank, meanwhile, has now been understood reasonably well, although
the assumption of sparsity that is used by query model linear algebraic algorithms is still
rather enigmatic. Figuring out how to input data into quantum algorithms has been a hotly
studied question for nearly three decades, starting with the discovery of Grover’s quantum
search algorithm. New research into this area continues to throw up surprises, and the new
age of near term devices that is expected to enable heuristic studies will give this research a
further boost.

This thesis : We take up these two streams of thought, and first investigate quantum linear
algebra in the query model, and subsequently study an application each of the capability to
implement matrix functions in the query and QRAM models. The latter application happens
to be supervised learning, and we then also consider the unsupervised learning problem of
decoding data from a sequence of random variables, by a method of searching over a graph
that is widely used in natural language processing.

A unifying theme that underlines our work is the development of quantum algorithms and
the investigation of their asymptotic computational complexity. On top of this theme, the
following chapters separate rather naturally into two parts, in two complementary ways.

First, the dominating theme of matrix functions and implementing them on quantum
computers unites Chapters 1 to 4, with the former two setting out the theoretical framework
and investigating the assumptions used therein, and the latter two discussing applications of
this theory to practical problems that deal with potentially large volumes of high dimensional
data in the two disparate input models of quantum query oracles and QRAM, respectively.
In this regard, Chapter 5 forms an independent study of the application of quantum search
with prior advice to sequence-to-sequence decoding, a very topical problem that has generated
great interest in the last decade with the advent of machine learning for natural language
processing.

Second, Chapters 1 to 3 deal with the analysis of a framework of quantum algorithms
for matrix functions, limitations of this framework and a potential workaround by the use
of techniques of spectral sparsification of graphs, and an application of matrix functions to
approximating the entropy of unknown quantum states. Chapters 4 and 5 then naturally
cluster under that most relevant buzzword of our times, machine learning.
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Thesis Overview

Since we have considered a range of problems with quite a spread in background and theory,
we expect that some readers may only be interested in specific portions of this work; in line
with this, each chapter has been written to be readable as a standalone article, although
references to other chapters are made aplenty to point out connections and remind readers
of relevant results from one chapter that find use in another. Every chapter begins with
a synopsis of results and techniques to help readers gauge its scope and relevance to their
interests, in addition to an introduction that describes the context behind the problem that
will form its focus.

Consequently, the preliminaries and notation that we will set up at the end of this
introduction only touch upon those ideas and aspects that are constant throughout the thesis,
and are not specific to any one problem.

Each numbered chapter in this thesis forms the content of an independent paper. Since
all of the research presented here was done in collaborations, we briefly outline each of the
following chapters below, with notes on collaborators’ contributions.

• Chapter 1 motivates the study of matrix functions in the context of quantum computing,
and gives a brief review of various works that have considered the problem of implementing
functions of different kinds of matrices by means of unitary circuits. We have intended
for this chapter to be a gentle introduction to the whole thesis. We also develop a
method of probabilistically implementing functions of row-sparse and locally computable
Hermitian matrices whose matrix entries are accessible via a quantum oracle. This
method relies on approximating real functions by Chebyshev polynomials, coupled with
the simple and effective technique of implementing a linear combination of unitaries
(LCU) by means of a standard quantum walk construction.

This chapter is based on joint work with Dr. Steve Brierley and Prof. Richard
Jozsa [SBJ19]. Dr. Brierley suggested this project, and I did most of the of the work, in
discussion with Dr. Brierley and Prof. Jozsa.

• Chapter 2 picks up on the assumption of row computability and sparsity used in the
first chapter, and addresses the question of how replacing a matrix with a sparser one
that approximates it well in spectral norm affects Hamiltonian simulation. Classical
sampling-based algorithms for spectral sparsification reduce the total number of edges
from O(n2) in an input graph to Oε(n logn) in the output ε-spectral sparsifier. Towards
anwering our question, we prove that such algorithms also achieve row-sparsification,
with high probability. With mild assumptions on the sampling process that generates
the sparsifier, we show that the output has O(logn) entries in any row, making it
amenable to use in quantum algorithms that crucially utilise row-sparsity. Focusing
on the specific example of Hamiltonian simlulation, which underlies numerous other
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quantum algorithms as a fundamental subroutine, we show how the error propagating
from sparsification can be kept under control. For sparsification by effective resistances,
our assumption appears to be directly related to physical properties of the underlying
system described by the Hamiltonian.

This chapter is based on joint work with Dr. Steven Herbert [HS19]. I proposed
the original ideas, and the subsequent work emerged in discussions.

• Chapter 3 applies the theory of implementing matrix functions to the estimation of
Renyi entropies. We use the method of quantum singular value transformations to obtain
probabilistic implementations, aka block encodings, of ρα, and proceed to estimate its
trace in the DQC1 model using a single clean qubit. We thus manage to ease the quantum
memory overhead, requiring only relatively cheap noisy qubits. The DQC1 model is
believed to be of restricted power, intermediate between BQP and BPP, and is believed
to be relatively easier to build than full-fledged error corrected quantum computers. Our
complexity bound demonstrates the trade-off between a worst-case O(d2/ε2) independent
measurements of the output of shallow circuits required by our method, as compared to
circuits of depth O(d log d/ε1.5) used by phase estimation based methods. We use a recent
iterative method to improve additive approximations to multiplicative ones, and are
able to phrase our complexity bounds in terms of expected runtimes that depend on the
unknown target quantity. This work is set in the quantum purified query access input
model, wherein an unknown quantum mixed state is accessible via a unitary process
that prepares a purification of the state.

This chapter is based on joint work with Prof. Min-Hsiu Hsieh [SH19]. I proposed
the original ideas, and the subsequent work is the result of discussions.

• Chapter 4 delves into kernel based methods for supervised learning, and illustrates an
application of implementing matrix functions to machine learning. We work in the
QRAM input model, suitable for big data. We show that random features that are
optimised for the input data and its distribution, and the choice of kernel, can be sampled
in time linear in the data dimension, modulo reasonable assumptions on the kernel’s
hyperparameters and on the input distribution. We once again use the quantum singular
value transformations method, and the essential component is quantum matrix inversion.
Our algorithm offers a potential exponential speedup over the best known classical one
for this problem, and may be resistant to dequantisation by low-rank approximations.
Our key contributions are the ‘circulantisation’ and subsequent diagonalisation of the
full rank, possibly dense, regularised integral operator by decomposing it into a product
of the quantum Fourier transform and simpler diagonal operators. Finally, we also
elaborate how our quantum optimised feature sampling subroutine can be used with
classical (doubly) stochastic gradient descent to achieve supervised learning while keeping
our speedup intact.
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This chapter is based on joint work with Dr. Hayata Yamasaki, Dr. Sho Sonoda,
and Prof. Masato Koashi [YSS+20]. Dr. Sonoda suggested the problem, and together
with Prof. Koashi offered help with the classical theory of kernel methods and signal
processing. Dr. Yamasaki and I did the bulk of the work, in discussion.

• Chapter 5 carries forward the idea of practical algorithms for machine learning, but turns
away from the earlier main theme of matrix functions and their quantum avatars. We
consider the popular technique of beamsearch which interpolates between greedy search
and best-first search via the beamwidth parameter, and is used in sequence-to-sequence
decoding models. Working in the quantum query access model, we show that quantum
search can be used to develop a decoder that can find the optimal decoded sequence
(matching best-first search in this regard), while being at least quadratically faster
than the best known classical beamsearch variant. Furthermore, specialising to the
domain of natural language processing (NLP), we show that quantum search with a
prior non-uniform advice state can be used to obtain super-quadratic speedups in the
expected runtime. We provide numerical evidence based on LSTM based NLP models,
specifically using Mozilla Deepspeech, that the power-law input distributions are actually
ubiquitous in such language decoding problems.

This chapter is based on joint work with Dr. Johannes Basuch and Dr. Stephen
Piddock [BSP19]. The original ideas and all the work emerged in discussions between Dr.
Bausch and myself. Dr. Bausch performed all the numerics and produced all the figures.
He has kindly permitted me to reuse them for this thesis, where they are included for
completeness. The proof of Theorem 5.6 (biased quantum sampler for formal grammars)
was contributed by Dr. Piddock.

We end in Chapter 6 with a summary and some concluding remarks.

Preliminaries and Notation

We will assume that the average reader has at least as much background and familiarity with
quantum computing as a final year undergraduate who has taken an introductory or elective
course on the subject. We will not need to know all but the most basic ideas of quantum
mechanics.

For completeness and ease of reference, we briefly review in this section some basic notions
and notations in quantum computation, referring to [NC10, dWol19] for more details.

The usual unit of classical computation is the bit, a Boolean variable taking values in
Z2 = {0, 1}. Its analogue in quantum computation is called the qubit, and represents the
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Introduction

state of a physical quantum 2-level system. A qubit can take values or states in C2, i.e. linear
combinations or superpositions of two classical values (complex numbers)

α |0〉+ β |1〉

In particular we require that |α|2 + |β|2 = 1. We have also introduced the Dirac bra-ket in
the above:

|0〉 :=
(

1
0

)
, |1〉 :=

(
0
1

)
.

More generally, the set of states an m-qubit quantum register can take is the set of unit
vectors

|ψ〉 =
∑

i∈{0,1}m
αi |i〉 with αi ∈ C, such that

∑
i

|αi|2 = 1

in the Hilbert space spanned by a set of orthonormal basis vectors {|i〉 , i ∈ {0, 1}m}, known
as the computational basis. Such an m-qubit state is said to be a superposition of the m basis
states. Each αi is called the amplitude of basis state |i〉, and the L2 normalisation condition
on |ψ〉 will enable us to treat the {|αi|2} as probabilities. We interpret the vector |i〉 as the
m-dimensional complex vector vi with entries given by (vi)j = δij , and also interchangeably as
the integer i or the bit string that gives its binary representation b1 . . . bm where bi is either 0
or 1. Furthermore, and of key importance to quantum mechanics and computation, the vector
|b1 . . . bm〉 ∈ C2m = (C2)⊗m is interpreted as a tensor product

|b1 . . . bm〉 = |b1〉 ⊗ |b2〉 ⊗ . . .⊗ |bm〉

of the m vectors |bi〉 in C2. The ⊗ is often dropped for convenience, and we write |b1〉 |b2〉 for
|b1〉 ⊗ |b2〉. We denote Hilbert spaces with a Gothic H, and use a superscript capitalised Latin
letter to indicate the register.

The conjugate transpose of a column vector |ψ〉 is a row vector denoted by 〈ψ|. The
conjugate transpose and the transpose of an operator A are denoted by A† and AT, respectively.
The inner product of |ψ〉 and |φ〉 is denoted by 〈ψ |φ〉, while their outer product |ψ〉 〈φ|
is a matrix. We will also occasionally denote rank-1 projectors by a capitalised Pi, e.g.
Πψ := |ψ〉〈ψ|.

This Dirac notation and the braket is used for vectors and inner products throughout this
thesis, whether they are classical or quantum.

Physically, the computational basis states that we usually choose correspond to eigenstates
of the z-component of the spin operator (i.e. the Pauli Z operator) of the underlying system.
In addition to normalisation, quantum states also have a ‘global phase invariance’, in that for
any θ ∈ R, |ψ〉 is identified with eiθ |ψ〉.
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Quantum registers can also exist in probabilistic mixtures of states; to make the distinction,
the simpler superposition states are called pure states, and their probabilistic mixtures
are known as mixed states. Thus in the general case, a d-dimensional quantum state ρ is
represented by a d× d positive semi-definite matrix with complex entries, and is normalised
to have unit trace.

Unitary operators: There are two ways in which we can compute on a state |ψ〉. The
first is by unitary evolution of the system under the Schrödinger equation with a specified
Hamiltonian operator H

i
d |ψ〉
dt

= H |ψ〉 ,

where H is a hermitian matrix. Closed systems undergo reversible dynamics in quantum
mechanics, and this dynamics is represented by unitary matrices. Since we can think of |ψ〉 as
a vector in C2m , a computation is represented by multiplication of this state by a U ∈ SU(2m),
i.e. |ψout〉 = U |ψin〉. Recall that a matrix U is said to be unitary if UU† = 1, where U† is
the conjugate transpose of U . Unitary operators then act by left multiplication on pure states
vector, and by conjugation on density matrices.

Measurements: The second kind of operation we can perform on |ψ〉 is measurement. For
our purposes, the postulates of quantum mechanics say that on measuring a superposition state
|ψ〉 as above in the basis {|i〉}, we obtain as outcome the random m-bit string corresponding to
the basis state |i〉 with probability p(i) = |αi|2. Since we have chosen states to be normalised,
the measurement gives a valid probability mass function over the set of classical m-bit strings.
After the measurement, the state “collapses” to the observed basis state |i〉, and no further
information can be retrieved from the original state; to repeat the sampling achieved by this
measurement, we need to prepare |ψ〉 for each repetition.

For two registers A and B and their state |ψ〉AB = ∑
x,x αx,x′ |x〉

A ⊗ |x′〉B ∈ HA ⊗HB, a
measurement of the register B for |ψ〉AB in the computational basis {|x′〉B} of HB yields an
outcome x′ with probability p(x′) = ∑

x p(x, x′), where p(x, x′) = |αx,x′ |2. The superscripts of
a state or an operator represent which register the state or the operator belongs to; we omit
the superscript if it is clear from the context.

Input models: We will use two kinds of input models. The first is a quantum analogue
of the classical query model, where inputs are accessed via a black-box or oracle that can
be queried with an index i and returns the i-th bit of the input bit string. For a bit string
x ∈ {0, 1}n we assume access to a unitary Ox which performs the map

Ox |i〉 |b〉 |z〉 = |i〉 |b⊕ xi〉 |z〉 ,

where the first register consists of dlogne qubits, the second is a single qubit register to store
the output of the query, and the third is any additional workspace the quantum computer
might have and is not affected by the query. Here ⊕ is addition on Z2, i.e. the XOR operation
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in Boolean logic. Note that Ox can be used by a quantum computer to make queries in
superposition:

Ox

(
1
n

n∑
i=1
|i〉 |b〉 |z〉

)
= 1
n

∑
i

|i〉 |b⊕ xi〉 |z〉 ,

The second is the QRAM input model in which data is preprocessed and stored in a special
type of binary tree data structure, which can be addressed in quantum superposition. This
enables one to prepare states that encode the input data in their amplitudes, rather than
as the labels of computational basis states. We shall see more about this input model in
Chapter 4, which is the only chapter in this thesis that makes use of this model.

Quantum algorithms : Broadly speaking, a quantum algorithm starts by initializing m
qubits in a fixed state |0〉⊗m, which we may write as |0〉 if m is clear from context. Then, we
apply a 2m-dimensional unitary operator U to |0〉⊗m, to prepare a state U |0〉⊗m. Finally,
a measurement on U |0〉⊗m is performed to sample an m-bit string from the probability
distribution given by U |0〉⊗m.

As in classical computer science, we can work in a quantum circuit model, by first fixing a
basic set of operations or ‘gates’ (analogous to classical Boolean AND and OR), achievable
on the underlying hardware. It is then possible to compile a large ‘algorithm’ U down into
elementary unitary operations, or quantum gates, and represent it by a quantum circuit
composed of sequential applications of unitaries acting on at most two qubits at a time. Each
of these unitaries is called an elementary quantum gate, and we can choose to work with
different basic or fundamental ‘gate sets’ that can be used to construct an approximate circuit
for any unitary, to any arbitrary precision, via the Solovay-Kitaev theorem. The runtime of a
quantum algorithm is essentially determined by the number of elementary quantum gates in its
circuit. Given a circuit for a unitary, it is straightforward to implement its inverse, or control
its application on ancillary registers, with only a small overhead in the gate complexity.

Complexity measures: For many theoretical studies in complexity, the query input model
is a powerful setting where several results have been proven. In this model, the total number
of queries made to the input oracle is the primary measure of algorithmic complexity, known
as the query complexity.

For practical purposes, it is more important to understand the number of elementary
quantum gates used to implement the unitary circuit corresponding to the algorithm in the
quantum circuit model. This is known as the gate complexity of the algorithm. The depth of
the circuit is directly related to the time complexity, and gives an idea of how parallelisable
the algorithm is.

We use the standard complexity theoretic notation of Õ to hide polylogarithmic factors.
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Chapter 1

Implementing functions of Hermitian matrices
with the LCU method

Synopsis: We consider methods for implementing smooth functions f(A) of a sparse
Hermitian matrix A on a quantum computer, and analyse a further combination
of these techniques which has advantages of simplicity and resource consumption in
some cases. Our construction uses the linear combination of unitaries method with
Chebyshev polynomial approximations. The query complexity we obtain is O(log C

ε )
where ε is the approximation precision, and C > 0 is an upper bound on the magnitudes
of the derivatives of the function f over the domain of interest. The success probability
depends on the 1-norm of the Taylor series coefficients of f , the sparsity d of the matrix,
and inversely on the smallest singular value of the target matrix f(A).

1.1 Introduction

There are many quantum algorithms that exhibit an advantage over known classical algorithms1.
Such a diversity of results can make it difficult to express the computational capability of a
quantum computer in a clear and faithful manner to someone new to quantum computing. Here
we address a large family of quantum algorithms that are often used as the main subroutine
in many important applications. In particular we consider quantum algorithms that apply
some smooth function of a Hermitian matrix to an input state. Examples of algorithms of
this type include Hamiltonian simulation used in a variety of applications including quantum
chemistry, the Quantum Linear Systems or matrix inversion algorithm [HHL09, CKS17] used
in quantum machine learning applications, and sampling from Gibbs distributions used in the
recent quantum semi-definite programming (SDP) solvers [BKL+19, VGG+17].

We briefly outline the methods for implementing matrix functions f(A) used in these
algorithms, and we further use one of them to obtain an algorithm with query complexity
expressed simply in terms of properties of the matrix A and the Taylor expansion of f .

1at the time of writing there are over 380 papers listed in the quantum algorithms zoo
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Restricting to Hermitian matrices allows one to take advantage of their spectral decomposition
to naturally extend results on approximating real functions to functions of matrices. Thus, for
a real valued smooth function f , we look for a quantum algorithm which, when equipped with
a quantum oracle for a Hermitian matrix A and a map that prepares some state |x〉, returns a
state that is close to f(A)|x〉

‖f(A)|x〉‖ in l2-norm. If measurements are involved, we require the desired
output state to be obtained with high probability.

Among the earliest work of this kind, Klappenecker and Rötteler [KR03] studied the
implementation of functions of unitary matrices, under some mild assumptions. This work
embodies the same principles and ideas that were later developed into a method for Hermitian
matrices in works of Berry, Childs, Kothari and collaborators. Other early work in this
direction was motivated by studies on Hamiltonian simulation (for example, [SRG+02] and
[CW12]), and algorithms for quantumly solving ordinary differential equations (for example,
[LO08] describe a method to implement non-linear transformations of the amplitudes of a given
input state). Kothari [Kot14] gives a detailed description of probabilistic implementations
of operators and technical lemmas on modified versions of amplitude amplification. Broadly,
three different methods have emerged to realise the action of functions of Hermitian matrices
on a quantum computer:

1. Using Hamiltonian simulation and Quantum Phase Estimation (QPE) as a technique to
obtain a representation of the target state in the spectral basis of the matrix, followed
by applying a suitably engineered unitary that computes the matrix function. This is
the method used in the matrix inversion algorithm of [HHL09] and in the quantum
recommendation systems algorithm of [KP17b].

2. By representing the target matrix as a Linear Combination of Unitaries (LCU). Given
an algorithm to implement each of the unitaries in the summation, the target matrix
can be embedded in a unitary operation on a larger state space (adjoining the necessary
ancillary qubits). This necessitates a post-selection step at the end, and so produces
the required state with some associated success probability. This method has been used
widely for Hamiltonian simulation and matrix inversion algorithms [CW12, BCC+15,
CKS17].

3. More recently, Low and Chuang [LC16] have introduced a method called Qubitisation
and Quantum Signal Processing (QSP) (also referred to as the block-encoding method).
They study how to implement functions of a diagonalisable complex matrix when
provided with a unitary oracle and a signal state such that the action of the unitary
on the subspace flagged by the signal state is proportional to the action of the target
matrix. This method is thought to have optimal query complexity and optimal ancilla
requirements for a large class of functions. This method has been substantially expanded
and generalised to what has been termed Quantum Singular Value Transformation in a
recent article of Gilyén et al. [GSL+19].
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Typically, these methods have been applied to a specific function or application such as
Hamiltonian simulation. The question of whether there exisits a more general result for an
arbitrary function f is very natural. Recently, van Apeldoorn et al. [VGG+17] used the Linear
Combination of Unitaries or LCU method [CKS17] with an approximation by Fourier series
to provide a constructive approach for the implementation of bounded smooth functions of a
d−sparse Hermitian matrix (specified by an oracle) on quantum computers. They give an
algorithm for constructing the approximating linear combination, and their quantum algorithm
has query complexity linear in the sparsity d. This method uses Hamiltonian simulation as a
black-box subroutine and involves converting the Taylor series of the function into a Fourier
series, through a sequence of approximation steps. Both [LC16] and [GSL+19] also prove
theorems about the classes of functions their methods can implement and describe the approach
to construct the implementation for important examples like Hamiltonian simulation.

In this chapter, we first describe the spectral method, the LCU method, and the Qubitisation
method in sections 1.3, 1.4, and 1.5 respectively. We then give a constructive approach for
implementing smooth functions of a Hermitian matrix on a quantum computer in section 1.6,
based on the method of Chebyshev polynomial approximations used for matrix inversion in
[CKS17]. The complexity of this alternative method is not directly comparable to that of
[VGG+17] but the main attraction is its simplicity. The use of Chebyshev polynomials allows
the query complexity of the quantum algorithm to be directly obtained from the properties of
the Taylor series expansion of f .

1.2 Preliminaries

We follow the usual model in which quantum algorithms access classical data (such as matrix
entries) using a unitary oracle, and use the query complexity as a measure of efficiency.
Another important quantity in the circuit model of quantum algorithms is the gate complexity,
the number of 2-qubit gates used. An algorithm is gate efficient if its gate complexity is
larger than the query complexity by at most poly-logarithmic factors. For details on the
properties of the quantum walk construction including its gate complexity, we refer to [BC12]
and [BCK15].

A matrix is d-sparse if in any row, there are at most d non-zero entries. For a d-sparse
N ×N matrix A, we assume we have an oracle PA which performs two functions:

|j, k, z〉 7→ |j, k, z ⊕Ajk〉 (1.1)
|j, l〉 7→ |j, col(j, l)〉 (1.2)

for all j, k ∈ {1, . . . , N}, and l ∈ {1, . . . , d}. The first line simply returns the matrix entry Ajk
in fixed-precision arithmetic. The second line computes the column index of the lth non-zero
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entry in row j, with the convention that it returns the column index of the first zero entry
when there are fewer than l non-zero entries in row j. When this can be efficiently done, the
matrix is said to be efficiently row-computable.

Functions of a matrix are defined through its spectral decomposition. An N ×N Hermitian
matrix A has N real eigenvalues λj , with a spectral decomposition as a sum of projectors
onto its eigenspaces spanned by the eigenvectors |uj〉. A function f of such a matrix is then
defined as having the same eigenspaces, but with the eigenvalues f(λj)

A =
N∑
j=1

λj |uj〉 〈uj | =⇒ f(A) =
N∑
j=1

f(λj) |uj〉 〈uj | . (1.3)

For finite dimensional matrices, any two functions f and g that are equal at the N eigenvalues
of the matrix give rise to the same matrix function. This suggests that it might be possible to
treat matrix functions as corresponding interpolating polynomials.

1.3 The spectral method

The first of the methods mentioned in the introduction uses Hamiltonian simulation and phase
estimation as algorithmic primitives. The general framework is as follows.

Given some initial state |ψ〉, the first step is to perform Quantum Phase Estimation (QPE)
on the Hamiltonian evolution under the N ×N Hermitian matrix A, logically decomposing
the state in the spectral basis of A, as a linear combination of product states with an ancillary
register containing (approximate) eigenvalues of A normalised to [0, 1]. To this end, the
first step in QPE is to simulate Hamiltonian evolution under A, which is the operation of
(approximately) preparing the state eiAt |ψ〉 for a chosen time t; for QPE, we will actually
require the Hamiltonian evolution to be performed in superposition for a set of time parameters,
which can be done using a control register and a conditional evolution operator of the form∑
t |t〉〈t| ⊗ eiAt. At this stage the novelty lies in constructing an operation that will use the

output state from the previous step to transform the probability amplitudes to the chosen
function of the eigenvalues - typically a unitary conditioned on the register containing the
eigenvalues. Schematically,

|ψ〉 QPE on eiAt−−−−−−−−→
N∑
j=1

ψj |aj〉 |λ̃j〉
Algo. (e.g. HHL)−−−−−−−−−−−→ C

N∑
j=1

f(λ̃j)ψj |aj〉 |λ̃j〉 ,

where A |aj〉 = λj |aj〉, |ψ〉 = ∑N
i=1 ψj |aj〉, the λ̃j approximate the true eigenvalues λj , and

C is a normalisation factor that is O(maxj f(λj)). All three steps will have some associated
error, and the last step will typically only succeed probabilistically. Choosing a precision
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1.3 The spectral method

ε > 0, the final state ∑N
i=1 f(λ̃j)ψj |aj〉 (having uncomputed the eigenvalue register coming

from QPE) can be made ε-close to f(A) |ψ〉, suitably normalised.

Harrow, Hassidim and Lloyd [HHL09] used this method to devise an algorithm for solving
a system of linear equations A~x = ~b, in a formulation called the Quantum Linear Systems
Problem (QLSP). The key step is matrix inversion, corresponding to the function f(λj) = 1/λj .
Given the oracle in (1.1) for a Hermitian matrix A, and a state preparation map for an input
vector ~b, the HHL algorithm outputs a quantum state |~x〉 that is ε-close in the l2-norm to the
normalised solution vector A−1~b/‖A−1~b‖. The matrix inversion routine essentially implements
conditional rotations to use phase-estimated eigenvalues to create the necessary amplitude
factors. The transformation achieved by a simple conditional rotation is

|µ〉 |0〉 CRy(2 cos−1(µ))−−−−−−−−−−→ |µ〉
(
µ |0〉+

√
1− µ2 |1〉

)
,

where µ ∈ [0, 1] and is represented to fixed precision in the first qubit register. Cao
et al. [CPP+13] use the HHL algorithm to solve the Poisson equation under some regularity
assumptions, and give details of efficient quantum subroutines for the string of computations

|λ〉 |0〉 |0〉 → |λ〉 |C/λ〉 |0〉 → |λ〉 |C/λ〉 |cos−1(C/λ)〉 ,

which are useful in matrix inversion. The actual function that is implemented is not quite
1/x, but a carefully chosen filter function that matches with the inverse on the domain of
interest, and ensures that the error can be kept under control. The choice of filter functions
and their error analysis forms a major part of the work in designing the conditional unitary
that implements the desired function.

Complexity and hardness results for matrix inversion

The HHL algorithm was originally presented as a method for the efficient estimation of averages
or other statistical quantities associated with the probability distribution corresponding to the
normalised solution vector of a linear system of equations. The advantage of the algorithm lies
in being able to prepare this probability distribution as a quantum state, and the state may
then be used to sample from this distribution, or to compute ~x†M~x := 〈x|M |x〉 for operators
M .

When the matrix A is d-sparse and efficiently row-computable, the algorithm has query
complexity O(poly(d, 1/ε, κ)). Here, ε is the accuracy to which the output state approximates
the normalised solution vector, and κ is the condition number of the matrix A. The condition
number is given by the ratio of the largest to the smallest eigenvalues for a Hermitian matrix,
and measures how invertible the matrix is: κ → ∞ reflects an eigenvalue of the matrix
going to zero, making it singular. The dependence of the algorithm on the condition number
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enters through the of filter function, which is chosen such that it matches 1/x on the domain
[−1,−1/κ] ∪ [1/κ, 1] and interpolates between these two pieces in [−1/κ, 1/κ]. Consequently
the success probability of the conditional rotation step also involves κ.

In the regime where the sparsity d = O(logN), the HHL algorithm can be exponentially
faster than the best known classical algorithms achieving the same results. It is still unknown
whether better classical algorithms exist in the slightly modified framework of QLSP, i.e., the
oracular setting where the goal is to compute global or statistical properties of the solution
vector.

Nevertheless, the complexity of this algorithm was shown by [HHL09] to be nearly optimal:
1) under the complexity theoretic assumption BQP 6= PSPACE the dependence on condition
number cannot be made sublinear, i.e. improved to κ1−δ for any δ > 0, and 2) under the
assumption that BQP 6= PP, the error dependence cannot be improved to O(poly log 1/ε).
The proof is an efficient reduction from simulating a general quantum circuit to matrix
inversion, establishing that matrix inversion is a BQP-complete problem, so that the existence
of a classical algorithm for this problem implies the ability to classically simulate quantum
mechanics efficiently, which is widely believed to be impossible. The class BQP consists of
problems that have a bounded error polynomial time quantum algorithm that succeeds with a
constant probability p ≥ c > 1/2, while PP consists of problems with probabilistic polynomial
time classical algorithms with the success probability allowed to be arbitrarily close to 1/2.

For the problem of preparing the state encoding the probability distribution corresponding
to the solution vector, avoiding errors and repetitions from the sampling step, Childs, Kothari
and Somma [CKS17] designed an algorithm for QLSP with exponentially improved dependence
on the precision parameter ε. The key ingredient in their approach is the method of writing
the target operator, A−1 in this case, as a linear combination of unitary operators. We discuss
this LCU method in the next section.

1.4 The Linear Combination of Unitaries (LCU) method

One of the disadvantages in using QPE is that achieving ε-precision requires O(1/ε) uses of
the matrix oracle. The LCU method offers a way to overcome this disadvantage by exploiting
results from approximation theory.

The LCU method is a way to probabilistically implement an operator specified as a linear
combination of unitary operators with known implementations. In essence, we construct a
larger unitary matrix of which the the matrix f(A) is a sub-matrix or block. Childs and
Wiebe [CW12] show how to implement a sum of two unitaries. We describe this simple case
below.
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Suppose A = α0U0 + α1U1. Without loss of generality αi > 0, since phase factors can be
absorbed into the unitaries. Consider a state preparation unitary Vα which has the action

|0〉 7→ 1√
α

(√α0 |0〉+√α1 |1〉)

|1〉 7→ 1√
α

(−√α1 |0〉+√α0 |1〉),

where α = α0 +α1. When dealing with a linear combination of more than two unitaries, there
is a lot of freedom in the choice of this Vα, as we will see later.

Assume that we can perform the unitaries U0 and U1 controlled by an ancillary qubit,
i.e., that we can apply the conditional unitary U = |0〉 〈0| ⊗ U0 + |1〉 〈1| ⊗ U1. Then for a
state |ψ〉 for which we want A |ψ〉, first attach an ancillary qubit and perform the map Vα on
it, followed by U , and finally uncompute the ancilla with V †α . This results in the following
transformation

|0〉 |ψ〉 Vα⊗1−−−→ 1√
α

(√α0 |0〉+√α1 |1〉) |ψ〉

U−→ 1√
α

(√α0 |0〉U0 |ψ〉+√α1 |1〉U1 |ψ〉)

V †α⊗1−−−→ 1
α

(|0〉 (α0U0 + α1U1) |ψ〉+√α0α1 |1〉 (U1 − U0) |ψ〉) .

Measuring the ancilla and getting the outcome 0 will leave behind the state A |ψ〉, up to
normalisation. Getting a measurement outcome of 1 means the algorithm fails. The probability
of failure can be easily bounded, as p(fail) ≤ α1α0‖U1−U0‖2

α2 ≤ 4α1α0
α2 , since the distance between

two unitaries is at most 2.

Success probability and complexity

In most cases of interest, the probability of success can be increased using amplitude ampli-
fication, by repeating the procedure O(α/ ‖A |ψ〉‖) times, when we have an estimate of the
norm in the denominator. This gives a quantum algorithm that prepares the desired quantum
state with constant success probability and outputs a single bit indicating whether it was
successful. Indeed, when the LCU method is used to implement non-unitary operations such
as in matrix inversion, a significant contribution to the complexity comes from the fact that
usually the success probability is small.

This framework was investigated in detail by Berry, Childs, Kothari and coworkers. The
resulting method of implementing linear combinations of unitaries makes it straightforward to
translate results on approximating real functions into implementations for matrix functions:
since Hermitian matrices have all real eigenvalues, we just need to find a good approximation
to the real function f(x). The overall query complexity of the algorithm will depend on the

17



Chapter 1 Implementing functions of Hermitian matrices with the LCU method

1-norm or weight α of the coefficients of the linear combination, the number of terms m, and
the least eigenvalue of the matrix function f(A).

Thus, finding a new algorithm boils down to optimising the first two parameters, and
getting good bounds on the eigenvalues of f(A). We also need to choose the basis functions
used in the approximation in such a way that on translating the statement to matrix functions,
we get unitaries which we know how to implement - for example, a Fourier series in eixt gives
rise to unitaries eiAt that can be implemented via Hamiltonian simulation techniques.

[CKS17] used this method for the function f(x) = 1/x to obtain improved error dependence
of the algorithm for the QLSP. The dependence of the complexity of their algorithm on the
precision parameter is O(log(1/ε)), an exponential improvement over the precision dependence
in [HHL09]. This is achieved by carefully choosing the approximating series and its truncation,
such that with m = O(log(1/ε)) terms, ε precision is achieved.

For completeness, a full description of the LCU method is included in Appendix A. We now
turn to the most recent method of implementing matrix functions, the method of qubitisation
and quantum signal processing, before returning to the LCU method in section 1.6.

1.5 Qubitisation or the block-encoding method

Introduced by Low and Chuang [LC16, LC17], this framework subsumes and generalises the
LCU method. The method can be split into two steps - qubitisation and quantum signal
processing. The idea behind quantum signal processing is to ask what kinds of 2× 2 (block)
unitaries can be obtained by iterating a given unitary operator, interleaving the iteration
with single qubit rotations through different angles. Thus, picking a sequence of phases
φ0, φ1, . . . , φk, we ask what class of untaries can be represented in the form

W~φ
= eiφ0σzUeiφ1σzU . . . Ueiφkσz ,

where U is the input unitary. When the input U = U(x) is parametrised by some x ∈ [−1, 1],
we can enforce W~φ

to have the form

W~φ
=
(
P (x) Q(x)
Q∗(x) P (x)

)

for some functions P (x) and Q(x), and work out what properties these functions can have.
We can also calculate what choice of phases φj give rise to a certain P and Q. This then
provides a method for constructing functions of U using iteration alternating with a sequence
of single qubit rotations.
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1.5 Qubitisation or the block-encoding method

Qubitisation, as the name suggests, is a technique of obtaining a suitable block encoding of
an input matrix A, on which quantum signal processing can then be applied. The input is an
(m+ n)-qubit unitary matrix U that encodes an n-qubit normal operator A (i.e. AA† = A†A)
in its top left block. More precisely, given a signal state |G〉 = Ĝ |0〉 that flags a subspace of
the n-dimensional signal space, the input unitary U has the block form

U =
(
A ·
· ·

)
,

i.e. 〈G|U |G〉 = A is the encoded operator (where we assume A is normalised so that ‖A‖ ≤ 1).
Since normal operators have a spectral decomposition, we can write A = ∑

λ λe
iθλ . The goal

is to use U,G, their controlled versions and conjugates to obtain a unitary W that can be
expressed as a direct sum over SU(2) invariant subspaces, i.e., to ‘qubitise’ U :

W =
(

A −g(A)
g(A) A†

)
=
∑
λ

(
λeiθλ −

√
1− |λ|2√

1− |λ|2 λe−iθλ

)
⊗ |λ〉 〈λ| .

The unitary W , called an iterate, has an SU(2) invariant subspace that contains the signal
state |G〉, and satisfies 〈G|W |G〉 = A. This iterate can be used to approximately implement
a wide range of matrix functions in the form 〈G|W~φ

|G〉 = f(A) + ig(A), where f, g are real
functions, and ~φ represents the sequence of phases φj . The construction corresponds to
quantum signal processing when the functions f and g have opposite parity, in which case the
matrix function is implemented as a 2× 2 block unitary. Furthermore, the algorithms using
this technique generally achieve polylogarithmic dependence on precision, and are shown to
have optimal query complexity in several cases. The ancillary qubit requirement is brought
down significantly since the primitive gates used are single qubit rotations, and controlled
versions of the input unitaries.

The iterate W is similar to the quantum walk operator used with the Chebyshev decom-
positions for the LCU method. Indeed, when A is Hermitian, W is the same as that walk
operator, up to a reflection. Furthermore, the unitary on the larger system consisting of
input and ancilla qubits that is constructed in the LCU approach is a particular case of a
block-encoding, since it achieves the same result: given A = ∑

i αiUi, the operator the LCU
method constructs has A/α as the top left block (with α = ∑

i |αi|).

The optimal Hamiltonian simulation algorithm based on the qubitisation method [LC16]
can be used to speed up any algorithm that uses Hamiltonian simulation as a subroutine.
Chakraborty, Gilyén and Jeffery [CGJ19] have applied the qubitisation method, also called
the block encoding method, to obtain an improved Hamiltonian simulation technique for
non-sparse matrices, improved quantum algorithms for linear algebra applications such as
regression, and for estimating quantities like effective resistance in networks. Furthermore,
they note that results in the block-encoding framework apply also when the input is specified
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Chapter 1 Implementing functions of Hermitian matrices with the LCU method

in the quantum data structure model (e.g. QRAM) rather than as a unitary oracle. This
connection is established through a result of Kerenedis and Prakash [KP17a], which shows
that if a matrix A is stored in a quantum data structure such as QRAM, an approximate
block encoding for it can be implemented with polylogarithmic overhead.

The spectral and LCU methods were originally developed for and apply to Hermitian
matrices, taking advantage of the fact that they have a spectral decomposition with real
eigenvalues. Qubitisation and quantum signal processing can deal with normal operators
as well, which have complex eigenvalues. Very recently, [GSL+19] have further generalised
the qubitisation method using the idea of singular value decompositions. They show how
matrix arithmetic and a variety of linear algebra applications can be achieved in a unifying
framework of what they call ‘quantum singular value transformation’. Given any rectangular
matrix, one has a singular value decomposition A = UΣV †, where Σ is the diagonal matrix
of singular values, and U and V are orthogonal matrices with columns being the left and
right eigenvectors of A respectively. Essentially, [GSL+19] construct a method to implement
functions of the singular values, i.e., functions defined by f(A) := Uf(Σ)V †. Their extensive
analysis also shows how the method achieves optimal complexity for a wide variety of quantum
algorithms.

In the last three sections we have briefly looked at the methods used for implementing
smooth functions of (Hermitian) matrices on a quantum computer. In the rest of this chapter,
we analyse a certain combination of these methods, using the LCU technique with Chebyshev
polynomial approximations and a quantum walk construction.

1.6 Implementing smooth functions using the LCU method

Given a Hermitian matrix A and a smooth function f : [−1, 1] → R, we describe below a
quantum algorithm that implements an operator proportional to f(A) for any input state
|ψ〉.

Theorem 1.1. Consider a quantum oracle for a d-sparse Hermitian matrix A acting on
n-qubits with ‖A‖ ≤ 1, and a function f : [−1, 1]→ R. If f has a Taylor series f(x) = ∑

αix
i

about x0 = 0, then for any n-qubit state |ψ〉, there is a quantum circuit that probabilistically
prepares a state |ψ̃〉 =

(
〈0t| ⊗ 1

)
U |0t〉 |ψ〉, where U is a unitary acting on t ancilla and n

system qubits, such that ∥∥∥∥|ψ̃〉 − f(A) |ψ〉
‖f(A) |ψ〉‖

∥∥∥∥ < ε (1.4)

using O(L) queries to the oracle for A, with a success probability p ≥ µ/γ, where

L > log C
ε
, µ = inf

x
|f(x)|, and γ =

L∑
i=1

di|αi|. (1.5)
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1.6 Implementing smooth functions using the LCU method

The circuit also outputs a flag indicating success.

Here C > 0 is an upper bound on the magnitudes of the derivatives of f in (−1, 1), and µ
is the eigenvalue of f(A) with the least magnitude on the domain of interest (i.e. on the
spectrum of A).

Remark. The key property required of f in Theorem 1.1 is that it can be well approximated
by a sequence of polynomials

∑k
i=0 αix

i that converge to f as the degree k is increased. This
means that we do not strictly require f to be smooth, or even have bounded derivatives, as
long as an approximating polynomial of sufficient precision is available. The conditions on the
derivatives provide one such polynomial approximation scheme, via Taylor’s theorem. As an
example of a function that is not differentiable at x = 0 but still has a well behaved polynomial
approximations, consider f(x) := sinx

x .

In the rest of this section, we prove this theorem by constructing the algorithm that
achieves the target operation. For simplicity, we focus on the case where ‖A‖ ≤ 1. The case
when 1 < ‖A‖ ≤ Λ (and correspondingly the domain of f is [−Λ,Λ]) can be reduced to this
case by scaling appropriately.

1.6.1 Chebyshev series

The circuit in Theorem 1 is obtained using the LCU method. The first step is to derive an ap-
proximation for f(A) in terms of Chebyshev polynomials. The matrix functions corresponding
to these Chebyshev polynomials are then performed on a quantum computer using a quantum
random walk.

The Chebyshev polynomials of the first kind, denoted Tn where n is the degree, are
orthonormal polynomials on [−1, 1] with weight function (

√
1− x2)−1. We collect a few

relevant facts about these polynomials in Appendix C. In particular, we use two nice properties
of Chebyshev polynomials in the quantum algorithm. The first is that monomials xk on [−1, 1]
can be exactly represented as a finite sum of Chebyshev polynomials

xk =
k∑
j=0

CkjTj(x), (1.6)

where the coefficients are given by

Ckj =


1

2k−1

(
k

(k − j)/2

)
, if (k − j) is even

0, otherwise,
(1.7)
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Chapter 1 Implementing functions of Hermitian matrices with the LCU method

for j > 0, and Ck0 = 1
2k
( k
k/2
)
is non-zero when k is even. The second useful property is that

the coefficients are positive and sum up to 1

k∑
j=0

Ckj = 1, (1.8)

which can be seen using Tn(cos θ) = cosnθ. We use these properties to write down a truncated
Chebyshev series for f(x), based on the Taylor series, which will lead to a simple expression
for the success probability in the LCU method.

For a smooth function f on the interval [−1, 1], consider the Taylor series about x0 = 0,
(also called the Maclaurin series)

f(x) =
∞∑
i=0

αix
i, (1.9)

where αi = f (i)(0)
i! is the ith Taylor coefficient, f (i) denoting the ith derivative of f . Suppose

the radius of convergence of the series is some r > 0. Truncating this series for some finite
integer L, we get the Taylor polynomial, with truncation error bounded by Taylor’s theorem

f̃(x) =
L−1∑
i=0

αix
i, (1.10)

∀x ∈ (−1, 1),
∣∣∣f(x)− f̃(x)

∣∣∣ ≤ f (L)(ξL)
(L)! |ξL|

L, (1.11)

for some ξL ∈ (−1, 1). Let us denote by α := ∑L−1
i=0 |αi| the 1-norm of the coefficients. If

we have bounds on the derivatives of f , or if we can bound the tail of the series as for the
exponential function, we can get a good bound on the truncation error. This will enable us to
quantify the rate of convergence of the series, and to decide the order of truncation based on
the desired precision.

A simple assumption that we can make about the derivatives of f is that they are bounded
in magnitude by some known constant C, i.e. supx |f (i)(x)| ≤ C for all i and ∀x ∈ (−1, 1).
This holds for Schwartz functions, for example. It is then a simple calculation to show that
taking L > log2(C/ε) ensures that the truncation error will be smaller than ε, as long as
L > 2e, i.e. L ≥ 6. 2.

2If we instead assume the weaker condition that
∑∞

i=0 |αi| < B, and that the series converges in a (1− δ)-ball
around x0, the corresponding truncation order is L > 1

δ
log B

ε
.
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1.6 Implementing smooth functions using the LCU method

Now using (1.6) to represent the monomials xi exactly as a finite sum of Chebyshev
polynomials, we obtain a truncated Chebyshev series for f . We have

f̃(x) =
L−1∑
i=0

i∑
j=0

αiCijTj(x)

=
L−1∑
j=0

βjTj(x), (1.12)

with βj = ∑L−1
i=j αiCij . From the observation (1.8) above ∑k

i=0Cik = 1, so ||β||1 := β =∑L−1
i=0 |βi| =

∑L−1
i=0 |αi|. The probability of success in the LCU implementation depends on

this sum of coefficients, and we note that rewriting the Taylor polynomial as a Chebyshev
decomposition does not by itself increase the weight of the coefficients.

However, taking n steps of the quantum walk described in Appendix D results in the
transformation |0m〉 |ψ〉 7→ |0m〉 Tn(A/d) |ψ〉+ |Φ⊥〉. That is, the quantum walk implements
the operator Tn(A/d) rather than Tn(A). To account for this, we further rewrite the series
(1.12) as

f̃(x) =
L−1∑
i=0

diαi ·
(
x

d

)i

=
L−1∑
j=0

γjTj
(
x

d

)
, (1.13)

with γj = ∑L−1
i=j d

iαiCij . This results in an increase in the weight of the coefficients: ||γ||1 :=
γ = ∑L−1

i=0 |γi| =
∑L−1
i=0 |diαi|. The truncation error does not change since we are expanding

around x0 = 0 and simply rescaling the coefficients and argument of the series.

Finally, when 1 < ‖A‖ ≤ Λ, we can scale down the interval [−Λ,Λ] to [−1, 1] using the
map x 7→ x/Λ. Hence the first step is to write the Taylor series in the larger interval, and
then rewrite it by scaling the coefficients as in f̃(x) = ∑L−1

i=0 Λifi · (x/Λ)i. Accordingly, the
weight or 1-norm of the coefficients will increase to γ = ∑L−1

i=0 |(Λd)iαi|.

1.6.2 Algorithm description and complexity

By Lemma 1.2 (Appendix A), we can implement f(A) approximately by using the linear
combination of Chebyshev polynomials in Eq. (1.13), using the LCU method as described in
Lemma 1.3 (Appendix A). We thus have a quantum algorithm which for an input state |ψ〉
produces a state |φ̃〉 such that ∥∥∥∥ f(A) |ψ〉

‖f(A) |ψ〉‖ − |φ̃〉
∥∥∥∥ ≤ c′ε, (1.14)

23



Chapter 1 Implementing functions of Hermitian matrices with the LCU method

for some constant c′ = Ω( 1
µ). The algorithm uses O(L) = O(log C

ε ) queries to the matrix

oracle, and succeeds with probability p :=
∣∣∣‖f(A)|ψ〉‖

γ

∣∣∣2 ≥ (µγ )2
, outputting the flag 0 on success.

Here µ is the eigenvalue of f(A) with the least magnitude on the domain of interest. For
monotone functions, this can be estimated if a suitable upper or lower bound is known on
‖A‖.

Typically, amplitude amplification is used to boost the probability of success to a constant.
The simplest setting where this is possible is when a state preparation map for for the input
state |ψ〉 is available. Using Lemma 1.3, an upper bound on the worst-case query complexity of
this implementation when amplitude amplification is used to boost the probability of success
is given by

L
√
p
≤ L γ

||f(A) |ψ〉 ||min
= O

(
L(Λd)L−1α

µ

)
,

where ‖A‖ ≤ Λ, and γ := ∑L−1
i=0 |(Λd)ifi| = O((Λd)L−1α) and ‖f(A) |ψ〉‖ ≥ µ. In fact,

γ ≈ f(Λd). The linear factor of L comes from the fact that we need to implement the
Chebyshev polynomials of degree up to L using the quantum walk. The factor γ/µ comes from
using amplitude amplification to increase the success probability of obtaining the desired state.
A simple lower bound on µ is fmin := infx |f(x)| ≤ µ ≤ ‖f(A) |ψ〉‖ over x ∈ [−1, 1]. Thus if f
is such that |f(x)| ≥ 1, this factor can be omitted from the complexity. The implementation
is invariably expensive when f(A) has eigenvalues close to zero.

Thus, if amplitude amplification is used, plugging in the expression for L gives

O
(
α

µ

(
C

ε

)log(Λd)
log C

ε

)
(1.15)

queries to the oracle for A, and O
(
α
µ

(
C
ε

)log(Λd)
)

uses of the input state preparation map.

Typically, one does not know an estimate of the success probability of the method
beforehand, and needs to first use some form of (coarse) amplitude estimation in order
to make sure amplitude amplification does not overshoot the target. This can be avoided
by using a version of amplitude amplification that uses a fixed-point search method, which
converges monotonically to the target state [Gue19].

The gate complexity can be obtained by multiplying the query complexity by the gate
complexity of performing one step of the quantum walk. From [BCK15], one step of the walk
costs only a constant number of queries and O

(
logN +m2.5) 2-qubit gates, where m is the

number of bits of precision used for the entries of the matrix A. The factor of m2.5 arises from
the cost of black-box state preparation for implementing the quantum walk operator, and can
be reduced to nearly O(m) as recently described in [SLS+19]. For completeness, note that the
control state preparation map V in the LCU method can be constructed using the method of
[GR02], since the coefficients are known.
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1.6 Implementing smooth functions using the LCU method

Related work

As noted previously, [VGG+17] provide a constructive method for implementing smooth
functions of Hermitian matrices, based on transforming the Taylor series for the function into
a Fourier series. The algorithm is then obtained by using the LCU method and Hamiltonian
simulation to implement the Fourier components. For comparison, we quote below the results
as described in Theorem 40 of their paper.

[VGG+17, Theorem 40] Given the Taylor series of f about some point x0, f(x0+x) = ∑∞
i=0 aix

i,
with convergence radius r > 0, if an n-qubit Hermitian operator A satisfies ‖A− x01‖ ≤ r,
then for ε ∈ (0, 1

2 ] we can implement a unitary Ũf on t+ n-qubits such that for any n-qubit
state |ψ〉, we have ∥∥∥∥(〈0t| ⊗ 1) Ũf |0t〉 |ψ〉 − f(A)

B
|ψ〉
∥∥∥∥ ≤ ε,

where ∑∞i=0 |ai|(r + δ)i ≤ B for some finite B > 0 and δ ∈ (0, r]. If ‖A‖ ≤ K, r = O(K),
and A is d-sparse and accessible using an oracle as in (1.1), then the whole circuit can be
implemented using

O
(
Kd

δ
log

(
K

δε

)
log

(1
ε

))
queries to the oracle. The number of 3-qubit gates used for the circuit is larger by the
polylogarithmic factor O

(
logN + log2.5

(
K
δε

))
.

We notice that the query complexity in this method depends linearly on d||A||, in addition to
the factor log 1/ε. In the Chebyshev method, the dependence on d and ||A|| comes in through
the success probability, leaving the query complexity dependent only on the properties of the
Taylor series approximation.

The methods based on Fourier and Chebyshev series cannot be directly compared because
they may not be usable in all situations - the Fourier method is possible whenever Hamiltonian
simulation can be performed for the matrix A, while the Chebyshev method is possible only
when the quantum walk in Appendix D is feasible to implement. Since Hamiltonian simulation
can be performed using quantum walks, the Fourier method has a wider range of applicability,
in general.

The probability of success in preparing the desired state by post-selection on the t-ancillary
qubits is as expected in the LCU method, given by

∣∣∣‖f(A)|ψ〉‖
B

∣∣∣2.
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Chapter 1 Implementing functions of Hermitian matrices with the LCU method

Advantages of the Chebyshev method

In comparison to the method based on Fourier series approximations, the Chebyshev series
based method described here has the following advantages.

1. Since the quantum walk exactly produces the effect of Chebyshev polynomials in
A/d (apart from a choice of precision in representing the entries of the matrix), and
polynomials have exact representations as a finite sum of Chebyshev polynomials, we
can exactly implement polynomial functions of a matrix. In the Fourier series based
approach, the series truncation adds another layer to the error in the approximation of
polynomials. The simplicity of the analysis also makes it apparent that the Chebyshev
method could be more suitable for applications involving polynomial functions, such as
iterative methods that use Krylov subspaces.

2. Leaving out amplitude amplification, the query complexity depends only on the degree
of the approximating polynomial. This isolation of the dependence of the complexity on
the norm of the matrix and its sparsity into the success probability could be useful in
studying lower bounds on the query complexity for different matrix functions.

3. Methods based on quantum walks extend to non-sparse matrices, since they do not
depend on row computability [BC12]. The complexity will generally be worse, however.

4. The classical calculation of the coefficients is particularly simple for the Chebyshev
series.

There are, of course, both advantages and disadvantages of using any method. Chebyshev
polynomial implementation uses quantum walk methods, and the construction of the walk
requires a doubling of the input space, i.e., O(n) ancillary qubits. Furthermore, the rescaling
of the Taylor series coefficients means that machine errors due to fixed-precision representation
are magnified. To work at precision ε, we need to use Ω(log2(B/ε)) bits for the matrix
entries.

1.7 Special function classes

The main difficulty in the approach we have described is the scaling up of the weight of the
coefficients in the Taylor series approximation due to the fact that the Chebyshev polynomials
obtained from the quantum walk are in A/d rather than A. This affects the success probability,
potentially necessitating many rounds of repetition or amplitude amplification. The step that
requires this rescaling is the reconstruction of f(x) using an approximation to f(x/d) for a
fixed d > 1.

But we notice that there are simple functions for which different approaches are possible.
For example, for f(x) = 1/x, it suffices to take f(x) = 1

df(xd ), which holds throughout the
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1.7 Special function classes

domain of f . Another example is ex = (ex/d)d, which requires repeated application of the
operator, d times. We also need to keep track of how the approximation error changes in
going from f(x/d) to f(x).

In general, if there is a function g : R → R such that f(x) = g(f(x/d)), the efficiency
of implementing of f(A) using f(A/d) depends on the nature of g. For some classes of
functions, the composition of the function with g reduces to just scaling: f(x) = g(f(x/d)) =
g(d)f(x/d). Homogeneous functions are an example of this kind: f(cx) = ckf(x) for a fixed
constant k for any real number c, so g(d) := dk. Homogeneous functions arise mainly as
(multivariate) polynomials or rational functions. Below, we make some brief remarks about
matrix polynomials and exponentiation.

Polynomials

For the special case of monomials, which are homogeneous functions, we simply use the
Chebyshev decomposition (1.6), which is exact. This eliminates the precision parameter ε.
For f(x) = xk on [−1, 1], the query complexity is O(k), or if amplitude amplification is used,
O
(
kdk−1λ−k

)
where λ = ||A−1|| is the least eigenvalue of A (where we assume A does not

have 0 as an eigenvalue). For any polynomial of degree k, the complexity is the same to
leading order, since the highest degree Chebyshev polynomial comes from the highest degree
term in the polynomial. Computing matrix polynomials may find use in iterative methods in
numerical linear algebra. These methods typically proceed by approximating a vector f(A)~v
in a Krylov subspace Kr(A, ~v0) := {~v0, A~v0, A2 ~v0, . . . , Ar ~v0} starting with an initial guess
~v0, and iteratively improving it. Patel and Priyadarsini [PP18] propose a matrix inversion
algorithm using this method. However, they use a different formalism to quantumly implement
the monomials.

The exponential function

The matrix exponential is an immensely important function, primarily in the form of the
complex exponential eiAt that describes quantum evolution under the Hamiltonian operator
A. Hamiltonian simulation is important in a variety of applications, ranging from quantum
chemistry, to use as a subroutine in linear algebra and machine learning applications. This
vast topic has received a lot of attention in the last two decades, so we shall not endeavour to
elaborate on it here.

The simple exponential eA is also an important function. For example, being able to
sample from the Gibbs’ state e−H/Tr(e−H) has been found useful in quantum algorithms
for semidefinite programming [BKL+19, vAG18]. Exponentiating density matrices can be
used to construct a quantum algorithm for principal component analysis [LMR14]. Matrix
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Chapter 1 Implementing functions of Hermitian matrices with the LCU method

exponentiation is also expected to be useful in variational quantum chemistry algorithms, for
example in implementing coupled cluster techniques [RBM+17].

Using our approach, to implement the exponential eA of the Hermitian matrix A, we
can first approximate eA/d and repeat this operation d times. If ||A|| ≤ 1, this leads to a
query complexity of O(d log 1/ε). However, the success probability decays exponentially and
thus many rounds of amplitude amplification may be required. Following the construction in
section 1.6, we note that γ = ed to order ε, so the complexity of using amplitude amplification
can only be constrained to O(ed).

Many authors have considered the problem of matrix exponentiation previously. Some
have considered the problem of solving a system of linear ordinary differential equations
[Ber14, BCO+17], while others have focused on the problem of Gibbs’ state preparation [CS17].
[VGG+17] also describe an algorithm for this problem, which they use for Gibbs’ sampling in
quantum SDP algorithms. [PP18] give an algorithm that also uses the Chebyshev expansion
of the exponential function, but their method of implementation is based on the recursion
relation for Chebyshev polynomials, and uses a digital encoding of quantum states.

1.8 Discussion

We have seen in this chapter a simple calculation motivated by the approximation of real
functions by Chebyshev series to illustrate the use of quantum walks with the LCU method
to implement a wide variety of smooth functions. The method is particularly simple, as
the approximating linear combination is obtained from a truncated Taylor series that is
transformed into a Chebyshev series. While we do not present any improvements in complexity,
the simplicity of the method makes it attractive from a pedagogical viewpoint.

Although the LCU method has been widely investigated over the last few years, there
are still a few interesting questions related to it - for example, the only unitaries found
useful so far are tensor products of Pauli operators, Fourier basis terms, and Chebyshev
polynomials, because these can be implemented using known methods (Hamiltonian simulation
and quantum walks). It would be interesting to study other families of unitary circuits that can
be used in conjunction with this method. In particular, for a special case such as say matrix
exponentiation, is it possible to systematically determine an optimal basis of unitaries?

The theory of implementing matrix functions quantumly has been effectively unified and
put on a firm grounding by the work on quantum singular value transformation of Gilyén et al.
Although several attempts have been made to find applications of these methods that yield
provable speedups over classical algorithms, exponential speedups have been hard to come by.
Identifying problem instances that are rich enough in structure to exploit quantumly, but still
be provably hard classically, is a wide open field.
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1.8 Discussion

Another rather enigmatic aspect of all the different kinds of quantum methods of im-
plementing matrix functions is the seeming need for the input matrix to be either locally
computable and sparse, or have low rank. While we do know of simple problems, such as
identity testing, that lead to lower bounds that elucidate the limitations of these techniques
and throw some light on the need for sparsity and rank assumptions, we do not have a sharp
lower bounds or a clear understanding. It is also natural to wonder if finding sparse or low-rank
approximations to an input matrix can still be leveraged to quantumly solve problems of
interest. We explore this line of thought further in Chapter 2, and show that a one time
classical preprocessing step by spectral sparsification can enable algorithms to take advantage
of quantum exponential speedups, such as the one offered by the linear systems algorithm, for
savings in resource guzzling iterative subroutines.
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Appendix A Using the LCU method to approximate f(A) for a
Hermitian matrix A

We briefly describe below the LCU method for approximately implementing a linear combina-
tion of unitary matrices. This description is drawn from [CKS17], and refer readers to the
proofs therein for more details.

First, we need to make sure that approximating a Hermitian operator C by another operator
D in spectral norm ensures that they produce states C |ψ〉 / ‖C |ψ〉‖ and D |ψ〉 / ‖D |ψ〉‖ that
are close in the Hilbert space norm, for any state |ψ〉.

Lemma 1.2. [CKS17, Proposition 9] Let C be a Hermitian operator whose eigenvalues
satisfy |λ| ≥ 1, and D be an operator satisfying ‖C −D‖ ≤ ε < 1/2. Then for any state |ψ〉,

e(ψ) :=
∥∥∥∥ C |ψ〉
‖C |ψ〉‖

− D |ψ〉
‖D |ψ〉‖

∥∥∥∥ < 4ε. (1A.1)

Proof. Since the assertion is about normalised states, we can consider states with ‖|ψ〉‖ = 1
without loss of generality. Repeated application of the triangle inequality and the fact that
‖C |ψ〉‖ ≥ |λmin| together imply that

e(ψ) ≤
∥∥∥∥ C |ψ〉
‖C |ψ〉‖

− C |ψ〉
‖D |ψ〉‖

∥∥∥∥+
∥∥∥∥ C |ψ〉
‖D |ψ〉‖

− D |ψ〉
‖D |ψ〉‖

∥∥∥∥
‖C |ψ〉‖ ≤ ‖(C −D) |ψ〉‖+ ‖D |ψ〉‖ ≤ ε+ ‖D |ψ〉‖

|‖C |ψ〉‖ − ‖D |ψ〉‖| ≤ ε

‖D |ψ〉‖ ≥ ‖C |ψ〉‖ − ε ≥ |λmin| − ε,

e(ψ) ≤ 2ε
|λmin| − ε

. (1A.2)

We can replace this with a looser bound e(ψ) < cε for some constant c > 0; then c must
satisfy 2

c < |λmin| − ε, i.e., c = Ω( 1
|λmin|). This indicates that for operators with eigenvalues

that approach zero in magnitude, the approximation in normalised states is worse, because we
will need to settle for a larger c.

If we assume for the eigenvalues of C, as stated in the lemma, that |λmin| ≥ 1, then using
ε < 1/2 gives c ≥ 4, so that e(ψ) < 4ε.

We can now state precisely how a matrix function will be approximated by a finite linear
combination of unitaries.
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B Amplitude amplification

Lemma 1.3. [CKS17, Corollary 10] Let A be a Hermitian operator acting on n-qubits with
eigenvalues lying in an interval D ⊂ R. Suppose the function f : D → R can be approximated
by the linear combination of functions gi : D → R for i = 1, . . . ,m such that

sup
x∈D

∣∣∣∣∣f(x)−
m∑
i=1

αigi(x)
∣∣∣∣∣ ≤ ε < 1/2, (1A.3)

for coefficients αi > 0. Further, let {Ui : i = 1, . . . ,m} be a set of unitaries on (n+ t)-qubits
(with t = O(logm)) that satisfy

Ui |0t〉 |ψ〉 = |0t〉 gi(A) |ψ〉+ |Ψ⊥i 〉 , (1A.4)

∀ n-qubit states |ψ〉, with
(
|0t〉 〈0t| ⊗ 1n

)
|Ψ⊥i 〉 = 0. Given an oracle P~b that prepares a state

|b〉, there is a quantum algorithm that prepares with high probability a state |ψ̃〉 such that

∥∥∥|ψ̃〉 − |ψ〉∥∥∥ ≤ 4ε, with |ψ〉 = f(A) |b〉
‖f(A) |b〉‖ . (1A.5)

The algorithm uses amplitude amplification, making O(α/‖f(A) |ψ〉‖) queries to Pb (where
α = ∑

i |αi|), and to the following unitary operators

U :=
m∑
i=0
|i〉 〈i| ⊗ Ui, V |0s〉 = 1√

α

m∑
i=0

√
αi |i〉

W := (V † ⊗ 1n)U(V ⊗ 1n). (1A.6)

A proof of this lemma can be constructed by calculating the action of the unitary W on input
states of the form |0s〉 |0t〉 |ψ〉, to obtain

W |0s〉 |0t〉 |ψ〉 = 1
α
|0s〉 |0t〉 f(A) |ψ〉+ |Ψ⊥〉 .

Since the state preparation map for |ψ〉 is available, standard amplitude amplification can be
applied. We refer the reader to [CKS17] for the full proofs of lemmas 1 and 2 quoted above.

Appendix B Amplitude amplification

Given a classical input vector ~b = (b1, . . . , bN )T ∈ CN , we usually assume we have an oracle
P~b that prepares a quantum state |ψ〉 corresponding to this vector, defined by

|0m〉 7→ |ψ〉 :=
∑
i bi |i〉

‖
∑
i bi |i〉‖

, (1B.1)
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Chapter 1 Implementing functions of Hermitian matrices with the LCU method

where m = dlogNe + 1. When such a unitary oracle is available, standard amplitude
amplification (AA) can be applied. The initial state on which we perform AA is

|Ψi〉 := W |0m〉 |ψ〉 = √p |0m〉 |φ〉+
√

1− p |Φ⊥〉 , (1B.2)

where |φ〉 = A|ψ〉
‖A|ψ〉‖ , p =

∣∣∣‖A|ψ〉‖α

∣∣∣2 and |Φ⊥〉 is normalised. The projection onto the desired
subspace is Π := |0m〉 〈0m| ⊗ 1n, which picks out the 0-flag on the ancillary register. The
reflection about the target subspace can then be taken as Rt := (1m+n − 2Π), since it leaves
the system register unchanged, while reflecting about the ancillary success flag. Then the
reflection about the initial state is

Ri := W (1m ⊗ P~b)Rt(1m ⊗ P~b)
†W †,

and the usual grover iterate is obtained, G = −RiRt.

Often such a state preparation map will not be available. In such cases, it may still be
possible to use a version called ‘oblivious’ amplitude amplification, if the matrix function we
are attempting to implement is close to unitary. This is done using the Grover iterate like
operator S := −WRtW

†Rt. More details can be found in [BCC+15] and [Kot14].

Appendix C Chebyshev polynomials

It is a result in approximation theory that Chebyshev polynomials form the best polynomial
basis for approximating functions on [−1, 1] in the supremum or L∞ norm. That is, they
minimise the error supx |f̃(x)− f(x)| between the approximator f̃ and the target f .

The Chebyshev polynomials of the first kind, Tn(x), satisfy ∀x ∈ [−1, 1]

1. T0(x) = 1, T1(x) = x

2. Tn+1(x) = 2xTn(x)− Tn−1(x)

3.

∫ 1

−1

Tn(x)Tm(x)√
1− x2 dx =


0, m 6= n

π/2, m = n 6= 0

π, m = n = 0

(1C.1)

We can exactly represent the monomials xk on [−1, 1] in the basis of Chebyshev polynomials
as the finite sum of terms up to degree k as follows [Tha64]

xk =
k∑
j=1

CkjTj(x) + 1
2Ck0. (1C.2)
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C Chebyshev polynomials

The coefficients Cij can be calculated by the substitution x = cos(θ), and using the
property Tn(cos(x)) = cos(nx) ∀x ∈ [0, π], as

Ckj = 2
π

∫ 1

−1

xkTj(x)√
1− x2dx

= 2
π

∫ π

0
cosk(x) cos(jx)dx. (1C.3)

Writing cos(x) = 1
2(eix + e−ix) and cos(jx) = Re(eijx), we get

Ckj = 1
2k−1π

Re

(∫ π

0

k∑
l=0

(
k

l

)
ei(2l−(k−j))dx

)
. (1C.4)

The real part of the exponential integrates to zero on [0, π] unless 2l = k − j. In this case,
the integral is just π, the length of the interval, and we get

Ckj =


1

2k−1

(
k

(k − j)/2

)
, if (k − j) is even

0, otherwise.
(1C.5)

This makes sense, since for k even, xk is an even function and will contain only Chebyshev
terms of even degree in its expansion (similarly when k is odd).

The Chebyshev polynomials T all evaluate to 1 at x = 1 (can be seen from Tn(cos(x)) =
cos(nx)), and this gives us a useful property: for all integers k ≥ 0

k∑
j=0

Ckj = 1. (1C.6)

For the quantum walk construction, we also need a few properties related to the Chebyshev
polynomials of the second kind. We have that ∀x ∈ [−1, 1], T0(x) = U0(x) = 1, T1(x) =
x, U1(x) = 2x and both Tn(x) and Un(x) satisfy the same recursion relation

fn+1 = 2xfn − fn−1, (1C.7)

for all positive integers n, where f represents either T or U . From this, it can be seen that Tn
and Un satisfy the relations

λTn−1(λ) + (λ2 − 1)Un−2(λ) = Tn(λ)
Tn−1(λ) + λUn−2(λ) = Un−1(λ), (1C.8)
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Chapter 1 Implementing functions of Hermitian matrices with the LCU method

which turn out to be useful in the next section. Furthermore,

Tn(cos(x)) = cos(nx)

Un(cos(x)) = sin((n+ 1)x)
sin(x) , (1C.9)

where x = cos−1(λ) ∈ [0, π] ∀λ ∈ [−1, 1].

Appendix D Implementing Chebyshev polynomials in A using a
quantum walk

To actually realise an implementation based on the LCU method, we need to be able to
perform the unitary matrices in the decomposition of the target matrix. One of the families of
unitaries that have been found useful is a quantum walk operator W which has the property
that when restricted to a certain invariant subspace, Wn has a block form with the first block
being the operator Tn(H), where Tn is the Chebyshev polynomial of the first kind and degree
n, and A = dH is the matrix using which the walk is constructed. We describe this quantum
walk operator in this section for a normalised Hermitian matrix A. This material is drawn
from [CKS17] and [BCK15].

Given a d-sparse Hermitian matrix A acting on CN , we consider two copies of the system,
each adjoined with a single ancillary qubit to form CN ⊗ C2, and associate to A a unitary
quantum walk in this expanded space, C2N ⊗ C2N . The goal is to construct a method that
implements a Chebyshev polynomial function Tn(A), but the construction below will instead
produce Tn(A/d).

We start by considering an N-dimensional hyperplane V ⊂ C2N ⊗ C2N , spanned by the
states

|ψj〉 = |j〉 ⊗ 1√
d

∑
k:Ajk 6=0

(√
A∗jk |k〉+

√
1− |Ajk| |k +N〉

)
, (1D.1)

for j = 1, . . . , N . These states are orthonormal, since we can assume that for rows with fewer
than d entries, the summation is taken over enough zero entries to make up the total of d
terms in the linear combination. Next, define an isometry T : CN → C2N ⊗ C2N that embeds
the system register into the expanded space

T :=
N∑
j=1
|ψj〉 〈j| . (1D.2)

The third ingredient is a swap operator on C2N ⊗ C2N

S |j, k〉 := |k, j〉 ∀j, k = 1, . . . , 2N. (1D.3)
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D Implementing Chebyshev polynomials in A using a quantum walk

The unitary walk operator is then defined as

W := S
(
2TT † − 1

)
. (1D.4)

Now it can be shown that in a subspace B ⊂ C2N ⊗ C2N , defined as the span of the
isometric mappings of the basis states |j〉, and the corresponding swapped states, the walk
operator has a block form such that the blocks are Chebyshev polynomials in A/d, i.e. Tn(A/d)
and Un(A/d).

Lemma 1.4. The 2N -dimensional subspace B = span{T |j〉 , ST |j〉 | j = 1, . . . , N} ⊂ C2N ⊗
C2N is invariant under the walk operator W. Further, W can be put in a block form on B

W|B =
[

H −
√

1−H2
√

1−H2 H

]
, (1D.5)

where H = A/d. We henceforth drop the subscript B, and work only in this subspace.

Lemma 1.5. For a matrix

W =
[

λ −
√

1− λ2
√

1− λ2 λ

]
(1D.6)

where |λ| ≤ 1, and any positive integer n,

Wn =
[

Tn(λ) −
√

1− λ2Un−1(λ)√
1− λ2Un−1(λ) Tn(λ)

]
, (1D.7)

where Tn(x) and Un(x) are the Chebyshev polynomials of the first and second kinds respectively,
having degree n, defined on [−1, 1].

Since H is Hermitian, its eigenvectors |λ〉 span CN . Thus within the invariant subspace B
of W, for any state |ψ〉 ∈ CN , we combine the above two lemmas to get

WnT |ψ〉 → TTn(H) |ψ〉+ |ψ⊥〉 , (1D.8)

where |ψ⊥〉 is orthogonal to T |j〉 for each j = 1, . . . , N , but is not normalised.

Since T is an isometry, we can dilate and implement it by a unitary circuit that performs
the map |0m〉 |ψ〉 7→ T |ψ〉 for any state |ψ〉 ∈ CN , with m = dlog 2Ne+ 1 ancillaries. Hence
applying T †WnT will perform the map

|0m〉 |ψ〉 7→ |0m〉 Tn(H) |ψ〉+ |Φ⊥〉 , (1D.9)
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Chapter 1 Implementing functions of Hermitian matrices with the LCU method

where |Φ⊥〉 is not normalised but (|0m〉 〈0m| ⊗ 1N ) |Φ⊥〉 = 0. Post-selecting on measuring the
first m registers to be in the ‘0’ state, we get a probabilistic implementation of the function
Tn(H) with H = A/d.

We need only O(1) queries to the oracle PA to implement the walk operator W as well as
the isometry T [BC12]. So taking n steps of the walk requires O(n) queries to PA.
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Chapter 2

Spectral sparsification of matrix inputs as a
preprocessing step for quantum algorithms

Synopsis: We study the potential utility of classical techniques of spectral sparsification of
graphs as a preprocessing step for digital quantum algorithms, in particular, for Hamil-
tonian simulation. Our results indicate that spectral sparsification of the adjacency
matrix of a graph with n nodes and O(n2) edges through a sampling method, e.g. as
in [SS11] using effective resistances, gives, with high probability, a locally computable
matrix H̃ with row sparsity at most O(poly logn). For a symmetric matrix H of size
n with m non-zero entries, a one-time classical runtime overhead of O(m‖H‖t logn/ε)
expended in spectral sparsification is then found to be useful as a way to obtain a
row-sparse matrix H̃ that can be used to approximate time evolution eitH under the
Hamiltonian H to precision ε. Once such a sparsifier is obtained, it could be used
with a variety of quantum algorithms in the query model that make crucial use of row
sparsity. We focus on the case of efficient quantum algorithms for sparse Hamiltonian
simulation, since Hamiltonian simulation is a key subroutine that underlies several
quantum algorithms, including quantum phase estimation and recent ones for linear
algebra. Finally, we also give two simple quantum algorithms to estimate the row
sparsity of an input matrix, which achieve a query complexity of O(n3/2) as opposed
to O(n2) that would be required by any classical algorithm for the task.

2.1 Introduction

In classical graph theory and signal processing, sparsifying dense matrices and performing
algorithms thereon to reduce the computational load is a key idea, which has received
significant attention over the past several years. For instance, in the case where the matrix
is a graph adjacency matrix, one of the primary motivations for spectral sparsification of
the graph Laplacian in classical computer science is its utility for attacking cut problems
[BSS+13, BSS14], and as a result the spectral properties of the sparsified graph’s Laplacian
are frequently treated as the measure of interest to retain while reducing the number of edges
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Chapter 2 Spectral sparsification of matrix inputs as a preprocessing step for quantum algorithms

in the graph. Sparsification has also found use in designing preconditioners for linear system
solvers [SS11, ST11, ST14], and in studying constraint satisfaction problems [Din06].

Recently, the idea of transferring the wealth of results on the benefits of sparsity from
classical signal processing to quantum algorithms, in particular with regards to Hamiltonian
simulation, has been investigated in [AZ18]. Their results for analogue simulation indicate that
degree reduction and edge dilution does not work in the quantum setting for general graphs.
On the other hand, digital quantum simulation may also benefit from sparsification, and this
idea is yet to be explored to the best of our knowledge. For Hamiltonian simulation, we
are ultimately interested in approximating the evolution U(H, t) = e−iHt under a Hermitian
matrix H. That is, given any state |ψ〉, we want to approximate the state U(H, t) |ψ〉, which
can be done by approximating U itself in spectral norm. We should then study and bound

sup
|ψ〉∈H

∥∥U(H, t) |ψ〉 − U(H ′, t) |ψ〉
∥∥ , (2.1)

where H ′ is a spectral sparsifier for H. This quantity is simply the spectral norm of the
difference operator e−iHt − e−iH′t, but the form above reminds us that we also need to keep
track of the way the eigenspaces change in the process of sparsification.

In this chapter we address three issues with transferring classical sparsification results to the
quantum setting directly: firstly, the classical sparsification techniques typically yield matrices
that are sparse overall, but the quantum algorithm for Hamiltonian simulation requires
the more restrictive condition of row-sparsity, that is quantum algorithms for Hamiltonian
simulation in the query model, in which the input Hamiltonian is accessed via a unitary oracle
that computes matrix entries in place, up to fixed precision, typically require the interaction
graph of the Hamiltonian matrix to be row sparse and locally computable; secondly, it is
necessary that the adjacency matrix, rather than Laplacian is convergent; and finally, it
is necessary that any residual error in the sparsified matrix does not cause a catastrophic
break-down in the accuracy of the Hamiltonian simulation.

We show how each of these problems can be overcome, although we do still make some
assumptions, namely that the Hamiltonian is real, that each row of the Hamiltonian is sampled
sufficiently frequently in the sparsification method, and that the sparsified Hamiltonian
commutes with actual Hamiltonian. In fact, we do not believe that any of these assumptions
are necessary, rather that they are simply features of our proofs and that future analysis
should reveal that the results hold when these are not made. Nevertheless, even with these
assumptions, the analysis in this chapter serves the purpose of better connecting classical
sparsification with Hamiltonian simulation methods that assume row-sparse matrices, and
shows the likely way forward to achieving a full general and unrestricted result.

A secondary purpose of this chapter concerns the verification of row-sparsity, which is also
an important question in its own right, and one which ostensibly would appear to lend itself

38



2.1 Introduction

to being sped up by a quantum algorithm. We show this is indeed the case by proposing two
simple quantum algorithms that can decide whether a given matrix is row-sparse with fewer
operations than are required classically. Whilst conceptualised from quite different starting
points, both of these quantum algorithms require O(n3/2) operations, compared to O(n2)
classically (for a n× n matrix), and this coincidence of computational complexity raises two
intriguing possibilities: firstly, it may be possible to combine the two algorithms in some way
to achieve the sparsity verification in O(n) operations; or conversely, it may be that O(n3/2)
is a lower-bound.

The remainder of this chapter is organised as follows: in Section 2.2 we give precise details
of the problem we are going to solve, including an analysis of the overall benefits that it brings
to Hamiltonian simulation; in Section 2.3 we give our main results on relating the classical
sparsification algorithm to the problem of Hamiltonian simulation; in Section 2.4 we propose
two quantum sparsification verification algorithms; and finally in Section 2.5 we include a
wide-ranging discussion covering, amongst other things, the physical meaning of a row-sparse
Hamiltonian.

Our contributions

Our work advances in four primary directions.

1. From the literature we note that sparsification can reduce the computational load in
several linear algebraic problems, whilst maintaining accuracy. However, we note a
discrepancy between classical sparsification algorithms, which typically achieve edge
sparsification or dilution, and quantum algorithms for sparse Hamiltonian simulation,
which require row sparsity (degree reduction). To bridge this divide, we provide a
necessary and sufficient condition for (general) sparsity to imply row sparsity.

2. The classical sparsification method upon which we base our analysis [SS11] provides
a bound in terms of the Laplacian, whereas we require one in terms of the adjacency
matrix. We therefore prove that the accuracy condition proved for the Laplacian implies
that the adjacency matrix is also well-approximated by the sparsified adjacency matrix,
when the above row-sparsity condition is met.

3. We then show that this condition on the adjacency matrix being well-approximated is
sufficient for the Hamiltonian simulation with the sparsified matrix to well-approximate
the actual case.

4. We are also interested in the verification of sparsity, and to this end we propose two
quantum algorithms that can verify whether or not a matrix is row sparse in O(n3/2)
time, for an n2 matrix, which represents an improvement on the O(n2) time required
classically.
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Chapter 2 Spectral sparsification of matrix inputs as a preprocessing step for quantum algorithms

2.2 Setup and problem statement

We base our exposition on the method of spectral sparsification using effective resistance
sampling developed in [SS11]. Given a graph G = (V,E,W ) with |V | = n vertices, |E| = m ≤(n

2
)
edges, and W an m×m diagonal matrix of edge weights, spectral sparsification generates

another graph G′ = (V,E′,W ′) such that

|E′| ∈ O
(
n logn
ε2

)
,

(1− ε)LG � LG′ � (1 + ε)LG, (2.2)

where L represents the Laplacian matrix, and the second condition holds in the usual partial
order on positive semidefinite matrices. The runtime of this classical algorithm is O(m logn

ε2 ).

The simplest process of this kind can be described as sampling from the edge set E
according to some probability mass function (pmf) P and hence populating E′. If for each
e ∈ E the probability of picking e is pe = P(e), we can marginalise out the edges and consider
the pmf induced on the vertices, defining

pv =
∑

e∈E:B(e,v)6=0
pe

where B denotes the edge-vertex incidence matrix of the graph. In this sampling process,
edges in the new graph are reweighted so as to preserve spectral properties of the Laplacian.
The weight w(e) of an edge e is scaled up by a factor of 1/pe each time it is drawn as a
sample.

In this chapter, we show that the sparsifier generated by a spectral sparsification algorithm
which uses sampling methods has under certain conditions, with high probability, the additional
property that it is row-sparse, i.e., that the maximum degree of the sparsifier grows only as
O(poly logn).

2.3 Relating sparsification to efficient Hamiltonian simulation

In this section we prove three results that allow us to make the connection between classical
sparsification and efficient Hamiltonian simulation in the query complexity model: firstly, we
prove a necessary and sufficient condition for sparsity to imply row sparsity; secondly, we
show that the asymptotic convergence of the Laplacian proven by [SS11] is sufficient for the
asymptotic convergence of the adjacency matrices that we require; and finally we show that
the propagation of error from the sparsification process into the sparsified Hamiltonian in the
sense described in the sparsification bounds does not lead to a significant increase in error in
the Hamiltonian simulation.
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2.3 Relating sparsification to efficient Hamiltonian simulation

Before we get into the technical details, it may be worth discussing the relation between
spectral sparsification and dimensionality reduction. Intuitively, sparsification appears to
be a form of dimensionality reduction, at least in terms of the edges of the underlying
graph; on the other hand, this appearance is deceptive, since the number of vertices is held
fixed, the dimensions of the associated matrices are unchanged although memory can be
saved in storing the matrix in data structures optimised for sparsity. Furthermore, it is not
clear if an interpreation of the sparsified matrix in terms of a lower dimensional object is
at all possible, while faithfully preserving the relevant (spectral) properties. As a concrete
example of dimensionality reduction, the Johnson-Lindenstrauss embedding is a technique
that gives a randomised embedding of a set of r vectors v1, . . . , vr ∈ Rm into ṽ1, . . . , ṽr ∈ Rn

in n = Θ(logm/ε2) dimensions, such that pairwise `2 distances are preserved up to a factor of
(1 ± ε). One may wonder if such techniques can also be useful in matrix problems such as
Hamiltonian simulation, but again it is unclear how we might apply the technique, since a naïve
approach such as embedding the column vectors of the input matrix into lower dimensional
vectors would result in a rectangular matrix as output, and also fail to preserve its spectral
properties.

2.3.1 A necessary and sufficient condition for row sparsity

A matrix is row-sparse if the number of non-zero entries in a row (for all rows) grows as
poly-log of the size of the matrix (at most). Clearly row-sparsity implies sparsity, but the
opposite does not apply in general, for example a star network has a sparse adjacency matrix,
but each element of the row corresponding to the point of the star is one (except for the
leading diagonal entry), and therefore is obviously not row sparse.

In the effective resistance Hamiltonian sparsification method, each edge of a adjacency
graph corresponding to the Hamiltonian is chosen with a certain probability, and a defined
number of i.i.d. samples are drawn (that grows at most with n(poly logn)), to construct the
sparsified Hamiltonian. Marginalising over the the edges incident to each node as described in
Section 2.2, to get a vertex selection probability distribution1, it is obvious that a necessary
condition for row-sparsity is that no vertex is selected with probability growing faster than
(poly logn)/n. We now show that this necessary condition is also sufficient, in both obvious
senses of asymptotic statistical row sparsity:

1. As n→∞ the probability that any row has a number of elements greater than O(logb′ n)
tends to zero, for some b′.

2. As n→∞ the expected maximum number of non-zero elements (across the n rows of
the matrix) grows as O(logb n) for some b.

1Note that each edge is connected to two vertices, vertex selection is not mutually exclusive so this will sum
to more than one – a property later used in upper-bounding.
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Hereafter these are termed the first and second properties of asymptotic row sparsity.

Proposition 2.1. For a Hamiltonian sparsified by the effective resistance method, if no row
is selected with probability greater than logb(n)/n, then it is satisfies the first row sparsity
property.

Proof. Let the total number of samples drawn be n loga n, therefore the expected number of
times that the row with maximum occupation is selected can be upper-bounded:

µ < logb n loga n = logc n, (2.3)

where c is defined as a+ b.

Let xi be the number of non-zero entries in the ith row, and X be number of non-zero
entries in the row with greatest selection probability. By the Chernoff bound [Che52],

P (X ≥ (1 + δ)µ) ≤
(

eδ
(1 + δ)1+δ

)µ
.

We see that for δ ≥ 4, the right hand side is less than 2−(1+δ))µ. Thus for R ≥ 5µ:

P (X ≥ R) ≤ 2−R, (2.4)

letting R = logc+1 n (the c+ 1 term is included to ensure that the R ≥ 5µ condition is met
for sufficiently large n), and noticing that all the other nodes are less likely to be chosen and
thus the Union Bound can be invoked:

P (max(xi) ≥ R) ≤
∑
i

p(xi ≥ R)

≤n2−R

=n2− logc+1 n, (2.5)

where this upper-bound also uses the fact that all other rows are chosen with probability less
than the row with maximum selection probability. Let p = n2− logc+1 n:

log2 p = log2 n− logc+1
2 n

= log2 n(1− logc n)
< 0 (2.6)

for sufficiently large n, i.e., as n→∞, p(X ≥ R)→ 0.
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Proposition 2.2. For a Hamiltonian sparsified by the effective resistance method, if no row
is selected with probability greater than logb(n)/n, then it is satisfies the second row sparsity
property.

Proof. The proof is similar to that of Proposition 2.1, and the same symbols are used. The
proposition considers the expectation of the number of non-zero entries in the row with
the most non-zero entries (note that this need not be the the row with highest selection
probability). This can be upper-bounded:

E(X) ≤R× p(X < R) + (n loga n)× p(X ≥ R)

≤1× logc n+ n2 loga n · 2− logc+1 n, (2.7)

i.e., where the second term in the first line uses the fact that, if the maximally chosen row is
chosen more than R times, it can still only be chosen a total of n loga n times, as this is the
number of samples. The first term in the RHS of eq. (2.7) is clearly ∈ O(poly logn), letting y
equal the second term in the RHS of eq. (2.7), i.e.

y =n2 loga n · 2− logc+1 n

=⇒ log y =2 logn+ a log logn− logc+1 n

= logn · (2− logc+1 n) + a log logn, (2.8)

clearly, as n→∞, log y → −∞, therefore y ∈ o(1). So it follows that E(X) ∈ O(logc n).

2.3.2 From sparsified Laplacian to sparsified adjacency matrix

The sparsification is for the Laplacian matrix, while typically we interpret an input matrix for
a quantum algorithm as representing the adjacency matrix of some graph (interaction graph
of a Hamiltonian, for instance). We may need to translate the spectral sparsification results
from Laplacian back to Adjacency matrices.

From [SS11], we have that a weighted graph with Laplacian L is sparsified to a graph with
Laplacian L̃, such that the following condition is met:

(1− ε)xTLx ≤ xT L̃x ≤ (1 + ε)xTLx, (2.9)

for all vectors x and 1/
√
n < ε ≤ 1.

We wish to express a similar condition for the adjacency matrix, A = D−L, where D is a
diagonal matrix where each element is the sum of the elements in that row of the adjacency
matrix. Our method to do this relies on the property E(Dii) = E(D̃ii) for all i – that is that
the diagonal elements of the sparsified Laplacian are expected to be the same as those of the
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Chapter 2 Spectral sparsification of matrix inputs as a preprocessing step for quantum algorithms

actual Laplacian (this can be seen in the analysis in [SS11]). Additionally, we must assume
that each row is expected to be selected at least logα n times, where α > 1.

To an extent it is valid to criticise such a condition as unnecessarily restrictive, however
we do expect the condition in Theorem 2.3 (or another very similar one) to hold even if this
were not to be the case, albeit requiring a very different proof. The inclusion of this condition
is therefore for reasons of exposition – it enables us to use a similar proof to the others in
this section, and suffices to demonstrate the principle. In Section 2.5 we briefly discuss the
physicality of such a restriction. With these restrictions in place, we can state the following
theorem.

Theorem 2.3.

xTAx− ε′xTx max
i

(Dii) ≤ xT Ãx ≤ xTAx + ε′xTx max
i

(Dii), (2.10)

for some ε′ ∈ ω(1/
√

logα−1 n).

Proof. We start by substituting A = D − L and Ã = D̃ − L̃ into eq. (2.9), and rearranging:

(1− ε)xTLx ≤ xT L̃x ≤ (1 + ε)xTLx

(1− ε)xT (D −A)x ≤ xT (D̃ − Ã)x ≤ (1 + ε)xT (D −A)x
(1− ε)xTAx− (1− ε)xTDx ≥ xT Ãx− xT D̃x ≥ (1 + ε)xTAx− (1 + ε)xTDx

xTAx− (1− ε)xTDx ≥ xT Ãx− xT D̃x ≥ xTAx− (1 + ε)xTDx

xTAx + εxTDx + xT (D̃ −D)x ≥ xT Ãx ≥ xTAx− εxTDx− xT (D − D̃)x
xTAx + xTx(ε+ ε̃) max

i
(Dii) ≥ xT Ãx ≥ xTAx− xTx(ε+ ε̃) min

i
(Dii),

where we define ∀i, (1 + ε̃)Dii ≤ D̃ii ≤ (1 + ε̃)Dii, which we address using the Chernoff bound.
Addressing the upper limit of D̃ii, we have that:

∀i, P
(
D̃ii ≥ (1 + ε̃)Dii

)
≤ exp

(
−ε̃2Dii

3

)

≤ exp
(
−ε̃2 mini(Dii)

3

)

= exp
(
−ε̃2 logα n

3

)
, (2.11)

using the Union bound, we have that

P

(
max
i

(D̃ii −Dii

)
> ε̃Dii) ≤ n exp

(
−ε̃2 logα n

3

)
. (2.12)
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2.3 Relating sparsification to efficient Hamiltonian simulation

Likewise for the lower-bound on D̃ii we have that:

∀i, P
(
D̃ii ≤ (1− ε̃)Dii

)
≤ exp

(
−ε̃2Dii

2

)

≤ exp
(
−ε̃2 mini(Dii)

2

)

= exp
(
−ε̃2 logα n

2

)
, (2.13)

and again using the Union bound:

P

(
max
i

(Dii − D̃ii) > ε̃Dii

)
≤ n exp

(
−ε̃2 logα n

2

)
. (2.14)

So we can see that the condition ε̃ ∈ ω(1/
√

logα−1 n) must hold in order for the closeness to
hold asymptotically – i.e., as n→∞ the probability that we have a ‘good’ sparsifier tends to
one. This dominates the condition 1/

√
n < ε ≤ 1, and so we can set ε′ = ε+ ε̃ to complete the

proof.

2.3.3 Error propagation: from spectral sparsification to Hamiltonian simulation

It remains to be shown that the fact that the adjacency matrix is well approximated by its
sparsified version implies that the Hamiltonian simulation will also be well approximated
when the sparsified version is used. To do so, we express eq. (2.10) in slightly different (but
equivalent) terms, namely that we are given a spectral approximation H̃ of a Hamiltonian, H
satisfying

(1− ε′)H � H̃ � (1 + ε′)H. (2.15)

Consider the following ∥∥∥(Ũ − U) |ψ〉∥∥∥ := 〈ψ|
(
Ũ − U

)† (
Ũ − U

)
|ψ〉

= 〈ψ|1+ 1− Ũ †U − U †Ũ |ψ〉 , (2.16)

where Ũ := U(H̃, t) and U := U(H, t) for convenience. Let us first take the simple case
when H and H̃ commute; then Ũ †U = e−it(H−H̃), and so Ũ †U + U †Ũ = 2 cos (t∆H) where
∆H := H − H̃. Now we can write∥∥∥(Ũ − U) |ψ〉∥∥∥ : = 2 〈ψ| (1− cos (t∆H)) |ψ〉

= t2ε′2〈(∆H)2〉ψ +O
(
(ε′t ‖H‖)4

)
≤ ε′2 · (t ‖H‖)2 +O

(
(ε′t ‖H‖)4

)
, (2.17)
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Chapter 2 Spectral sparsification of matrix inputs as a preprocessing step for quantum algorithms

where eq. (2.15) gives −ε′H � ∆H � ε′H, which also implies 0 ≤
∥∥(∆H)2∥∥ ≤ ε′2

∥∥H2∥∥ =
ε′2 ‖H‖2. In the last line we bound 〈H〉ψ, the expectation value of the Hamiltonian H under
the state ψ, by the maximum value the energy can take, given by the spectral norm of H.

The commutator between the input and the sparsifier

When H and H̃ do not commute, the first order Suzuki-Trotter formula suggests that
U †U = e−it(H−H̃) up to an error of order O(t2‖H‖). The error term in the sum Ũ †U +U †Ũ is
then third order in t‖H‖. Thus the above analysis still holds for small times t = O(ε′/

√
‖H‖).

For longer evolution times, higher order product formulas along with time slicing and a more
detailed error analysis would be required, with the essential conceptual ideas remaining the
same.

Plugging H̃ into a Hamiltonian simulation algorithm (e.g. [LC17, GSL+19]) results in a
circuit that will approximate evolution under H̃ to some desired precision ε through a unitary
circuit Ũ ′. Noting that

∥∥∥U − Ũ ′∥∥∥ ≤ ∥∥∥U − Ũ∥∥∥ +
∥∥∥Ũ − Ũ ′∥∥∥, we see that H̃ can be used to

approximate Hamiltonian evolution under H.

But do H and H̃ always commute? The approximation condition in (2.9) appears to
be stronger than the weaker consequence (2.15) leads us to believe. If we could show that for
any two vectors v,w we have

(1− ε) 〈v|H|w〉 ≤ 〈v|H̃|w〉 ≤ (1 + ε) 〈v|H|w〉 ,

then, whenever 〈v|H|w〉 = 0 the corresponding 〈v|H̃|w〉 is also necessarily zero. In particular,
if we denote by {|vi〉}i the eigenbasis of H, i.e. H |vi〉 = λi |vi〉, then H is diagonal in this
basis, and by the above observation, so is H̃. This would imply that H and H̃ always commute,
for any H. However, standard spectral sparsification does not guarantee this condition we’ve
asked for above, and it might be worth some additional research to investigate if sparsifiers
that satisfy this condition can be constructed.

Runtime overhead:

From the above analysis of error propagation, it is clear that choosing

ε′ = O
( √

ε

t ‖H‖

)
(2.18)

ensures that
∥∥∥U − Ũ∥∥∥ ≤ ε to first order. Putting this back into the runtime expression for the

spectral sparsification algorithm of [SS11], we can estimate the (one-time) classical runtime
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2.4 Sparsity testing

overhead required in order to use sparse Hamiltonian simulation for time t, which is given
by

O
(
mt ‖H‖ logn

ε

)
. (2.19)

The presence of the spectral norm ‖H‖ is to be expected as it sets the energy scales for the
problem; evidently this method is only useful if ‖H‖ = O(poly(n)). We expect this to be true
for several systems of physical significance, e.g. molecular Hamiltonians, which typically have
O(n4) terms in a tensor product of Pauli basis (expecting the coupling constants also to scale
polynomially for most common molecules).

2.4 Sparsity testing

Testing if an input function or vector is sparse is a problem that has recently received some
attention in the context of big data and machine learning algorithms [BBG18, GOS+11]. Of
course, we’d like to be able to check if the sparsifier generated by a spectral sparsification
algorithm has, with high probability, the additional property that it is row-sparse, i.e., that
the maximum degree of the sparsifier grows only as O(poly logn).

Could a quantum algorithm for sparsity testing offer any advantages? Given an oracle
that computes matrix entries in place, we could use a comparison oracle to flag an ancillary
register as ‘1’ wherever there is a zero entry, and then use quantum amplitude estimation on
the ancilla to estimate the number of zero entries. We demonstrate two quantum algorithms
below for testing row-sparsity of an input matrix.

2.4.1 Sparsity testing using quantum amplitude estimation

As we saw in Chapter 1 we access a matrix A ∈ Rn×n via a unitary quantum oracle that
computes its entries in place (to some fixed precision), i.e.

UA |i〉 |j〉 |z〉 = |i〉 |j〉 |z ⊕Aij〉 , (2.20)

where 0 ≤ i, j ≤ n − 1 are the row and column indices, and the third register contains the
matrix entry to p-bits of precision (so 0 ≤ z ≤ 2p). Unlike Section 1.2, we do not need the
additional sparse access or row-computability oracle here. We assume real entries for simplicity,
and to be consistent with the previous analysis, but the following easily generalises to complex
entries.

Another oracle that we will use is the comparator

comp |a〉 |b〉 |0〉flag =

|a〉 |b〉 |0〉flag if a < b

|a〉 |b〉 |1〉flag if a ≥ b,
(2.21)
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Chapter 2 Spectral sparsification of matrix inputs as a preprocessing step for quantum algorithms

which can be implemented efficiently using quantum adder circuits [Gid18], and has re-
cently been used for efficient black-box preparation of quantum states encoding amplitudes
corresponding to classical input vectors [SLS+19].

Let us use the UA oracle to prepare a superposition over the entries of a chosen row
0 ≤ i ≤ n− 1

|i〉 |0〉 |0〉data
1⊗H⊗1−−−−−→ 1√

n

n∑
j=0
|i〉 |j〉 |0〉data

UA−−→ 1√
n

n∑
j=0
|i〉 |j〉 |Aij〉data

=: |rowi〉 (2.22)

Then we can adjoin two ancillary registers, |δ〉ref |0〉flag, and using the comp oracle we can
make the following series of transformations

|rowi〉 |δ〉ref |0〉flag
1⊗1⊗ comp−−−−−−−→|i〉 ⊗

 1√
n

∑
j∈suppδi(A)

|j〉 |Aij〉data |δ〉ref |0〉flag

+ 1√
n

∑
j /∈suppδi(A)

|j〉 |Aij〉data |δ〉ref |1〉flag

 ,
=: |spari〉

where the support of row i of A is suppδi (A) = {0 ≤ j ≤ n − 1 : |Aij | ≥ δ}. Here we have
assumed that the data register contains the magnitude of Aij , so that we can just check if it
is less than a small threshold δ in order to check if it is close to zero — the magnitude can be
obtained easily by taking advantage of the signed fixed-point representation of Aij (e.g. by
simply neglecting the sign bit). Now note that the amplitude of the |1〉flag subspace of the
above state is proportional to the sparsity s(i) :=

∣∣∣suppδi (A)
∣∣∣ of row i

∥∥∥Πflag
1 |spari〉

∥∥∥ =

∥∥∥∥∥∥ 1√
n

∑
j /∈suppδi(A)

|j〉 |Aij〉data |δ〉ref

∥∥∥∥∥∥
=

√
s(i)
n
, (2.23)

where Πflag
1 = 1r ⊗ 1c ⊗ 1data ⊗ 1ref ⊗ |1〉〈1|flag is a projector onto the flag 1 subspace. This

can be estimated to additive precision ε′ using Θ (1/ε) queries to UA, using the method of
quantum amplitude estimation [BHM+02], which would give us a quantity x̃i satisfying∣∣∣∣∣∣

√
s(i)
n
− x̃i

∣∣∣∣∣∣ ≤ ε′,
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2.4 Sparsity testing

whence we see that choosing ε′ = ε/
√
n gives us an additive approximation of

√
nx̃i of s(i) to

precision ε, using O(
√
n/ε) queries. Following the same procedure to estimate the sparsities

of all n rows, the overall sparsity (which for us is the maximum number of non zeros in any
row or column) can be ascertained in O(n3/2) queries; we can leave ε out of this consideration
since it can be chosen to be of order unity.

2.4.2 Sparsity testing using quantum maximum finding

We still use oracle access as in eq. (2.20), and we assume the data register has enough qubits
to store the sum of the entries in any row. We start by putting the rows in superposition:

|0〉 |0〉 |0〉data
H⊗1⊗1−−−−−→ 1√

n

n∑
i=0
|i〉 |0〉 |0〉data (2.24)

Now we iterate over n calls to the oracle (j is initially 0):

1√
n

n−1∑
i=0
|i〉 |j〉 |

j−1∑
k=0

Aik〉
data

UA−−→ 1√
n

n−1∑
i=0
|i〉 |j〉 |

j∑
k=0

Aik〉
data

, (2.25)

setting j ← j + 1 on each iteration, until j = n− 1, after which we have the state:

1√
n

n−1∑
i=0
|i〉 |n− 1〉 |

n−1∑
k=0

Ai,k〉
data

, (2.26)

in which the column register, now in state |n〉, can be dispensed with. Therefore in O(n)
operations we have created a superposition of the sum of each of the n rows, indexed accordingly.
Quantum maximum finding methods [DH96, AK99] can make use of this state, preparing it
O(
√
n) times in order to find the maximum. Thus we have a quantum algorithm that takes

O(n3/2) oracle queries and additional quantum arithmetic operations. By contrast, a classical
algorithm to check for row sparsity would have to sum over all rows (O(n2) operations) and
then classically find the maximum (O(n) operations). (note that it may be possible to do this
slightly faster, but it would still be necessary to check over a number of elements growing
linearly with n for each row, and to check all of the n rows).

|row i〉
|col j〉
|0〉

|Sum(j − 1)〉

Oracle

Adder

Oracle† j ← j + 1
|row i〉
|col j + 1〉
|0〉
|Sum(j − 1) +Aij〉

Figure 2.1: Circuit portion showing how the sum of Aij can be obtained inside the ket. The
oracle loads the matrix entries Aij into the third register, and Sum(j) =

∑j
k=0 Aij .
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Chapter 2 Spectral sparsification of matrix inputs as a preprocessing step for quantum algorithms

We remark that the above algorithm that uses quantum maximum finding appears to rely
on A being a binary adjacency matrix. When an upper bound Λ on ‖A‖max is available, this
limitation can be overcome by normalising the matrix entries by Λ.

2.4.3 Testing Fourier sparsity

Given a Boolean function f : {0, 1}n × {0, 1}n → {0, 1}, we can think of its truth table as an
n× n binary matrix. A quantum query oracle for f ,

Uf |x〉 |y〉 |b〉 = |x〉 |y〉 |b⊕ f(x, y)〉 , (2.27)

where b ∈ {0, 1} can be converted into a phase oracle by applying a Hadamard gate on the
third register before and after applying Uf

Uph
f |x〉 |y〉 |b〉 = (−1)bf(x,y) |x〉 |y〉 |b〉 . (2.28)

It is then possible to apply the quantum Fourier transform to the state obtained by querying
the phase oracle on the uniform superposition over all the inputs x, y

Uph
f

∑
x,y∈{0,1}n

|x〉 |y〉 |−〉 =
∑

x,y∈{0,1}n
(−1)f(x,y) |x〉 |y〉 |−〉 (2.29)

and obtain the state encoding the Fourier amplitudes of the function f , defined by

f̂(y) =
∑

x∈{0,1}n
(−1)x·yf(x). (2.30)

We may then apply phase estimation to this state to recover a state that contains the Fourier
amplitudes in the basis states, and thereby apply our sparsity testing algorithm from the
previous section. This line of reasoning shows that we can test Fourier sparsity in O(n1.5)
queries to f . This would be interesting to pursue further and compare with results on learning
k-Fourier sparse functions, which it is known can be done from Õ(k1.5) samples [ACL+19].

2.5 Discussion

In this chapter we have shown how classical sparsifying techniques can be used as a preprocess-
ing step to obtain a row computable sparse input matrix that can then be used with efficient
quantum algorithms for sparse Hamiltonian simulation. The one-time O(m logn

ε2 ) classical
overhead in runtime may be justified by the fact that the sparsified output matrix may be
used for multiple applications (e.g. for simulating time evolution of several different states)
which can be efficiently performed quantumly.
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2.5 Discussion

Usually we require every problem instance to be row-sparse in a quantum algorithm. What
we have so far, using spectral sparsification, is a guarantee that as n grows, the sparsified output
is also row sparse with high probability. Therefore it is also necessary that the simulation has
some sort of checking mechanism, such that the simulation is halted if too many iterations
have been required (i.e., because the actual sparsified Hamiltonian that was generated was not,
in fact, row sparse), and to start again with a fresh sparsified Hamiltonian. This should be
easy to include in any implementation, and the first and second properties of row sparsity are
sufficient in this case to guarantee good overall performance (that is, as n→∞ the probability
of needing to start again vanishes).

On a more general note, it is interesting to consider Hamiltonian sparsification in the
context of a suite of simulation algorithms. For example, we had remarked that star graphs
are sparse, but not row sparse – thus we can see that physical systems that are dominated by
a few components may yield sparsified Hamiltonian’s that are essentially a superposition of a
number of star graphs. Thus, whilst the techniques presented in this chapter will not apply,
it may be possible to use other techniques such as low-rank approximations. Conversely, for
physical systems in which a number of components barely make any impact on the whole (i.e.,
they have few and/or low-weight edges to other vertices), then it is likely to be safe to simply
neglect these components. Informally, this can be seen as a justification for assuming that
each row was sampled at least poly log many times, as in Section 2.3.2.

Open problems

As identified in the introduction, we make three assumptions in the analysis: that the
Hamiltonian is real, that its rows are all sampled at least poly log many times, and that it
commutes with its sparsifier. The first two of these essentially restrict the physics applications
of our work, and it would therefore be beneficial to show that the same results hold when
these assumptions are removed, as well as tightening the various bounds where possible.

The third assumption, however, is more fundamental – it is important to understand
whether a sparsified Hamiltonian commutes with the actual Hamiltonian in general, and if
not whether the discrepancy can be shown to be insignificant when the full simulation is
analysed (for example by using Trotter formulas / the BCH expansion to quantify errors).
However, such a question seems to be of more general relevance than simply to plug a gap in
our analysis: the condition given in eq. (2.15) seems to be an eminently reasonable general
measure of approximation accuracy, which may be used for myriad Hamiltonian approximation
methods, and it is therefore important to show that it does indeed lead to accurate Hamiltonian
simulation.

For ε-approximate (in l2-norm) Hamiltonian simulation under a Hamiltonian H, i.e., for
the task of approximating eiHt |ψ〉, can we obtain a lower bound on the (query) complexity
(in the oracle access model) that depends only on the (overall) sparsity or number of non-zero
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entries in the matrix of H, rather than the row-sparsity? Can we demonstrate an algorithm
that achieves this lower bound?

There has recently been a lot of interest in quantum algorithms for graph and distributional
property testing [MdW16, GL19]. Loosely speaking, property testing relaxes a decision problem
by allowing a margin of error in the answer. For example, instead of asking if an input matrix
has O(logn) entries in each row or not, we may ask if it has this property or is at least ε-far
from being this sparse: this distance is defined in various ways in the theory of property
testing, but a popular variant is to say a matrix is ε-far from having this property if changing
at most nε entries does not lead to a matrix that satisfies the property. This relaxation of
the sparsity testing problem we saw in Section 2.4, as well as the Fourier sparsity property
testing version of it, also offer intriguing avenues for further work, and may also be worth
considering in different input models adapted to dense graphs (adjacency matrix) and sparser
graphs (adjacency list).

In the next chapter, we pick up on a certain flavour of questions in property testing, and
study an application of the quantum implementation of matrix functions — to the problem
of estimating the entropy, an important property of both probability distributions and their
richer cousins, quantum states.
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Chapter 3

Estimating α-Renyi entropies of unknown
quantum states

Synopsis: We describe a quantum algorithm to estimate the α-Renyi entropy of an unknown
density matrix ρ ∈ Cd×d for α 6= 1 by combining the recent technique of quantum
singular value transformations with the method of estimating normalised traces in the
one clean qubit model. We consider an oracular input model where the input state is
prepared via a quantum oracle that outputs a purified version of the state, assumed to
be non-singular. Our method outputs an estimate of the α-Renyi entropy to additive
precision ε, using an expected total number O(1/(xε)2) of independent applications of a
quantum circuit which coherently queries the input unitary O(1/δ log d/ε) times, in each
case measuring a single output qubit. Here δ is a lower cutoff on the smallest eigenvalue
of ρ and x = 1

d Tr (ρα). The expected number of measurements made in this method
can be compared to results in the sample complexity model that generally require
Θ(d2/ε2) samples. Furthermore, we also show that multiplicative approximations can
be obtained by iteratively using additive approximations, with an overhead logarithmic
in the dimension d.

3.1 Introduction

In this chapter we study the one parameter family of α-Renyi entropies [Rén61, MDS+13]:
for α > 0 and α 6= 1, the α-Renyi entropy of a quantum state represented by a positive
semidefinite operator ρ ∈ Cd×d, called its density matrix, is defined by

Sα(ρ) := 1
1− α log [ Tr (ρα)] . (3.1)

Taking the limit α → 1 gives the familiar von Neumann entropy, S(ρ) := − Tr (ρ log ρ).
Classical (discrete) probability distributions can be subsumed into this notation by considering
a probability mass function p = (p1, . . . , pd) to be a density matrix that is diagonal in the
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computational basis, as ρp = diag(p1, . . . , pd). S(ρ) reduces to the Shannon entropy when ρ is
such a ‘classical state’.

The notion of entropy has played a key role in the development of a variety of scientific
disciplines, ranging from thermodynamics to information theory. It gives us a way to quantify
the idea of disorder in a system, and the famous second law of thermodynamics essentially
states that the entropy of a closed system can never decrease. A variety of entropic functionals
have operational meanings in information theory, and are closely related to the rates at which
input data can be transmitted over communication channels.

Since the Renyi entropy is a generalised entropic measure and includes the von Neumann
entropy as a special case, it is a problem of interest to estimate the Renyi entropy of unknown
states or classical probability distributions, for different values of α. Such estimates are found
to be useful, for instance, in quantifying the efficacy of an ergodic source as a random number
generator [Kim18], and in the analysis of network structure, clustering, and signal processing
of streams of high-frequency data [CC13]. Furthermore, as shown in [ZLO+07], the Shannon
entropy can be estimated to any desired precision by interpolation using estimates of Sα(ρ)
for values of α ∈ (0, 2].

Entropy functions are also important quantities characterising a quantum system. In
entanglement theory, they can give a measure of the amount of entanglement contained in
bipartite quantum systems – particularly important in this regard is the Renyi entropy for
α = 2, which is known as the entanglement entropy [CCD09]. Entropic quantities are also
often used as operational measures in quantum information-processing tasks [KRS09]. As
one of the most famous examples, they provide the asymptotic lower bound for compressing
quantum data in a noiseless fashion, i.e. Schumacher’s noiseless compression [Sch95].

In recent decades, entropy functions have also found intriguing applications in condensed
matter physics [Laf16], and high energy physics. They have even had immense theoretical
implications in the theory of gravity and black holes [Bek73, Don16], and their study from a
quantum information theoretic viewpoint continues to be a rich source of new physical insights
[AS18, AK20].

Thus it stands an important question to compute the value of these entropy functions
efficiently on unknown states. In particular, given access to several copies of a quantum state,
how many measurements are required to obtain estimates of a chosen entropy function of the
state, to within a desired additive or multiplicative precision? Additionally, if one has access
to the dynamic process that prepares the state, in the form of a unitary circuit on a larger
system (the purification), does this lead to any improvement in our ability to estimate its
entropies?
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Related work

We can group studies of entropy estimation into four categories: (1) classical and (2) quantum
algorithms for estimating entropies of classical distributions; and (3) classical and (4) quantum
algorithms for estimating the entropies of quantum states. There are several studies of the
first kind in classical information theory [BDK+02, WY16, JVH+15, VV11].

Coming to the third category, Hastings et al. [HGK+10], for instance, discuss a quantum
Monte Carlo method to measure the 2-Renyi entropy of a many-body system by evaluating
the expectation value of a unitary swap operator. Their method uses a number of samples
that scales polynomially number in the system size.

More in the flavour of quantum algorithms, and in a sense straddling categories (2) and
(4), Acharya et al. [AIS+17] study the sample complexity of estimating von Neumann and
Renyi entropies of mixed states of quantum systems, in a model where as input one gets
n independent copies of an unknown d-dimensional density matrix ρ. They allow arbitrary
quantum measurements and classical post-processing, and show that in general the number of
quantum samples required scales as Θ(d2/ε2), which is asymptotically the same as the number
of samples that would be required to learn the state completely via tomography methods.
The experimental measurement of the entropy of specific quantum systems has also recently
been investigated [IMP+15].

While it enables a tight characterisation of the sample complexity of the problem (table
3.1), other potentially stronger input models are also possible which are not captured in this
picture. In this chapter, we consider an oracular input model that is popular in quantum
query algorithms, wherein data is accessed in the form of a quantum state. This state may
be the output of some other quantum subroutine, in which case that subroutine itself is the
oracle. Such input models can capture the fact that we have access to the process generating
the unknown state, which we may a priori expect to be useful in reducing the effort required
in estimating its properties.

In this vein, and bringing us to quantum algorithms for estimating the entropies of quantum
states (which as noted before subsumes the case of classical probability distributions), Li and
Wu [LW19] study how to obtain additive approximations to von Neumann and Renyi entropies
in an oracular model and present upper and lower bounds on the query complexity. Gilyén and
Li [GL19] study another similar oracular model, known as the ‘quantum purified query access’
model which essentially provides a pure state, sampling from which reproduces the statistics
of the original mixed state, or target classical distribution. They obtain the best upper
bounds known in the literature, showing that the von Neumann entropy can be estimated
with query complexity Õ(

√
d/ε1.5) and Õ(d/ε1.5) respectively for classical distribution and

quantum density matrices. Both these papers use quantum amplitude estimation (QAE)
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Chapter 3 Estimating α-Renyi entropies of unknown quantum states

[BHM+02] as the means to estimate the target quantities. However, QAE requires full-fledged
fault tolerant quantum computers and may not be available in the near future.

Approximation algorithms that estimate a quantity to within a multiplicative factor (i.e.
such that the estimate x̃ lies in the interval [x/γ, γx] for some γ > 1) are particularly valuable
when the target quantity might be small, and these algorithms are often harder and more
complex. Batu et al. [BDK+02] consider the estimation of Shannon entropy to multiplicative
precision, showing that O(d(1+η)/γ2 log d) samples suffice to estimate it to within a factor γ,
for classical distributions with S(p) > γ/η. This is almost matched by a lower bound of
Ω(d(1−η)/γ2 log d) later proven in [Val11]. To the best of the authors’ knowledge, the problem of
estimating entropies to within a multiplicative factor has not been considered in the quantum
algorithms literature.

3.2 Main Results

Here, we consider the estimation of Renyi entropies in the purified quantum query access
model, and approach the problem using sampling via a DQC1 method, rather than using the
QAE algorithm. While being less powerful than quantum amplitude estimation, such sampling
techniques have the advantage of requiring less stringent quantum resources. In particular,
QAE requires long coherence times, and the application of powers of the input oracle and
its inverse conditioned on large ancillary registers. Sampling methods in general trade away
these requirements for a quadratic increase in the scaling with the precision parameter ε.

Using a recent iterative method of Chowdhury et al. [CSS19], we show how the trace
of power functions of the input state can be estimated to within a suitable multiplicative
precision, in order to obtain additive approximations of the Renyi entropy. This iterative
algorithm has an expected asymptotic runtime that depends on the unknown quantity being
estimated. Thus we can obtain better bounds on its complexity than by considering only the
worst case asymptotic runtime.

Our approach is to construct a unitary that encodes (or probabilistically implements) the
matrix function ρα. Then we can estimate its normalised trace using the DQC1 model. We
will assume that α is a constant, and leave it out of complexity considerations. Our first result
is an algorithm that outputs an additive approximation to the α-Renyi entropy of an unknown
quantum state, for α 6= 1.

Theorem 3.1. Given a unitary process Uρ on Cd+a which produces a purification |ψρ〉 of
a mixed state ρ ∈ Cd×d with 1/δ � ρ � 1, for α > 0 with α 6= 1, there exists an iterative
quantum algorithm that outputs an estimate S̃ such that∣∣∣S̃ − Sα(ρ)

∣∣∣ ≤ ε,

56
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with high probability. The algorithm runs for at most O(log d) rounds, making an expected
number O(1/(xε)2) of independent applications of a quantum circuit which coherently invokes
Uρ and U †ρ a total of m = O(1/δ log d/ε) times, in each case measuring a single output qubit.
Here, x = 1

d Tr (ρα). The algorithm uses O(m) additional 1- and 2-qubit gates, and dlog de+ 2
ancillary qubits.

Furthermore, when α 6= 1 is an integer, m = α, making the circuit depth is independent of
the dimension d.

We construct the algorithm proving this claim by using the technique of block-encodings
and quantum singular value transformations [CGJ19, GSL+19] to implement unitaries that
are block encodings of the power functions ρα on the system adjoined with ancillary registers,
and subsequently estimating the trace of these unitaries in the DQC1 or “one-clean qubit”
model of computation [KL98] in combination with the method of [CSS19]. In contrast, in
[GL19] a block encoding of log ρ is applied to a suitable input state, resulting in a state that
encodes the von Neumann entropy as the amplitude of a computational basis state, which is
then estimated using QAE.

We also consider the problem of estimating the entropy to multiplicative precision by using
the same iterative subroutine again, improving on the additive estimate obtained, to arrive at
an estimate S̃α satisfying (1− εrel)Sα ≤ S̃α ≤ (1 + εrel)Sα, with an overhead that is at most
logarithmic in the dimension of ρ.

Theorem 3.2. Iterating the algorithm of Theorem 3.1, we can obtain an estimate Ŝ which
satisfies ∣∣∣∣∣ Ŝ

Sα(ρ) − 1
∣∣∣∣∣ ≤ εrel

with high probability. The algorithm runs for at most

R = O
(

log
( log d

δ

))
rounds, and the total expected number of runs of the DQC1 circuit and corresponding single
qubit measurements is given by

O
(

1
(εxSα(ρ))2

)
,

where as before, x = 1
d Tr (ρα).

Since by our assumption and the definition of the entropy we have O(δ) ≤ Sα(ρ) =
1

1−α log dx, we note that the the factor 1/Sα(ρ) is large only when dx → 1, so that this is at
most a factor of 1/δ2 worse than the expected number of measurements required in Theorem
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Chapter 3 Estimating α-Renyi entropies of unknown quantum states

3.1. This problem of approximating the entropy of a state to within a multiplicative precision,
which is generally more difficult than additive approximation, has not been discussed in the
quantum algorithm literature to the best of our knowledge. We provide a comparison between
our work and some of the known results in Table 3.1.

We thus extend the investigation of evaluating entropy functions to the case of Renyi entropy,
in the purified quantum query access model considered in [GL19]. Our key contributions are:
(1) the use of unitary block encodings of the target operator functions obtained using quantum
matrix function implementation techniques, in combination with (2) the replacement of QAE
with trace estimation using one clean qubit, and (3) obtaining approximations to multiplicative
precision. Since it uses the one-clean qubit model, our method does not require long coherence
times or high circuit depth. Furthermore, only a single clean and well-controlled qubit is
required, while the remainder can start off in the maximally mixed (highly noisy) state; apart
from being a low resource requirement, this also makes our algorithm potentially feasible for
testing on near-term NMR-based quantum hardware. Finally, our runtime analysis using the
algorithm recapped in Appendix B allows us to bound the expected number of measurements
as a function of the unknown target quantity, offering better bounds than would be given by
just a worst case analysis.

Sα Copies of ρ (Θ(·)) E [#mmts] Queries to Uρ per use of circuit

α < 1 (d/ε)2/α O(1/(xε)2) O
(

1
δ log d

ε

)
α > 1 non-integer (d/ε)2 ′′ ′′

α > 1 integer d2−2/α

ε2/α
′′ O(α)

Table 3.1: Sample complexity from [AIS+17] for estimating the Renyi entropies of an unknown
d-dimensional mixed state to additive precision ε for different ranges of α, contrasted
with expected number of measurements in our work (Section 3.4). In the worst
case, these scale as O(d2) for α < 1, and O(d2α) for α > 1. (We use ′′ to indicate
the same expression as on the preceding line)

3.3 Preliminaries

3.3.1 Input model

We assume access to a unitary process Uρ on Cd ⊗ Ca which produces a purification |ψρ〉 of
the actual input state ρ in Cd×d

Uρ |0〉 = |ψρ〉 =
n∑
i=1

√
pi |ψi〉d |φi〉a , (3.2)
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so that Tr ([) a]|ψρ〉〈ψρ| = ρ. The {|φ〉a} and {|ψ〉d} are sets of orthonormal vectors on the
ancillary and system subspaces respectively. This model, known as the purified quantum query
access model, is also discussed by [GL19] and [Bel19] in the context of property testing.

Note that the case of a classical probability distribution on d points with sampling access
is subsumed into this model by embedding it into the diagonal state ρp = ∑d

i=1 pi |i〉.

3.3.2 Implementing power functions of Hermitian matrices

A block-encoding UA of a Hermitian matrix A is essentially a unitary that encodes a (sub-
)normalised version of A in its top left block, i.e.

UA =
(
A/Λ ·
· ·

)
, (3.3)

where Λ ≥ ‖A‖. The behaviour and use of such encodings has been explored extensively in
the last few years [LC16, CGJ19, GSL+19]. Given access to UA, a variety of smooth matrix
functions (defined on the spectrum of A) may be implemented, in the sense that a new block
encoding UfA can be obtained such that

UfA =
(
f(A)/β ·
· ·

)
, (3.4)

where β ≥ ‖f(A)‖. In particular, here we are interested in power functions f(x) = xα for an
exponent α > 0. These can be realised using e.g. Lemma 9 of [CGJ19] or Corollary 67 of
[GSL+19], with minor modifications. Assuming that ρ not a pure state, and has minimum
eigenvalue δ ∈ (0, 1/2), an ε-approximate block encoding of ρα can be created with O(1

δ log 1
ε )

uses of Uρ. Even if ρ has a non-trivial kernel, it is fairly easy to implement the matrix function
only on the non-singular part of the input (e.g. [HHL09, GL19]), and for classical distributions,
we can consider the restriction to the support of the distribution by pre-processing using e.g.
sparse PCA.

The precision ε specifies how close the top left block of the new encoding is to ρα in the
operator norm. For integral values of α we can obtain an exact encoding with ε = 0, e.g.
using Chebyshev polynomial methods as in Chapter 1; this has the effect of removing the
logarithmic factors from the complexity for integral α. We collect the necessary results about
implementing matrix function in Appendix A.

3.3.3 The DQC1 Model

The one clean qubit or DQC1 (for Deterministic Quantum Computation with one clean qubit)
paradigm was inspired by studies of NMR based quantum computing [SV99]. The model
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Chapter 3 Estimating α-Renyi entropies of unknown quantum states

generated interest due to the potential for physical implementation, since only a single ‘clean’
qubit has to be initialised to a pure state, while the remaining ‘dirty’ qubits can start in
highly mixed (or random) states. The possibility that even such a weak model can be used
to perform useful computations is striking [KL98, Jor08], because if all the qubits are in the
maximally mixed state no non-trivial computation can be done (no unitary process can purify
the state). Algorithms in the DQC1 model always have a fixed initial state of n+ 1 qubits,
and both the problem instance and algorithm are encoded into a poly(n)-sized unitary circuit
to be applied on them. The answer is encoded into the probability of obtaining the outcome
zero on measuring the clean qubit at the end of the computation. The problem of computing
the normalised trace of a unitary was shown to be complete for DQC1 [KL98]. Further work
indicated the presence of non-classical correlations in DQC1 computations [DSC08]. More
recently, it was shown that it is classically hard to sample from the output distribution of
a DQC1 computer up to multiplicative error, conditional on standard complexity theoretic
assumptions [MFF14, FKM+18].

The DQC1 or “one-clean qubit” model of computation is based on the use of a single
well-controlled or ‘clean’ qubit, and a number n of noisy qubits that are taken to be in the
maximally mixed state [KL98, SJ08]. Algorithms in this model are embedded into some
controlled n-qubit unitaries, and the outputs are encoded into the probability of observing 0
on measuring the clean qubit. Estimating the normalised trace of a unitary is known to be a
DQC1-complete problem [KL98].

|0〉 H • H
1

2

U

1

2
...

...
1

2

Figure 3.1: A DQC1 circuit that can be used to estimate 1/2nTr (U), for which no classical
efficient algorithm is known. Measurements are made in the computational basis.

The initial state consists of one qubit set to the |0〉 state, and n qubits in the maximally
mixed state, i.e. ξin = |0〉〈0| ⊗ 1n/2n = 1+Z

2 ⊗ 1n/2n. We can write the final state in figure 3.1
after the application of the circuit but before measurement as

ξout = 1
2n+1

(
1n U †

U 1n

)
, (3.5)

from which we see that the expectation values of the Pauli X and Y operators for the clean
qubit give the estimates 〈X〉 = 2−nRe(Tr (U)) and 〈Y 〉 = −2−nIm(Tr (U)). These can be
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extracted to within additive precision ε using O(log 1
η/ε

2) measurements, with probability at
least 1− η for η > 0. Since the dependence on η is logarithmic and the success probability
can easily be boosted by repetition or other standard methods, we will drop the factor in η
from further consideration.

As discussed in [Jor08], and used for example by Cade and Montanaro [CM18], the DQCk
model with k clean qubits can be used to obtain the trace of a submatrix whose size is
an inverse-poly sized fraction of the whole unitary. This is useful in our context, because
we deal with a unitary block encoding of matrix functions such as ρα, so that these target
matrices (whose trace we are interested in) are submatrices located in the top-left corner of
the unitary.

3.4 Proof of Theorem 3.1

In order to prove Theorem 3.1 by describing the algorithm and analysing its complexity, we
begin by considering how the error in estimating x = Tr (ρα) propagates to the estimate of
Sα(ρ) calculated using x.

3.4.1 Error analysis

From the definition of the α-Renyi entropy (eq. (3.1)), if we use an estimate x̃ of x = Tr (ρα),
the corresponding error in Sα(ρ) is given by

∣∣∣S̃α(ρ)− Sα(ρ)
∣∣∣ =

∣∣∣∣ log x̃
1− α −

log x
1− α

∣∣∣∣
=
∣∣∣∣ 1
1− α log x̃

x

∣∣∣∣ .
From the above expression it is clear that if x̃ an estimate of x to a multiplicative factor γ > 0,
satisfying

x

γ
≤ x̃ ≤ γx,

then we obtain an estimate S̃α(ρ) to an additive precision given by

∣∣∣S̃α(ρ)− Sα(ρ)
∣∣∣ ≤ ∣∣∣∣ log γ

1− α

∣∣∣∣
For ‘tight’ multiplicative approximations, with γ = 1 + εrel where we shall refer to εrel < 1 as
the multiplicative precision, we can write

(1− εrel)x ≤ x̃ ≤ (1 + εrel)x. (3.6)
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For such γ, since y − y2

2 ≤ log(1 + y) ≤ y, we have∣∣∣S̃α(ρ)− Sα(ρ)
∣∣∣ ≤ εrel
|1− α| . (3.7)

Thus, an upper bound on the complexity of estimating Sα(ρ) to additive precision ε is
directly given by that of the method used to estimate Tr (ρα) to multiplicative precision
ε|1− α|.

Let us now consider how to obtain approximations of the (normalised) trace of ρα using
the DQC1 method described in the previous section.

3.4.2 Estimating Tr (ρα)

From Appendix A we first use lemma 3.4 to obtain the block encoding of ρ, and then use
corollary 3.6 to construct an ε-approximate block encoding for ρα:

Uρ =
(
ρ ·
· ·

)
7→
(
fα(ρ) ·
· ·

)
=: Uα,

where ‖fα(ρ)−ρα‖ < ε. The unitary Uα requires O
(

max(1,α)
δ log 1

ε

)
uses of the block encoding

of Uρ, and two more than the number of ancillary qubits as Uρ, where δ > 0 lower bounds
the least eigenvalue of ρ. Since the dependence of the complexity on ε is logarithmic, we can
afford to choose exponentially small ε if necessary, incurring only a polynomial overhead. In
fact, we shall choose ε = ε/d, since the error in the trace is then bounded by dε = O(ε). This
will only result in a factor of O(log d/ε) in the query complexity.

The normalised trace of this d+ a-dimensional unitary Uα can be estimated to additive
precision ε with high probability by making O(log 1/ε2) uses of the unitary (or more precisely
of the DQC1 circuit in Fig. 3.1). Since Uα has the block form

Uα =
(
ρα ·
· ·

)
,

its trace contains a contribution from Tr (ρα). What we would like is to isolate this term
alone. Importantly, we know that Tr (ρα) will be real and positive.

As mentioned in Section 3.3.3 this can be done, for example, by choosing to measure the
ancillary qubits of Uα, and requiring them to be in the |0〉 state, hence projecting onto the
relevant subspace to capture the trace of the submatrix ρα. We also describe another simple
way of doing the same task below. Consider multiplying Uα by a controlled phase operator to
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convert the block-encoded matrix alone to iρα, i.e. consider the unitary U ′α = UαV where the
unitary V applies a conditional phase of eiπ/2 = i,

V = i |0〉〈0| ⊗ 1+
a−1∑
k=1
|k〉〈k| ⊗ 1, (3.8)

which can easily be arranged using an ancillary qubit initialised to the |+〉 state to which a
conditional rotation of Ry(π/2) is applied. Now, exploiting the fact that Tr (ρα) is purely real,
we can estimate it by Re(Tr (Uα)) − Re(Tr (U ′α)), using only twice as many measurements
and uses of Uα as required for estimating Re(Tr (Uα)) itself.

Finally, recall that with DQC1 we get the normalised trace. However as discussed in
Section 3.4.1, since we are interested in a multiplicative approximation to the trace, this does
not pose any issue — approximations to within a multiplicative factor are unaffected when
scaled by a constant. Thus an estimate of 1

d Tr (ρα) to multiplicative precision ε is also a valid
estimate of Tr (ρα) to within the same multiplicative precision.

Estimating the trace to multiplicative precision

In Appendix B, we review an iterative method introduced in [CSS19] for improving an additive
precision estimate to a multiplicative one, by starting off with inaccurate additive estimates
(with large ε) and progressively improving the precision, without requiring too many iterations.
Combining this idea encapsulated in Algorithm 3.1 with the estimation of normalised trace,
we obtain an estimate x̃ that satisfies ∣∣∣∣ x̃x − 1

∣∣∣∣ < εrel.

It is worth mentioning that the only valid multiplicative approximation to any precision of a
quantity that takes value zero is zero itself. We do not need to worry about the possibility of
x = 0 here, because the trace of ρα is non-zero for all quantum states ρ and finite values of
α.

From the discussion in Appendix B, we conclude that at most

O
(
xmax
xmin

)
iterations are required, and the total expected number of uses of the block encoding of ρα and
subsequent single qubit measurements is given by

O
(

1
(xε)2

)
,
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where x = 1
d Tr (ρα) is the unknown quantity being estimated. The minimum and maximum

values of the normalised trace are straightforward to compute, and we discuss them below for
completeness.

Minimum and maximum values of Tr (ρα)

Since we know states are normalised so that Tr (ρ) = 1, the eigenvalues p1, . . . , pd of ρ form
a probability distribution. The minimum and maximum values of the trace of ρα can then
easily be calculated (e.g. see Lemma 5 of [AIS+17]). Using the definition of the trace

Tr (ρα) :=
d∑
i=1

pαi ,

we have for α < 1

1 ≤ Tr (ρα) ≤ d1−α,

and for α > 1

d1−α ≤ Tr (ρα) ≤ 1,

Correspondingly, for the normalised trace we have the ranges

1
d
Tr (ρα) ∈

[d−1, d−α] 0 < α < 1

[d−α, d−1] 1 < α
(3.9)

Hence, for the α < 1 case we can also consider scaling up the block encoding of ρα by d
using QSVT techniques for “pre-amplification” which we recall in Lemma 3.7 of Appendix A.
This will make the normalised trace larger than unity and hence any additive approximation
is also a multiplicative approximation to the same precision, whence the cost for estimating
the entropy becomes 1/ε2 measurements in the DQC1 of a unitary block encoding circuit of
dρα that uses Uρ and U †ρ around O

(
d log(d/ε)
ε2δ

)
.

3.5 Proof of Theorem 3.2

Minimum and maximum values of Sα(ρ) given ρ has non-trivial eigenvalues

Suppose the least eigenvalue of ρ is known to be some fixed pmin = δ ∈ (0, 1/2). We only
consider the case where δ < 1/d, since otherwise the actual minimum eigenvalue will be zero
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since the state is normalised.

Renyi Entropies: For the case of the Renyi entropies, we can simply use the minimum and
maximum values of Tr (ρα) from (3.9). With the minimum eigenvalue fixed, this is achieved by
the minimisers and maximisers of the entropy functional for the remaining d− 1 dimensional
distribution.

Note that when the density matrix has a non-trivial kernel, the maximum entropy can be
O(1) independent of the dimension. For example if we take δ = 1/4, the uniform distribution
over the remaining d− 1 dimensions is excluded from our consideration for d ≥ 5. However,
we will not need to make such a detailed analysis.

Since the factor of 1− α in the definition of the entropy changes sign at α = 1, we do not
need to consider α > 1 and α < 1 separately; the minimum and maximum entropy are the
same in both cases. Taking the α > 1 case for illustration, we have in this case 1− α < 0 and
(d− 1)1−α < 1, so

Smin
α = 1

1− α log (δα + (1− δ)α)

≥ α

1− α log(1− δ) ≥ δα

|α− 1|

Smax
α = 1

1− α log
(
δα + (d− 1)1−α(1− δ)α

)
≤ log d (3.10)

Thus we then have, since 0 < δ < 1/2,

Smax
α

Smin
α

= O
( log d

δ

)
. (3.11)

Thus, from the analysis of Appendix B we see that Algorithm 3.1 runs for at most

R = O
(

log
( log d

δ

))
(3.12)

rounds, and the total expected number of runs of the DQC1 circuit and corresponding single
qubit measurements is given by (3B.4) with x = Sα(ρ) and with the algorithm of Theorem 3.1
playing the role of the additive estimation subroutine. That is

number of mmts. = O
(

1
(εxSα(ρ))2

)
, (3.13)

where x = 1
d Tr (ρα).
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3.6 Discussion

The method we have proposed here is interesting primarily due to the use of the recently
developed algorithmic technique of block encodings along with the one-clean qubit model
which is believed to be relatively easier to implement than full fledged error corrected quantum
computers. These block encoding methods allow the implementation of several other matrix
functions, which may facilitate the estimation of other entropy-like matrix functionals; there
are also several possible applications of estimating entropic functionals as a subroutine in
algorithmic procedures for pattern matching, compression tasks, and network analysis.

Our algorithm is certainly not optimal in either the dimension or the inverse precision, and
both improving the query complexity and obtaining lower bounds in the purified access input
model would be interesting. As can be seen from Table 3.1, the sample complexity bounds
obtained by [AIS+17] using Empirical Young Diagram methods also scale quadratically in the
dimension and inverse precision, and they show that their bounds are tight in most cases; it is
worth noting though that they allow arbitrary measurements and classical post-processing,
which are stronger resources than demanded by our methods. We are currently working on
proving lower bounds in our model, in order to understand whether the complexity of our
algorithm can be improved as a function of either of these parameters, or if it is in fact tight.

Trace estimation using the DQC1 method can be motivated by the so-called HADAMARD
test. The advantage in using the DQC1 method is that only a constant number of well
controlled, ‘clean’ qubits are required, and the task of initial state preparation is significantly
eased. On the other hand, using the HADAMARD test to estimate measurement outcome
frequencies requires the preparation of suitable initial states which introduces additional
sources of error and complexity. Similarly, the amplitude estimation methods which have
previously been used for entropy estimation in quantum property testing algorithms require
long coherence times and the application of powers of Uρ and U †ρ controlled on ancillary
registers, leading to deep circuits, and in general need full fledged fault-tolerant quantum
computers.

Using the iterative method of Algorithm 3.1 brings the advantage of obtaining approxima-
tions to multiplicative precision, with its stopping condition ensuring that the algorithm runs
for at most O(log d/δ) iterations for states with entropy at least δ. As discussed in Appendix B,
the expected number of iterations in fact depends logarithmically on the ratio of the unknown
target quantity S to its maximum possible value, and consequently the total number of runs of
the DQC1 subroutine is depends quadratically on S−1 — this is particularly valuable since we
can explicitly bound the expected runtime by a function of the unknown target quantity, while
this kind of analysis is not often possible. Entropies can indeed take values in [0, 1] ⊆ [0, log d]
where d is the dimension of the system. It is important to note that it would be useful to have
some other method to test if the input state is pure, since then it would have zero entropy
and our algorithm for obtaining multiplicative estimates would fail.
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The definition of the complexity class DQC1 requires that the number of runs or mea-
surements made scales polynomially in the total number of dirty qubits. Thus we clarify
that our method, which requires ε to scale inverse polynomially with d, does not place the
(decision variant of) task of entropy estimation in DQC1. However, it would be interesting
question to see if the close connection between entropy estimation and trace estimation can
be exploited to solve the problem in DQC1, or if it would be possible to prove lower bounds
showing that it is strictly harder. Entropy estimation commonly falls under the category of
problems of distributional property testing. It is worth investigating what kinds of property
testing tasks can be solved within DQC1, and what lower bounds can be proved in this model.
Such studies would also throw further light on the power and limitations of this restricted
model of quantum computation.
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Appendix A Implementing power functions of density matrices

Gilyén et al. [GSL+19] give a series of lemmas showing how to implement block encodings of
different kinds of inputs, of which we will be interested in the case of density operators.

Definition 3.3 (Definition 43, [GSL+19]). An (α, a, ε) block encoding of an operator A acting
on s qubits is a unitary U acting on a+ s qubits, such that

‖A− αΠ†UΠ‖ ≤ ε, (3A.1)

where the first register consists of ancillary qubits, Π := |0〉⊗a⊗1s is an isometry Π : (C2)⊗s 7→
spanC{|0〉⊗a} ⊗ (C2)⊗s, and α, ε ∈ (0,∞).

The conversion of a purified access oracle as in eq. (3.2) into a block encoding for ρ can be
achieved using the following result.

Lemma 3.4 (Lemma 45, [GSL+19]). Given a unitary Uρ acting on a+s-qubits, which prepares
a purification Uρ |0〉 |0〉 = |ρ〉 of an s-qubit density operator ρ, such that Tr ([) a]|ρ〉〈ρ| = ρ, the
unitary

U =
(
U †ρ ⊗ 1s

)
(1a ⊗ SWAPs) (Uρ ⊗ 1s)

gives an exact (1, a+ s, 0) block encoding of ρ.

This means that the unitary U has the block form

U =
(
ρ ·
· ·

)
,

where we have not specified the a+ s− 1 other s-qubit blocks on the diagonal.

Such block encodings can be used to implement smooth functions of the input matrix via
polynomial approximations, with the following theorem.

Theorem 3.5 (Theorem 56, [GSL+19]). Given an (α, a, ε) block encoding U of a Hermitian
matrix A, for any degree m polynomial P (x) that satisfies ∀ x ∈ [−1, 1], |P (x)| < 1/2, there
exists a (1, a+ 2, 4m

√
ε/α + δ) block encoding Up of P (A/α). We can construct Up using m

applications of U and U †, a single application of controlled-U , and O((a+ 1)m) additional 1-
and 2-qubit gates. A description of the circuit of Up can be calculated in O(poly(m, log 1/δ))
time on a classical computer.

Using Theorem 3.5, we can implement ε-approximate block encodings of power functions
ρα on the part of the spectrum of ρ that is contained in [δ, 1] for δ > 0 by using polynomial
approximations. The lower cutoff δ is necessary because power functions for non-integer α are
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not differentiable at x = 0. Monomials for α = 1, 2, . . . can be implemented exactly on the
entire domain [0, 1].

Lemma 3.6 (Corollary 67, [GSL+19]). Given an exact unitary block encoding U of a d-qubit
density matrix ρ, that uses a- ancillary qubits, we can implement an ε-approximate block
encoding of ρα for α > 0 using O(max(1,α)

δ log 1
ε ) applications of U , and a+ 2- ancillary qubits.

Here we assume that the spectrum of ρ is contained in [δ, 1].

We also quote the following useful theorem that shows how to amplify the singular values
of a block encoding.

Lemma 3.7 (Theorem 30, [GSL+19]). Given an exact unitary block encoding U of a Hermitian
operator A, that uses a ancillary qubits, for γ > 1 we can implement a block encoding Uγ such
that every eigenvalue λi < 1−δ

γ of A is amplified to γλi to multiplicative precision ε

∣∣∣∣∣ λ̃iγλi − 1
∣∣∣∣∣ < ε.

Uγ requires a single ancillary qubit, and m applications of U and U †, and O((a + 1)m)
additional 1- and 2-qubit gates, where

m = O
(
γ

δ
log γ

ε

)
(3A.2)

Here we assume that the spectrum of A is contained in [δ, 1].

Appendix B Obtaining multiplicative approximations using
additive approximations

Suppose we have an algorithm to obtain an ε-additive approximation Ã to some unknown
quantity A, i.e. |A−Ã| ≤ ε. Often we may be interested in an εrel-multiplicative approximation
that satisfies (1 − εrel)A ≤ Ã ≤ (1 + εrel)A; this is clearly useful when the target quantity
could be small, potentially making it difficult to choose an additive precision in advance.
Given a lower bound 0 < λ ≤ |A|, an appropriate additive precision can be chosen to get a
desired precision multiplicative approximation. The complexity of estimating the multiplicative
approximation increases by a factor of O(λ−1) over that required for additive approximation.
If we know independent of the problem size that |A| > 1, then any ε-additive approximation
is also a good ε′ < ε multiplicative approximation.

Chowdhury et al. [CSS19] have described a procedure to produce a multiplicative approxi-
mation of a quantity x that has known upper and lower bounds xmax and xmin to precision
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εrel using a series of additive precision approximations with exponentially increasing precision
in the form

εr = εrelxmax
2r+1 .

They show that
R =

⌈
log xmax

xmin

⌉
(3B.1)

iterations suffice to obtain a multiplicative approximation x̃ satisfying∣∣∣∣ x̃x − 1
∣∣∣∣ < εrel, (3B.2)

with high probability. Furthermore, their algorithm has an expected runtime that depends on
log

(xmax
x

)
, which could be significantly better than the worst case if x is close to its maximum

value. For a proof that this algorithm, which we recap in Algorithm 3.1, indeed returns an
estimate satisfying eq. (3B.2), we refer to [CSS19]. We shall discuss its expected runtime
below, which will be useful in our analysis.

Algorithm 3.1 Approximating x to multiplicative precision.
function MultEstimate(AddEstimate, c, εrel, xmax, xmin)

c′ ← 1− (1−c)/R . success probability for additive estimate
r ← 0
repeat

εr ← εrel
2r+1 · xmax . precision for additive estimate

xr ← xmax/2r
x̃r ← AddEstimate(εr, c′) . obtain x̃r s.t. Pr (|xr − x̃r| < εr) > c′

r ← r + 1
until x̃r > xr

return x̃r
end function

From the choice (3B.1) and the stopping condition in Algorithm 3.1, the number of
iterations is always 1 ≤ r ≤ R. Without loss of generality, ∃ q ≥ 1 such that

xmax
2q−1 > x >

xmax
2q . (3B.3)

To bounded the expected number of rounds, consider the case where the algorithm fails to
terminate for r < q + 1. Then for r ≥ q + 1 the probability that the algorithm does not stop
at step r is given by

Pr (x̃r < xr) ≤ 1− c′,

where we get the upper bound by noting that since r ≥ q + 1 =⇒ xr > x, and the estimate
x̃r is εr close to x. This requires the mild underlying assumption that εrel < 2.
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Hence the net probability that the algorithm terminates at step r = q + k for k ≥ 1 is at
most (1− c′)k−1c′. If c′ > 1/2, the expected value of k under this geometric distribution is
bounded above by q + 2, and from eq. (3B.3) we have

q ≤ log2

(2xmax
x

)
.

Since we will use the DQC1 normalised trace estimation technique as the underlying sub-
routine to obtain the additive estimate, we can also calculate the total expected number of
measurements. This will also give us a bound on the number of uses of the input unitary. The
kth iteration requires O(ε−2

k ) measurements, and so if the algorithm terminates at step r, the
cumulative number of measurements scales as

M≤r ≈
r∑

k=0

1
ε2k

=
( 1
xmaxεrel

)2 r∑
k=0

4k+1

=
( 1
xmaxεrel

)2 4r+1 − 1
3

= O
(( 2r

xmaxεrel

)2
)
.

Now we can upper bound the expected value of M≤r under the geometric distribution for the
number of iterations; we have

E [M ] ≤
∞∑
k=1

c′(1− c′)k−1M≤q+k

≤
( 1
xmaxεrel

)2
c′
∞∑
k=1

(1− c′)k−14q+k

= 4q+1
( 1
xmaxεrel

)2
· c′

∞∑
k=0

(4(1− c′))k

= O
(( 2q

xmaxεrel

)2
)
,

where we make the mild assumption that c′ > 3/4. Recalling that xmax
2q−1 > x, we finally have

E [M ] = O
(( 1

xεrel

)2
)
. (3B.4)

Thus, the total expected number of measurements, or equivalently uses of the input unitary,
scales quadratically in the inverse of the target quantity.

This is very useful for our problem: as we saw in Section 3.4.1, knowing x = Tr (ρα) to
multiplicative precision ε allows us to obtain Sα(ρ) to additive precision ε.
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Appendix C Using Quantum Amplitude Estimation

The central concept in using QAE to estimate any functional ϕ(~p) := ∑
i f(pi) of an input

vector ~p (which is generally a probability mass function) is to use the input unitary that
performs the map

Uρ |0〉⊗d+a = |ψρ〉 =
n∑
i=1

√
pi |φi〉a |ψi〉d

to construct a new unitary circuit which on a chosen, easy to prepare initial state performs a
map of the type

W |0〉⊗a |in〉⊗d |0〉flag = |ψρ〉 =
n∑
i=1

√
f(pi) |φi〉a |ψi〉d |0〉flag + |...〉 |1〉flag ,

so that value of the target functional ϕ is encoded in the amplitude of the part of the output
state marked by the |0〉 subspace of the flag register.

It is easy and straightforward to repeat the calculations of [GL19] performed for the
von Neumann entropy, to α-Renyi entropies, by simply changing the matrix function being
implemented using the singular value transformation technique to ρα. Using the block encoding
in Lemma 3.4 of the purified density operator with the result of corollary 3.6, choosing the
power function with exponent α−1

2 , we get a unitary that on input

|ρ〉 =
d∑
i=1

√
pi |φi〉a |ψi〉d

performs the map

U |ρ〉 |0〉 7→
d∑
i=1

√
pαi |φi〉a |ψi〉d |0〉+ |⊥〉 |1〉 ,

where the second term is orthogonal to all states with |0〉 in the ancillary register. Now we
can apply amplitude estimation to obtain an approximation to the amplitude of the ancillary
register in the |0〉 state, which in fact is equal to Tr (ρα).

We also need to perform additional error analysis, similar to that in [GL19], since the
power function is not implemented exactly but with some precision. If we implement ρc for
c = α−1

2 to precision η′, the error in the trace can be bounded by dη′. Thus we would need
to choose η′ = η/d in order to obtain some chosen constant precision η ∈ (0, 1). This means
QAE requires O(d/η) queries to the block encoding for ρc, which from corollary 3.6, requires
O(1

δ log d
η ) uses of the purified access oracle Uρ.

72



D von Neumann entropy

Appendix D von Neumann entropy

The von Neumann entropy too can be estimated in a fashion similar to that outlined for Renyi
entropies. The discussion is slightly complicated by technicalities due to the non-smooth
behaviour of the function S(x) := x log x at the origin x = 0. To mitigate this, [GL19] use a
piecewise approximation to S(x) on [0, 1], using a lower cut-off δ > 0 and bounding the error
caused by using a relatively bad approximation for S(x) on [0, δ).

We discuss below a few different ways to approach the problem, and the possible pitfalls
in these approaches, and end by presenting the approximation used by [GL19] and some
variations of it that yield good results.

Constant precision approximations

In [ZGH+18] it is shown that for the function

Q(s) = (1 + s) log(1 + s)− s, (3D.1)

the function
B(s) = s2

2(1 + s
3) (3D.2)

gives a fairly tight lower bound for small values of s. Using this inequality and taking s to be
ρ− 1 for some density matrix ρ, we have

ρ log ρ ≥ ρ− 1+ 3(ρ2 − 2ρ+ 1)(21+ ρ)−1

2 . (3D.3)

Defining the function on the rhs as f(ρ), we see that it can be implemented by LCU techniques.
In particular when ρ only has small eigenvalues 0 < λ� 1 we could approximate (21+ρ)−1 ≈
1
2
(
1− ρ

2
)
, and the resulting cubic polynomial can be implemented with asymptotic complexity

O(d2/ε3), where d is the sparsity of the matrix ρ, and ε is its smallest eigenvalue (assuming
the state to be of full rank).

Thus using f(x) = −1
4 −

7x
8 + 3x2

2 −
3x3

8 as the approximation for S(x), we may implement
it in one of several ways: for example, we have the LCU unitary W that approximately
implements the operator ρ log ρ using two ancillary qubits, and queries to the oracle for ρ,

Wρ log ρ |0〉 |ψ〉 = 1√
3
|0〉 ρ log ρ |ψ〉+ |⊥〉 , (3D.4)

since the sum of coefficients in the LCU is |f | = 3 (the orthogonal junk state is not normalised
here). The gate complexity for the unitary
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The error function x log x− f(x) is monotonically decreasing and is hence bounded by its
value at x = 0, which is 0.25.

Series for x log x

There are various series approximations1 we can consider for the function g(x) := x log x.
Estimating tail bounds will give us a way to control the error as a function of the order of
truncation of the series.

Taylor series

Consider the following Taylor series about the point x = 1

x log x = −x
∞∑
k=1

(−1)k(x− 1)k
k

, |x− 1| < 1. (3D.5)

If we choose to truncate it at order n to obtain an approximating polynomial Pn(x), we can
write down the tail of the series as

|x log x− Pn(x)| =

∣∣∣∣∣∣−x
∞∑

k=n+1

(−1)k(x− 1)k
k

∣∣∣∣∣∣ , (3D.6)

and using the fact that the infinite series ∑∞k=1
(−1)k
k sums to ln 2, since we are interested in

the domain x ∈ (0, 1), we know the quantity on the rhs is at most
∣∣∣ln 2− x∑n

k=1
(−1)k(x−1)k

k

∣∣∣.
Requiring this tail to be less than some error threshold ε, we end up with the inversion
problem.

Let Pn(x) be the n-th order Taylor polynomial for g(x) at x0 ∈ (0, 1), and pick a lower
threshold ε < x0. Then ∀x ∈ (ε, 1)

|g(x)− Pn(x)| ≤ Kn+1
(n+ 1)! |x− x0|n+1 (3D.7)

where Kn+1 is chosen so that
|g(n+1)(x)| ≤ Kn+1. (3D.8)

Since g(n+1)(x) = (−1)n−1(n− 1)!x−n for n ≥ 1, a trivial choice of Kn+1 is

Kn+1 = ε−n(n− 1)!. (3D.9)
1Since S(x) has zeros at x = 0, 1, approximations of the kind x(x− 1)Pn(x) for which the coefficients of the
polynomial are obtained by minimising an integral quadratic (least-squares type) error are found useful; for
instance see Stackexchange.

74

https://math.stackexchange.com/questions/1997343/approximation-of-xlogx-when-0x1


D von Neumann entropy

Then for x0 < 1/2 and x ∈ [ε, 1], we have

|g(x)− Pn(x)| ≤ ε−n

(n+ 1)n |x− x0|n+1 (3D.10)

≤ ε−n

(n+ 1)n. (3D.11)

we can think of the right hand side as the error as a function of the truncation order and the
threshold ε > 0. Denoting by δ(n, ε), note that it monotonically increases with n for small
values of the threshold, since

d
dn log δ(n, ε) = − log ε− 1

n
− 1
n+ 1

≥ − log ε− 3
2 , (3D.12)

since n ≥ 1 and log ε < 0. This means that unless ε ≥ e−1.5 ≈ 0.223, the truncation error
grows with the number of terms we include in the Taylor series. In fact, even for the cases
when ε ≥ 0.223, the error initially decreases but once again starts increasing beyond a certain
value of n, the truncation order that minimises the error being given by

n∗ = −2 + b+
√

4 + b2

2b , b = log ε,

which takes a value of n∗ = 1 for ε = e−1.5, and diverges as 2
1−x −

1
2 for x→ 1−.

Piecewise approximations

As we saw in the last two sections, constant error approximations give polynomials of fixed
degree but no control over the precision. If we divide the domain into [0, ε] and (ε, 1] and use
a piecewise approximation in these two intervals, better results can be obtained.

For small enough ε, a simple linear approximation f1(x) = −x can be used for x log x. The
error caused in the contribution to the entropy by eigenvalues of ρ in the interval [0, ε] is given
by ∣∣∣∣∣∣

∑
pi<ε

(pi log pi + pi)

∣∣∣∣∣∣ ≤ dε (log 1/ε + 1) , (3D.13)

since the function x log 1/x + x monotonically increases in the interval (0, 1). Here d is the
dimension of ρ. For the overall error to be bounded by some ε, we require that

ε (log 1/ε + 1) < ε

d
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Chapter 4

Quantum Algorithm for Learning with
optimised Random Features

Synopsis: In this chapter, we elaborate on an accelerated framework for kernel method based
machine learning that uses optimised random features. Kernel methods augmented
with random features give scalable algorithms for learning from big data. But it has
been found to be computationally hard to sample random features from a probability
distribution that is optimised for the data, so as to minimise the required number of
features for a desired learning accuracy. We develop a quantum algorithm for sampling
from this optimised distribution over features, in runtime O(D), linear in the dimension
D of the input data. Our algorithm achieves an exponential speedup in D compared
to any known classical algorithm for this sampling task. In contrast to standard
quantum machine learning algorithms, we do not assume sparsity or low rank of the
operator being inverted, but take advantage of its sparsity in a Fourier transformed
representation, in conjunction with the efficiency of the quantum Fourier transform.
We also show that the sampled features can be combined with regression by stochastic
gradient descent to achieve the learning without cancelling out our exponential speedup.

4.1 Introduction

Random features [RR08] provide a powerful technique for scaling up kernel methods [SS01]
applicable to a variety of machine learning tasks, such as ridge regression [RR17], kernel
learning [SD16], and principle component analysis [UMM+18]. Recently, Bach [Bac17] has
constructed a data-optimised probability distribution of random features, sampling features
from which can drastically improve the runtime of learning algorithms based on random
features. However, this sampling task runs into computational difficulties, requiring the
inversion of a high-dimensional operator [Bac17]. The new field of quantum machine learning
(QML) [BWP+17, CHI+18, DB18] that has burgeoned over the last decade offers shoots of
hope for accelerating exactly such linear algebraic problems. In this chapter, we focus on an
efficient quantum algorithm for sampling from this data-optimised distribution over features.
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Learning with random features

Supervised learning deals with the problem of obtaining an approximation to an unknown
function y = f(x) using a set of ‘labelled’ examples or pairs (xi, f(xi)). We will consider
D-dimensional input x ∈ RD and real-valued output y ∈ R. Given N input-output pairs,
we want to learn f to a desired accuracy ε > 0. Kernel methods use the reproducing kernel
Hilbert space (RKHS) associated with a symmetric, positive semidefinite function k(x′, x),
called the kernel, to model the function f [SS01]. Traditional kernel methods may not be
scalable as the number of input data points N gets large. The use of random features has
emerged as a popular method for developing scalable learning algorithms based on kernel
methods, along with other techniques for scaling-up via low-rank matrix approximation such
as [SS00, WS01, FS02].

Algorithms using random features are based on the fact that we can represent any
translation-invariant kernel k(x, y) as the expectation of the product of features ϕ(v, x)ϕ(v, y)
over a probability measure dτ on the associated feature space V, specially engineered for the
kernel; v ∈ V here functions as a parameter. This allows for the kernel (and its feature space)
to be approximated by replacing the expectation with a sample average that can be evaluated
via a quadrature, using sufficiently many random samples.

Conventional algorithms using random features [RR08, RR09] sample a set ofD-dimensional
parameters v0, . . . , vM−1 ∈ RD from dτ , and use these to decide M features or feature
vectors ϕ(vm, ·). These algorithms typically have a runtime scaling asymptotically as O(MD).
For special classes of kernels such as Gaussian kernels, this runtime can be reduced to
O(M logD) [LSS13, YSC+16]. We learn the function f , or rather an approximation to it,
using a linear combination of the M features, i.e.

f(x) ≈
M−1∑
m=0

αmϕ(vm, x) =: f̂(x). (4.1)

To achieve the learning to an accuracy O(ε), we need to settle on a sufficiently large number
M of features. Once we fix the M features, we obtain the coefficients αm by applying linear
(or ridge) regression to minimise an error between f and f̂ , using the N data points [RR09,
RR17, CRR18]. Using the method of doubly stochastic gradients [DXH+14], the sampling of
features and the regression of coefficients can be performed simultaneously.

The problem

These conventional methods for obtaining random features from the data-independent distribu-
tion defined by dτ require a large number of features to learn the function f , with M typically
scaling exponentially in D. Consequently deciding on the M features and the regression over
M coefficients requires long runtimes and intense computational efforts.
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To better this situation, we aim to minimise M required for the learning. To do this,
rather than sampling from dτ , we will sample features from a probability distribution that
puts greater weight on important features optimised for the data via a probability density
function q(v) for dτ . Bach constructs such an optimised probability density function q∗ε (v) for
dτ (eq. (4.8), Section 4.4), in order to minimise M while achieving learning accuracy O(ε)
[Bac17]. Furthermore, he proves sampling from q∗ε (v) achieves minimal M (up to a logarithmic
gap) among all algorithms using random features, for a fixed accuracy ε. It significantly
improves M compared to sampling from dτ [Bac17, RR17, SGT18] — for instance, to achieve
learning with the Gaussian kernel from data given according to a sub-Gaussian distribution,
compared to sampling from the data-independent dτ of [RR08, RR09], the required number
M of features sampled from the optimised distribution q∗ε (v)dτ(v) can be exponentially small
in ε [Bac17]. We call features sampled from q∗ε (v)dτ(v) optimised random features.

However, sampling from q∗ε (v)dτ(v) has been found to be “hard in practice” [Bac17] for two
reasons. Firstly, its definition eq. (4.8) involves an infinite-dimensional operator (Σ + ε1)−1

on the space of functions f : RD → R with D-dimensional input data, which is intractable to
calculate by computer without approximation. Secondly, even if we approximate Σ + ε1 by
an operator on a finite-dimensional space, the inverse operator approximating (Σ + ε1)−1 is
still hard to calculate; in particular, for achieving a desired accuracy in the approximation,
the required dimension of this finite-dimensional space can be exponentially large in D, con-
tributing an O(exp(D)) factor to the runtime [SGT18, SK19]. No known classical algorithm
can calculate the inverse of such an O(exp(D))-dimensional operator within sub-exponential
time in D, unless there are sufficiently strong low rank and well-conditioned approximations
available for it.

Related work: We remark that several authors have proposed probability density functions
similar to q∗ε (v), from which a sample can be obtained in O(poly(D)) time [AKM+17, LTO+19,
LHC+19]; however, none of these are known to minimise M . In particular, [Bac17] defines
q∗ε (v) using an integral operator (eq. (4.8)), and proves its otimality in minimising M using
the properties of this integral operator. On the other hand, [AKM+17] and [LHC+19] use
different formalisms involving Gram matrices, and the distributions they define do not achieve
optimal M . Similarly, whereas sampling from an importance-weighted distribution can be
used in column sampling for scaling-up kernel methods via low-rank matrix approximation
[Bac13, AM15, RCC+18], such algorithms are not applicable to the setting of random features,
as discussed in [Bac17]. Quasi-Monte Carlo techniques [ASY+16, CLY+17] also improve M ,
but they are heuristic and offer no guarantees on M .
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Our solution

To overcome these difficulties, we approach the problem in the framework of quantum algo-
rithms. We follow the obvious motivation to use the highly successful quantum linear systems
algorithm which, as we have seen in Chapter 1, can be up to exponentially faster than the
best known classical algorithms for this problem [HHL09]. Under the O(exp(D))-dimensional
discretised approximation to the integral operator, Bach’s classical algorithm [Bac17] requires
as much as O(exp(D)) time for drawing a single sample from q∗ε (v)dτ(v), for D-dimensional
data; we construct a quantum algorithm achieving this sampling in as fast as linear time O(D).

We thus identify the bottleneck that is faced by classical algorithms in obtaining samples
from the data-optimised distribution, and resolve it by the use of a quantum algorithm.
This enables us to reap the benefits of learning with a minimal number of random features
– since, in contrast to sampling from a data-independent distribution dτ(v), we can use our
quantum algorithm sampling from q∗ε (v)dτ(v) for learning with a nearly minimal number M
of features.

4.2 Main Results

Our main contributions are threefold.

1. (Theorem 4.3) We construct a quantum algorithm for sampling an optimised random
feature from q∗ε (v)dτ(v) in as fast as linear runtime O(D) in the data dimension
D. Significantly, we achieve this without assuming sparsity or low rank of relevant
operators.

2. To construct this quantum algorithm, we circumvent the difficulty of infinite
dimension by formulating a discrete approximation of the problem of sampling a real-
valued feature from q∗ε (v)dτ(v). This approximation is equivalent to using fixed-point
number representation with rescaling.

3. (Theorem 4.4) We show that we can combine M features sampled by our algorithm
with regression by stochastic gradient descent to achieve supervised learning in
time O(MD), i.e. without cancelling out our exponential speedup. This M is
expected to be nearly minimal since we use optimised random features.

The rest of this chapter is organised as follows. Our primary result is the efficient quantum
subroutine of Algorithm 4.1 for sampling an optimised random feature, in the discretised
setting of Section 4.5; we also prove Theorem 4.3 bounding its runtime. As we show in
Section 4.7, it is crucial for our algorithm to use the perfect reconstruction of the kernel, i.e.,
an exact representation of the kernel on the data domain as the finite sum of feature map ϕ
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evaluations weighted by a function Qτ (ṽ) over a finite set of features ṽ ∈ Ṽ (Proposition 4.1).
Like the diagonal operator qρ in Table 4.2, we will denote a diagonal operator for Qτ (ṽ) as
Qτ , the maximum of Qτ (ṽ) as Qτmax, and a probability mass function on Ṽ proportional to
Qτ (ṽ) as P τ (ṽ). In Appendix A, we clarify how to input this representation of the kernel to
our algorithm, via a quantum oracle Orcτ . In Section 4.8, correspondingly to the optimised
distribution q̃∗ε (v) dτ(v) of real-valued features in V, we provide an optimised probability
distribution Q∗ε (ṽ)P τ (ṽ) of our features in the finite set Ṽ , and construct a quantum state |Ψ〉
to sample the optimised random feature from Q∗ε (ṽ)P τ (ṽ) (Proposition 4.2). In Algorithm 4.1,
we efficiently prepare the state |Ψ〉, and perform a measurement on |Ψ〉 to achieve the sampling.
In Section 4.10, we also show how to perform linear regression by a classical algorithm to
achieve the learning without cancelling out our quantum speedup (Theorem 4.4).

4.2.1 Comparison with previous works on quantum machine learning

The novelty of our contributions lies in our QML algorithm that can be exponentially faster
than any known classical algorithm in some parameter regimes, but is still free from sparsity
or low-rank assumptions on the operators involved. We exploit what essentially amounts to
the operator to be inverted being sparse in the Fourier basis, in order to achieve HHL type
speedups for the sampling task at the centre of obtaining features of the data. The learning
algorithm inherits the speedup from our algorithm for efficiently sampling the optimised
random features, and requires careful handling to make sure that the classical regression using
the sampled features does not dominate the runtime.

Despite several recent efforts to apply QML to kernel methods [MD19], super-polynomial
speedups have been rare. Typical QML algorithms that work in the oracle model [HHL09,
WBL12, LGZ16, ZFF19] achieve exponential speedups over classical algorithms only if matrices
involved in the algorithms satisfy a row-sparsity and local computability assumption; in
particular, N × N matrices can have only poly log(N) nonzero elements in each row and
column. The other popular class of QML algorithms works with data that is presented in
QRAM [LMR14, RML14, KP17b, WZP18], and do not require sparsity — but may attain
large speedups only if the involved matrices have low rank. Motivated by the quantum
recommendations system algorithm of Kerenidis and Prakash [KP17b], Tang recently showed
that using a classical analogue of the QRAM data structure, one can construct “quantum-
inspired” classical algorithms, which also assume low rank and achieve exponential speedups
over the previous classical state-of-the-art. These “de-quantised” algorithms are, however,
slower than their quantum counterparts by very large polynomial factors. Several QRAM
based quantum algorithms are now known to be de-quantisable in this manner [Tan19, JLS19,
CGL+19]. The framework of Quantum singular value transformations (QSVT) [GSL+19] that
we briefly touched upon in Chapter 1 has recently emerged as a fundamental subroutine that
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can be used to implement all these different quantum algorithms, rooted in different input
models, in a unified way.

However, these assumptions of sparsity or low rank certainly restrict the power and the
applicability of the QML algorithms [Aar15], and we do not yet have a thorough theoretical
understanding of the role played by either of these. That the computational bottlenecks posed
by input matrices that have high rank or are dense can be dealt with by identifying low rank
approximations or by preprocessing the input by spectral sparsification are ideas that have
been explored, as we saw in Chapter 2. Here, we present another potential workaround for
obtaining genuine, ‘non-de-quantisable’, quantum speedups for problems that do not come
with guaranteed sparsity or low rank.

We work in the QRAM input model, and circumvent the sparsity and low-rank assumptions
by an amalgam of the QSVT with another fundamental subroutine, the quantum Fourier
transform (QFT) [HH00], broadening the applicability of our QML algorithm. While we do not
present any hardness proofs for the problem we study, we make the following broad observation.
QFT and QSVT serve as essential subroutines for universal quantum computation. We know
that the quantum linear systems (QLS) problem, and hence the QSVT which is capable of
implementing an optimal QLS algorithm, is BQP-complete1 [HHL09]; indeed, as we shall see,
an essential step in our algorithm is the inversion of the square root of the regularised integral
operator. Similarly, we also know that the BQP-hardness of the local Hamiltonian eigenvalue
sampling problem coupled with its efficient solution by quantum phase estimation using the
QFT gives strong evidence against classical simulability of the QFT [Zha12]. These powerful
subroutines thus make our algorithm hard to simulate numerically by classical computation,
and hard to perform on near-term quantum computers [HCT+19, AAB+19] that cannot
implement universal quantum computation due to noise. Furthermore, we speculate that this
evidence for the hardness of the subroutines we use in combination with the large speedups
we are able to obtain indicate that our algorithm is unlikely to be classically simulable, and
hence resilient to de-quantisation by existing methods.

We venture to claim that our algorithm’s potential for wide applicability, and its resilience
to de-quantisation, makes it a promising candidate for “killer applications” of universal
quantum computers.

4.3 Preliminaries and Notation

Before delving into the detailed description of the problem and our results, we briefly recall
some preliminaries.

1Or more to be more precise , PromiseBQP-complete
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Since this chapter has proven to be a veritable notational house of horrors, we also set
up and collect some underlying notational guidelines that we shall follow, that will help the
reader in deciphering some of the cranky and overworked symbols when they appear at a
distance from where they were first defined. Some of the basic objects and their multitudinous
discretised, rescaled, approximate, and quantised avatars are listed in Tables 4.1 and 4.2,
which may be worth keeping bookmarked and ready at hand at all times.

To start with pleasantries, we denote the complex conjugation of z ∈ C by z. Components
of vectors such as x ∈ RD will be denoted with a superscript, as x = (x1, . . . , xD); bold letters
will be reserved for finite-dimensional square matrices, and will always be quantum operators
of some kind.

We will overload and abuse notation for some objects.

• I (= Ib,G) will refer to the set {0, δb, 2δb, . . . , G − δb} of points that represent a real
interval [0, G] to b-bits of precision (δb = 2−b), but will also interchangeably be used to
refer to the set {0, 1, . . . , G−1} with which it is in bijection under I 3 x 7→ 2bx; basically,
we interpret the bit strings representing the fixed-point notation as both discretised reals
in [0, G] and as all the integers in [0, 2bG]. Furthermore, we will overload G to mean
2bG when the distinction is either clear from context or unimportant.

• The kernel k : X × X → R is a function of two variables, but translation invariance
imbues it with the property ∀x′, x ∈ X , k(x′, x) = k(x′ − x, 0). We will use the same
symbol k to denote the function of a single variable defined by k(x) := k(x, 0).

When we wish to be painfully pedantic, the runtimes for oracles, both classical and
quantum, will be denoted by T with a subscript indicating the type of data delivered by the
oracle: for example Tx̃, Ty and Tρ for the oracles in eqs. (4.18) and (4.19).

Discretisation incurs a tilde for classical objects, as in X → X̃ and x→ x̃, and the quantum
correspondents of operators that have been discretised to become finite dimensional matrices
acquire a certain boldness, as with k → k or qρ → qρ. Empirical approximations of these
objects, whether classical or quantum, go further and wear a hat: qρ → q̂ρ and qρ → q̂ρ.

Probability measures are functions that map from the set of power sets of a domain, to real
numbers. A probability measure dρ on a space X defines the linear functional of integration
on the space of (measurable) functions over X , and is associated with a probability density
function qρ(x) via the relation

dρ(x) = qρ(x)dx,

for ∀ x ∈ X . This essentially describes the probability distribution over points in the sample
space X , as

Pr [y ∈ (x, x+ dx)] = dρ(x).
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We will follow the practice illustrated here, of indicating measures with a d followed by
a greek letter, and their density functions by q with the same Greek letter in superscript –
in this chapter, there will be no context wherein a Greek letter appears in the superscript to
denote an exponent. Probability density functions will be normalised against their measures
by the condition ∫

X
qρ(x)dρ(x) = 1. (4.2)

Quantum computation : To apply non-unitary operators A in quantum computation, we
use the technique of block encodings [GSL+19] that we’d briefly touched upon in Chapters 1
and 3. A block encoding of A is a unitary operator U = ( A ·

· · ) that encodes A in its top-left (or
|0〉〈0|) subspace. Suppose that we apply U to a state |0〉⊗|ψ〉 =

(
|ψ〉
0

)
, where 0 is a zero column

vector, and |0〉 ∈ Cd for some d. Then, we obtain U(|0〉⊗ |ψ〉) = √p |0〉⊗ A|ψ〉
‖A|ψ〉‖2

+
√

1− p |⊥〉,
where p = ‖A |ψ〉‖22. The state |⊥〉 satisfies (|0〉〈0| ⊗ 1) |⊥〉 = 0 and is of no interest. We can
prepare the state A|ψ〉

‖A|ψ〉‖2
with high probability using this process for preparing U(|0〉 ⊗ |ψ〉)

repeatedly O(1/√p) times, by means of amplitude amplification.

4.4 Supervised learning by optimised random features

We now proceed to introduce the supervised learning setting which we shall work with in this
chapter. We will also formulate an approximate version of it in Section 4.5. Suppose we are
given N ordered pairs of data points, (x0, y0), . . . , (xN−1, yN−1) ∈ X × Y, where yn = f(xn),
f : X → Y is an unknown function to be learned, X = RD is the domain for D-dimensional
input data, Y = R is the range for output data. Each xn is an observation of an independently
and identically distributed (IID) random variable on X equipped with a probability measure dρ.

We choose a continuous, positive definite, and translation-invariant kernel of the form
k(x′, x) = k(x′ − x). Here we overload the notation, setting k(x) := k(x, 0). Any such kernel
can be represented as the inner product of features

k(x′, x) =
∫
dτ(v)ϕ(v, x′)ϕ(v, x), (4.3)

where ϕ : V × X → C is a ‘feature map’, which we shall choose to be

ϕ(v, x) = e−2πiv·x. (4.4)
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4.4 Supervised learning by optimised random features

We think of x 7→ ϕ(v, x) as a one-dimensional random feature. The feature space V = RD

is a parameter space equipped with a probability measure dτ , and qτ is (expressible as) the
Fourier transform of k [RR08], i.e.

qτ (v) =
∫
X
dx e−2πiv·x k(x). (4.5)

The kernel is then normalised by requiring that

k(0, 0) =
∫
V
dτ (v) = 1.

To specify a model of f , we use the reproducing kernel Hilbert space F (RKHS) associated
with the kernel k. Assuming that the map x 7→ k(x, x) is integrable with respect to the
measure dρ, F becomes a subset of the set of functions that are square-integrable for dρ, i.e.
L2(dρ) (we leave out the domain X and co-domain Y for brevity in this notation). We make
the further technical assumption that F is dense in L2(dρ), enabling us to approximate any
function in L2(dρ) by a function in F , for any desired accuracy; this assumption can, however,
be removed by careful functional analytic arguments, which it will be unneccesary for us to
discuss.

Before proceeding further, we introduce a so-called integral operator, Σ : L2 (dρ)→ L2 (dρ),
which will be the focus of much of the analysis in this chapter and is defined by [CS02]

(Σf)
(
x′
)

:=
∫
X
dρ(x) k

(
x′, x

)
f(x). (4.6)

The inner product of two square-integrable functions f, g ∈ L2(dρ) is given by their standard
inner product in L2(dρ)

〈f | g〉 :=
∫
X
dρ(x)f(x)g(x).

Inner products on F ⊂ L2(dρ) can then be defined using the integral operator to pull functions
back to the whole of L2(dρ): for f, g ∈ F we have

〈f | g〉F :=
〈

Σ−1/2f
∣∣∣Σ−1/2g

〉
.

We correspondingly have two norms, the usual one on L2(dρ), and one on our space of
interest

‖f‖2F := 〈f | f〉F .

We aim to learn an approximation of f from the given data, so that the generalisation
error between f and our approximant can be bounded to a desired accuracy ε > 0. Our
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approximant is f̂ of eq. (4.1), the linear combination over features ϕ(vm, ·), to which we shall
append a subscript α to indicate that it is parametrised by the coefficient vector α ∈ RM :

f̂α(x) :=
M−1∑
m=0

αmϕ(vm, x)

and the generalisation error is related primarily to the deviation
∣∣∣f(x)− f̂(x)

∣∣∣ on values of x
outside the input data set; in particular, we will be interested in the expectation value of this
difference over X , i.e.

err(f, f̂α) :=
∫
X
dρ(x)

∣∣∣f(x)− f̂α(x)
∣∣∣2

=
∥∥∥f − f̂α∥∥∥2

(4.7)

To achieve this learning to an accuracy O(ε) with a minimal number M of random features,
rather than sampling from dτ , Bach proposes to sample features according to a probability
density q∗ε that is optimised for dτ

q∗ε (v) ∝
〈
ϕ (v, ·)

∣∣∣ (Σ + ε1)−1ϕ (v, ·)
〉
, (4.8)

where ε is a regularisation parameter, 1 is the identity operator, and Σ is the integral operator
that was defined above. q∗ε is then normalised with respect to dτ as in eq. (4.2).

[Bac17] shows that for any f satisfying ‖f‖F ≤ 1, it suffices to sample a nearly optimal
number scaling as

M = O
(

d (ε) log
(d (ε)

δ

))
(4.9)

of features from q∗ε (v)dτ(v) to achieve, for any δ > 0

Pr
[
min
α
{err(f, f̂α)} ≤ 4ε

]
> 1− δ (4.10)

where
d (ε) := Tr

(
Σ(Σ + ε1)−1

)
(4.11)

is the known as the ‘degree of freedom’, and represents the effective dimension of the data
seen as a submanifold of the whole space.

Our interest in this chapter is to sample these optimised random features according to the
density q∗ε . Computationally speaking, we will only ever be able to sample from a distribution
that is close to q∗ε (v)dτ(v), and we shall refer to these as our optimised random features.

Everything we have seen so far is in the setting of Banach spaces and continuous variables.
Let us now see how to deconstruct these into simpler objects for computational purposes.
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4.5 Discretised setting for random feature sampling

Since we work with digital (quantum) computers, it becomes necessary to think about
how to represent and use continuous real valued data. Delicate properties of the infinite-
dimensional operators on Banach spaces that are used in kernel methods can nevertheless be
suitably retained in their discretised forms, without compromising the provable guarantees
of the learning algorithm. Discretisation involves standard techniques of fixed point number
representation, but introduces an overhead in precision, and raises questions of convergence.
We thus devote some space and discussion to these issues in this section.

Throughout the rest of this chapter, we will assume that the input data comes from a
bounded domain; in particular, supp (dρ(x)) ⊆ [0, xmax]D for some 0 < xmax <∞. Thus we
expect no data points to lie outside this D-dimensional hypercube of side length xmax.

To learn from such an input distribution, we may without loss of generality pick a kernel
that is zero (or rapidly decaying) outside the same hypercube. Assuming k(x′, x) → 0
sufficiently fast when |x−x′| deviates from zero (a property enjoyed, for example, by Gaussian
kernels), we fix a known G� xmax, and define a periodic function k̃ that approximates k well
∀ x′, x ∈ [0, xmax]D by

k̃(x′, x) :=
∑
n∈ZD

k(x′, x+Gn)

≈ k(x′, x). (4.12)

Notice that k̃ is also translation invariant. We shall restrict our attention to the interval [0, G]
and use k̃ as the kernel in place of k.

While at first sight, k̃ appears to be more expensive to compute, we shall see in Section 4.7
that it is the addition of this periodicity to shift invariant kernels that will enable us to
diagonalise the matrix of the kernel via the Discrete (and hence Quantum) Fourier Transform,
by exploiting its circulant form2.

4.5.1 Discretising continuous data

As is standard in digital computation, we represent real numbers approximately, with a finite
number of bits. Such fixed-point number representation to b bits has precision δb := 2−b > 0,
and uses a finite set I := {0, δb, 2δb, . . . , G− δb} to represent the real interval [0, G].

The data domain X = RD, an infinite set, is then represented by the finite grid X̃ = ID.
We quotient out real-valued points x ∈ X by the equivalence relation of being closest to a

2A circulant matrix is a square matrix in which each row is shifted by one element to the right relative to the
preceding row.
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unique grid point x̃ ∈ X̃ , which will subsequently represent x. It will not be necessary for us
to discretise the data range Y, since none of the operations we study use values in Y.

Vectors in X̃ will become states of D quantum registers HI of dlog2Ge qubits each

HX := span{|x̃〉 : x̃ ∈ X̃}
= (HI)⊗D.

Each sub-register HI corresponds to a copy of I. Classical data is thus stored in the ‘ket
labels’ of quantum states (as opposed to being encoded in the amplitudes); the correspondence
between classical vectors and quantum states is

x̃ = (x̃1, . . . , x̃D)T ∈ X̃ ←→ |x̃〉X =
D⊗
i=1

∣∣∣x̃i〉 ∈ HX
where each |x̃i〉 ∈ HI .

Accordingly, functions on the continuous space X become vectors on the finite-dimensional
HX , and operators acting on functions on X become matrices that act on HX (cf. Table 4.1).
Inner products in the Banach space of functions over X are approximated by quadratures
given by the inner products of the corresponding vectors in the Hilbert space HX :∫

X
dρ(x) f(x)g(x) ≈ 〈f |qρ | g〉 . (4.13)

The diagonal operator qρ is now exactly the kind of “classical state” encoding a classical
probability mass function on the diagonal that we touched upon in the introduction to
Chapter 3.

With this scheme in place, we have a discretised version of the optimised probability
density function q∗ε (cf. eq. (4.8))

q̃∗ε (v) ∝
〈
ϕ (v, ·)

∣∣∣qρ(Σ + ε1)−1
∣∣∣ϕ (v, ·)

〉
. (4.14)

Strictly speaking, we will also be discretising the feature space, so that this q̃∗ε will become a
probability mass function rather than a density function, and is then (exactly) normalised by
the corresponding quadrature for

∫
V q̃
∗
ε (v) dτ(v) = 1.

4.5.2 Discretised representation of our inputs

Real-valued input data points x ∈ X sampled according to dρ get replaced by the closest grid
point x̃ ∈ X̃ . Each x̃ occurs with a probability

∫
∆x̃
dρ(x), where ∆x̃ is the D-dimensional

hypercube of side δb centred at x̃.
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Function / operator on X Vector / operator on HX

f : X → C |f〉 ∝
∑
x̃ f(x̃) |x̃〉

ϕ(v, ·) : X → C |ϕ(v, ·)〉 ∝∑x̃ ϕ(v, x̃) |x̃〉

k̃ : X × X → R k := ∑
x̃′,x̃ k̃(x̃′, x̃) |x̃′〉〈x̃|

qρ : X → R qρ := ∑
x̃ q

ρ(x̃) |x̃〉〈x̃|

Σ acting on f : X → C Σ := kqρ

Σf : X → C Σ |f〉

Table 4.1: Discretised representation of X by HX . Note x̃′, x̃ ∈ X̃ . Note that normalisation
constant is ‖f‖ for |f〉, and

√
GD for |ϕ(v, ·)〉.

The true probability distribution of the data is unknown in our setting. In its place, we
use the N given data points to calculate an empirical approximation to dρ(x) = qρ(x)dx. For
any x̃ ∈ X̃ , let n(x̃) denote the number of input data points that fall within the hypercube
∆x̃. We approximate the distribution dρ(x) for all x ∈ ∆x̃ by the empirical frequencies of the
data points, i.e.

q̂ρ(x̃) := n(x̃)
N

. (4.15)

Just as we had with the discretised Σ = kqρ of Table 4.1, we now have hat-wearing
empirical integral and probability density operators, given by

Σ̂ := kq̂ρ, q̂ρ :=
∑
x̃∈X̃

q̂ρ(x̃) |x̃〉〈x̃| . (4.16)

We aim to analyse the asymptotic runtime of our algorithm when the number N of data points
is large. For N →∞, statistical errors in the empirical distribution caused by the finiteness
of N vanish; detailed analyses of statistical errors for finite N can be found in [Bac17].

4.5.3 Why does this discretisation work?

To justify our discretisation scheme, we assume that functions involved in the learning, such
as the target f and density qρ(x) of data, are L-Lipschitz continuous3 for some Lipschitz
constant L. This is generally considered a mild assumption in the signal processing literature,
and is for instance satisfied when there is a finite upper bound on the high frequency domain
of the Fourier transform of the target function (i.e. a frequency cut-off).

3A function h : X → C is said to be L-Lipschitz continuous if ∀ x, x′ ∈ X , we have |h(x)−h(x′)| ≤ L ‖x− x′‖2.
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Given this Lipschitz continuity, we have, for any relevant function h

|h(x)− h(x̃)| = O (L ‖x− x̃‖2)

= O
(
Lδb
√
D
)
, (4.17)

since x lies in the D-dimensional hypercube of side δb centred at x̃. Errors caused by
discretisation, such as |f(x)−f(x̃)| and |qρ(x)−qρ(x̃)|, hence become negligible if Lδb

√
D → 0

as the data dimension D gets large.

These errors can then be made as small as desired by having Lδb decay faster than 1/
√
D,

i.e. Lδb = o(D−1/2). It is clear that L should be beyond our control, depending on the input
data and model. Thus we can choose δb = 2−b = o(D−1/2) by increasing the number of bits of
precision for the fixed-point representation. In particular we need to choose b = Ω(logD) bits,
which is a reassuringly familiar conclusion.

It turns out that we can also control L in a sense, by defining rescaled versions the data
and relevant functions on a larger domain. In particular, to achieve L = o(D−1/2), we need
to rescale G to Gr = Ω(L

√
D), thereby artificially expanding the domain interval [0, G] (i.e.

without changing the input data, but by simply zooming in on it, so to speak). This rescaling
can be done such as to leave both the model f̂ and the learning accuracy invariant. Table 4.2
summarises how different quantities and objects behave under this rescaling scheme.

That increasing the precision of fixed point representations and allowing larger cutoff
thresholds for input functions and data both lead to suppression of discretisation errors in
essentially the same fashion does not come as a surprise. Our goal was simply to illustrate
that these two slightly different flavoured techniques are available, and touch upon how they
work.

Original data and functions Rescaled by r > 1

Inputs x rx

Upper bound G of interval [0, G] Gr = rG

Kernel k(x′, x) kr(rx′, rx) := k(x′, x)
Target y = f(x) to be learned fr(rx) := f(x)
Density of data qρ(x) qρr (rx) := qρ(x)/r
Lipschitz constant L of f(x) L/r

Lipschitz constant L of qρ(x) L/r2

Table 4.2: Rescaling data by a parameter r > 1.
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4.5 Discretised setting for random feature sampling

How rescaling changes Lipschitz constants

Fix a parameter r > 1 and set ξ = rx. For probability density functions q(x) on the interval
[0, G], consider qr(x) defined by

qr(ξ) = 1
r
q

(
ξ

r

)
,

and for all other functions h, define hr by

hr(ξ) = h

(
ξ

r

)
.

Given that the original functions are L-Lipschitz continuous, it is easy to check that qr and fr
have Lipschitz constants L/r2 < L/r and L/r respectively; at the same time, their domain4

is scaled up from [0, G] to [0, rG]. It is clear that r = Ω(L
√
D) ensures limD→∞ Lr

√
D = 0.

Evidently, we can replace all the functions we are interested in by the rescaled versions defined
as above, and then error of discretisation will vanish, just as if we had made the functions
“more continuous” by making their Lipschitz constants smaller!

This scheme of rescaling for probability densities and functions is designed to map these
objects isometrically from L2(dρ, [0, G]) to L2(dρr, [0, Gr]), since it preserves inner products:

〈fr | gr〉 =
∫

[0,Gr]
dρr(ξ) fr(ξ)gr(ξ)

=
∫

[0,Gr]
dξ qρr (ξ) fr(ξ)gr(ξ)

=
∫

[0,G]
d(rx) 1

r
qρ(x)f(x)g(x)

= 〈f | g〉 ,

where dρr(ξ) = qρr (ξ) dξ is the probability measure obtained from rescaling dρ.

We thus focus on asymptotic runtime analysis of our algorithm for Gr = Ω(
√
D), to

suppress the discretisation error. With this understood, we will omit the subscript and write
G interchangeably for Gr. The error due to discretisation using a finite and bounded G is
well studied in the classical literature, wherein it is often called ‘quantisation’: for example,
[Pro07] analyses this error using established procedures in signal processing.

4Note that the range of q remains the set of positive reals, and we also do not touch the output labels
y = f(x) = fr(rx).
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4.6 Input model

The time required for accessing data is an important consideration in machine learning, where
large amounts of data are concerned. This crucially depends on the computational architecture
and data structures used. Turing machines rooted in theory can only access data sequentially,
while modern computers actually have random access memory (RAM). We shall assume the
availability of classical random access query oracles

Orcx̃(n) = x̃n, Orcy(n) = yn, (4.18)

that map addresses or indices n ∈ {0, . . . , N − 1} to the corresponding data point. For all
practical purposes, the runtime per query is O(1) and does not depend on the data.

Here we have another opportunity to clarify the setting for kernel-based learning via
feature expansions that we summarised in Section 4.5: the input that such algorithms require
is N points x ∈ X sampled according to qρ, along with their function evaluations f(x). It is
important to note here that the function values or labels, y, only come into play after the
random feature expansion has been decided upon. In sampling good features only the points
x have a role to play.

Analogous to this ability to request samples x̃ with probability q̂(x̃) (after discretisation),
we allow a quantum computer to use a unitary oracle Orcρ to initialise a quantum register to
the state

Orcρ |0〉 =
∑
x̃∈X̃

√
q̂ρ(x̃) |x̃〉

=
√

q̂ρ
∑
x̃∈X̃

|x̃〉

 , (4.19)

where the second line indicates that this state can be considered as the square root of the
(positive) operator q̂ρ applied to an unnormalised uniform superposition over all grid points
in X̃ .

Access to this state allows us to sample x̃ with probability q̂(x̃) by a measurement on
this state in the computational basis {|x̃〉}, but also potentially do much more since we have
these samples in superposition. At first sight, what this oracle provides may look similar to
“quantum examples” that were introduced by Bshouty and Jackson [BJ95] and are commonly
considered in the quantum statistical learning literature [AdW17]; however, these are not
quantum examples in that sense. Rather, all we need here is the ability to request samples
from the input domain X of the target function f , and the corresponding quantum state does
not carry information about f(x).
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4.7 Perfect reconstruction of kernel

The implementation of the oracle Orcρ incurs a preprocessing overhead. From the N input
data points, [KP17b] build a binary tree that stores the signed inputs in its leaves, and the
squared sums of its children in non-leaf nodes. This results in the root note containing the 2-
norm of the data vector. This classical data structure can be initialised in O(N(D logG)2) time
usingO(N(D logG)2) bits of memory, and can be updated efficiently with incoming data. It has
a RAM-like O(1) lookup time for individual data points. Loosely speaking, QRAM [GLM08a,
GLM08b] uses this data structure along with state preparation subroutines to implement the
unitary oracle Orcρ that can initialise a register in a superposition whose amplitudes encode
the input data. Querying the underlying binary tree, Orcρ can be implemented to precision δ
with a gate complexity that scales as

Tρ = Õ (TD logG)

using the basic method of preparing states using controlled rotations [GR02], hiding a
O(poly log 1

δ ) overhead. We do not include the time for collecting the data or preparing the
above data structure in runtime of our learning algorithm. The use of QRAM is fairly in QML,
seeing as there are no other real alternatives for dealing with big data. Even with a data
structure as powerful as QRAM, achieving quantum speedups has proven to be nontrivial.
The physical realisation of QRAM is an active area of research [JPC+19, HZZ+19].

The runtime Tρ of the data access oracle is independent of N since we keep track of
frequencies rather than individual points for our quantum algorithm, and this quantity, rather
than N explicitly, will appear in the runtime of our algorithm.

4.7 Perfect reconstruction of kernel

One of our technical contributions, and a key ingredient that makes our quantum algorithm
possible, is the perfect reconstruction of the kernel from its Fourier modes. Let us now look at
this in more detail.

We mentioned in passing in Section 4.4 that our kernel k can be expressed in the form of
eq. (4.3), namely

k(x′, x) =
∫
dτ(v)ϕ(v, x′)ϕ(v, x).

The right hand side in this equation is an expectation of the inner product 〈ϕ(·, x′) |ϕ(·, x)〉,
over the measure dτ defined on the feature space V. For the discretised kernel k̃, we can go
one step further and exactly represent it in the form

k̃(x′, x) =
∑
v∈ZD

qτ (v)ϕ(v, x′)ϕ(v, x), (4.20)
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using Shannon’s sampling theorem [Sha49]. Recalling eq. (4.4), where we defined ϕ(v, x) =
e−2πiv·x, we see that this is actually a weighted Fourier series

k̃(x′, x) =
∑
v∈ZD

qτ (v) e−2πiv·(x−x′).

Moreover, on our bounded data domain [0, G], it suffices to sum over a finite set of features

Ṽ :=
{

0, 1
G
, . . . , 1− 1

G

}D
, (4.21)

along with a function Qτ over this set, designed to accumulate the weight qτ puts on grid
points originally outside Ṽ

Qτ (ṽ) :=
∑
v∈ZD

qτ (ṽ + v). (4.22)

For many density functions qτ of interest, Qτ can be calculated analytically in closed form;
we present a couple of examples in Table 4.3. As usual, we have the diagonal operator

Qτ :=
∑
x̃∈X̃

Qτ (x̃/G) |x̃〉〈x̃| , (4.23)

where we use the fact that Ṽ and X̃ = {0, 1, . . . , G− 1}D are in one-to-one correspondence
under the bijection x̃ = Gṽ, so as to interchangeably interpret the ket labels as ṽ ∈ Ṽ or
the corresponding x̃ = Gṽ ∈ X̃ . Putting these ingredients together, we have the following
proposition.

Proposition 4.1 (Perfect reconstruction of kernel). For any periodic, translation-invariant,
symmetric, positive definite kernel k̃ as defined in eq. (4.12), we have ∀ x̃′, x̃ ∈ X̃

k̃
(
x̃′, x̃

)
= 1
GD

∑
ṽ∈Ṽ

Qτ (ṽ)ϕ(ṽ, x̃′)ϕ(ṽ, x̃)

=
〈
x̃′
∣∣∣F†DQτFD

∣∣∣ x̃〉 .
F here is the one-dimensional Discrete Fourier Transform (DFT) on ZG, which is unitary

and hence the same as the QFT), with the action

F |x̃〉 = 1√
G

G−1∑
x̃′=0

e−2πix̃′x̃/G ∣∣x̃′〉 , (4.24)

where it will be convenient for us to relabel the kets by ṽ = x̃′/G, enabling the rewrite

F |x̃〉 = 1√
G

∑
ṽ∈{0,1/G,...,1−1/G}

e−2πiṽx̃ |ṽ〉 . (4.25)
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FD := F⊗D is then the D-dimensional DFT between the spaces X̃ and Ṽ.

Note that since k̃ is a real-valued symmetric function, i.e., k̃(x′, x) = k̃(x, x′) and k̃(x′, x) =
k̃(x′, x), we also have 〈

x̃′
∣∣∣F†DQτFD

∣∣∣ x̃〉 =
〈
x̃′
∣∣∣FDQτF†D

∣∣∣ x̃〉 .
We delegate the proof of this claim to Appendix A.

Rahimi and Recht discuss a method of sampling random sinusoids from the Fourier
transform kernel function we seek to approximate, and show its utility for interpolation tasks
[RR08]. Along the same lines, if we could sample M features from the probability mass
function

P τ (ṽ) := Qτ (ṽ)∑
ṽ′∈Ṽ

Qτ (ṽ′)
, (4.26)

corresponding to dτ , we could combine them with the DFT to learn a target f with kernel
k̃(x̃′, x̃), for some sufficiently large M . But P τ (ṽ) is not optimised for the data.

4.8 Quantum state of optimised random features

So instead, we construct a density function Q∗ε (ṽ) that optimally weights the probability P τ (ṽ)
on the finite set Ṽ of features, and corresponds to the optimised density q̃∗ε (v) for dτ on the
set V of real-valued features. In place of q̃∗ε of eq. (4.14), we define

Q∗ε (ṽ) ∝
〈
ϕ(ṽ, ·)

∣∣∣ q̂ρ(Σ̂ + ε1)−1 ∣∣∣ϕ(ṽ, ·)
〉
, (4.27)

and normalise the probability distribution Q∗ε (ṽ)P τ (ṽ) by

∑
ṽ∈Ṽ

Q∗ε (ṽ)P τ (ṽ) = 1.

Recall that Σ̂ = kq̂ is the empirical integral operator (eq. (4.16)). In order to describe a
quantum state that can be used for sampling from Q∗ε (ṽ)P τ (ṽ), we pad Σ̂ with a regularisation
parameter ε and define a symmetrised, full-rank, positive semidefinite operator (cf. eqs. (4.8)
and (4.14))

Σ̂ε := 1
Qτmax

(√
q̂ρk

√
q̂ρ + ε1

)
, (4.28)

where we assume the maximum value of Qτ is efficiently precomputed and available5,

Qτmax := max
{
Qτ (ṽ) : ṽ ∈ Ṽ

}
. (4.29)

5For more on this point, please see Appendix A
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For convenience, we also set up notation for a normalised version of the Qτ operator
(eq. (4.23))

Qτ := 1
Qτmax

Qτ . (4.30)

We can now write down the quantum state that Algorithm 4.1 will use for sampling from
Q∗ε (ṽ)P τ (ṽ).

Proposition 4.2 (Quantum state for sampling an optimised random feature). Performing a
measurement in the computational basis {|ṽ〉X

′
: ṽ ∈ Ṽ} on the second register of the bipartite

quantum state
|Ψ〉 ∝

∑
ṽ∈X̃

Σ̂−
1
2

ε |ṽ〉X ⊗
√

QτF†D
√

q̂ρ |ṽ〉X
′

(4.31)

defined on two registers X and X ′ of dD logGe qubits each produces the outcome ṽ with
probability

Pr(ṽ) = Q∗ε (ṽ)P τ (ṽ). (4.32)

Samples ṽ obtained by measuring this state are therefore optimised random features. Note
that as mentioned before, we interchangeably interpret |ṽ〉 as the corresponding |x̃〉.

Proving that this state does what we profess it to do involves only a straightforward linear
algebraic calculation, which we relegate to Appendix B.

4.9 Quantum algorithm for sampling optimised random features

The route is now clear to present our main subroutine — Algorithm 4.1 prepares, with high
probability, a copy of the state |Ψ〉 presented in Proposition 4.2, and measures it to obtain an
optimised random feature ṽ ∈ Ṽ sampled from a probability distribution Q (ṽ)P τ (ṽ) that is
within total variation distance ∆ of the true optimised one:

∑
ṽ∈Ṽ

|Q(ṽ)P τ (ṽ)−Q∗ε (ṽ)P τ (ṽ)| ≤ ∆

We present the algorithm below in pseudocode, and the following discussion will lead us
on towards bounding the asymptotic runtime (measured by a combination of circuit size and
number of QRAM/oracle invocations).

As we discussed in detail in the introduction to this chapter, sampling from Q∗εP
τ poses

a bottleneck for classical algorithms, arising from the need to invert the GD-dimensional
operator Σ̂ε; furthermore, Σ̂ε being regularised has full rank by design, and also may not
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4.9 Quantum algorithm for sampling optimised random features

Algorithm 4.1 Quantum algorithm for sampling an optimised random feature.
Require: Learning accuracy, sampling precision, quantum oracles of eq. (4.19) & eq. (4A.14)

function quOptRF(ε, ∆, Orcρ, Orcτ , Qτmax)

|0〉X ⊗ |0〉X
′
7−→

∑
ṽ |ṽ〉

X ⊗
√

q̂ρ |ṽ〉X
′

. Initialise and load data

. . .
1⊗
(
F†D
)X′

−−−−−−−→
∑
ṽ |ṽ〉

X ⊗ F†D
√

q̂ρ |ṽ〉X
′

. Inverse QFT

. . .
1⊗(√Qτ)X

′

−−−−−−−−→
∑
ṽ |ṽ〉

X ⊗
√

QτF†D
√

q̂ρ |ṽ〉X
′

. Block enc. + Ampl. Amp.

. . .

(
Σ̂
− 1

2
ε

)X
⊗1

−−−−−−−−→ |Ψ〉 . Block enc. + Ampl. Amp

ṽ ← measure (|Ψ〉 , X ′). . Pr(ṽ) = Q∗ε (ṽ)P τ (ṽ)

Return ṽ.

end function

be sparse. Recent techniques for developing “quantum-inspired” classical algorithms [Tan19,
JLS19, CGL+19] are not applicable either, since they make use of low-rank approximations.

But having defined the quantum state |Ψ〉, we can immediately see that given an efficient
implementation of a block encoding of Σ̂ε, the techniques for implementing matrix functions
that we saw in Chapter 1 come to our aid once again. In particular, the quantum singular
value transformation (QSVT) method [GSL+19] gives the most efficient way in the literature
for implement a block encoding of Σ̂−

1
2

ε . However, it turns out that constructing an efficient
block encoding for Σ̂ε is by no means straightforward, as long as we use conventional methods
that take advantage of sparsity, row-computability, or low-rank.

One of our technical contribution is to overcome this difficulty by constructing an efficient
block encoding of Σ̂ε using Quantum Fourier Transform (QFT). The perfect reconstruction of
the kernel described in Proposition 4.1 allows us to explicitly decompose Σ̂ε into a product
of simpler building blocks: diagonal operators

√
Qτ and

√
q̂ρ (efficiently implementable by

block encodings), and the unitary operator FD (and F†D) representing the QFT (DFT) on
(ZG)×D (i.e. dD logGe qubits).

The discovery that the DFT on several groups of interest can be implemented with a
quantum circuit of size that scales logarithmically in the size of the group led to the development
of Shor’s algorithm, and a flurry of related results for the Hidden Subgroup Problem. FD

(and F†D) can be implemented to precision δ′ by a quantum circuit with a gate complexity
that scales as [HH00]

O
(
D logG · log logG · poly log 1

δ′

)
.
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The QSVT can be applied to construct a block encoding of Σ̂−
1
2

ε with precision δ, using
the block encoding of Σ̂ε

reps = Õ

(
Qτmax
ε

poly log 1
δ

)
times, where Qτmax

ε is within a constant factor of the condition number of Σ̂ε [GSL+19].
Combining these ingredients lets us go beyond all known classical algorithms, and achieve this
sampling with complexity sub-exponential, in fact linear, in the data dimension D.

Theorem 4.3 (Complexity of quOptRF). Given D-dimensional data discretised by G > 0,
for any accuracy ε > 0 and any sampling precision δ > 0, Algorithm 4.1 samples a feature
ṽ ∈ Ṽ from a weighted distribution QP τ that is δ-close to the true optimised distribution in
total variation distance, i.e.

∑
ṽ∈Ṽ

|(Q(ṽ)−Q∗ε (ṽ))P τ (ṽ)| ≤ δ

, with a net runtime that scales as

T = Õ
(
D · logG · Q

τ
max
ε

poly log 1
∆

)
×

where Qτmax is defined as in eq. (4.29).

Recall that we choose G to scale polynomially in D for convergence (Section 4.5.3). Qτmax
can be made O(polyD) as well, a point that we have discussed further in Appendix A. We
relegate the proof of this theorem to Appendix C.

4.10 Putting things together: supervised learning with quOptRF

Now that we can sample to our heart’s content v0, . . . , vM−1 ∈ Ṽ some M optimised random
features using Algorithm 4.1, let us see how to achieve supervised learning to accuracy O(ε).
The idea is to perform linear regression efficiently by a classical algorithm, to obtain coefficients
α = (α0, . . . , αM−1)T ∈ RM for learning ∑M−1

m=0 αmϕ(vm, ·) ≈ f . As discussed in Section 4.5,
we aim to clarify the runtime of the learning in the large-scale limit. The optimal coefficient α
minimises the generalisation error

I (α) :=
∑
x̃∈X̃

pρ(x̃)
∣∣∣f(x̃)−

M−1∑
m=0

αmϕ (vm, x̃)
∣∣∣2. (4.33)

where the data are IID sampled from pρ(x̃) :=
∫

∆x̃
dρ(x).

We use stochastic gradient descent (SGD) shown in Algorithm 4.2 [JNN19] for the regression
to obtain α minimising I, which is a common practice in large-scale machine learning. The
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Algorithm 4.2 Stochastic gradient descent (SGD).
Require: Loss function I : RM → R, a projection Π to a convex parameter regionW ⊂ RM , a

fixed number of iterations T ∈ N, an initial point α(1) ∈ W , T -dependent hyperparameters

representing step sizes
(
η(t) : t = 1, . . . , T

)
given in [JNN19].

Ensure: Approximate solution α minimising I(α).

1: for t ∈ {1, . . . , T} do

2: Calculate unbiased gradient estimator ĝ(t) satisfying E
[
ĝ(t)
]

= ∇I(α(t)).

3: α(t+1) ← Π(α(t) − η(t)ĝ(t)).

4: end for

5: Return α← α(T+1).

performance of SGD with random features is extensively studied in [CRR18]. Nevertheless,
our contribution is to clarify its runtime by explicitly evaluating the runtime per iteration. We
assume sufficiently large numberN of data points are given; in particular, N > T where T is the
number of iterations in the SGD. Then, the sequence of input data points (x̃0, y0) , (x̃1, y1) , . . .
provides observations of an IID random variable as assumed in Section 4.5.2, and SGD
converges to the minimum of the generalisation error I.6

To bound the runtime of the SGD, we show that Algorithm 4.2 after O((εQmin)−2 log(1/δ))
iterations returns α minimising I to accuracy ε with probability at least 1− δ [JNN19], where
Qmin is the minimum of Q(v0), . . . , Q(vM−1) in Theorem 4.3.7 In the tth iteration of the SGD
for each t ∈ {1, . . . , T}, we calculate an (unbiased) estimate ĝ(t) of the gradient ∇I. Using
the tth IID sampled data (x̃t, yt) and an integer m ∈ {0, . . . ,M − 1} sampled uniformly, we
calculate ĝ(t) within time O(MD) in addition to one query to each of the classical oracles
Orcx̃ and Orcy to get (x̃t, yt) in time Tx̃ and Ty, respectively; that is, the runtime per iteration
of the SGD is O(MD + Tx̃ + Ty). Combining Algorithm 4.1 with this SGD, we achieve the
learning by Algorithm 4.3 within the following overall runtime.

Theorem 4.4 (Overall runtime of supervised learning by optimised random features). The
runtime of Algorithm 4.3 is

O(MT ) +O
(
MD · 1

ε2Q2
min

log 1
δ

)
= Õ(MD).

6Bach [Bac17] analyses regularised least-squares regression exploiting Q∗ε rather than least-squares of I, but
Q∗ε is hard to compute. We may replace this regularisation with L2 regularisation R(α) = λ‖α‖2

2. SGD
minimising I+R needs O(1/(ελ)) iterations due to strong convexity [JNN19], while further research is needed
to clarify how this affects the learning accuracy.

7If important features minimising M have been sampled, their weight Qmin is expected to be large, not
dominating the runtime.

99



Chapter 4 Quantum Algorithm for Learning with optimised Random Features

Algorithm 4.3 Supervised learning by quOptRF.
Require: Algorithms 4.1 and 4.2, required number M of features for achieving the learning

to accuracy O(ε), classical oracles Orcx̃,Orcy in eq. (4.18).

Ensure: optimised random features v0, . . . , vM−1 and coefficients α0, . . . , αM−1 for∑
m αmϕ(vm, ·) to achieve the learning with probability greater than 1− δ.

1: for m ∈ {0, . . . ,M − 1} do

2: vm ← quOptRF. . By Algorithm 4.1.

3: end for

4: minimise I(α) to accuracy O(ε) by SGD to obtain α0, . . . , αM−1. . By Algorithm 4.2.

5: Return v0, . . . , vM−1, α0, . . . , αM−1.

where T is the runtime of quOptRF, using which we sample M optimised random features by
Algorithm 4.1, and the second term is runtime of the SGD.

In particular, this is as fast as linear in M and D, i.e. O (MD). The proof of this final
learning algorithm primarily involves classical elements, and we present it in Appendix D.

Since we’ve used optimised random features, M the number of features required is expected
to be nearly minimal; and since Algorithm 4.1 or quOptRF (‘kwop-turf’) resolves the classical
bottleneck of sampling optimised random features, this marriage of SGD and quOptRF thus
speeds up learning with random features.

4.11 Discussion

We have constructed a quantum algorithm for sampling an optimised random feature within
time that scales linearly in the data dimension D, achieving an exponential speedup in D
compared to the best known classical algorithms for this sampling task. CombiningM features
sampled by this quantum algorithm with stochastic gradient descent, we can achieve supervised
learning in time O(MD), where this M is expected to be nearly minimal since we use the
optimised random features. M depends explicitly on the so-called degree of freedom of the
data, which as described in eq. (4.11) depends on the trace of the inverse of the regularised
integral operator. For realistic input distributions and kernels of interest, such as sub-Gaussian
inputs with Gaussian kernels, this degree of freedom is expected to be polynomial in D. Since
our quantum algorithm does not assume sparsity or low-rank, our results open a route to
a widely applicable framework of kernel-based quantum machine learning with a potential
exponential speedup.
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4.11 Discussion

There are several interesting questions that arise out of our work in this chapter. Most
interesting among these is the wider applicability of using periodicity and translation invariance
to diagonalise an operator by Fourier transforms. Can we find other examples where a full
rank and dense input operator can be decomposed in this form? This is what we referred to
as circulantisation in the introduction, and it is also noteworthy that it is also unknown if
this can be taken advantage of in classical algorithms to speed them up. In this regard, since
the sampling tasks are rather well defined, we also wonder if proving hardness results about
the simulability of our algorithm is a plausible goal. We also speculate that we can reduce
the runtime to O(M logD), by using the notion of orthogonal random features in [LSS13,
YSC+16] — but modifying them to optimised orthogonal random features to achieve minimal
M .

With quOptRF, we draw the curtains on our tryst with matrix functions in this thesis. In
the next, and final, chapter of this thesis, we carry forth the ideas of machine learning and
big data. But we turn away from supervised learning, to the wilder and richer landscape of
unsupervised learning in the context of Natural Language Processing. We will attach this
problem with quantum search, and we shall see some expected runtime analyses that are
reminiscent of Chapter 3.
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Appendix A The kernel as a Fourier sum: Proof of
Proposition 4.1

We now turn to proving how we can rewrite a translation-invariant kernel map in terms of a
Fourier transform. To recall, our claim is that:

Proposition (Perfect reconstruction of kernel). For any periodic, translation-invariant, sym-
metric, positive definite kernel k̃ as defined in eq. (4.12), we have ∀ x̃′, x̃ ∈ X̃

k̃
(
x̃′, x̃

)
= 1
GD

∑
ṽ∈Ṽ

Qτ (ṽ)ϕ(ṽ, x̃′)ϕ(ṽ, x̃)

=
〈
x̃′
∣∣∣F†DQτFD

∣∣∣ x̃〉 .
Proof. To begin, recall that any translation-invariant kernel k : X ×X → R can be written as

k(x′, x) = k
(
x′ − x

)
=
∫
V
dτ(v)ϕ (v, x′)ϕ (v, x) , (I’m 4.3)

where eq. (4.4) defines ϕ(v, x) := e−2πiv·x, and the density function

qτ (v) =
∫
X
dx e−2πiv·x k(x) (I’m 4.5)

is the Fourier transform of the kernel. Also recall that we approximate k(x′, x) by

k̃(x′, x) :=
∑
n∈ZD

k(x′, x+Gn), (I’m 4.12)

whence k̃ inherits the translation invariance of k, in addition to being periodic; in particular
∀n′ ∈ ZD

k̃(x′ +Gn′, x) =
∑
n∈ZD

k(x′ +Gn′, x+Gn)

=
∑
n∈ZD

k(x′ +Gn′ − x−Gn)

=
∑
n∈ZD

k(x′, x+G(n− n′))

= k̃(x′, x),

where the second line uses the translation invariance of k.

Shannon’s sampling theorem [Sha49, Pro07] is used in signal processing to show that
we can perfectly reconstruct any one-dimensional kernel function k̃ on a continuous domain
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A The kernel as a Fourier sum: Proof of Proposition 4.1

I =
[
−G

2 ,
G
2

]
using a discrete set of frequencies from its Fourier transform. The Fourier

transform of a 1D kernel on I is given by

∫ G
2

−G2
dx e−2πivx k̃(x) =

∫ ∞
−∞

dx e−2πivx k(x)

= qτ (v). (4A.1)

The inverse Fourier transform then allows us to reconstruct k̃ from qτ

k̃(x) =
∫ ∞
−∞

dv e2πivx qτ (v).

The sampling theorem says that ∀x ∈ I, using only discrete frequencies v ∈ Z we can still
recover k̃ exactly, i.e.

k̃(x) = 1
G

∞∑
v=−∞

qτ (v/G) e2πivx/G. (4A.2)

Furthermore, since k̃(x) is periodic, the above equality actually holds for any x ∈ R. Analo-
gously, for any D ≥ 1, we have ∀x ∈ RD

k̃(x) = 1
GD

∑
v∈ZD

qτ (v/G) e2πiv·x/G. (4A.3)

From ZD to X̃ : Since our data domain X̃ = {0, 1, . . . , G− 1}D is actually discretised and
finite, k̃(x) can be perfectly reconstructed on X̃ via the D-dimensional DFT, using only a
finite set of discrete frequency modes. As in the recipe for the sampling theorem, first consider
the DFT of k̃(

DFT k̃
)

(x̃) = 1√
GD

∑
x̃′∈X̃

k̃(x̃′)e−2πix̃′·x̃/G

= 1√
GD

∑
x̃′∈X̃

 1
GD

∑
v′∈ZD

qτ (v′/G) e2πiv′·x̃′/G

 e−2πix̃′·x̃/G

= 1√
GD

∑
v∈ZD

qτ
(
x̃

G
+ v

)
, (4A.4)

since the sum over x̃′ in the second line is nonzero iff v′ = x̃+Gv for v ∈ ZD. Denoting x̃/G

by ṽ, we are thus lead naturally to the definition eq. (4.22) of Qτ : Ṽ → R

Qτ (ṽ) :=
∑
v∈ZD

qτ (ṽ + v) , (4A.5)
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where Ṽ is the finite set of features

Ṽ :=
{

0, 1
G
, . . . , 1− 1

G

}D
, (I’m 4.21)

and the bijection ṽ 7→ Gṽ lets us go back and forth between Ṽ and X̃ .

Finally, inverting the DFT of eq. (4A.4), we obtain ∀x̃′, x̃ ∈ X̃ the perfect reconstruction
of the kernel k̃(x̃′, x̃) using the feature points in Ṽ and the function Qτ

k̃
(
x̃′, x̃

)
= k̃

(
x̃′ − x̃

)
= 1
GD

∑
ṽ∈Ṽ

Qτ (ṽ) e2πiṽ·(x̃′−x̃)

= 1
GD

∑
ṽ∈Ṽ

Qτ (ṽ)ϕ (ṽ, x̃′)ϕ (ṽ, x̃) , (4A.6)

To put this in matrix form, we defined in eq. (4.23) the diagonal operator

Qτ :=
∑
ṽ∈Ṽ

Qτ (ṽ) |ṽ〉〈ṽ|

≡
∑
x̃∈X̃

Qτ (x̃/G) |x̃〉〈x̃|

corresponding to Qτ (ṽ). Denote by F the one-dimensional DFT on ZG, with matrix elements

Fx̃′,x̃ := 1√
G
ω−x̃

′x̃,

written in terms of the Gth root of unity

ω = e2πi/G.

FD := F⊗D is then the D-dimensional DFT on (ZG)×D, with matrix entries

(FD)x̃′,x̃ := 1√
GD

ω−x̃
′·x̃. (4A.7)

These matrix entries are values of the feature map ϕ : V × X → C evaluated on Ṽ × X̃ , i.e.

ϕ (ṽ, x̃) = e−2πiṽ·x̃ =
√
GD 〈ṽ |FD | x̃〉

=
√
GD 〈x̃ |FD | ṽ〉 . (4A.8)
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The second line captures the invariance of FD under transpose with respect to the computa-
tional basis. From eqs. (4A.6) to (4A.8), we finally have ∀ x̃′, x̃ ∈ X̃

k̃
(
x̃′, x̃

)
=
〈
x̃′
∣∣∣F†DQτFD

∣∣∣ x̃〉 . (4A.9)

Which kernels can we use?

Our quantum algorithm can use any translation-invariant kernel k̃ in the form of its perfect
reconstruction, Proposition 4.1. However, speedups may only be possible in some parameter
regimes, and to this end we sneak in some additional (mild) assumptions below.

Qτ (ṽ) ought to be a classically efficiently computable, in time at most O(poly(D)) time.
We also assume efficient precomputation of its maximum,

Qτmax := max
{
Qτ (ṽ) : ṽ ∈ Ṽ

}
. (I’m 4.29)

We further assume that the kernel’s parameters can be adjusted appropriately to ensure
k̃(0, 0) = Ω(1), and that qτ has no pathological peaks, so that Qτmax = O(poly(D))).

Remark. As touched upon in Section 4.7, let P τ be the normalised probability mass function
induced by Qτ on Ṽ

P τ (ṽ) := Qτ (ṽ)∑
ṽ′∈Ṽ

Qτ (ṽ′)
. (4A.10)

We obtain from eq. (4A.6)
k̃(0, 0) = 1

GD

∑
ṽ∈Ṽ

Qτ (ṽ), (4A.11)

and hence, we can regard k̃(0, 0) as the normalisation factor in

P τ (ṽ) = 1
k̃(0, 0)

Qτ (ṽ)
GD

. (4A.12)

This yields a lower bound on the maximum value of Qτ (cf. (4.29))

Qτmax = GD × Qτmax
GD

≥
∑
ṽ∈Ṽ

Qτ (ṽ)
GD

= k̃(0, 0). (4A.13)

With Qτ precomputed8, we quantumly access it where needed with an oracle Orcτ

Orcτ |v〉 |0〉 = |v〉 |Qτ (v)〉 , (4A.14)
8Orcτ can then be efficiently implemented with either quantum arithmetics, or QRAM and a lookup table.
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Chapter 4 Quantum Algorithm for Learning with optimised Random Features

and denote its runtime Tτ per query. In fact, in practice many important cases of Qτ are
classically efficiently computable, so that we can have an efficient subroutine that efficiently
computes Qτ (v) on the fly as and when needed. We assume Qτ (v) ∈ R is computed to
sufficient precision, and omit the overheads, which only contribute weak logarithmic factors to
the runtime and ancillary qubit requirement.

k(x′, x) Qτ (ṽ) k̃(0, 0)

Gaussian exp
(
−γ ‖x′ − x‖22

) D∏
i=1

ϑ
(
πṽi; e−γ

) 1
1− e−γ ≥ 1

Laplacian exp (−γ ‖x′ − x‖1)
D∏
i=1

sinh (γ)
cosh (γ)− cos (2πṽi)

′′

Table 4.3: Examples of the distribution function Qτ (ṽ) for typical kernels. ṽ = (ṽ1, . . . , ṽD)T,
and ϑ is the theta function ϑ (u; q) := 1 + 2∑∞n=1 q

n2 cos (2nu).

Remark. Table 4.3 illustrates that representative choices of kernels, such as the Gaussian
and Laplacian, satisfy our assumptions. For these kernels, Qτ is a product of D special
functions, computable classically in time Tτ = O(D). Also, Qτmax = Qτ (0), and can be made
O (poly (D)) by reducing the parameter γ > 0. In fact, decreasing γ enlarges the class of
learnable functions. These examples indicate that the assumptions made in this section are
weak and easy to satisfy. We reiterate that our algorithm does not impose sparsity or low rank
on k or q̂ρ, making it more widely applicable than previous QML algorithms.

Appendix B The state that encodes Q∗P : Proof of
Proposition 4.2

We had claimed that the bipartite quantum state

|Ψ〉 ∝
∑
ṽ∈X̃

Σ̂−
1
2

ε |ṽ〉X ⊗
√

QτF†D
√

q̂ρ |ṽ〉X
′

(4B.1)

defined on two registers X and X ′ of dD logGe qubits each is our means to sampling optimised
random features. In particular, measuring the register X ′ of |Ψ〉 in the computational basis
{|ṽ〉X

′
: ṽ ∈ Ṽ}, we obtain a measurement outcome ṽ with probability

Pr(ṽ) = Q∗ε (ṽ)P τ (ṽ). (4B.2)
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B The state that encodes Q∗P : Proof of Proposition 4.2

Recall eq. (4.26) and the definition of the optimised probability distribution Q∗ε (ṽ)P τ (ṽ)

Q∗ε (ṽ)P τ (ṽ) = 1
ΓQ

τ (ṽ)
〈
ϕ (ṽ, ·)

∣∣∣∣ q̂ρ(Σ̂ + ε1
)−1

∣∣∣∣ϕ (ṽ, ·)
〉
, (4B.3)

where the normalisation factor is just

Γ =
∑
ṽ′∈Ṽ

Qτ (ṽ′)
〈
ϕ
(
ṽ′, ·

) ∣∣∣∣ q̂ρ(Σ̂ + ε1
)−1

∣∣∣∣ϕ (ṽ′, ·)〉 . (4B.4)

Σ̂ = kq̂ρ is the empirical integral operator, with the discretised kernel matrix and empirical
data density given by (Section 4.5.2)

k =
∑

x̃′,x̃∈X̃

k̃
(
x̃′, x̃

) ∣∣x̃′〉 〈x̃| ,
q̂ρ =

∑
x̃∈X̃

q̂ρ(x̃) |x̃〉 〈x̃| ,

and we will interchangeably interpret the ket labels as ṽ ∈ Ṽ or the corresponding x̃ = Gṽ ∈ X̃ .
Since functions become vectors under discretisation (Table 4.1), using eq. (4A.8) we have

|ϕ (ṽ, ·)〉 = 1√
GD

∑
x̃∈X̃

ϕ (ṽ, x̃) |x̃〉

=
∑
x̃∈X̃

(FD)ṽ,x̃ |x̃〉

= FD |ṽ〉 ,

exploiting the symmetry FT
D = FD enjoyed by the QFT (DFT) in the computational basis,

and as usual, using the equivalence of the two finite sets Ṽ and X̃ .

Then, we have

Pr(ṽ) = 1
ΓQ

τ (ṽ)
〈
ϕ (ṽ, ·)

∣∣∣∣ q̂ρ(Σ̂ + ε1
)−1

∣∣∣∣ϕ (ṽ, ·)
〉

= 1
ΓQ

τ (ṽ)
〈
ṽ

∣∣∣∣F†Dq̂ρ
(
Σ̂ + ε1

)−1
FD

∣∣∣∣ ṽ〉 . (4B.5)

Then, plugging in Qτ from eq. (4.23), we obtain

Pr(ṽ) = 1
Γ

〈
ṽ

∣∣∣∣√QτF†Dq̂ρ
(
Σ̂ + ε1

)−1
FD

√
Qτ

∣∣∣∣ ṽ〉 . (4B.6)

Multiplying and dividing by Qτmax, we can manipulate this into the form

Pr(ṽ) = 1
Γ

〈
ṽ

∣∣∣∣∣√QτF†Dq̂ρ
[ 1
Qτmax

(
Σ̂ + ε1

)]−1
FD

√
Qτ

∣∣∣∣∣ ṽ
〉
, (4B.7)
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where we denote Qτ normalised by Qτmax as

Qτ := 1
Qτmax

Qτ (I’m 4.30)

to keep the notation manageable. We had previously defined in Section 4.8 a positive definite
operator with full support on HX

Σ̂ε := 1
Qτmax

(√
q̂ρk

√
q̂ρ + ε1

)
. (I’m 4.28)

Since q̂ρ may not have full rank, we define on the support of qρ the corresponding operator

Σ̂ρ
ε := 1

Qτmax
·
√

q̂ρ
(
Σ̂ + ε1

)
(q̂ρ)−

1
2

= 1
Qτmax

(√
q̂ρk

√
q̂ρ + εΠρ

)

where (q̂ρ)−
1
2 denotes the square root of the Moore-Penrose pseudoinverse of q̂ρ, and Πρ

projects onto the support of qρ. Clearly, Σ̂ρ
ε = ΠρΣ̂εΠρ, and since k is a symmetric matrix in

the computational basis, both Σ̂ε and Σ̂ρ
ε are also symmetric.

We have by definition

(
Σ̂ρ
ε

)−1
= (q̂ρ)

1
2

[ 1
Qτmax

(
Σ̂ + ε1

)]−1
(q̂ρ)−

1
2 . (4B.8)

We can now proceed to further simplify eq. (4B.7):

Pr(ṽ) = 1
Γ

〈
ṽ

∣∣∣∣√QτF†D
√

q̂ρ
(
Σ̂ρ
ε

)−1√
q̂ρFD

√
Qτ

∣∣∣∣ ṽ〉
= 1

Γ
〈
ṽ
∣∣∣√QτF†D

√
q̂ρΣ̂−1

ε

√
q̂ρFD

√
Qτ

∣∣∣ ṽ〉, (4B.9)

since Πρ
√

q̂ρ =
√

q̂ρ, and
(
Σ̂ρ
ε

)−1
= Πρ

(
Σ̂ε

)−1
Πρ, by definition of Πρ.

Let us now turn our attention to the quantum state in eq. (4B.1). For any two operators A
on HX and B on HX′ , where dimHX = dimHX′ , we have what is often called the ‘transpose
trick’ [NC10] ∑

x∈X
A |x〉X ⊗B |x〉X

′
=
∑
x∈X
|x〉X ⊗BAT |x〉X

′
, (4B.10)
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a property that is extensively exploited in manipulations of maximally entangled bipartite
states, and the Choi-Jamiołkowski isomorphism. Applying this to eq. (4B.1),

|Ψ〉 ∝
∑
ṽ∈Ṽ

Σ̂−
1
2

ε |ṽ〉X ⊗
√

QτF†D
√

q̂ρ |ṽ〉X
′

=
∑
ṽ∈Ṽ

|ṽ〉X ⊗
√

QτF†D
√

q̂ρΣ̂−
1
2

ε |ṽ〉X
′
, (4B.11)

using the symmetry of Σ̂ε. If we measure |Ψ〉 in the computational basis
{
|ṽ〉X ⊗ |ṽ′〉X

′}
, the

probability distribution of measurement outcomes is

p(ṽ, ṽ′) =
∣∣∣(〈ṽ|X ⊗ 〈ṽ′|X′) |Ψ〉∣∣∣2

∝
∣∣∣∣〈ṽ′ ∣∣∣∣√QτF†D

√
q̂ρΣ̂−

1
2

ε

∣∣∣∣ ṽ〉∣∣∣∣2
=
〈
ṽ′
∣∣∣∣√QτF†D

√
q̂ρΣ̂−

1
2

ε

∣∣∣∣ ṽ〉〈ṽ ∣∣∣∣ Σ̂− 1
2

ε

√
q̂ρFD

√
Qτ

∣∣∣∣ ṽ′〉 . (4B.12)

Measuring the register X ′ alone yields an outcome ṽ′ with probability given by tracing out
the register X, i.e. marginalising over ṽ,

p
(
ṽ′
)
∝
∑
ṽ∈X̃

p
(
ṽ, ṽ′

)
=
∑
ṽ∈X̃

〈
ṽ′
∣∣∣∣√QτF†D

√
q̂ρΣ̂−

1
2

ε

∣∣∣∣ ṽ〉〈ṽ ∣∣∣∣ Σ̂− 1
2

ε

√
q̂ρFD

√
Qτ

∣∣∣∣ ṽ′〉

=
〈
ṽ′

∣∣∣∣∣∣
√

QτF†D
√

q̂ρΣ̂−
1
2

ε

∑
ṽ∈X̃

|ṽ〉 〈ṽ|

 Σ̂−
1
2

ε

√
q̂ρFD

√
Qτ

∣∣∣∣∣∣ ṽ′
〉

=
〈
ṽ′
∣∣∣∣√QτF†D

√
q̂ρΣ̂−

1
2

ε 1Σ̂−
1
2

ε

√
q̂ρFD

√
Qτ

∣∣∣∣ ṽ′〉
=
〈
ṽ′
∣∣∣√QτF†D

√
q̂ρΣ̂−1

ε

√
q̂ρFD

√
Qτ

∣∣∣ ṽ′〉 . (4B.13)

Finally, the normalisation condition 〈Ψ |Ψ〉 = 1 ensures that the normalisation factor for p(ṽ′)
is the same as Γ of eq. (4B.4). Therefore, eq. (4B.9) and eq. (4B.13) together yield

p(ṽ) = Q∗ε (ṽ)P τ (ṽ), (4B.14)

completing the proof.

Appendix C The runtime of quOptRF: Proof of Theorem 4.3

In this appendix we look at the step-by-step resource requirements of Algorithm 4.1 for
sampling an optimised random feature by preparing and measuring the state defined in
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Chapter 4 Quantum Algorithm for Learning with optimised Random Features

Proposition 4.2, and thereby establish Theorem 4.3. Note that each line of Algorithm 4.1 is
performed approximately with a sufficiently small precision to achieve the overall sampling
precision ∆ > 0, in the same way as classical algorithms that deal with real numbers using
fixed- or floating-point number representation with a sufficiently small precision.

Theorem (Runtime of our quantum algorithm for sampling an optimised random feature).
Given D-dimensional data discretised by G > 0, for any accuracy ε > 0 and any sampling
precision ∆ > 0, Algorithm 4.1 samples a feature ṽ ∈ Ṽ from a weighted distribution Q(ṽ)P τ (ṽ)
with

∑
ṽ∈Ṽ |(Q(ṽ)−Q∗ε (ṽ))P τ (ṽ)| ≤ δ′, in runtime

T = O (D logG log logG+ Tρ + Tτ )× Õ
(
Qτmax
ε

poly log 1
δ′

)
,

where Tρ and Tτ are the runtimes of the oracles Orcρ and Orcτ per query, and Qτmax and Orcτ
are defined as eq. (4.29) and eq. (4A.14), respectively. In particular, T is linear in D.

Algorithm 4.1 again: Quantumly sampling an optimised random feature (quOptRF).
Require: A desired accuracy ε > 0 in the supervised learning, sampling precision δ′ > 0,

quantum oracles Orcρ in eq. (4.19) and Orcτ in eq. (4A.14), and Qτmax > 0 in eq. (4.29).

Ensure: An optimised random feature ṽ ∈ Ṽ sampled from a probability distribution

Q (ṽ)P τ (ṽ) with ∑ṽ∈Ṽ |Q (ṽ)P τ (ṽ)−Q∗ε (ṽ)P τ (ṽ)| ≤ δ′.

1: Initialise quantum registers X and X ′, and load data |0〉X ⊗ |0〉X
′
7−→

∑
x̃∈X̃ |x̃〉

X ⊗
√

q̂ρ |x̃〉X
′
.

2: Perform a D-dimensional quantum Fourier transform F†D on X ′ to obtain ∑x̃∈X̃ |x̃〉
X ⊗

F†D
√

q̂ρ |x̃〉X
′
.

3: Apply the block encoding of
√

Qτ to X ′ followed by amplitude amplification to obtain a

state proportional to ∑x̃∈X̃ |x̃〉
X ⊗

√
QτF†D

√
q̂ρ |x̃〉X

′
.

4: Apply the block encoding of Σ̂−
1
2

ε to X to obtain the quantum state |Ψ〉XX
′
in Proposi-

tion 4.2.

5: Perform a measurement of X ′ in the computational basis to obtain x̃ with probability

Q∗ε

(
x̃
G

)
P τ
(
x̃
G

)
.

6: Return ṽ = x̃
G .

The two primary subroutines used in Algorithm 4.1 are (1) the quantum Fourier transform
(QFT); and (2) quantum singular value transformation (QSVT).
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The unitary QFT operator F of eq. (4.24) can be implemented to precision δ′ by a quantum
circuit composed of

f1 = O
(

logG · log logG · poly log
( 1
δ′

))
(4C.1)

controlled NOTs and single qubit rotation gates [HH00]. Using this, we get a circuit for
FD = F⊗D with gate complexity O (Df1). Multiplying two O (logG)-bit numbers classically
requires O (logG log logG) operations [HV19]; quantum arithmetics will have the same scaling
to leading order. We could also use the exact QFT [NC10] or grammar-school-method
multiplication instead of these algorithms, only introducing an extra O (logG) factor.

Block encodings and QSVT

To discuss the complexity of steps 1, 3, 4 of Algorithm 4.1, we construct efficient block encodings
for the data density and integral operators; in particular, we first exhibit a block encoding of√

Qτ , and use it to exhibit one for Σ̂ε. We continue to use the definition Definition 3.3 of
block encodings that we saw in the appendices to Chapter 3.

Our construction is based on a method of building block encodings for positive operator-
valued measures (POVM) [GSL+19]. In particular, for any precision δ > 0 and any POVM
element Λ, satisfying 0 � Λ � 1, let U be a unitary operator a-ancilla plus s-system qubits,
that satisfies for any state |ψ〉∣∣∣Tr [ΠψΛ]− Tr

[
U
(
ΠA

0 ⊗Πψ

)
U† (Π0 ⊗ 1a+s−1)

]∣∣∣ ≤ δ, (4C.2)

where Πψ = |ψ〉〈ψ| etc. are projectors, and A is the a-qubit ancillary register. The second
term here corresponds to the probability of the measurement outcome being 0 on measuring
the first ancilla qubit of the state U

(
|0〉⊗n ⊗ |ψ〉

)
, for any input state |ψ〉, i.e.

Pr(A = 0) = Tr
[
U
(
ΠA

0 ⊗Πψ

)
U† (Π0 ⊗ 1a+s−1)

]
. (4C.3)

We can then use [GSL+19, Lemma 49]:

Lemma. Using one query each to U and U†, and one additional CNOT gate, we obtain the
(1, 1 + a, δ)-block encoding of Λ given by(

11 ⊗U†
)

(CNOT⊗1a+s−1) (11 ⊗U) .

We now present an explicit construction of the circuit U for the diagonal POVM oper-
ator Λ =

√
Qτ in the following lemma, using the quantum oracle Orcτ . Since a diagonal

operators are 1-sparse, conventional methods of implementing block encodings of sparse
operators [GSL+19] would also be applicable to

√
Qτ ; nonetheless our key contribution here
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is to use the the block encoding of
√

Qτ as a building block of a more complicated one: that
of Σ̂ε, which is not necessarily sparse or of low rank. By the definition of Orcτ ,

Orcτ
(
|v〉 ⊗ |0〉

)
= |v〉 ⊗ |Qτ (v)〉 . (I’m 4A.14)

As we have always done, we implicitly use the bijection between the discretised set of data
points X̃ = {0, 1, . . . , G − 1} and feature points Ṽ = {0, 1/G, . . . , 1 − 1/G} while computing
values of the function Q, which actually has domain X̃ but divides its arguments by G before
using them; we assume that the oracle Orcτ has these niceties built into it. Achieving overall
precision δ will require the use of sufficient ancillary qubits to perform floating point operations
with Qτ (v) etc. , but we will neglect the weak logarithmic overheads coming from this.

Lemma 4.5 (Block encoding of a diagonal POVM operator). For any diagonal positive
semidefinite operator Qτ as in eq. (4.23), we can implement a (1, a, δ) block encoding of

√
Qτ

using
s = O

(
D · logG · poly log 1

δ

)
ancillary qubits, a single query to the quantum oracle Orcτ , and O (s log logG) additional one
and two qubit gates.

X : |ψ〉X

A1 : |0〉⊗a

A2 : |0〉⊗a

A3 : |0〉⊗a
A4 : |0〉

Orcτ
UQτmax

Uθ1

R 0, 1

Figure 4.1: A quantum circuit representing a unitary operator U that achieves eq. (4C.2)
for Λ =

√
Qτ , which can be used for implementing a block encoding of√

Qτ . This circuit achieves the transformations shown in eq. (4C.9). The
last controlled gate represents CR. Here, the system register X consists of
DdlogGe qubits, and ancillary registers A1−3 consist of a = O(poly log 1/δ)
qubits each.

Proof. First we construct a quantum circuit U that achieves eq. (4C.2) for Λ =
√

Qτ . Denote
an arbitrary input system state by

|ψ〉X =
∑
ṽ∈X̃

αṽ |ṽ〉X ∈ HX . (4C.4)

Define a function
θ1 (q) := arccos

(
q

1
4
)
. (4C.5)
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Let Rθ denote the single qubit rotation e−iθσy

Rθ :=
(

cos θ − sin θ
sin θ cos θ

)
, (4C.6)

and let CR be the controlled rotation

CR =
∑
θ

|θ〉〈θ| ⊗Rθ. (4C.7)

Also assume we have circuits for unitary operators UQτmax and Uθ1

UQτmax |q〉 |0〉 = |q〉
∣∣∣∣ q

Qτmax

〉
Uθ1 |q〉 |0〉 = |q〉 |θ1(q)〉 . (4C.8)

The circuit of fig. 4.1 then achieves the following transformation (to precision δ). First load
the periodi sed data density Q of eq. (4.22)

|ψ〉 |0〉 |0〉 |0〉 |0〉 Orcτ−−−→
∑
ṽ

αṽ |ṽ〉 |Qτ (ṽ)〉 |0〉 |0〉 |0〉 , (4C.9)

then normalise by the maximum of Q, doing some quantum artihmetics,

. . .
UQτmax−−−−→

∑
ṽ

αṽ |ṽ〉 |Qτ (ṽ)〉
∣∣∣∣Qτ (ṽ)
Qτmax

〉
|0〉 |0〉 , (4C.10)

and then doing some inverse trigonometry,

. . .
Uθ1−−→

∑
ṽ

αṽ |ṽ〉 |Qτ (ṽ)〉
∣∣∣∣Qτ (ṽ)
Qτmax

〉 ∣∣∣∣θ1

(
Qτ (ṽ)
Qτmax

)〉
|0〉 (4C.11)

and finally using the angle obtained to perform controlled rotations, we obtain

. . .
CR−−→

∑
ṽ

αṽ |ṽ〉 |Qτ (ṽ)〉
∣∣∣∣Qτ (ṽ)
Qτmax

〉 ∣∣∣∣θ1

(
Qτ (ṽ)
Qτmax

)〉
( 1

Qτmax
Qτ (ṽ)

) 1
4
|0〉+

√√√√1−
√

1
Qτmax

Qτ (ṽ) |1〉

 . (4C.12)

The runtime of the quantum oracle Orcτ queried in eq. (4C.9) is O(1) modulo preprocessing
cost for the QRAM; let us call it Tτ . The quantum arithmetics for normalising by Qτmax
in eq. (4C.10), and calculating the inverse trigonometric function θ1 in eq. (4C.11) incurs a
circuit of size a = O (poly log 1/δ′) for a suitable precision δ′ [HRS18]. In eq. (4C.12), we rotate
the single qubit register A4 controlled on the angle computed and stored in A3, needing O (a)
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gates since A3 stores θ to a-bits of precision. Measuring the A4 register, we get outcome 0
with probability

Pr(A4 = 0) =
∑
ṽ∈X̃

|αṽ|2
√

1
Qτmax

Qτ (ṽ) = Tr
[
Πψ

√
Qτ
]
, (4C.13)

which achieves eq. (4C.2) for Λ =
√

Qτ within the claimed runtime.

With the block-encoded
√

Qτ as a building block, we next construct a block encoding of
Σ̂ε. Note that while the following proposition provides a(

1,O
(
D logGpoly log 1

δ

)
, δ

)

block encoding of (1 + ε/Qτmax)−1 Σ̂ε, it is equivalently a(
1 + ε/Qτmax,O

(
D logGpoly log 1

δ

)
, (1 + ε/Qτmax) δ

)

block encoding of Σ̂ε by definition.

Lemma 4.6 (Block encoding of Σ̂ε). For any ε > 0 and any operator Σ̂ε of the form in
eq. (4.28), we can implement a (1, s, δ)-block encoding of

1
1 + ε/Qτmax

Σ̂ε

using a single query each to the quantum oracles Orc†ρ and Orcτ , and O (s log logG) additional
one- and two-qubit gates, with an ancillary register is of size

s = O
(
D · logG · poly log 1

δ

)

Proof. We will first construct a circuit U that achieves eq. (4C.2) for Λ = Σ̂ε, using the same
notation as in lemma 4.5. Let

|ψ〉X =
∑
x̃∈X̃

αx̃ |x̃〉X ∈ HX . (4C.14)

be an arbitrary input system state, and define functions

θ2 (q) := arccos (√q) , (4C.15)

θ3 (ε) := arccos
(√

ε/Qτmax
1 + ε/Qτmax

)
. (4C.16)
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X : |ψ〉
A1 : |0〉⊗a

A2 : |0〉⊗a

A3 : |0〉⊗a
X′ : |0〉
A4 : |0〉
A5 : |0〉

Rθ3(ε)

Orc†ρ

F†D Orcτ
U
Q

(τ)
max

Uθ2

UR

0, 1

Figure 4.2: Quantum circuit for U that achieves eq. (4C.2) for Λ = Σ̂ε, which can
be used for implementing a block encoding of Σ̂ε. The first controlled-not
collectively represents CNOT gates on corresponding pairs of qubits of X and
X ′. This circuit achieves the series of transformations starting from eq. (4C.19).
Measuring register A5 produces outcomes in accordance with eq. (4C.23).
Here, a = O(poly log 1/ε).

Since these are efficiently computable elementary functions, we again have efficient circuits for
the quantum arithmetics, for instance

Uθ2 |q〉 |0〉 = |q〉 |θ2(q)〉 . (4C.17)

We will also need the multi-controlled rotation (as before, Πθ := |θ〉〈θ| etc. are projectors)

UR =
(
1
A3 ⊗ 1X′ ⊗ΠA4

0 ⊗ 1
A5
)

+
(∑

θ

ΠA3
θ ⊗ (1−Π0)X

′
⊗ΠA4

1 ⊗ σ
A5
x

)

+
(∑

θ

ΠA3
θ ⊗ΠX′

0 ⊗ΠA4
1 ⊗RA5

θ

)
. (4C.18)

Let us now analyse the quantum circuit of fig. 4.2, with these ingredients in place. The part
of this circuit in between the vertical dashed lines also appears in fig. 4.1. The preprocessing
before the first vertical line effects the transformation

|ψ〉X |0〉 |0〉 |0〉 |0〉X
′
|0〉A4 |0〉A5 (4C.19)

CNOT−−−−→
∑
x̃

αx̃ |x̃〉X |0〉 |0〉 |0〉 |x̃〉X
′
|0〉A4 |0〉A5 (4C.20)

F†D⊗Orc†ρ⊗Rθ3(ε)−−−−−−−−−−−→
∑
x̃

αx̃F†D |x̃〉
X |0〉 |0〉 |0〉Orc†ρ |x̃〉X

′

(√
ε/Qτmax

1 + ε/Qτmax
|0〉A4 +

√
1

1 + ε/Qτmax
|1〉A4

)
⊗ |0〉A5 . (4C.21)

In eq. (4C.20), CNOT gates on each of the O (D logG) qubits of the quantum registers X and
X ′ copy out the basis states into the register X ′. F†D in eq. (4C.21) requires Õ (D logG) gates
as we saw in eq. (4C.1). Orc†ρ queries QRAM and so it costs only O(1) in lookup (addressing)
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time, but say the preprocessing (state preparation) time is Tρ. The single qubit rotation Rθ3(ε)
of eq. (4C.6) can be implemented with precision O(δ′) using O

(
poly log 1

δ′

)
gates [NC10].

Next comes the part that was also in fig. 4.1. Following this, we implement Uθ2 as we did in
eq. (4C.11), using O

(
poly log 1

δ′

)
gates. We can implement UR using O

(
D logGpoly log 1

δ′

)
gates since |θ〉 is stored in O

(
poly log 1

δ′

)
qubits and X ′ consists of O (D logG) qubits.

After performing UR, we measure the last qubit A5 in the computational basis. We
will calculate the probability of obtaining the outcome 0 in this measurement of A5 using
conditional probabilities; suppose that we performed a measurement of the one-qubit register
A4 in the computational basis. The outcome probabilities are

Pr(A4 = 0) = ε/Qτmax
1 + ε/Qτmax

Pr(A4 = 1) = 1
1 + ε/Qτmax

. (4C.22)

Conditioned on seeing A4 = 0, measuring A5 gives outcome 0 with certainty, corresponding to
the first term of eq. (4C.18). Similarly, the third term of eq. (4C.18) tells us that

Pr(A5 = 0 | A4 = 1) =
∑
x̃′∈X̃

∣∣∣∣∣∣
∑
x̃∈X̃

αx̃
〈
x̃′
∣∣∣F†D ∣∣∣ x̃〉〈0

∣∣∣Orc†ρ
∣∣∣ x̃〉√ 1

Qτmax
Qτ
(
x̃′

G

)∣∣∣∣∣∣
2

=
∑
x̃′∈X̃

1
Qτmax

Qτ
(
x̃′

G

) ∣∣∣∣∣∣
∑
x̃∈X̃

αx̃
〈
x̃′
∣∣∣F†D ∣∣∣ x̃〉〈0

∣∣∣Orc†ρ
∣∣∣ x̃〉

∣∣∣∣∣∣
2

. (4C.23)

The second term of eq. (4C.18) makes no contribution to eq. (4C.23) because σx flips |0〉 to
|1〉. Recall that by definition of Orcρ,

Orcρ |0〉 =
∑
x̃∈X̃

√
q̂ρ(x̃) |x̃〉 =

√
q̂ρ
∑
x̃∈X̃

|x̃〉 . (I’m 4.19)

This means that ∣∣∣〈0
∣∣∣Orc†ρ

∣∣∣ x̃〉∣∣∣ =
√
q̂ρ(x̃).

We then have

eq. (4C.23) =
∑
x̃′∈X̃

1
Qτmax

Qτ
(
x̃′

G

) ∣∣∣∣∣∣
∑
x̃∈X̃

αx̃
〈
x̃′
∣∣∣F†D ∣∣∣ x̃〉√q̂ρ(x̃)

∣∣∣∣∣∣
2

=
∑
x̃′∈X̃

1
Qτmax

Qτ
(
x̃′

G

) ∣∣∣∣∣∣
∑
x̃∈X̃

αx̃
〈
x̃′
∣∣∣F†D√q̂ρ

∣∣∣ x̃〉
∣∣∣∣∣∣
2

. (4C.24)
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By definition eq. (4C.14) of |ψ〉, we have

eq. (4C.24) =
∑
x̃′∈X̃

1
Qτmax

Qτ
(
x̃′

G

) ∣∣∣〈x̃′ ∣∣∣F†D√q̂ρ
∣∣∣ψ〉∣∣∣2

=
∑
x̃′∈X̃

1
Qτmax

Qτ
(
x̃′

G

)〈
x̃′
∣∣∣F†D√q̂ρΠψ

√
q̂ρFD

∣∣∣ x̃′〉

= 1
Qτmax

Tr

F†D
√

q̂ρΠψ

√
q̂ρFD

∑
x̃′∈X̃

Qτ
(
x̃′

G

) ∣∣x̃′〉 〈x̃′∣∣
 . (4C.25)

By definition eq. (4.23) of Qτ , this is the same as

eq. (4C.25) = 1
Qτmax

Tr
[
F†D
√

q̂ρΠψ

√
q̂ρFDQτ

]
= 1
Qτmax

Tr
[
Πψ

√
q̂ρFDQτF†D

√
q̂ρ
]

= 1
Qτmax

Tr
[
Πψ

√
q̂ρk

√
q̂ρ
]
, (4C.26)

where the last equality follows from the perfect reconstruction of the kernel k shown in
Proposition 4.1. Therefore, plugging in the probabilities for measurements on A4 from
eq. (4C.22), we obtain

Pr(A5 = 0) = ε/Qτmax
1 + ε/Qτmax

× 1 + 1
1 + ε/Qτmax

×
( 1
Qτmax

Tr
[
Πψ

√
q̂ρk

√
q̂ρ
])

= 1
1 + ε/Qτmax

× Tr
[
Πψ

(
ε

Qτmax
1

)]
+ 1

1 + ε/Qτmax
× Tr

[
Πψ

( 1
Qτmax

√
q̂ρk

√
q̂ρ
)]

= 1
1 + ε/Qτmax

× Tr
[
Πψ

( 1
Qτmax

√
q̂ρk

√
q̂ρ + ε

Qτmax
1

)]
= Tr

[
Πψ

( 1
1 + ε/Qτmax

Σ̂ε

)]
, (4C.27)

where the last equality follows from the definition eq. (4.28) of Σ̂ε (Section 4.8). This
achieves eq. (4C.2) for Λ = 1

1+ε/Qτmax
Σ̂ε within the claimed circuit size.

We can now bound the runtime of Algorithm 4.1 using the analyses for these block
encodings in lemmas 4.5 and 4.6.

Proof of Theorem 4.3. The most resource intensive step of Algorithm 4.1 is Step 5, as can be
seen in the following.

In Step 2, we prepare ∑x̃ |0〉
X ⊗
√

q̂ρ |x̃〉X
′
by one query to the oracle Orcρ, followed by

O (D logG) CNOT gates to prepare ∑x̃ |x̃〉
X ⊗
√

q̂ρ |x̃〉X
′
, since HX consists of O (D logG)

qubits. Step 3 performs F†D, which is implemented using Õ (D logG) gates as shown
in eq. (4C.1). Step 4 is the block encoding of

√
Qτ , requiring Õ (D logG+ Tτ ) gates as
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shown in lemma 4.5. The runtime at this moment is Õ (D logG+ Tρ + Tτ ). After Step-4, the
part of the state we are interested in is

∑
x̃∈X̃

|x̃〉X ⊗
√

QτF†D
√

q̂ρ |x̃〉X
′
. (4C.28)

The norm of this term is
∥∥∥∥∥∥
∑
x̃∈X̃

|x̃〉X ⊗
√

QτF†D
√

q̂ρ |x̃〉X
′

∥∥∥∥∥∥
2

=

√√√√Tr
[√

q̂ρFDQτF†D
√

q̂ρ
]

Qτmax

=

√√√√Tr
[
FDQτF†Dq̂ρ

]
Qτmax

=
√

Tr Σ̂
Qτmax

, (4C.29)

where the last equality uses Σ̂ = kq̂ρ = FDQτF†Dq̂ρ obtained from Proposition 4.1. For any
translation-invariant kernel k̃(x′, x) = k̃ (x′ − x), we can evaluate Tr Σ̂ as

Tr Σ̂ = Tr [kq̂ρ] = k̃(0) Tr q̂ρ = k̃(0, 0) = Ω(1), (4C.30)

where we use the mild assumption k̃(0, 0) = Ω(k(0, 0)) = Ω(1) that we’d discussed in
Appendix A. Thus, to obtain the normalised quantum state proportional to the term eq. (4C.28),
Step 4 is followed by standard amplitude amplification, repeating the above steps

O
(√

Qτmax
Tr Σ̂

)
= O

(√
Qτmax

)

times. Therefore, at the end of Step 4 including the amplitude amplification, the runtime is

O
((

D logG log logGpoly log 1
δ

+ Tρ + Tτ

)
×
√
Qτmax

)
. (4C.31)

Step 5 performs a block encoding of Σ̂−
1
2

ε , which is obtained from quantum singular value trans-
formation (QSVT) of the block encoding UΣ̂ of (1 + ε/Qτmax)−1 Σ̂ε constructed in lemma 4.6.
The QSVT combined with variable-time amplitude amplification [Amb12, CGJ19] yields a

block encoding of
(

1
1+(ε/Qτmax)Σ̂ε

)− 1
2 , using UΣ̂

Õ

((
Qτmax
ε

+ 1
)
poly log 1

δ′

)
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times [GSL+19]. This includes amplitude amplification, and Qτmax
ε + 1 is the condition number

of 1
1+(ε/Qτmax)Σ̂ε since it holds that

1
1 + (ε/Qτmax)

ε

Qτmax
1 ≤ 1

1 + (ε/Qτmax)Σ̂ε ≤ 1. (4C.32)

Thus, the net runtime/circuit size for Step 5 is

O (D logG log logG+ Tρ + Tτ )× Õ
(
Qτmax
ε

poly log 1
δ

)
. (4C.33)

Finally, from eq. (4C.31) and eq. (4C.33), the total runtime of quOptRF at the end of Step 5,
including all amplitude amplification steps, is

O (D logG log logG+ Tρ + Tτ )× Õ
((√

Qτmax + Qτmax
ε

)
poly log 1

δ

)
= Õ

(
D logG · Q

τ
max
ε
· poly log 1

δ

)
, (4C.34)

establishing our claim.

Appendix D The runtime of SGD: Proof of Theorem 4.4

Finally, we prove Theorem 4.4 bounding the overall runtime of the supervised learning with
optimised random features. Algorithms 4.2 and 4.3 for stochastic gradient descent (SGD) and
achieving the supervised learning respectively are also repeated in the following.

Theorem (Overall runtime of supervised learning by optimised random features). The runtime
of Algorithm 4.3 is

O (MT ) +O

(
(MD + Tx̃ + Ty)

1
ε2Q2

min
log 1

δ

)
,

where T is the runtime of quOptRF, M is the number of optimised random features to be
sampled using by Algorithm 4.1, and the second term is runtime of the SGD. In particular,
this is as fast as linear in M and D, i.e. O (MD).

Recall that to perform the SGD, we invoke classical RAM oracles for accessing data

Orcx̃(n) = x̃n, Orcy(n) = yn. (I’m 4.18)
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Algorithm 4.2 again: Descending stochastically using the gradient
Require: A function I :W → R, a projection Π to a convex parameter region W ⊂ RM , a

fixed number of iterations T ∈ N, an initial point α1 ∈ W, T -dependent hyperparameters

representing step sizes
(
η(t) : t = 1, . . . , T

)
given in [JNN19].

Ensure: Approximate solution α minimising I(α).

1: for t ∈ {1, . . . , T} do

2: Calculate ĝ(t) satisfying E
[
ĝ(t)
]

= ∇I(α(t)).

3: α(t+1) ← Π(α(t) − η(t)ĝ(t)).

4: end for

5: Return α← α(T+1).

Algorithm 4.3 again: quOptRF for supervised learning.
Require: Inputs to Algorithms 4.1 and 4.2, required number M of features for achieving the

learning to accuracy O(ε), classical oracles Orcx̃,Orcy in eq. (4.18).

Ensure: Optimised random features v0, . . . , vM−1 and coefficients α0, . . . , αM−1 for∑
m αmϕ(vm, ·) to achieve the learning with probability greater than 1− δ.

1: for m ∈ {0, . . . ,M − 1} do

2: vm ← quOptRF. . by Algorithm 4.1.

3: end for

4: Minimise I(α) to accuracy O(ε) by SGD to obtain α0, . . . , αM−1. . by Algorithm 4.2.

5: Return v0, . . . , vM−1, α0, . . . , αM−1.

Proof. Let us look at Algorithm 4.3 step-by-step. In Step 2, using Algorithm 4.1 repeatedly
M times, we can obtain M optimised random features within time

O(MTq), (4D.1)

where Tq is the runtime of quOptRF as given by Theorem 4.3. As for Step 4, we bound the
runtime of the SGD in Algorithm 4.2. In the following, we show that the runtime of each
iteration of the SGD is O (MD + Tx̃ + Ty), and the required number of iterations in the SGD
is upper bounded by O

(
1

ε2Q2
min

log 1
δ

)
.
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Consider the tth iteration of the SGD for t ∈ {0, . . . , T − 1}. The most intensive step is
the calculation of an unbiased estimate ĝ(t) of the gradient E

[
ĝ(t)
]

= ∇I
(
α(t)

)
for

I (α) :=
∑
x̃∈X̃

pρ(x̃)
∣∣∣∣∣f(x̃)−

M−1∑
m=0

αmϕ (vm, x̃)
∣∣∣∣∣
2

, (4D.2)

where ϕ(v, x) = e−2πiv·x, pρ(x̃) =
∫
∆x̃
dρ(x), and we write

α =


α0
...

αM−1

 . (4D.3)

The gradient of I is given by

∇I (α) =
∑
x̃∈X̃

pρ(x̃)


2<
[
e−2πiv0·x̃

(
f(x̃)−∑M−1

m=0 αme2πivm·x̃
)]

...
2<
[
e−2πivM−1·x̃

(
f(x̃)−∑M−1

m=0 αme2πivm·x̃
)]


=
M−1∑
m=0

1
M

∑
x̃∈X̃

pρ(x̃)


2<
[
e−2πiv0·x̃

(
f(x̃)−Mαme2πivm·x̃)]

...
2<
[
e−2πivM−1·x̃

(
f(x̃)−Mαme2πivm·x̃)]

 , (4D.4)

where < represents the real part. In the tth iteration, Algorithm 4.2 estimates the gradient at
the point α(t)

0 ∈
{
α(1), . . . , α(t)

}
Using a pair of given data points (x̃t, yt = f (x̃t)) ∈ {(x̃0, y0) , (x̃1, y1) , . . . , } sampled with

probability pρ(x̃) as observations of an independently and identically distributed (IID) random
variable, and an integer m ∈ {0, . . . ,M − 1} uniformly sampled with probability 1

M , we give
an unbiased estimate ĝ(t) of this gradient at each point α(t) by

ĝ(t) =


2<
[
e−2πiv0·x̃t

(
yt −Mα

(t)
m e2πivm·x̃t

)]
...

2<
[
e−2πivM−1·x̃t

(
yt −Mα

(t)
m e2πivm·x̃t

)]
 . (4D.5)

By construction, we have
E
[
ĝ(t)
]

= ∇I
(
α(t)

)
. (4D.6)

We obtain x̃t and yt = f (x̃t) using the classical RAM oracles Orcx̃ and Orcy; say we bundle
their query and update times all together into Tx̃ and Ty respectively. We can represent the
integer m using lenm = dlog2Me bits, where dxe is the least integer greater than or equal to x,
so we can sample m from a uniform distribution standard random number generators within
time O (poly logM). Note that even if in context it is expensive to use classical randomness,
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quantum computation can efficiently sample m uniform lenm-bit strings in O(logM) time.
To do this, lenm qubits are initially prepared in the all |0〉 state, and the Hadamard gate is
applied to each qubit to obtain

1√
2lenm

(|0〉+ |1〉)⊗lenm , (4D.7)

followed by a measurement of this state in the computational basis. Given x̃t, yt, and m, we
can calculate each of the M elements of ĝ in eq. (4D.5) within time O(D) for calculating
the inner product of D-dimensional vectors, and hence the calculation of all the M elements
takes time O(MD). Note that without sampling m, O(M2D) runtime per iteration would be
needed, because each of the M elements of the gradient in eq. (4D.4) includes the sum over
M terms. Therefore, each iteration takes time

O (Tx̃ + Ty + poly logM +MD) = O (MD + Tx̃ + Ty) . (4D.8)

To bound the required number of iterations, we use an upper bound of the number of
iterations in Algorithm 4.2 given in [JNN19], which shows that if we have for any α ∈ W

‖∇I(α)‖2 ≤ L, (4D.9)

the unbiased estimate ĝ for any point α ∈ W almost surely satisfies

‖ĝ‖2 ≤ L, (4D.10)

and the diameter of W is bounded by some diamW ≤ d, then after T iterations, with
probability greater than 1− δ, Algorithm 4.2 returns α satisfying

ε = O

dL
√

log 1
δ

T

 , (4D.11)

where we write
ε = I(α)− min

α∈W
{I(α)} . (4D.12)

In the following, we bound d and L in eq. (4D.11) to clarify the upper bound of the
required number of iterations T in our setting.

To show a bound of d, recall the assumption that we are given a sufficiently large numberM
of features for achieving the learning in our setting. Then, [Bac17] has shown that with the M
features sampled from the weighted probability distribution Q(vm)P τ (vm) by Algorithm 4.1,
the learning to the accuracy O(ε) can be achieved with coefficients satisfying

‖β‖22 = O

( 1
M

)
, (4D.13)
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where β = (β0, . . . , βM−1)T is defined for each m as

βm =
√
Q(vm)αm. (4D.14)

This bound yields
M−1∑
m=0

Q(vm)α2
m = O

( 1
M

)
. (4D.15)

In the worst case, a lower bound of the left-hand side is

M−1∑
m=0

Q(vm)α2
m ≥ Qmin ‖α‖22 , (4D.16)

where Qmin is given by

Qmin = min {Q(vm) : m ∈ {0, 1, . . . ,M − 1}} . (4D.17)

Note that as discussed in Appendix A, in the parameter region of sampling optimised random
features that are weighted by importance and that nearly minimise M , the minimal weight
Qmin of these features is expected to be sufficiently large compared to ε, not dominating the
runtime. We still keep Qmin in our analysis to bound the worst-case runtime. From eq. (4D.15)
and eq. (4D.16), we obtain an upper bound of the norm of α minimising I

‖α‖22 = O
( 1
MQmin

)
. (4D.18)

Thus, it suffices to choose the parameter region W of α as an M -dimensional ball of centre 0
and of radius O

(
1√

MQmin

)
, which yields the diameter

d = O
( 1√

MQmin

)
. (4D.19)

As for a bound of L, we obtain from eq. (4D.5)

‖ĝ‖2 = O
(
M ‖α‖2 +

√
M
)

= O
(√

M

Qmin
+
√
M

)
= O

(√
M

Qmin

)
, (4D.20)

where we take the worst case of small Qmin, and we use bounds√√√√M−1∑
m=0
|Mαme2πivm·x̃t |2 = O(M‖α‖2), (4D.21)

√√√√M−1∑
m=0

y2
t = O(

√
M). (4D.22)
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Since this upper bound of ‖ĝ‖2 is larger than ‖∇I(α)‖2, we have

L = O
(√

M

Qmin

)
. (4D.23)

Using eq. (4D.19) and eq. (4D.23), we bound the right-hand side of eq. (4D.11)

ε = O

dL
√

log 1
δ

T

 = O

 1
Qmin

√
log 1

δ

T

 . (4D.24)

Therefore, it follows that
T = O

( 1
ε2Q2

min
log 1

δ

)
. (4D.25)

Combining eq. (4D.1), eq. (4D.8), and eq. (4D.25), we obtain the claimed overall runtime.
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Chapter 5

A quantum search decoder for Natural
Language Processing

Synopsis: Probabilistic language models, e.g. those based on an LSTM, often face the
problem of finding a high probability prediction from a sequence of random variables
over a set of words. This is commonly addressed using a form of greedy decoding such
as beam search, where a limited number of highest-likelihood paths (the beam width)
of the decoder are kept, and at the end the maximum-likelihood path is chosen. The
resulting algorithm has linear runtime in the beam width. However, the input is not
necessarily distributed such that a high-likelihood input symbol at any given time step
also leads to the global optimum. Limiting the beam width can thus result in a failure
to recognise long-range dependencies. In practice, only an exponentially large beam
width can guarantee that the global optimum is found: for an input of length n and
average parser branching ratio R, the baseline classical algorithm needs to query the
input on average Rn times.

In this work, we construct a quantum algorithm to find the globally optimal parse
with high constant success probability. Given the input to the decoder is distributed
like a power-law with exponent k > 0, our algorithm yields a runtime Rnf(R,k), where
f ≤ 1/2, and f → 0 exponentially quickly for growing k. This implies that our
algorithm always yields a super-Grover type speedup, i.e. it is more than quadratically
faster than its classical counterpart. The algorithm is based on a recent quantum
maximum finding algorithm, which we combine with an advice-based query analysis for
quantum search; it is known that the latter cannot be used to speed up an equivalent
classical algorithm. The quantum search decoder requires a quantum procedure that
can sample from the grammar to be parsed, but in a biased fashion: the weight of
each word in the sequence is determined by the sequence of random variables given as
input. We explicitly construct such a quantum sampling subroutine for the case where
a classical uniform sampler is known (e.g. for regular or context-free languages).

We further modify our procedure to recover a quantum beam search variant, which
enables an even stronger empirical speedup, while sacrificing accuracy. Finally, we
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apply this quantum beam search decoder to Mozilla’s implementation of Baidu’s
DeepSpeech neural net, which we show to exhibit such a power law word rank frequency,
underpinning the applicability of our model.

5.1 Background and Context

A recurring task in the context of parsing and neural sequence to sequence models—such as
machine translation [SMH11, SVL14], natural language processing [Sch14] and generative
models [Gra13]—is to find an optimal path of tokens (e.g. words or letters) from a sequential
list of probability distributions. Such a distribution can for instance be produced at the output
layer of a recurrent neural network, e.g. a long short-term memory (LSTM). The goal is to
decode these distributions by scoring all viable output sequences (paths) under some language
model, and finding the path with the highest score.

Nowadays, the de-facto standard solution is to use a variant of beam search [STN94,
VCS+16, WR16, KMC+18] to traverse the list of all possible output strings. Beam search
stores and explores a constant sized list of possible decoded hypotheses at each step, compared
to a greedy algorithm that only considers the top element at each step. Beam search thus
interpolates between a simple greedy algorithm, and best-first search; but just like greedy
search, beam search is not guaranteed to find a global optimum. Furthermore, beam search
suffers from sensitivity to the predicted sequence length; improving the algorithm itself [MC18,
YHM18], as well as finding new decoding strategies [FLD18, HBF+19], is an ongoing field of
research.

A related question is found in transition based parsing of formal languages, such as context-
free grammars [HMU01, ZC08, ZN11, ZQH15, DBL+15]. In this model, an input string is
processed token by token, and a heuristic prediction (which can be based on various types of
classifiers, such as feed forward networks) is made on how to apply a transition at any one
point. As in generative models and decoding tasks, heuristic parsing employs beam search,
where a constant sized list of possible parse trees is retained in memory at any point in time,
and at the end the hypothesis optimising a suitable objective function is chosen. Improvements
of beam-search based parsing strategies are an active field of research [BBD16, BMP+16,
VG18].

In essence, the problem of decoding a probabilistic sequence with a language model—
or probabilistically parsing a formal grammar—becomes one of performing search over an
exponentially-growing tree, since at each step the list of possible sequences branches with
degree up to the number of predicted words. The goal is to find a path through this search
space with the highest overall score. Due to runtime and memory constraints, a tradeoff has
to be made which limits any guarantees on the performance of the search strategy.

126



5.2 Main Results

As we have seen throughout the previous chapters, quantum computing has shown promise
as an emerging technology to efficiently solve some instances of difficult computing tasks in
fields ranging from optimisation [GAW19], linear algebra [HHL09, BCO+17], simulation of
quantum systems [Llo96], distributional property testing [MdW16], and language processing
[WBS+19, AGS18], to machine learning [CT17, JZW+18, DLD17, CL18, Bau18, BL18]. While
quantum computers are not yet robust enough to evaluate any of these applications on sample
sizes large enough to claim an empirical advantage, a structured search problem such as
language decoding is a prime candidate for a quantum speedup.

While the most naïve search problems can be sped up using Grover’s search algorithm
(or one of its variants, such as fixed point/oblivious amplitude amplification), finding good
applications for quantum algorithms remains challenging, and super-quadratic speedups (such
as Shor’s for prime factoring [NC10]) are rare. As we saw in Chapter 4, recently several
exponentially-faster algorithms (such as quantum recommender systems [KP17b], or dense
low rank linear algebra [WZP18]) have been fully or partially dequantised, since their reliance
on the QRAM input model and low rank assumptions if classically available, can yield an
exponential speedup without the need for quantum computing [Tan19].

Our quantum search decoder does not rely on QRAM. Our novel algorithmic contribution
is to analyse a very recent quantum maximum finding algorithm [VGG+17] and its expected
runtime when provided with a biased quantum sampler for a formal grammar that we developed,
under the promise that at each step the input tokens are non-uniformly distributed.

For the case of finding the most likely parsed string, the close connection between decoding
a probabilistic sequence and sampling from it yields precisely the quadratic speedup expected
from applying quantum amplitude amplification to an unstructured search problem.

We obtain a more striking advantage in the case that the input sequence is just serving as
advice on where to find the top scoring parse under a secondary metric—i.e. where the element
with the highest score is not necessarily the one with the highest probability of occurring when
sampled. In that case, our proposal is always more than quadratically faster than its classical
counterpart, and the speedup becomes more pronounced the better the advice state.

5.2 Main Results

In this chapter, we address the question of decoding a probabilistic sequence of words, letters,
or generally tokens, obtained e.g. from the final softmax layer of a recurrent neural network,
or given as a probabilistic list of heuristic parse transitions. These models are essentially
identical from a computational perspective. Hence, we give the following formal setup, and
will speak of a decoding task, leaving implicit the two closely-related applications.
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Given an alphabet Σ, we expect as input a sequence of random variables X1, X2, . . . , Xn

over Σ, distributed as Xi ∼ DΣ
i . The distributions DΣ

i can in principle vary for each i;
furthermore, the Xi can either be independent, or include correlations. The input model is
such that we are given this list of distributions explicitly, e.g. as a table of floating point
numbers; for simplicity of notation we will continue to write Xi for such a table. The decoding
machine M is assumed to ingest the input one symbol at a time, and branch according to some
factor R at every step; for simplicity we will assume that R is constant (e.g. an upper bound
to the branching ratio at every step). As noted, M can for instance be a parser for a formal
grammar (such as an Earley parser [Ear70]) or some other type of language model; it can either
accept good input strings, or reject others that cannot be parsed. The set of configurations
of M that lead up to an accepted state is denoted by Ω; we assume that everything that is
rejected is mapped by the decoder to some type of sink state ω 6= Ω.

We allow M to make use of a heuristic that attempts to guess good candidates for the
next decoding step. Furthermore, this heuristic can also depend on the input, i.e. we have
a function H : Σ × Ω 7→ Ω. We allow H to itself be an automaton, possibly with a stack,
and even a full-fledged Turing machine is a natural extension of this model. Since we are not
interested in the complexity of the heuristic itself, we simply distinguish between a stateful
and stateless heuristic by regarding them as randomised automata with or without correlations
respectively, but otherwise assume they always produces the expected output in unit time.

It is not difficult to see that the randomised input setting is more generic than employing
a heuristic at the decoding step. In this light, we will restrict our discussion to a decoder
M that processes a token sequence step by step, and such that its state itself now simply
becomes a sequence (Mi)i≤n of random variables. Described as a stochastic process, the
Mi are random variables over the set Ω of internal configurations after the automaton has
ingested Xi, given that it has ingested Xi−1, . . . , X1 prior to that, with a distribution DΩ

i .
The probability of decoding a specific accepted string x = (x1, . . . , xn) is then given by the
product of the conditional probabilities

Pr(Mn = x) : = N
n∏
i=1

Pr(Xi = xi|Xi−1 = xi−1, Xi−2 = xi−2, . . . , X1 = x1) (5.1)

= N Pr(Xn = xn, Xn−1 = xn−1, Xn−2 = xn−2, . . . , X1 = x1)
= N Pr(X = x)

where N = 1/(∑x∈Ω Pr(X = x)), and in a slight abuse of notation we write Mn = x when we
mean Mn = y(x), where y(x) is the configuration of the parser M that was provided with
some input to produce the parsed string x; similarly we will write x ∈ Ω for an accepted
string/decoded path.1

1Since there is a one-to-one mapping between accepted strings and parser configurations y(x) that lead up to
it, it is unambiguous to write Pr(Mn = x) as the probability that the decoder M after n steps produced
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The obvious question is: which final accepted string of the decoder is the most likely? This
is captured in the following computational problem.

Most Likely Parse
Input: Decoder M over alphabet Σ and with set of accepting configurations Ω.

Sequence of random variables (Xi)i≤n over sample space Σ.
Question: Find σ = argmaxx∈Ω Pr(Mn = x).

Classically, it is clear that if we have a procedure that can sample the random variable Mn

efficiently, then we can find the most likely element with an expected runtime of 1/Pr(Mn = σ),
as this is the number of samples we are expected to draw to see the element once. While
such sampling algorithms might be inefficient to construct in general, we emphasise that the
question of drawing samples from strings over a formal language is an active field of research,
and algorithms to sample uniformly are available for a large class of grammars: in linear time
for regular languages [BG12, ODG13], and context-free grammars/restrictions thereof can be
sampled uniformly [McK97, GPS01, HC83, GJK+97, Den96] and also with word bias [RPW13,
LP13, DRT00, Pon12].

In Theorem 5.6 and Section 5.3.1, we lift a classical uniform sampler (e.g. given as a
bounded-error probabilistic poly-time BPP algorithm with coin flips as a source of randomness)
to a biased quantum sampler, which we can use to obtain a quantum advantage when answering
Most Likely Parse. We note that the techniques therein may well be used to obtain a
classical Monte Carlo procedure to sample from Mn. In what follows, we will therefore assume
that obtaining a sample of Mn within a sufficiently-small error margin can be done with a
(uniform) family of classical poly-time randomised circuits denoted (Sn)n≥1 that is given to
us. Yet in order to be precise, we will explicitly keep the sampling runtime separate from the
rest of the complexity analysis.

We prove the following result:

Theorem 5.1. For an input sequence of length n of random variables to a parser with a
classical sampling runtime T (n), there exists a quantum search algorithm answering Most
Likely Parse with certainty, using π/4

√
Pr(Mn = σ) iterations. In each iteration, it runs a

quantum circuit for the sampler in O(T (n)1.6) time.

As explained, this theorem formalises the expected quadratic speedup of the runtime as
compared to a classical algorithm based on sampling from Mn. This works because we know
that the element to search for is the one that also occurs with the highest likelihood within
the distribution. Given the input to the parser is power-law distributed (see Definition 5.8),
this allows us to formulate the following corollary.

the output string (or path) x, which essentially identifies Ω and the subset of strings in the language of
length n that can be accepted by the decoder.

129



Chapter 5 A quantum search decoder for Natural Language Processing

Corollary 5.2. If the Xi ∼ PowerR(k), then answering Most Likely Parse requires at
most 1/HR(k)n/2 queries.2

Yet a priori, it is not clear that the weight of a decoded path (e.g. the product of
probabilities of the input tokens) also corresponds to the highest score we wish to assign to
such a path. This becomes obvious in the setting of a heuristic applied to a live translation.
While at every point in time the heuristic might be able to guess a good forward transition,
it might well be that long range correlations strongly affect the likelihood of prior choices.
Addressing these long-distance “collocations” is an active field of research [ZQH15].

To give an exemplary illustration, consider the sentence

Who does Bill want to

replace

win
?

This example contains a so-called clausally unbounded long distance dependency [Dąb08]. In
the top and bottom branches respectively, the word ‘Who’ is either the direct object of the
verb ‘replace’, or the direct object of the verb ‘want’ and hence by implication the subject
of the verb ‘win’. The parser cannot distinguish between the two cases until it has seen the
verb, so both choices of interpretation have to be retained. Several recent studies evaluate
how parsers perform in the presence of such dependencies in the input. The findings of
[KHQ+18] indicate that LSTM models are capable of using about 200 tokens of context on
average, but that they sharply distinguish nearby context (≈ 50 tokens) from the distant past.
Furthermore, such models appear to be very sensitive to word order within the most recent
context, but ignore word order in the long-range context (more than 50 tokens away). On the
other hand, specialised dependency parsers (such as the MSTParser and MaltParser) which
are equipped with simple post-processing to extract unbounded dependencies from the basic
dependency tree are able to correctly recall unbounded dependencies only roughly 50% of the
time [NRM+10].

To address this setting formally, we assume there is a scoring function F : Ω −→ R, which
assigns scores to all possible decoded paths. Without loss of generality, there will be one
optimal string which we denote with τ = argmaxx∈Ω F (x). Furthermore, we order all decoded
strings Ω in some fashion, and index them with numbers i = 1, . . . , |Ω|. Within this ordering,
τ can now be in different places—either because the heuristic guesses differently at each step,
or because the input sequence varied a little. We denote the probability that the marked
element τ is at position i with pi. In essence, the position where τ is found is now a random
variable itself, with probability mass function Pr(finding τ at index i) = pi.

2HR(k) =
∑R

i=1 i
−k denotes the Rth harmonic number of order k.
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For the decoder probabilities Pr(Mn = x) to serve as good advice on where to find the
highest-score element under the metric F , we demand that

Pr(Mn = string with index i) = pi. (5.2)

Loosely speaking, what eq. (5.2) means is that the final distribution over the states of the
decoder puts high mass where the highest-scoring element often occurs.

To be precise, we define the following problem.

Highest Score Parse
Input: Decoder M over alphabet Σ and with state space Ω. Sequence of random

variables (Xi)i≤n over sample space Σ. Scoring function F : Ω −→ R.
Promise: Eq. (5.2).
Question: Find τ = argmaxx∈Ω F (x).

What is the classical baseline for this problem? As mentioned in [Mon11], if px is the
probability that x is the highest-scoring string, then in expectation one has to obtain 1/px
samples to see x at least once. Any procedure based on sampling from the underlying
distribution px thus has expected runtime

∑
x∈Ω

1
px
× px = |Ω|. (5.3)

In a sense this is as bad as possible; the advice gives zero gain over iterating the list item by
item and finding the maximum in an unstructured fashion. Yet provided with the same type
of advice, a quantum computer can exhibit tremendous gains over unstructured search.

Theorem 5.3. With the same setup as in Theorem 5.1 but under the promise that the input
tokens are iid with Xi ∼ Power|Σ|(k) over alphabet Σ (Definition 5.8), that the decoder has a
branching ratio R ≤ |Σ|, and that we can uniformly sample from the grammar to be decoded,
there exists a quantum algorithm QuantumSearchDecode answering Highest Score
Parse with an expected number of iterations

RT1(R, k, n) = O
(
Rnf(R,k)

)
, where f(R, k) = log

(
HR(k/2)
HR(k)1/2

)/
logR,

and where HR(k) denotes the Rth harmonic number of order k. Each iteration runs a quantum
circuit for the sampler in time O(T (n)1.6).

There exists no classical algorithm to solve this problem based on taking stochastic samples
from the decoder M that requires less than Ω(Rn) samples.
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While the runtime for Algorithm 5.1 used to prove Theorem 5.3 is based on an analytical
bound we found that numerically it comes close to the true expected query complexity of
the search decoding algorithm. The exponent f(R, k) indicates the speedup over a classical
implementation of the decoding algorithm (which would have to search over Rn elements).
We find that f(R, k) < 1/2 for all R, k > 0, and in fact f(R, k) −→ 0 exponentially quickly
with k; we formulate the following corollary.

Corollary 5.4. For k > 0, QuantumSearchDecode is always faster than plain Grover
search (with runtime ∝ Rn/2); the extent of the speedup depends on the branching ratio R and
the power law exponent k, and is plotted in fig. 5.1.

Finally, in Section 5.5 we modify the full quantum search decoder by only searching over
the paths with likelihood above some given threshold (that we allow to depend on n in some
fashion), effectively turning the decoder into a type of beam search, but where the pruning only
happens at the very end. This means that in contrast to beam search, the top scoring element
is found over the globally most likely parsed paths, avoiding the risk early beam pruning
brigs. We analyse the runtime of Algorithm 5.2 for various choices of beam width numerically,
and analyse its performance on a concrete example—Mozilla’s DeepSpeech implementation, a
speech-to-text LSTM which we show to follow a power-law token distribution at each output
frame.

For DeepSpeech, we empirically find that input sequence lengths of up to 500 tokens can
realistically be decoded, with an effective beam width of 1015 hypotheses—while requiring
≈ 3e6 search iterations (cf. fig. 5.9).

We want to emphasise that the fact the letters a-z follow Zipf’s law with respect to their
occurrence in English sentences (see e.g. [Egg00, Pia14]) plays no role in attaining the speedup.
In addition to fig. 5.7, we verified that when only collecting those output frames of DeepSpeech
where, say, “t” is the most likely prediction, the distribution over all letters—sorted by rank,
i.e. sorted from most to least likely prediction—is already a power-law. This is a feature of
the output of the model, and not necessarily a property of the underlying data the model was
trained on. In our context this means that the Softmax output layer of the LSTM has to
yield a power-law probability distribution. How frequently a given letter is the most likely
prediction—which is itself known to be a power-law, as mentioned—is not important.

5.3 Quantum Search Decoding

In this section, we give an explicit algorithm for quantum search decoding. As mentioned
before (see Section 5.2), we assume we have access to a classical algorithm that, given a list of
transition probabilities determined by the inputs X1, . . . , Xn, yields a random sample drawn
from the distribution—either uniformly, or with weights corresponding to eq. (5.1). Since
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either way this sampler is given as a classical probabilistic program, we first need to translate
it to a quantum algorithm. We start with the following lemma.

Lemma 5.5. For a probabilistic classical circuit with runtime T (n) and space requirement
S(n) on an input of length n, there exists a quantum algorithm that runs in time O(T (n)log2 3)
and requires O(S(n) log T (n)) qubits.

Proof. Follows from [BTV01, Th. 1]: any non-reversible computation requiring time T and
space S can be simulated reversibly in time T ′ = 3k2O(T/2k) and space S′ = (1 + O(k))S,
for a 0 ≤ k ≤ log2 T chosen arbitrarily. Choose k = log2 T , then S′ = (1 +O(log2 T ))S, and
T ′ = O(T log2 3). Now translate this reversible probabilistic classical circuit into a quantum
circuit—e.g. using the Solovay-Kitaev theorem [NC10], which incurs an at most logarithmic
runtime overhead.

5.3.1 Biased Quantum Sampling from a Regular or Context-Free Grammar

As an immediate consequence, given a classical probabilistic sampling algorithm that can
produce strings a1a2 · · · an of a language such that each string is weighted by the probability
of the symbol ai occurring at site i (i.e. eq. (5.1)), we can obtain a quantum circuit that
produces a quantum state which is a weighted superposition over all such strings.

In addition to the weighted superposition, however, we would like to have the weight of
each state in the superposition spelled out as an explicit number in an extra register (e.g. as a
fixed precision floating point number), i.e. in the form

Uµ |0〉 = |µ〉 ∝
∑
q∈Ω

√
pq |hq〉 |pq〉 |q〉 , (5.4)

where Ω is the set of accepted strings reachable by the decoder in n steps, |hq〉 is an ancillary
state that depends on q and is contained in the decoder’s work space, and if q is a state
reached by reading the input sequence a1j1 , a2j2 , . . . , anjn . The weights pq = ∏n

i=1 piji .

However, it is not clear that such a weighted sampler (dependent input or not) is available
at all. As outlined in the introduction, we know there exist uniform classical probabilistic
samplers for large classes of grammars, e.g. for regular languages in linear time (e.g. [ODG13])
and polynomial time for variants of CFGs (e.g. [GPS01]). Again keeping the uniform sampler’s
runtime separate from the rest of the algorithm, we can raise classical uniform samplers to
obtain a biased quantum state preparator for |µ〉.

Theorem 5.6. Given a classical probabilistic algorithm that, in time T (n), produces uniform
samples of length n from a language, and given a list of independent random variables
X1, . . . , Xn with pdfs pi,j for i = 1, . . . , n and j = [Σ], we can construct a quantum circuit
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Uµ′ that produces a state |µ′〉 ε-close to the one in eq. (5.4). The algorithm runs in time
O(T (n)1.6 × n3κ/ε2), where κ is an upper bound on the relative variance of the conditional
probability Pr(a|s1 . . . si).

Proof. Using lemma 5.5, translate the parser—which takes its input step by step—into a
sequence of unitaries U = Un · · ·U1. Considering a single unitary Ui at the ith step, it is
clear that it can be broken up into a family of unitaries (Ua

i )a∈Σ, such that each Ua
i is a

specialization of Ui when given a fixed input symbol a ∈ Σ. We define Va
i to perform Ua

i , and
in addition store the input a in some ancillary workspace, e.g. via Va

i |φ〉 |ξ〉 = (Ua
i |φ〉) |ξ ⊕ a〉.

Then define the block-diagonal unitary Vi := diag(Va
i )a∈Σ, which acts like a controlled matrix,

meaning that if Vi acts on some state |ψ〉 = |a〉 |φ〉, then Vi |ψ〉 = |a〉Va
i |φ〉. Naturally this

works in superposition as well, e.g. Vi(α |a〉+β |b〉) |φ〉 = α |a〉Va
i |φ〉+β |b〉Vb

i |φ〉. We further
assume that the Va

0 take as initial state |0〉 |q0〉.

The final step in augmenting the parser is to extend Vi to carry out a controlled multi-
plication: for a finite set of numbers F ⊂ R (e.g. fixed precision), and d1, d2 ∈ F , we write
Vi(d1) |a〉 |d2〉 |φ〉 = |a〉 |d1 × d2〉Va

i |φ〉. We denote this extended unitary for step i with U′i.

The next ingredient we take is the classical uniform language sampler. Once again using
lemma 5.5, we raise it to a unitary W, which takes as input a prefix sm := a1 · · · am of the m
previously-seen tokens, and a list of distributions over the future weights Wm := (pi,j)m<j≤n.
These are the distribution of tokens for each of the Xj . We then augment W to a circuit W′

that quantumly performs the following classical calculations, in superposition over its input:

1. Draw S samples uniformly at random from the grammar starting at strings prefixed
with sm; denote this list with B := {b1, . . . , bS}.

2. Group the samples B into bins Ca of samples with the same first token a ∈ Σ, i.e.
Ca = {b ∈ B : b = a?? · · ·?}, where ? stands for any token in the alphabet Σ.

3. Calculate the total of the probabilities of each bin Ca where each element is weighted
with respect to the future probabilities given in list Wm, which yields a distribution
D = (da)a∈Σ.

It is straightforward to write the unitary W′ that then takes a state |00〉 ∈ HF ⊗ CΣ—the
first register for storing a number in F , and the second for storing a letter—and a list of such
weights D to a weighted superposition W′(D) |0〉 = ∑

a∈Σ
√
da |da〉 |a〉 (where for the sake of

simplicity we drop the scratch space register that is certainly required). Furthermore, we
need a controlled unitary Q that, given some state |h〉 |a〉 where h = h(a) in some specified
fashion—which we can demand the Va

i produce—uncomputes a and da from the second
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register, i.e. Q |h〉 |da〉 |a〉 = |h〉 |00〉. Together with the sequence of parser unitaries U′i, the
overall quantum circuit Uµ can then be constructed as follows:

|0〉
U′1

•
U′2

• · · ·

|q0〉 • • · · ·

|0〉 W′ • Q W′ • Q · · ·

W1 W2

U′n
• }|µ′〉

•

W′ • Q |0〉

Wn

For a partial string s1s2 · · · si of length i, we denote the set of all strings in the grammar
prefixed with letters of s with A(s1 . . . si). At every step i in the algorithm we sample the
expectation value of a future hypothesis continuing with some token a, weighted by their
individual likelihood pij . The sampling procedure then yields an empirical distribution (da)a∈Σ,
which we denote with

da = fsi∗ (a) =
S∑
j=1

χ [bj ∈ A(s1 . . . sia)] p(bj)
/

S∑
j=1

p(bj), (5.5)

where the S sampled hypothesis are given in list B = {b1, . . . , bS} with individual letters
bj = bj,1 · · · bj,n ). As usual, χ[·] denotes the indicator function, and

p(bj) :=
n∏
k=1

pk,bjk .

Our goal is to show that the algorithm reproduces the desired weight distribution given in
eq. (5.4), i.e.

Pr(s) =
n−1∏
i=0

Pr(si+1|s1 . . . si) where Pr(si+1|s1 . . . si) =
∑
x∈A(s1...si) p(x)∑
x∈A(s1...si+1) p(x)

To estimate the total probability distribution to error ε in total variation distance, it suffices
to approximate each conditional distribution to error ε/n, and thus we must show how many
samples S are required for da to be a good estimator for Pr(a|s1 . . . si).

First note that fsi(a) = usi(a)/vsi for

usi(a) := 1
S

S∑
j=1

χ [bj ∈ A(s1 . . . sia)] p(bj) and vsi := 1
S

S∑
j=1

p(bj) =
∑
a∈Σ

usi(a).

It is straightforward to calculate that

E(usi(a)) = 1
|A(s1 . . . si)|

∑
x∈A(s1...sia)

p(x) and E(vsi) = 1
|A(s1 . . . si)|

∑
x∈A(s1...si)

p(x)
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and so E(usi(a))/E(vsi) = Pr(a|s1 . . . si), the value we are trying to estimate.

Therefore it suffices to take enough samples S such that the usi(a) are close to their mean
in relative error (and thus vsi is also close in relative error, since vsi = ∑

a u
si(a)).

Noting that usi(a) = 1
S

∑S
j=1 Yj for i.i.d. random variables Yj , we have that Var(usi(a)) =

1
S Var(Y ). Therefore by Chebyshev’s inequality, to get a ε/n relative error approximation
requires the number of samples S to be at least

S ≥ Var(Y )
E(Y )2(ε/n)2 .

By assumption Var(Y )/E(Y )2 ≤ κ, and so the total number of uses of the sampler over all
n steps of the algorithm is O(κn3/ε2) as claimed.

We remark that getting a precise handle on κ strongly depends on the grammar to be
parsed and the input presented to it; it seems unreasonable to claim any general bounds as
it will most likely be of no good use for any specific instance. However, we note that it is
conceivable that if the input is long and reasonably independent of the language to be sampled,
then κ should be independent of n, and κ ≈ 1/p(rmin), where p(r) is the distribution of the
input tokens at any point in time—e.g. p(r) ∝ r−k as in a power law.3

We note that variants of this sampling algorithm are certainly possible: a naïve approach
would be to just sample from the product-of-powerlaws distribution and postselect on the
resulting strings being in the grammar; the performance of this will then depend on the
number of strings in the grammar vs. the number of all possible strings. Another method could
be to execute the uniform sampler in superposition, and perform amplitude amplification on
the resulting quantum state to reintroduce the power-law bias. The number of amplification
rounds will again depend on the distribution of the strings in the grammar.

5.3.2 The Quantum Search Decoder

The quantum algorithm underlying the decoder is based on the standard maximum finding
procedure from [DH96, AK99], and its extension in [VGG+17] used in the context of SDP
solvers.

The procedure takes as input a unitary operator Uµ which prepares the advice state, and
a scoring function F which scores its elements, and returns as output the element within the

3This should make intuitive sense: the branching ratios are already biased with respect to the number of
future strings possible with prefix s; if the input sequence is independent of the grammar, then we would
expect them to weigh the strings roughly uniformly; the extra factor of 1/p(rmin) simply stems from the
weighing of the token we bin by, a.

136



5.4 Power Law Decoder Input

Algorithm 5.1 Quantum search decoding.
function QuantumSearchDecodem(Uµ, F )

bestScore← −∞
counter ← 0
repeat

cmp← [(·) 7→ (bestScore < ·)] . comparator against current best score
|ψ〉 ← ExponentialSearch(Uµ, cmp ◦ F ) . amplify elements ≥ pivot
bestScore←Mscore |ψ〉 . measure new best score
counter ← counter + 1

until counter = m
end function

advice state that has the maximum score under F . As in Section 5.3.1, we assume that F can
be made into a reversible quantum circuit to be used in the comparison operation. We also
note that reversible circuits for bit string comparison are readily available [SR07], and can be
implemented using quantum adder circuits [Gid18].

Algorithm 5.1 lists the steps in the decoding procedure. As a subroutine within the search
loop, we perform exponential search with oblivious amplitude amplification [BCC+14].

As in the maximum finding algorithm, the expected query count for quantum search
decoding is given as follows.

Theorem 5.7 ([VGG+17]). If x is the highest-scoring string, the expected number of iterations
in QuantumSearchDecode to find the maximum is O(min{1/|〈x|µ〉|,

√
n}).

5.4 Power Law Decoder Input

In this section we formally prove that if the decoder is fed independent tokens that are
distributed like a power law, then the resulting distribution over the parse paths yields a
super-Grover speedup—meaning the decoding speed is faster than applying Grover search,
which itself is already quadratically faster than a classical search algorithm that traverses all
possible paths individually.

A power law distribution is the discrete variant of a Pareto distribution, also known as
Zipf’s law, which ubiquitously appears in the context of language features [Jäg12, SB16, Egg00,
Pia14]. This fact has already been exploited by some authors in the context of generative
models [GGJ11].

Formally, we define it as follows.

Definition 5.8. Let A be a finite set with |A| = R, and k > 1. Then PowerR(k) is the power
law distribution over R elements: for X ∼ PowerR(k) the probability density function satisfies
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Pr(X = x) = r−k/HR(k) for an element of rank r, where HR(k) denotes the Rth harmonic
number of order k.

We are interested in the Cartesian product of power law random variables, i.e. sequences of
random variables of the form (X1, . . . , Xn). Assuming the random variables Xi ∼ PowerR(k)
are all independent and of rank ri with pdf q(ri) = r−ki /HR(k), respectively, it is clear that

p(r1, . . . , rn) =
n∏
i=1

q(ri) = 1
HR(k)n

1
(r1 · · · rn)k . (5.6)

As in [Mon11], we can upper bound the number of decoder queries in QuantumSearchDe-
code by calculating the expectation value of the iterations necessary—given by Theorem 5.7—
with respect to the position of the top element.

We assume that at every step, when presented with choices from an alphabet Σ, the parsed
grammar branches on average R ≤ |Σ| times. Of course, even within a single time frame, the
subset of accepted tokens may differ depending on what the previously-accepted tokens are.
This means that if the decoder is currently on two paths β1 (e.g. corresponding to “I want”)
and β2 (“I were”), where the next accepted token sets are Σ1,Σ2 ⊂ Σ (each different subsets of
possible next letters for the two presented sentences), respectively, then we do not necessarily
have that the total probability of choices for the two paths—Pr(Σ1) and Pr(Σ2)—are equal.
But what does this distribution over all possible paths of the language, weighted by eq. (5.1),
look like?

Certainly this will depend on the language and type of input presented. Under a reasonable
assumption of independence between input and decoded grammar, this becomes equivalent to
answering the following question: let X a product-of-powerlaw distributions with pdf given in
eq. (5.6), where every term is a powerlaw over Σ. Let Y be defined as X, but with a random
subset of elements deleted; in particular, such that Rn elements are left, for some R < |Σ|. Is
Y distributed as a product-of-powerlaws as in eq. (5.6), but over R elements at each step? In
the case of continuous variables this is a straightforward calculation, and we postpone it to
Appendix B; numerics suggest it also holds true for the discrete case.

But even if the input that the parser given is independent of the parsed grammar, it is not
clear whether the sample distribution over R (i.e. sampling R out of |Σ| power-law distributed
elements) follows the same power law as the original one over Σ; this is in fact not the case in
general [ZQH15]. However, it is straightforward to numerically estimate the changed power
law exponent of a sample distribution given R and |Σ|—and we note that the exponent shrinks
only marginally when R < |Σ|.

In this light and to simplify the runtime analysis, we therefore assume the decoder accepts
exactly R tokens at all times during the parsing process (like an R-ary tree over hypotheses)
with a resulting product-of-powerlaw distribution, and give the runtimes in terms of the
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branching ratio, and not in terms of the alphabet’s size. This indeed yields a fair runtime
for comparison with a classical variant, since any classical algorithm will also have the
aforementioned advantage (i.e. we assume the size of final elements to search over is Rn, which
precisely corresponds to the number of paths down the R-ary tree).

5.4.1 Most Likely Parse: Query Bound

In this case F simply returns pq as the score in eq. (5.4). It thus suffices to calculate the
state overlap |〈x|µ〉|, under the assumption that x is the highest mass point of the probability
density function. By eq. (5.6), we have |〈x|µ〉|2 = H−nR (k). The claim of Corollary 5.2 follows
from these observations.

5.4.2 Highest Score Parse: Simple Query Bound

We aim to find a top element scored under some function F under the promise that |µ〉
(eq. (5.4)) presents good advice on where to find it, in the sense of eq. (5.2). The expected
runtimes for various power law falloffs k can be obtained by taking the expectation with
respect to px as in [Mon11].

In order to do so, we need to be able to calculate expectation values of the cartesian
product of power law random variables, where we restrict the domain to those elements with
probability above some threshold. We start with the following observation.

Lemma 5.9. If QuantumSearchDecode receives as input iid random variables X1, . . . , Xn,
with Xi ∼ PowerR(k), then the number of queries required to the parser is

RT1(R, k, n) = O
(
HR(k/2)n
HR(k)n/2

)
.

Proof. The expectation value of 1/ 〈x|µ〉 is straightforward to calculate; writing ~r = (r1, . . . , rn),
by eq. (5.6), we have

E(1/ 〈x|µ〉) =
∑
~r

p(~r)× 1√
p(~r)

= 1
HR(k)n/2

R∑
r1=1
· · ·

R∑
rn=1

1
(r1 · · · rn)k/2

.

The claim then follows from O(min{1/ 〈x|µ〉 ,
√
n}) ≤ O(1/ 〈x|µ〉).
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Figure 5.1: Exponent f(R, k) of expected runtime of QuantumSearchDecode, when fed
with a power law input with exponent k, over R alphabet tokens; plotted are
individual curves for the values R ∈ {3, 5, 10, 15, 20, 30, 40, 60, 100}, from top to
bottom. For all R, f(R, k) drops off exponentially with growing k.

We observe that the runtime in lemma 5.9 is exponential in n. Nevertheless, as compared to
a Grover algorithm—with runtime Rn/2—the base is now dependent on the power law’s falloff
k. We can compare the runtimes if we rephrase RT1(R, k, n) = Rnf(R,k), by calculating(

HR(k/2)
HR(k)1/2

)n
= Rnf(R,k) ⇐⇒ f(R, k) = log

(
HR(k/2)
HR(k)1/2

)/
logR.

We observe that the exponent f(R, k) ∈ (0, 1/2]; its precise dependency on k for a set of
alphabet sizes R is plotted in fig. 5.1. For growing k, f(R, k) falls off exponentially.

5.4.3 Most Likely Parse: Full Query Bound

A priori, it is unclear how much we lose in lemma 5.9 by upper-bounding O(min{1/ 〈x|µ〉 ,
√
n})

by O(1/ 〈x|µ〉)—so let us be more precise. In order to evaluate the expectation value of the
minimum, we will break up the support of the full probability density function p(~r) into a
region where p(~r) > 1/Rn, and its complement. Then, for two constants C1 and C2, we have
for the full query complexity

RT2(R, k, n) = E
[
O(min{1/ 〈x|µ〉 ,

√
n})

]
= C1

∑
~r:p(~r)>1/Rn

√
p(~r) + C2

√
n
∑

~r:p(~r)≤1/Rn
p(~r). (5.7)
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Figure 5.2: Expected runtime RT1(R, k, n) as evaluated for R = 10 and various k (top
row: k ∈ {0.2, 0.4, 0.6, 0.8}, middle row: k ∈ {1.2, 1.4, 1.6, 1.8}, bottom row:
k ∈ {2.5, 3, 3.5, 4}, always from left to right), vs. the same parameters used for
RT1′(R, k, n) (dashed line), where the discrete probabilities from the power law
are approximated with a continuous Pareto distribution. On the x-axis is the
length of the input sequence n.

In order to calculate sums over sections of the pdf p(~r), we first move to a truncated Pareto
distribution by making the substitution

∑
r∈A

1
rk
−→

∫
A

1
rk

dr and HR(k) −→ hR(k) :=
∫ R

1

1
rk

dr =


R1−k−1

1−k k 6= 1

logR otherwise.

While this does introduce a deviation, its magnitude is minor, as can be verified numerically
throughout (see fig. 5.2, where we plot both RT1 and the continuous variant RT1′(R, k, n) :=
hnR(k/2)/hn/2R (k)).

The type of integral we are interested in thus takes the form

M(R, k1, k2, c, n) := 1
hnR(k1)

∫∫∫ R

1

χ(r1 · · · rn ≤ c)
(r1 · · · rn)k2

dr1 · · · drn, (5.8)

where k1 is not necessarily equal to k2, and typically c = (R/hR(k1))n/k1 , which would reduce
to the case we are seeking to address in eq. (5.7). Here, χ(·) denotes the characteristic function
of a set, i.e. it takes the value 1 where the premise is true, and 0 otherwise. It is possible to
integrate eq. (5.8) numerically for small n; however, due to the high dimensionality and the
flat tail, convergence suffers drastically already for n > 6. Similarly, evaluating the integral
with a computer algebra system takes significant time for larger n and produces ever growing
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expressions that are hard to handle, as the reader is welcome to verify. To address this
problem, we derive the following closed-form expression.

Lemma 5.10. For k 6= 1, eq. (5.8) becomes

M(R, k1, k2, c, n) = (−1)n
k′nhnR(k1)

min{n,bc′/a′c}∑
j=0

(
n

j

)(
ea′k′j − e−c′k′

n−1∑
l=0

(a′k′j − c′k′)l
l!

)
,

where k′ = 1− k2, c′ = log c, a′ = logR.

Proof. As a first step, we perform a log substitution zi = log ri, ezidzi = dri which yields

M(R, k1, k2, c, n) = 1
hnR(k1)

∫∫∫ logR

0
e(1−k2)(z1+...+zn)χ(z1 + . . .+ zn ≤ log c)dz1 · · · dzn.

The characteristic function is now supported on a rescaled unit simplex, and writing z̄ := ∑
i zi

we can take its Fourier transform

Ftχ(z̄ ≤ c′) = 1√
2π

∫
R
χ(z̄ ≤ c′)eiz̄tdz̄

= 1√
2π

∫ c′

−∞
eiz̄tdz̄

= π

2 δ(t) + eic′t
√

2πit
=: χ̃c′(t).

We of course have F−1
z̄ Ftχ ≡ χ. Then

hnR(k1)M(R, k1, k2, c, n) =
∫∫∫ a′

0
ek′z̄χ(z̄ ≤ c′)dz1 · · · dzn

=
∫∫∫ a′

0
ek′z̄

∫
R

e−itz̄ χ̃c′(t)√
2π

dt dz1 · · · dzn

∗= 1√
2π

∫
R
χ̃c′(t)

(
n∏
l=1

∫ a′

0
e(k′−it)zldzl

)
dt

= 1√
2π

∫
R
χ̃c′(t)

(
ea′(k′−it) − 1
k′ − it

)n
dt

= (−1)n√
2π

∫
R

n∑
j=0

(
n

j

)
(−1)j 1

(k′ − it)n ea′(k′−it)jχ̃c′(t)dt

= 1√
2π

n∑
j=0

(
n

j

)
ea′k′j (−1)j

in
∫
R

e−ia′jt

(t+ ik′)n χ̃c
′(t)dt︸ ︷︷ ︸

=:Jn

. (5.9)
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In the step marked with ∗, we applied Fubini’s theorem, for which we implicitly assumed a
smooth limiting argument for the step function. To evaluate the integral Jn, we observe that
the denominator has a root of order n at

t0 = −ik′ =


+i|k′| k > 1⇔ k′ < 0

−i|k′| k < 1⇔ k′ > 0

0 k = 1⇔ k′ = 0.

We further expand the Fourier-transformed characteristic function—and again glossing over
the details of Fubini’s theorem to swap the integration order—to obtain

Jn = 1√
2π

∫ c′

−∞

∫
R

eit(x−ja′)

(t+ ik′)ndt dx. (5.10)

We handle the integrand’s three pole cases separately.

k > 1. We have k′ < 0 and an order n pole at i|k′|; the integrand g(t) := eit(x−ja′)/(t+ ik′)n

is holomorphic in the lower half plane. The exponent of the exponential, x − ja′, assumes
signs

x− ja′


> 0 x > ja′

< 0 x < ja′

= 0 x = ja′.

In the latter case, the integral (over t) evaluates to zero.

In the middle case, for t = −is we have exp(i(−i)s(x − ja′)) = exp(s(x − ja′)) −→ 0 as
s −→∞; by Jordan’s lemma we can thus write∫

R
g(t)dt = lim

r→∞

∮
γ1(r)

g(t)dt = 0,

where γ1(r) contains the real interval [−r, r] and a half circle connecting the end points in the
lower half complex plane.
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In the first case, for t = is, we have exp(i2s(x− ja′)) = exp(−s(x− ja′)) −→ 0 as s −→∞;
however now the corresponding upper half plane loop encircles the pole of g(x). We apply the
residue theorem for a flipped path γ2(r) = −γ1(r):

∫
R

eit(x−ja′)

(t+ ik′)ndt = lim
r→∞

∮
γ2(r)

eit(x−ja′)

(t+ ik′)ndt

= 2πiRest(g, t0)

= 2πi
(n− 1)! lim

t→t0

dn−1

dtn−1 ((t− t0)ng(t))

= 2πi
(n− 1)! lim

t→t0
(i(x− ja′))n−1eit(x−ja′)

= 2πin
(n− 1)!(x− ja

′)n−1ek′(x−ja′).

For the case x− ja′ < 0 we are left to perform the outer integration in eq. (5.10). If c′ ≤ ja′

we necessarily have x ≤ ja′ and Jn = 0. For the case c′ > ja′ we have

1√
2π

∫ c′

−∞

2πin
(n− 1)!(x− ja

′)n−1ek′(x−ja′)dx =
√

2πin
(n− 1)!

∫ c′−ja′

0
yn−1ek′ydy

=
√

2πin
(n− 1)!

1
(−k′)n (Γ(n)− Γ(n, a′k′j − c′k′))

=
√

2πin
(−k′)n

(
1− Γ(n, a′k′j − c′k′)

Γ(n)

)
,

Where Γ(n, ·) is the lower incomplete gamma function. Putting it all together, we get

Jn = 1√
2π

∫ c′

−∞

∫
R

eit(x−ja′)

(t+ ik′)ndt dx =
√

2πin
(−k′)n

0 c′ ≤ ja′

1− Γ(n,a′k′j−c′k′)
Γ(n) otherwise.

Finally, we insert the last expression back into eq. (5.9), and obtain

M(R, k1, k2, c, n) = 1
hnR(k1)

1√
2π

n∑
j=0

(
n

j

)
ea′k′j (−1)j

in Jn

= (−1)n
k′nhnR(k1)

min{n,bc′/a′c}∑
j=0

(
n

j

)
ea′k′j

(
1− Γ(n, a′k′j − c′k′)

Γ(n)

)
.

The second term in the sum we can further simplify using the identity Γ(n, x)/Γ(n) =
e−x∑n−1

l=0 x
l/l! which holds for integer j, which yields

M(R, k1, k2, c, n) = (−1)n
k′nhnR(k1)

min{n,bc′/a′c}∑
j=0

(
n

j

)(
ea′k′j − e−c′k′

n−1∑
l=0

(a′k′j − c′k′)l
l!

)
.
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k < 1. We have k′ > 0 and the order n pole of eq. (5.10) lies at −i|k′|. The integrand
g(t) = eit(x−ja′)/(t + ik′)n is holomorphic in the upper half plane; and analogous to before,
this time when x− ja′ > 0, we have∫

R
g(t)dt = lim

r→∞

∮
γ2(r)

g(t)dt = 0.

In the opposite case we can again apply the residue theorem and obtain∫
R
g(t)dt ∗= −2πiRest(g, t0) = − 2πin

(n− 1)!(x− ja
′)n−1ek′(x−ja′),

where the negative sign in step ∗ stems from the clockwise orientation of the contour γ2. The
outer integration in eq. (5.10) is now

Jn = − 1√
2π

∫ c′

−∞

2πin
(n− 1)!

(x− ja′)n−1ek′(x−ja′) x < ja′

0 otherwise
dx

= −
√

2πin
(n− 1)!

∫ min{c′,ja′}

−∞
(x− ja′)n−1ek′(x−ja′)dx

= −
√

2πin
(n− 1)!

∫ min{c′−ja,0}

−∞
yn−1ek′ydy

= −
√

2πin
(n− 1)!(−1)n+1k′−nΓ(n,−k′min{c′ − ja′, 0})

=
√

2πin
(−k′)n

Γ(n,min{a′k′j − c′k′, 0})
Γ(n)

=
√

2πin
(−k′)n

1 c′ ≥ ja′
Γ(n,a′k′j−c′k′)

Γ(n) otherwise.

Inserting the expression back into eq. (5.9) we obtain

M(R,k1, k2, c, n) = 1
hnR(k1)

1√
2π

n∑
j=0

(
n

j

)
ea′k′j (−1)j

in Jn

= (−1)n
k′nhnR(k1)

[ min{n,bc′/a′c}∑
j=0

(
n

j

)
(−1)jea′k′j +

n∑
j=bc′/a′c+1

n−1∑
l=0

(
n

j

)
(−1)jec′k′ (a

′k′j − c′k′)l
l!

]
.
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To reduce the last sum to the previous expression, we note that

n∑
j=0

n−1∑
l=0

(
n

j

)
(−1)j (xj − y)l

l! =
n−1∑
l=0

xl

l!

n∑
j=0

(
n

j

)
(−1)j

l∑
m=0

(
l

m

)
jm
(
−y
x

)l−m

=
n−1∑
l=0

xl

l!

l∑
m=0

(
l

m

)(
−y
x

)l−m n∑
j=0

(
n

j

)
(−1)jjm

︸ ︷︷ ︸
=(−1)nn!S(n)

m

,

where S(n)
m is the Stirling number of the second kind, which denotes the number of ways to

partition a set of size m into n non-empty subsets. Since m ≤ l ≤ n− 1, S(n)
m ≡ 0 here, and

thus

n−1∑
l=0

n∑
j=bc′/a′c+1

(
n

j

)
(−1)j (a′k′j − c′k′)l

l! = −
n−1∑
l=0

min{n,bc′/a′c}∑
j=0

(
n

j

)
(−1)j (a′k′j − c′k′)l

l! .

The claim follows.

We leave the k = 1 case as an exercise to the reader.

With lemma 5.10, we can now evaluate the terms in eq. (5.7) efficiently. The first term is

rt =
√
hnR(k)M

[
R, k,

k

2 ,
(

R

hR(k)

)n
k

, n

]
, (5.11)

and the second

rt′ = 1−M
[
R, k, k,

(
R

hR(k)

)n
k

, n

]
. (5.12)

Of interest is whether taking this full expectation value and splitting it to fall back to Grover
search whenever the probability dips below 1/Rn yields a significant improvement of the
runtime bound. We found this to not be the case, as fig. 5.3 demonstrates; while for smaller n
there is a significant improvement, as n grows the ratio rt/RT1 −→ 1 exponentially fast.

5.5 Quantum Beam Search Decoding

The goal of this section is to modify the QuantumSearchDecode decoder such that it
behaves more akin to a classical beam search algorithm. More specifically, instead of searching
for the top scored element which could sit anywhere within the advice distribution, we make the
assumption that wherever the advice probability lies below some threshold p(x) < p0—where
p0 can be very small—we discard those hypotheses. This is done by dovetailing a few rounds
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Figure 5.3: Ratios of rt/RT1 for various power law exponents k. left: {0.2, 0.4, 0.6, 0.8}
from top to bottom, middle: {1.2, 1.4, 1.6, 1.8} from top to bottom, right:
{2.5, 3.0, 3.5, 4.0} from bottom to top. In all cases the runtime ratios approach 1
exponentially fast with growing n.

Algorithm 5.2 Algorithm for beam search decoding.
function QuantumBeamDecodem(Uµ, F , p0)

bestScore← −∞
counter ← 0
repeat

cmp1 ← [(·) 7→ (p0 < ·)] . comparator against threshold
cmp2 ← [(·) 7→ (bestScore < ·)] . comparator against current best score
amp← [(·) 7→ AmplitudeAmplification(·, cmp1)] . prune hypotheses
|ψ〉 ← ExponentialSearch(amp ◦Uµ, cmp2 ◦ F ) . select elements ≥ pivot
bestScore←Mscore |ψ〉 . measure new best score
counter ← counter + 1

until counter = m
end function

of amplitude amplification to suppress all beam paths with probability less than p0 (which we
can do, since we have those probabilities written out as numbers within the advice state |µ〉
in eq. (5.4)); a schematic of the algorithm can be found in Algorithm 5.2.

Of course we only want to do this if the number of amplification rounds, given as the
square root of the inverse of the leftover probability ∑x:p(x)≥p0 p(x), is small (i.e. constant,
or logarithmic in n). We note that this expression is, as before, well-approximated by
M(R, k, k, p0, n) given in lemma 5.10.

In beam search, only the top scoring hypotheses are kept around at any point in time; the
difference to our method is of course that we can score the elements after every hypothesis
has been built. This is not possible in the classical case, since it would require an exponential
amount of memory or post selection. As in Section 5.3, we have the two cases of finding
the top scoring path and the most likely parse. Deriving a runtime bound for the most
likely parse is straightforward—and does not, in fact, gain anything. This is because when
finding the maximum likelihood path τ , one performs amplitude amplification on that element
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anyhow, and p(τ) > p0—so it is within the set of elements with probability kept intact by the
post-amplification.4

The only interesting case of amplifying the advice state in QuantumSearchDecode to
raise it to a beam search variant is thus for finding the top scoring element under a secondary
scoring function, using the decoder’s output as advice distribution. The relevant questions to
ask here is what choice of p0 will

1. only require a constant—or logarithmic—number of rounds of amplitude amplification,

2. retain a large number of hypotheses, and

3. improve runtime for the post-amplified QuantumSearchDecode variant.

We address all these questions in the next sections.

5.5.1 Constant Post-Amplification

In light of simplicity, we will take RT1 as an upper runtime bound to the full expected number
of rounds, RT2; as we amplify away all paths with weights below the cutoff we never expect to
find an element therein—meaning we can drop the fallback to Grover search in our analysis,
and treat the search as if the advice state was purely on those paths with weight ≥ p0.

We first address the question for which choice of p0 the cumulative leftover probability
M(R, k, k, p0, n) can be lower-bounded by a quantity independent of n, which means we have
to perform only a constant number of amplitude amplification rounds on the advice state. In
order to do so, we solve the implicit inequality

minimise fsplit subject to M
[
R, k, k,

(
R

hR(k)

)n
k
fsplit

︸ ︷︷ ︸
=p0

, n

]
≥ C0. (5.13)

As M is monotonically decreasing for a decreasing splitting exponent fsplit, and since M
can be computed in O(n2) many arithmetic operations, we can perform the minimisation
efficiently. For a choice of C0 = 1/4 (which implies a single amplitude amplification round)
and C0 = 1/100 (ten rounds of amplification) we plot fsplit in fig. 5.4. As can be seen, fsplit

tends towards a limiting value ∈ (0, 1) for n −→∞.

The next step in our analysis is to take the modified splitting exponent fsplit and count
how many hypotheses Nhyp remain to be searched over; this is important because it is not
clear a priori how many paths we can still search over, and if that quantity is low—or even
tends towards zero—then we retained too few elements. Our hope is of course that in contrast
to beam search, where generally the beam’s width, i.e. the number of hypotheses retained at

4If anything, p0 introduces some prior knowledge about the first pivot to pick for maximum finding.
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Figure 5.4: minimised value of the splitting exponent fsplit as defined in eq. (5.13). Plotted are
the values for R = 6 (left) and R = 24 (right), as well as C0 = 1/4 (green, upper
family of lines) which implies exactly one extra round of amplitude amplification,
and C0 = 1/100 (red, lower family of lines) which implies ten extra rounds of
amplification. The power law exponents chosen are k ∈ {1.5, 2.0, 2.5, 3.0} (bottom
to top, respectively).

any point in time, is capped at some possibly large but constant value, we have a growing
number of hypotheses to search over.

In order to count this number of hypotheses given a cutoff probability p0, we can evaluate
M(R, k, k, p0, n) in the limit of the power law exponent k −→ 0, and finally multiply hnR(k1)
in eq. (5.8) to make the integral count instead of calculating a cumulative density. We again
choose a series of values for R, k and C0 and plot the results in fig. 5.5. While the number of
leftover hypotheses is indeed reduced drastically as compared to performing a full search over
Rn elements, it is still growing exponentially with n, which results in a significant number of
hypotheses to search over, many more than possible in the classical setting.

As a last step, we want to analyse the modified runtime given the changed probability
cutoff, which corresponds to evaluating the integral M(R, k, k/2, p0, n) with the p0 derived
from the optimisation eq. (5.13). The results are collected in fig. 5.6. As one can verify, the
runtime does remain asymptotically exponential in the sequence length n; however the base of
the exponential is reduced accordingly.

5.5.2 Non-Constant Post-Amplification

The analysis of Section 5.5.1 can of course be repeated for a non-constant fsplit; however,
one has to be aware that these extra amplitude amplification rounds factor into the overall
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Figure 5.5: Number of hypotheses Nhyp left for a specific choice of splitting exponent fsplit to
retain C0 > 1/4 (green, one extra round of amplification) and C0 > 1/100 (red,
ten extra rounds of amplification) total probability weight for the hypotheses. The
value of fsplit is obtained numerically from eq. (5.13) (cf. fig. 5.4). Plotted is the
case R = 6 (left) and R = 24 (right), and k ∈ {1.5, 2.0, 2.5, 3.0} (from top to
bottom in each plot and each colour, respectively). The dashed line is the total
number of possible hypotheses Rn as reference.
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Figure 5.6: Runtime when post-amplifying to retain only a fraction C0 ≥ 1/4 of weight
(green, one extra round of amplification) or C0 ≥ 1/100 (red, ten extra rounds
of amplification) on the hypotheses. The value of fsplit is obtained numerically
from eq. (5.13) (cf. fig. 5.4). Plotted is the case R = 6 (left) and R = 24
(right), and k ∈ {1.5, 2.0, 2.5, 3.0} (from top to bottom in each plot and for each
colour, respectively). The dashed line is the full search runtime RT1(R, k, n) from
lemma 5.9 as reference.
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runtime. For a retained fraction g(n) of the total probability weight, the optimisation thus
reads

minimise p0 subject to M(R, k, k, p0, n) ≥ g(n) (5.14)

which retains lim
k→0

M(R, k, k, p0, n) hypotheses, (5.15)

and has runtime bound g(n)−1/2M(R, k, k/2, p0, n). (5.16)

Instead of listing a series of results for a range of parameters, we provide an explicit example
of this analysis with real-world parameters derived from Mozilla’s DeepSpeech neural network
in the next section.

5.6 DeepSpeech

5.6.1 Analysis of the Output Rank Frequency

To support the applicability of our model, we analysed our hypothesis that the output
probabilities of an LSTM used to transcribe voice to letters—which can then be used e.g.
in a dialogue system with an underlying parser—is distributed in a power-law like fashion.
More specifically, we use DeepSpeech, Mozilla’s implementation of Baidu’s DeepSpeech speech
recognition system [HCC+14, Moz19b].

The neural network processes mel-frequency cepstral coefficients extracted from a sliding
window of 25 miliseconds, with a stride of 20 miliseconds; for each such frame, the LSTM is
invoked, and yields a distribution over the letters of the English alphabet “a” to “z”, as well
as a few special symbols, e.g. “silence”. For the specific architecture of the LSTM we refer
the reader to the original paper [HCC+14]. Our hypothesis was that these letter probabilities
follow a power-law distribution; our data supports this claim, as can be seen in fig. 5.7.

5.6.2 Runtime Bounds for Quantum Beam Search Decoding

As outlined in Section 5.5.2 we take the power law exponent derived from Mozilla’s DeepSpeech
neural network, k = 3.03, and derive runtime bounds for decoding its output with a parser
under the assumption that, on average, we take R = 3 branches in the parsing tree at every
time step. As discussed in Section 5.4, the sampling distribution over three elements only
yields a slightly lower exponent of k = 2.91. How does quantum beam search perform in this
setting, and how many hypotheses are actually searched over? And what if we fix the beam’s
width to a constant, and increase the sequence length? We summarise our findings in figs. 5.8
and 5.9.
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Figure 5.7: Log plot of the power law distribution of the output probabilities obtained from
Mozilla’s DeepSpeech voice recognition LSTM on the Mozilla Common Voice
verified test dataset for English [Moz19a], which consists of 3995 audio samples
of about ten seconds each of spoken test sentences. The dashed line is a fitted
power law ar−b with parameters a = 1.2±0.1 and b = 3.03±0.03. We individually
process each audio file, and capture the output after the final Softmax layer
(logits:0), but before it is processed further by the greedy connectionist temporal
classification (CTC beam search) implemented by DeepSpeech.

As an example we consider an input sequence of length 500; with the above parameters
and a splitting exponential fsplit = n−1/2 (resp. = n−3) we can search over Nhyp ≈ 1060 (resp.
≈ 1018) hypotheses, with a runtime ≈ 1030 (resp. ≈ 109). Similarly, when capping the beam
width at Nhyp ≤ 106, we asymptotically require ≈ 103 iterations of the beam search decoder
(which includes the post-amplification rounds); for shorter sequences, a super-Grover speedup
as present in full QuantumSearchDecode is achieved.

5.7 Discussion

In summary, we have presented a quantum algorithm that is modelled on and extends the
capabilities of beam search decoding for generative models. Studies of context sensitivity
of language models have shown that state-of-the-art LSTM models are able to use about
200 tokens of context on average while working with standard datasets (WikiText2, Penn
Treebank), but sharply distinguish nearby context (roughly 50 tokens) from distant history
[KHQ+18]. The performance of an efficient classical beam search decoder using such an LSTM
depends heavily on the context sensitivity of the underlying language model.

On the other hand, our quantum search decoding method is guaranteed to find—with high
constant success probability—the global optimum in expected runtime that is always more
than quadratically faster than possible classically (neglecting the sampling cost), and with a
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Figure 5.8: Number of iterations (eq. (5.16)) and number of hypotheses (eq. (5.15)) of quantum
beam search decoding the output of Mozilla’s DeepSpeech LSTM with a grammar,
assuming an average branching ratio of R = 3, a token power law distribution with
exponent k = 2.91, and post-amplification of the quantum search decoder with a
retained fraction of hypotheses C0 = C0(n) ∈ {n−1/2, n−2/3, n−1, n−3/2, n−2, n−3}
as defined in eq. (5.14), which is plotted in rainbow colours from red to blue, top
to bottom. The dashed line is the full quantum search runtime and number of
hypotheses from eq. (5.11).
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Figure 5.9: Runtime of quantum beam search decoding the output of Mozilla’s DeepSpeech
LSTM with a grammar, assuming an average branching ratio of R = 5, a to-
ken power law distribution with exponent k = 2.91, and post-amplification of
the quantum search decoder with a constant number of retained hypotheses
Nhyp ∈ {101, . . . , 1015}, plotted in rainbow colours from purple to red, bottom
to top. As expected, the super-Grover speedup is achieved in the regime where
full QuantumSearchDecoding happens; once the beam width saturates, the
speedup asymptotically approaches a quadratic advantage as compared to classical
beam search.
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Grover exponent that shrinks exponentially quickly as the power law exponent k grows, thus
surpassing plain Grover search for any k > 0.

We have further shown that neural networks used in the real world—concretely DeepSpeech—
indeed exhibit a strong power law distribution on their outputs, which in turn supports the
premise of our algorithm.

There are many extensions possible for the type of search we have described in this chapter,
and we hope to make a series of improvements. Foremost, it would be interesting to study
how much non-independence of the input random variables affects the runtime—either in the
negative, or potentially yielding an even positive effect. Quantifying dependence for input
models will likely require analysing a specific problem setup.

A fully error-corrected quantum computer will remain outside of the realm of the possible
for the foreseeable future; yet we hope that our hitherto theoretical proposal of a quantum
search decoder demonstrates that natural language processing is one of the areas where a
potential quantum advantage can be obtained.
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Appendix A Amplitude Amplification 2.0

We have already encountered the concept of amplitude amplification in Chapter 1. In this
appendix, we review some of the material that we saw there once more, and also discuss some
of the more recent variants of this technique that have become indispensable tools in quantum
algorithm design.

Grover’s quantum algorithm for searching an unstructured list [Gro97] was a major
development in the theory of quantum algorithms, achieving a provable quadratic speedup
over the best possible classical algorithm in the oracle access input model. The underlying
idea is to start with the set of database indices loaded in uniform quantum superposition, and
by iteratively applying two cleverly defined reflection operators the probability associated with
observing the marked element can be made arbitrarily close to unity. The key principle is that
the reflections, which are about the initial state and the target state respectively, multiply to
a give a rotation operator that preserves the 2D subspace spanned by the target state and its
orthogonal complement.

Considered from the point of view of generic quantum algorithms, Grover search can
be generalised to what is known as the amplitude amplification algorithm [BHM+02]. The
input is a (potentially black-box) unitary U that prepares from an input state |in〉 a target
state |tar〉 in superposition with some unwanted orthogonal state, i.e. U |in〉 = α |tar〉+ β |⊥〉.
Henceforth we assume the input state to be |0〉 without loss of generality. We would like to
increase the amplitude of the target state and suppress the amplitude of the orthogonal state,
thus boosting the probability of observing the target state on performing a suitably defined
projective measurement.

Let Πψ = |ψ〉〈ψ| represent the projector onto the state |ψ〉. Further, let Rφ
ψ = 1−(1−eiφ)Πψ

denote a selective phase shift of eiφ for the state |ψ〉. For the special case of φ = π, we denote
by Rψ = 1− 2Πψ the reflection about the state |ψ〉.

In standard amplitude amplification, applying the Grover iterate G = −RψRtar =
−R0UR0U† times to the initial state |ψ〉 = U |in〉 results in a state

Gk |ψ〉 = sin [(2k + 1)θ] |tar〉+ cos [(2k + 1)θ] |⊥〉 ,

where β = cos θ, and θ is the angle between the undesired orthogonal state |⊥〉 and the initial
state |ψ〉. From this we deduce that choosing k ≈ π

4θ results in | 〈tar〉Gkψ| ≈ 1, whenever
k ≥ 1, i.e. |α| ≤ 1/

√
2. In the 2D subspace B = spanC{|tar}, |⊥〉〉, the iterate G has the

form

G
∣∣
B =

(
cos 2θ sin 2θ
− sin 2θ cos 2θ

)
(5A.1)
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For the search problem, the above is usually phrased in the language of a list of N elements
of which M < N/2 are marked through some Boolean function f : [N ]→ {0, 1}. In this case,
the initial state in the simplest version of AA is the uniform superposition over all list indices,
and the target and orthogonal states are corresponding uniform superpositions over marked
and unmarked indices, viz |tar〉 = 1√

M

∑
i:f(i)=1

|i〉 etc. Here α = sin θ =
√
M/N . The Grover

iterate can be written in terms of M,N by substituting for the angles in Eq. (5A.1) as(
1− 2M

N
2
N

√
N −M

− 2
N

√
N −M 1− 2M

N

)
. (5A.2)

Grover search with a non-uniform initial state

Now consider the case where we are given classical ‘advice’ in the form of a probability mass
function µ = (pi) : [N ]→ [0, 1] which indicates by pi the probability that element indexed by
i is marked. This can be turned into quantum advice by providing a black-box unitary Uµ

which prepares a state of the form

Uµ |0n〉 = |prior〉 ≡ |ψµ〉 =
N−1∑
i=0

√
pi |i〉 ,

on n = dlogNe qubits. Let the target state be

|tarµ〉 = 1
p

∑
i:f(i)=1

√
pi |i〉 , p :=

∑
i:f(i)=1

pi,

where we denote by p the sum of the probabilities assigned to marked elements (the ‘prior
success’ probability). Assuming for the moment that we know how to reflect about the target
state, we can use the usual Grover iterate Gp = −RψµRtarµ = −R0UµR0Rtarµ , which will
have matrix entries

G
∣∣
B =

(
1− 2p 2

√
p(1− p)

−2
√
p(1− p) 1− 2p

)
. (5A.3)

The number of iterations required to bring the success probability of observing the target
state on making a measurement is, as observed earlier, approximately π

4θ , which now takes
the form k ≈ π/4√p, given p < 1/2. For the case where the prior distribution is uniform, we
recover the usual O(

√
N/M) iterations of Grover search.

Unfortunately, we will not usually know how to reflect about a target state of the form
of |tarµ〉. If we decide to reflect about a uniform superposition of marked states instead, the
state at each iteration becomes more difficult to analyse, and indeed will necessarily lead to a
maximum success probability bounded away from unity due to the fact that the 2D subspace
that is invariant under the modified Grover iterate no longer contains the initial state |ψµ〉.

156



A Amplitude Amplification 2.0

One possible solution to this issue is to use an ancillary qubit to mark the good states,
instead of using a phase flip by virtue of a phase oracle, which will then allow the use of
oblivious AA (described in section A). Fortunately, as we will see in Theorem 5.7, this is
always possible for the application that we consider in this thesis. Gilyén et al. [GAW19] show
how to transform back and forth between a phase oracle and a probability oracle in more
general cases.

Now if the prior is a power law distribution Zipf(k), with pi ∝ i−k normalised by the
generalised harmonic number

Hk(N) =
N∑
i=1

i−k,

then the prior success probability

p = 1
Hk(N)

M∑
i=1

i−k = Hk(M)
Hk(N) , (5A.4)

where we assume the M marked elements are also the elements with the top M ranks in the
distribution. From [Apo76], we have

Hk(N) =


N1−k

1−k + ζ(k) +O(N−k) k > 0, k 6= 1

logN + const.+O(1/N) k = 1,
(5A.5)

where ζ(k) = ∑∞
n=1 n

−k is the Riemann Zeta function. Indeed, Eq. (5A.5) holds in general
for real values of N , and the O(N−k) term does not even arise for integer values of N . For
integers k > 1, ζ(k) decreases monotonically, and is a small constant. Thus for the case of one
marked element, M = 1, and with k = 1 we have that the number of iterations required in
the search algorithm is

k ≈ π
√

logN
4 . (5A.6)

Now, we have to be a bit careful while analysing this power law case. When p > 1/2, the
initial success probability is already significantly large, and standard amplitude amplification
performs poorly as the target is overshot easily due to the large angle through which G rotates
the initial state.

Oblivious AA

Oblivious amplitude amplification [BCC+14, Kot14] is a modification of AA which can be
used when we do not know how to implement the reflection about the initial or target states.
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In these cases, we assume that the initial state has an ancillary qubit with a flag that has
somehow been set to indicate the target state, i.e.

U |0〉 |0〉 = |ψ〉
= sin θ |tar〉 |0〉+ cos θ |⊥〉 , (5A.7)

where |⊥〉 is a state that has no component in any subspace with |0〉 in the flag register, i.e.
(1⊗Π0) |⊥〉 = 0 Then using the reflection R0

flag = 1 − 21 ⊗ Π0 about this flagged target
subspace, we can define a Grover-like iterate G = −RψR0

flag, which acts as a rotation in the
2D subspace span{|⊥〉 , |tar〉 |0〉}. Applying this operator k times has the desired effect, viz

Gk |ψ〉 = sin [(2k + 1)θ] |tar〉 |0〉+ cos [(2k + 1)θ] |⊥〉 |1〉 .

function ObliviousAmplitudeAmplificationm(Uµ, f)
|ψ〉 ← Uµ |0〉
counter ← 0
repeat
|ψ〉 ← −R0UµR0R0

flag |ψ〉
counter ← counter + 1

until counter = m
end function

Now suppose we have as input a unitary that performs the map U |0〉 = sin θ |tar〉+cos θ |⊥〉
with sin θ > 1/2, and we would like to amplify the success probability of seeing the target
state upon measurement. If we know the value of sin θ beforehand, we can simply adjoin a
single qubit to the system register and consider the map U⊗V where V is any single qubit
unitary that performs the map

V |0〉 = 1
2 sin θ |0〉+

√
1−

( 1
2 sin θ

)2
|1〉 , (5A.8)

which is a valid unitary since sin2 θ > 1/4. Now we have

U⊗V |in〉 |0〉 = 1
2 |tar〉 |0〉+

√
3

2 |⊥
′〉 , (5A.9)

where |⊥′〉 is a state that has no component in any subspace with |0〉 in the flag register,
i.e. (1⊗Π0) |⊥′〉 = 0. This is now just Grover search for one marked element in a list of 4
elements, which can be performed exactly using a single iteration of OAA.

With this in mind, let us now go back to the power law distribution and ask for what
values of the tuples (M,N, k) the prior success probability p in Eq. (5A.4) is greater than a
half. This entails finding the satisfying regions to the inequality 2Hk(M) < Hk(N).
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B Postselected Product of Powerlaws

k ∈ expected runtime O(·)

(−1, 0)
√
n1+k

{−1}
√

logn
(−1.64,−1)

√
ζ(k) + n1+k

1+k
(− inf,−1.64) 1

Table 5.1: Number of iterations of Amplitude Amplification required when the subspace of
marked elements is known to have the highest weight under the non-uniform input
state |µ〉, and under the promise that µ ∼ Power(k), for various ranges of the power
law exponent k for an input of size n.

Now of course, if this condition does not hold, we have a prior success probability greater
than half, and we can always resort to single query OAA if we can estimate the value of p,
or reduce the problem to one with p′ = p/2 by doing a ‘blind’ rotation to halve the success
probability, e.g. by choosing the map V used with OAA to be the Hadamard gate.

In table 5.1 we summarise the ranges of the power law exponent with the corresponding
number of iterations of AA or oblivious AA required to obtain a superposition with high
amplitude on the target state. The critical value of k is obtained via the above arguments
regarding the harmonic numbers, and corresponds to W (ln 2)

ln 2 ≈ 0.641186, where W is the
Lambert W-function, defined as the inverse to the function f(x) = xex. The constant runtime
for exponents less than −1.64 is obtained by using OAA. ζ(k) is the Riemann Zeta function
evaluated at z = k.

Appendix B Postselected Product of Powerlaws

In this appendix we answer the open question left in Section 5.4. The setup here is as follows.
Let S > 1, and X be distributed according to a product of distributions with pdf

p(r1, . . . , rn) := 1
HS(k)n

1
(r1 · · · rn)k

as in eq. (5.6), i.e. where every factor is a power law distribution over S elements. If we remove
a random subset of the elements such that Rn (for some R < S) elements are left over, is
the resulting probability distribution a product-of-powerlaws, where every factor is over R
elements?

In the continuous case this can be seen as follows. If X ∼ Pareto(k, S) with pdf p as
defined in Section 5.4, then removing a random subset of elements on the interval [1, S + 1] is
equivalent to taking a random characteristic function χ1 over it, with

∫
[1,S+1] χ(r)dr = R, and

defining X ′ with pdf Sp(r)χ(r)/R. We define the postselected random variable Y over [1, R]
by relabelling the points in suppχ by values in [1, R] in an order-preserving fashion.
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Similarly, if Xn is a product of n iid Pareto random variables with pdf pn, then postselection
means taking a random characteristic function χn on [1, S]n with∫

[1,S+1]n
χn(r1, . . . , rn)dr1 · · · drn = Rn.

We claim that the resulting random variable X ′n with pdf Snpn(r)χn(r)/Rn then factors into
a product distribution. This holds because χn has the property that for all ε > 0 there exists
a bijection f such that for almost all (x1, . . . , xn) ∈ suppχn, there exists

(y1, . . . , yn) = f(x1, . . . , xn) ∈ (suppχ1)n s.t.
n∑
i=1
|xi − yi| < ε,

for some characteristic function χ1 defined on [1, S]. We refer to this property as χn being
‘product’.

We now prove this claim by induction on n. For n = 1, X and χ1 are already product, so
there is nothing to show. Assume the hypothesis holds for χn which can be factored into a
product χn1 for some χ1. Take a random characteristic function χn+1 over n+ 1 dimensions.
Let ε > 0. As R is uncountable, we take a δ-net over the interval I := [1, S + 1] for some small
ε � δ > 0, which we will denote with Iδ; each x ∈ I then has a corresponding x′ ∈ Iδ that
satisfies |x− x′| < δ. In particular, Iδ is countable. In a similar fashion, for χn+1 we consider
its discretised variant over Inδ as χ′n+1.

So let (x1, . . . , xn, xn+1) ∈ suppχ′n+1, and analogously define the discretised characteristic
functions χ′n and χ′1. A counting argument shows that within each ε-bin (defined over I and
extended over to Inδ accordingly), we can map (x1, . . . , xn+1) to their closest corresponding
point (y1, . . . , yn, z1) ∈ χ′n × χ′1—or if that point was previously chosen its next- and next-
to-next-closest one etc., while staying within ε distance for each original coordinate for the
majority of the points.

A limiting argument ε −→ 0 shows that this map can be constructed for almost all points.
This concludes the induction.

The question that remains is what distribution Y follows. Despite scale invariance of
Pareto distributions, the resulting pdf for a surviving fraction λ of the original points looks like
p̃(r) = p(1 + (x− 1)λ), which is itself not a Pareto distribution. Yet, since we actually work
with a power law distribution, we already answered in Section 5.4 what this resulting sample
distribution over R looks like: it can be well-approximated by a power law with a slightly
worse falloff k′ < k that itself can be estimated numerically in a straightforward fashion. The
smaller exponent should also account for any approximation errors made by the continuous
variable analysis demonstrated in this appendix.
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Chapter 6

Conclusions

We have shown in the preceding chapters a modest expansion in the capabilities of quantum
computers by demonstrating that they can efficiently solve certain classes of problems. In
particular, we have reinforced the idea that quantum computers may offer performance
gains in linear algebraic problems. This an expectation that has its deep roots in the very
formulation of quantum mechanics as linear algebra with complex numbers, in the form of
matrix mechanics.

Chapter 1 introduced a unifying framework for the probabilistic quantum implementation
of functions of matrices, and discussed the exponential speedup in terms of the precision
parameter 1/ε achieved by LCU and similar methods. We saw how function approximation
by Chebyshev series is useful in designing quantum algorithms, and observed the simplicity
of the method for implementing matrix polynomials, which in turn can approximate a very
large class of functions by means of Taylor series. Chapter 2 continued this investigation
by focusing on the assumption of row sparsity needed by query model quantum algorithms,
showing that spectral sparsification can yield row-sparse approximations to input matrices,
which can be used with sparse Hamiltonian simulation subroutines and hence in a variety of
quantum algorithms including matrix inversion. Towards the quest to find applications of
theoretical primitives, and design more practical quantum algorithms, we saw in Chapter 3
a method to estimate the entropy or ‘randomness’ of a random variable. We implemented
power functions of a density matrix input in the form of a unitary preparing its purification,
and estimated their trace using a single clean (or pure) qubit in the DQC1 model of quantum
computation. We studied the estimation to multiplicative precision, and also looked at an
analysis of the expected runtime of our algorithm, bounding it as a function of the unknown
target quantity.

In Chapter 4 we shifted into the domain of machine learning problems. Zoning in on kernel
methods for supervised learning, we showed an application of matrix functions techniques
to invert the square root of a regularised integral operator that has full rank and may be
dense, by leveraging a result from signal processing that allowed us to break this operator
down into a product of quantum Fourier transforms (QFT) and diagonal matrices constructed
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from input data held in QRAM. We discussed some evidence, based on the QFT, for why
our algorithm, which does not need sparsity or rank assumptions, might offer a genuine
speedup that is not dequantisable. We also saw how the runtime of our method is linear in
the data dimension, and can be exponentially faster than the classical state-of-the-art for
some realistic choices of kernels and data. Finally, in Chapter 5, once again hand in hand
with the bigger theme of complexity analysis, we pick out another machine learning problem
of immediate relevance: Natural Language Processing. Studying the sequence-to-sequence
decoding technique of beamsearch, we fleshed out a quantum search algorithm that can zero
in on the ‘optimal parse’, which may be a best translation, or text-to-speech transcript for
instance. In the presence of prior advice that is usually available in the NLP context, in the
form of a power-law distributed random variable output by an LSTM or other neural network
model, our method achieves super-quadratic speedups in the expected runtime.

We have seen in the discussion sections of each of the foregoing chapters several avenues
for further exploration. These range from investigating the boundary between low-rank and
sparsity as assumptions in quantum algorithms, to proving lower bounds on the sample (query)
complexity of estimating Renyi entropy to multiplicative precision, in the quantum purified
query access model.

As we’d mentioned at the opening of this thesis, while we have focused on algorithms and
upper bounds here, lower bounds are another important way of progressing our understanding
of quantum computers and their power. In particular, while the quantum query complexity
model has been studied in some detail over the last three decades, circuit complexity is an
area that has only recently started garnering more attention. Proving bounds on the size and
depth of the smallest quantum circuits (in some gate set of interest) that can solve any of
the problems we have considered in this thesis, are open questions. These questions include a
very practical circuit optimisation component, as well as a more theoretical consideration of
complexity class inclusions.

More generally, the solution of problems involving matrices, and their applications to
machine learning, is a young and vibrant area of research. I hope, within my limited abilities
and sample of research, to have passed on to the readers of this thesis a sense of this vibrancy,
and some exciting new ideas to think about in their own work!
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