
Density Independent Algorithms for Sparsifying
k-Step Random Walks∗

Gorav Jindal1, Pavel Kolev2, Richard Peng3, and Saurabh Sawlani4

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany
gjindal@mpi-inf.mpg.de

2 Max-Planck-Institut für Informatik, Saarbrücken, Germany
pkolev@mpi-inf.mpg.de

3 Georgia Institute of Technology, Atlanta, GA, USA
rpeng@gatech.edu

4 Georgia Institute of Technology, Atlanta, GA, USA
sawlani@gatech.edu

Abstract
We give faster algorithms for producing sparse approximations of the transition matrices of k-
step random walks on undirected and weighted graphs. These transition matrices also form
graphs, and arise as intermediate objects in a variety of graph algorithms. Our improvements are
based on a better understanding of processes that sample such walks, as well as tighter bounds
on key weights underlying these sampling processes. On a graph with n vertices and m edges,
our algorithm produces a graph with about n logn edges that approximates the k-step random
walk graph in about m+ k2n log4 n time. In order to obtain this runtime bound, we also revisit
“density independent” algorithms for sparsifying graphs whose runtime overhead is expressed
only in terms of the number of vertices.

1998 ACM Subject Classification F.2.2. [Nonnumerical Algorithms and Problems] Computa-
tions on Discrete Structures, G.3 [Probability and Statistics] Probabilistic algorithms (including
Monte Carlo)

Keywords and phrases random walks, graph sparsification, spectral graph theory, effective res-
istances

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2017.14

1 Introduction

Random walks are some of the most natural mathematical objects, and have historically been
used to model processes in fields ranging from psychology to economics. Problems related to
random walks on graphs, such as shortest path and minimum cut are well studied in both
static [34] and dynamic settings [21, 17]. While some of these problems, such as shortest
path, aim to find a single walk, other problems such as finding flows/cuts [16] or triangle
densities [4, 38] aim to capture information related to collections of walks. Algorithms and
data structures for such problems often need to store, or can be sped up by, intermediate
structures that capture the global properties of multi-step walks [31, 18, 1, 3]. However, many
intermediate structures are inherently dense and therefore expensive to compute explicitly.

∗ Pavel Kolev is funded by the Cluster of Excellence “Multimodal Computing and Interaction” within
the Excellence Initiative of the German Federal Government. Richard Peng and Saurabh Sawlani are
partially supported by the NSF under Grant No. 1637566.

© Gorav Jindal, Pavel Kolev, Richard Peng, and Saurabh Sawlani;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala; Article No. 14; pp. 14:1–14:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/84869286?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.14
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

14:2 Density Independent Algorithms for Sparsifying k-Step Random Walks

Graph sparsification is a technique for efficiently approximating a dense graph by a sparser
one, while preserving some key properties such as sizes of graph cuts, distances between
vertices, or linear operator properties of matrices associated with the graphs. Spectral
sparsifiers are the ones which guarantee linear operator approximations, but they also
inherently approximate all graph cuts. Moreover, they have various applications in graph
algorithms, such as sampling from graphical models [7], solving linear systems [32, 27],
sampling random spanning trees [13, 14]1 and maintaining approximate minimum cuts in
dynamically changing graphs [1]. In these applications, the optimal performance is achieved
by producing a sparsifier of a denser intermediate object directly, instead of generating the
exact larger object. Of these intermediate objects, some of the more commonly studied are
random walk matrices [32, 7]. These matrices contain the pairwise transition probabilities
between vertices under k-step walks. Moreover, such matrices are dense even for sparse
original graphs with k as small as 2: for instance, the 2-step walk on the n-vertex star
contains an n− 1 sized clique.

Cheng et al. [7] studied random walk sparsification, and gave a routine that produces
an ε-spectral sparsifier (which we will formally define in Subsection 2.2) with O(ε−2n logn)
edges for a k-step walk matrix in O(ε−2k2m logO(1) n) time. Our main result, which we show
in Section 3, is a direct improvement of that routine:

I Theorem 1 (Sparsifying Laplacian Monomials). Given a graph G and an error ε ∈ (0, 1),
there is an algorithm that outputs an ε-spectral sparsifier of Gk with at most O(ε−2n logn)
edges in Ô(m+ k2ε−2n log4 n) time.2

We term this type of running time with most of the overhead on the number of vertices, n,
as density independent. Such runtimes arise naturally in many other graph problems [15],
and was first studied for graph sparsification in an earlier manuscript by a subset of the
authors [22], where the authors sparsify certain Laplacian monomials (specifically, monomials
where the degree is a power of 2) in O(m log2 n+ ε−4n log4 n log5 k) time. They also extend
this to specific classes of matrix polynomials - those with coefficients induced by “mixture
of discrete Binomial distributions” with similar running-times. Our algorithm can also be
combined with the repeated-squaring technique in [7] to reduce the runtime dependence on
k to logarithmic [8]. Additionally, if we generalize our results from monomials to general
random walk polynomials [8], this would then supersede all claims from [22]. As these
steps are much closer to the ideas in [7], we will focus on the small k case in this paper.
Furthermore, as our sparsification algorithm has a much more direct interaction with routines
that provide upper bounds of effective resistances, they can likely be combined with tools
from [1] to give dynamic algorithms for maintaining Gk under insertions/deletions to G.
However, as there are currently only few applications of such sparsifiers, we believe it may
be more fruitful to extend the applications before further developing the tools.

Our algorithms, as with the ones from [22, 7] are based on implicit sampling of dense
graphs by probabilities related to effective resistances. Our improvements rely on an a
key insight from the sparse Gaussian elimination algorithm by Kyng and Sachdeva [29]:
using triangle inequality between effective resistances to obtain a tighter set of probability

1 While these manuscripts are simultaneous, the significantly earlier original proposal of density independ-
ent sparsification of walks [22], and the importance of it in the algorithm of [14] were major motivations
for this paper.

2 We use Ô to denote the omission of logarithmic terms lower than the ones shown in the set. In all cases
in this paper, we track terms of log n explicitly and such notation hides terms of log log n. In all these
cases, this notation hides a term of at most (log log n)2.

G. Jindal, P. Kolev, R. Peng, and S. Sawlani 14:3

upper bounds. So, to sample an edge in Gk, we essentially simulate a k-step walk in G

by first sampling an edge, and then “walking” along both directions to make a length k

walk. A simple but crucial detail in the algorithm is the selection of that first edge. Instead
of sampling it uniformly as in [7], we pick an edge e with probability proportional to the
product of its weight and effective resistance (its “leverage score”). Although the change is
subtle, this helps remove any sampling count dependencies on the number of edges, making
a density-independent runtime possible.

Obtaining density-independent bounds is critical for graph sparsification algorithms, since
they are primarily invoked on relatively dense graphs. A graph sparsification routine that
produces a sparsifier with Ô(n log2 n) edges in Ô(m log2 n) time, such as the combinatorial
algorithm given in [28], will only be invoked when m > n log2 n, which means that the
running time of the algorithm is actually Ω(n log4 n). Additionally, a desired property of a
sparsification algorithm is that applying it repeatedly does not cause a blow up in its running
time. One way to achieve this is to ensure that the running time is linear in the number of
edges, and the overhead is only on the number of vertices. As a result, we believe that for
graph sparsification to work as a primitive for processing large graphs, a running time of
Ô(m+ n log2 n), or better, is necessary.

In Section 4, we provide some steps toward this direction by outlining a better density-
independent spectral sparsification algorithm. We combine ideas from previous density-
independent algorithms for sparsifying graphs [26] with recent developments in tree embedding
and numerical algorithms to obtain numerical sparsification routines that run in Ô(m +
n log4 n) time, and combinatorial ones that take Ô(m + n log6 n) time. Although these
routines do not involve new ideas, they utilize some of the latest machinery, and give the
current best time-bounds for density-independent sparsification. Importantly, both of these
routines are in turn applicable to the walk sparsification algorithm in Section 3, giving routines
for sparsifying k-step walks with similar running times: the bound stated in Theorem 1
is via the numerical routine. While these results are far from what we think are the best
possible, we show a variety of new algorithmic tools for designing algorithms that sparsify
k-step random walks matrices.

Our methods of extending density independent sparsification to random walks play a
crucial role in several other types of graph sparsification - in particular, sparsification routines
requiring only an oracle that samples edges from a distribution of approximate resistances,
and oracle access to approximate leverage scores. Even for the ‘simpler’ problem of producing
cut sparsifiers of Gk, these are the only known efficient approaches.

For instance, the routines for approximately sampling and counting spanning trees
from [14] rely on producing determinant preserving sparsifiers of Schur complements of graph
Laplacians, which are themselves sums of random walks. Specifically, the algorithm in [14]
builds a sparse graph H such that (1 − ε) det(G) ≤ det(H) ≤ (1 + ε) det(G), but requires
an overhead of about Θ(

√
n) samples, leading to sparsifiers with about Θ(ε−2n1.5) edges.

On the other hand, the number of calls this algorithm makes to the oracles is given by
O(n−1∑

e∈E `e), where `e is a value dominating the leverage score of e. Thus, to extend
their algorithm to Schur complements and simultaneously guarantee that the time-bound
does not blow up beyond O(n1.5), we have to ensure that these approximate leverages scores
still sum up to O(n). This is similar to our requirement, and is done by picking the initial
edge of the random walk with probability proportional to the product of its weight and its
effective resistance, and extending it to a walk on both sides.

APPROX/RANDOM’17

14:4 Density Independent Algorithms for Sparsifying k-Step Random Walks

2 Background

We start with some background information about graphs and matrices corresponding to
them. These matrices allow us to define graph approximations, as well as compute key
sampling probabilities needed to produce spectral sparsifiers. Due to space constraints, we
will only formally define most of the concepts. More intuition on them can be found in notes
on spectral graph theory and random walks such as [12, 30].

2.1 Random Walks and Matrices
Let G = (V,E,w) be a weighted undirected graph. We define its adjacency matrix A as
Auv

def= wuv, and its degree matrix D as Duu
def=
∑
v∈V wuv and Duv

def= 0 when u 6= v. This
leads to the graph Laplacian LG

def= D −A.
One step of a random walk can be viewed as distributing the ‘probability mass’ at a

vertex evenly among the edges leaving it, and passing them onto its neighbors. In terms of
these matrices, it is equivalent to first dividing by D, and then multiplying by A. Thus, the
left transition matrix of the kth step random walk is given by (D−1A)k. The corresponding
Laplacian matrix of the k-step random walk is defined by

LGk
def= D −A

(
D−1A

)k−1
.

The matrices A(D−1A)k−1 can be viewed as a sum over length k walks. This view is
particularly useful in our algorithm, as well as the earlier walk sparsification algorithm by
Cheng et al. [7] because these walks are a more ‘natural’ unit upon which sparsification
by effective resistances is applied. Formally, we can define the weight of a length k walk
(u0, u1, . . . , uk) by

w(u0,u1,...,uk)
def=
∏k
i=1 wui−1,ui∏k−1
i=1 dui

. (1)

Straightforward checking shows that for any u0, uk ∈ V , the weight of the edge (u0, uk) in
Gk is given by

wGk

u0,uk

def=
[
A
(
D−1A

)k−1]
u0uk

=
∑

u1,...,uk−1

w(u0,u1,...,uk). (2)

2.2 Spectral Approximations of Graphs
Our notion of matrix approximations will be through the ≈ symbol, which is in turn defined
through the Löewner partial ordering of matrices. For two matrices, A, and B, we say that
A � B if B −A is positive semidefinite, and A ≈κ B if there exists bounds λmin and λmax
such that λminA � B � λmaxA, and λmax ≤ κλmin. This notation is identical to generalized
eigenvalues, and in particular, LG ≈κ LH implies that all cuts on them are within a factor
of κ of each other.

The adjacency matrix of a graph has several undesirable properties when it comes to
operator based approximations: it can have a large number of eigenvalues at 0, which must
be exactly preserved under relative error approximations. As a result, graph approximations
are defined in terms of graph Laplacians. As we will discuss below, these approximations are
often in terms of reducing edges. So formally, we say that a graph H is a κ-sparsifier of G if
LH ≈κ LG, and our goal is to compute an ε-sparsifier of the k-step random walk graph Gk.

G. Jindal, P. Kolev, R. Peng, and S. Sawlani 14:5

Algorithm 1 IdealSample(G, ε, τ̃)
Input: A graph G = (V,E,w), an integer k, and leverage score upper bounds τ̃ e that satisfy
τ̃ e ≥ weRGeff(e) for all edges e.
Output: An ε-sparsifier H of G with O(ε−2T logn) edges, where T =

∑
e∈E τ̃ e.

1. Initiate H as an empty graph.
2. Set sample count N ← O(ε−2T logn).
3. Repeat N times:

a. Pick an edge e in G with probability pe = τ̃ e/T .
b. Add e to H with new weight we/(Npe).

2.3 Graph Sparsification by Effective Resistances
There are two ways of viewing graph sparsification: either as tossing coins independently on
the edges, or sampling a number of them from an overall probability distribution. We take
the second view here because it is expensive to access all edges in Gk. The pseudocode of
the generic sampling scheme is given in Algorithm 1.

Algorithmically, the sampling step can be implemented by first generating a number
uniformly random in [0,

∑
e τ̃ e], (considering we want an edge e to be chosen with probability

proportional to a real number τ̃ e) and binary searching among the prefix sums of the τ̃ e
values until it reaches the edge corresponding to that point. In the RealRAM model [5, 33]
of computation, however, this can be done in O(m) preprocessing time and O(1) query time
using “pairing” or “aliasing” [6, 24, 39].

The guarantees of this routine require defining effective resistances and leverage scores.
Effective resistance is a metric on a graph that is defined by:

RGeff(u, v) def= χTuvL
†
Gχuv, (3)

where L†G denotes the pseudoinverse of LG and χuv is the indicator vector with 1 at u and
−1 at v. Intuitively, viewing the graph as an electrical network where an edge e acts as a
resistor having resistance 1/we, the effective resistance between u and v is the potential
difference required between them so that one unit of current flows from u to v.

The effective resistances RGeff are directly related to the statistical leverage scores τ by
the relation τ e = weRGeff(e). Moreover, these scores are well defined for general matrices, and
have a wide range of applications in randomized linear algebra [40, 9, 11]. The guarantees of
sampling by weight times effective resistance, or leverage scores, can then be formalized as:

I Lemma 2. (Sampling by Upper Bounds on Leverage Scores [37]) Suppose G = (V,E,w) is
a graph and τ̃ is a vector such that τ̃ e ≥ weRGeff(e) for every edge e, then, with high probability,
any process that simulates the ideal sampling in Algorithm 1 produces an ε-sparsifier of G
with O(ε−2T logn) edges in O(m+ ε−2T log2 n) time, where T =

∑
e∈E τ̃ e.

Proof Sketch. A variant (in page 10 of [20]) of the Matrix Chernoff bound [37] states that
if Y =

∑N
i=1 Yi, Z = E[Y] and 0 � Yi � RZ for every i ∈ [k] and some scalar R, then for

any ε ∈ (0, 1), it holds

Pr [(1− ε)Z � Y � (1 + ε)Z] ≥ 1− 2n · exp
{
−ε2

3R

}
.

Setting Yi to be the Laplacian of the scaled ith edge added to H in Step 3 of Algorithm 1,
we have Yi = we

τ̃ e ·O(ε−2 logn)χeχ
T
e and Y = LH . Moreover, E[H] = G and thus Z = LG.

APPROX/RANDOM’17

14:6 Density Independent Algorithms for Sparsifying k-Step Random Walks

To prove that H is almost always an ε-sparsifier of G, it suffices to show that there is a
scalar R such that Yi � RZ for small enough R. Since weχeχ

T
e � τ eLG for every edge e

(cf. [9, equation (11) in the proof of Lemma 11]) and by assumption τ e ≤ τ̃ e, it follows that
Yi � RLG for R = Θ(ε2/ logn). Hence, the desired bound on the failure probability holds.

The runtime follows by noting that in O(m) time we can precompute prefix sums of τ̃
and each consecutive edge sample takes O(logn) time using binary search. J

The bound on the number of samples then follows by:

I Fact 3 (Foster’s Theorem). For any undirected graph G = (V,E,w), it holds that∑
e∈E

weRGeff (u, v) = n− 1.

Leverage scores are the preferred objects for defining sampling distributions as they are scale
invariant: doubling the weights of all edges does not change their leverages scores. However,
we will still make extensive uses of effective resistances because of the need to approximate
them across different graphs. Such approximations are difficult to state for leverage scores
because spectrally similar graphs may have very different sets of combinatorial edges.

I Fact 4. If G and H are graphs such that LG � LH , then for any vertices u and v we have

RHeff(u, v) ≤ RGeff(u, v).

Note that this generalizes Rayleigh’s monotonicity law, which postulates that the effective
resistances can only increase as one removes edges from a graph.

3 Random Walk Sparsification via Walk Sampling

In this section, we describe our improved algorithm for sparsifying random walk polynomials.
The main difficulty we need to overcome here is that the actual random walk matrix cannot
be constructed explicitly. Instead, we need to simulate the ideal sampling routine shown in
Algorithm 1 by constructing nearly tight upper bounds of effective resistances in Gk that
can also be efficiently sampled from, without having explicit access to Gk.

To obtain these effective resistances estimates in Gk, the following lemma from [7] provides
a helpful starting point.

I Lemma 5. [7] For odd k, we have 1
2LG � LGk � kLG and for even k, we have LG2 �

LGk � k
2 LG2 .

Furthermore, note that Lemma 5 combined with Fact 4 implies for odd k that

RG
k

eff (u, v) ≤ 2RGeff(u, v) (4)

and for even k that

RG
k

eff (u, v) ≤ RG
2

eff (u, v). (5)

Since Gk might be dense, i.e. E[Gk] = Θ(n2), it is prohibitive to use (4) and (5) directly.
Instead, we upper bound the values with a random walk using the triangle inequality of
effective resistances [36, Lemma 9.6.1].

G. Jindal, P. Kolev, R. Peng, and S. Sawlani 14:7

I Fact 6 (Triangle Inequality for Effective Resistances). For any graph G and any walk
(u0, u1, . . . , uk), we have

RGeff(u0, uk) ≤
∑

0≤i<k
RGeff(ui, ui+1). (6)

Now, suppose we have a vector r̃ that upper bounds the effective resistances, i.e., r̃e ≥ RGeff(e)
for all e. Then, by Lemma 2 and Fact 6, to sparsify Gk, it suffices to sample a length k

random walk in G with probability proportional to

w(u0,u1,...,uk) ·
∑

0≤i<k
r̃ui,ui+1 . (7)

This distribution has the advantage that it is efficiently computable:

I Lemma 7. For any graph G = (V,E,w), and any vector r̃ ∈ RE, we can sample length k
walks such that the probability of sampling the walk (u0, u1, . . . , uk) is proportional to

w(u0,u1,...,uk) ·
k−1∑
i=0

r̃ui,ui+1

using the following procedure:
1. Pick uniformly at random an index i in the range [0, k − 1].
2. Choose an edge (ui, ui+1) with probability proportional to wer̃e.
3. Extend the walk in both directions from ui and ui+1 via two random walks.

Proof.
(Step 1) Let i be the selected number. The probability of this event is 1/k.

(Step 2) The probability of selecting an edge (ui, ui+1) is
wui,ui+1 r̃ui,ui+1

〈w, r̃〉
.

(Step 3) Conditioned on the event that edge (ui, ui+1) is selected, the probability to sample
a walk (u0, . . . , uk) equals i∏

j=1

wuj−1,uj

duj

 ·
 k−1∏
j=i+1

wuj ,uj+1

duj

 =
w(u0,u1,...,uk)

wui,ui+1

.

Thus, summing over all choices of i, and by the total law of probability, the probability
of sampling the walk (u0, u1, . . . , uk) is

k−1∑
i=0

1
k
·

wui,ui+1 r̃ui,ui+1

〈w, r̃〉
·

w(u0,u1,...,uk)

wui,ui+1

=
w(u0,u1,...,uk)

k〈w, r̃〉

k−1∑
i=0

r̃ui,ui+1 . J

The total number of samples needed by Lemma 2 is given by the summation over all
length k random walks, similarly to [7, Lemma 29]. For completeness, we present its proof in
Appendix A.

I Lemma 8. For any weighted graph G = (V,E,w), any k ∈ N+, and any vector r̃ ∈ RE,
it holds that∑

(u0,u1,...,uk)

w(u0,u1,...,uk) ·
∑

0≤i<k
r̃ui,ui+1 = k · 〈w, r̃〉. (8)

APPROX/RANDOM’17

14:8 Density Independent Algorithms for Sparsifying k-Step Random Walks

For every odd k, by setting r̃ to (an approximation of) RGeff , yields an efficient sampling
procedure due to (8) and Lemma 7.

However, when k is even, Lemma 5 gives a bound in terms ofRG2

eff (notRGeff), i.e.RG
k

eff (u, v) ≤
RG2

eff (u, v). Hence, the distribution in Lemma 7 requires an access to the 2-step random walk
matrix G2, which might also be dense and therefore expensive to compute.

Moreover, suppose G is a 2-length path graph u− v − w, then RG2

eff (u, v) = +∞, since
G2 has only one edge (u,w) (and self-loops). A naive approach to tackle these issues is to
substitute RG2

eff with RGeff . However, this fails shortly since it is not true in general that

RGeff(u, v) +RGeff(v, w) ≥ RG
2

eff (u,w). (9)

In particular, (9) does not hold for the length 2 path example from above. To verify this,
note that RGeff(u, u) +RGeff(u, v) is a finite number, whereas RG2

eff (u,w) = +∞ since u and
v are disconnected in G2. For a non-degenerate example, let G be a triangle graph on
vertices u, v, w with wuv = wvw = 1 and wuw = 100. Then, RGeff(u, u) +RGeff(u, v) ≈ 1 and
RG2

eff (u, v) ≈ 50.
We overcome this issue by using effective resistances from the “double cover” of G, instead.

The “double cover” G×P2 is the tensor product of G and a path of length 1. Combinatorially,
G× P2 is a bipartite graph with vertex sets V (A), V (B) each a copy of V such that for every
edge (u, v) ∈ G we insert in G × P2 the following two edges: u(A)v(B) and u(B)v(A) with
wu(A)v(B) = wu(B)v(A) = wuv. The next lemma (proved in Appendix A) relates the effective
resistances of G2 and G× P2.

I Lemma 9. For any vertices u and v in G, it holds

RG
2

eff (u, v) = RG×P2
eff (u(A), v(A)),

where u(A) and v(A) are the corresponding copies of u and v in V (A), respectively.

Lemma 9 combined with Fact 6, fixes (9) by upper bounding the effective resistance
RG2

eff (·) with summation of terms RG×P2
eff (·), i.e. for every edge (u,w) in G2 it holds that

RG
2

eff (u,w) = RG×P2
eff (u(A), w(A)) ≤ RG×P2

eff (u(A), v(B)) +RG×P2
eff (v(B), w(A)). (10)

Using the preceding results, we design an algorithm with improved sampling count. It
takes any procedure that produces effective resistance distribution that dominates the true
one (call this an EREstimator), and produces samples that suffice for simulating the ideal
sampling algorithm on Gk (cf. Subsection 2.3, Algorithm 1). The pseudocode for this routine
is shown in Algorithm 2.

Note that from the perspective of this framework by picking edges with probabilities
proportional to wer̃e, and extending them into walks, the previous result [7] can be viewed
as utilizing a simple EREstimator that returns r̃e = 1/we as the effective resistance of every
edge.

I Theorem 10. Given any graph G = (V,E,w), any values of k and ε, and any effective
resistance estimation algorithm EREstimator that produces w.h.p. estimates r̃e ≥ RGeff(e) for
every edge e ∈ E, then calling SparsifyGk(G, k, ε,EREstimator) produces an ε-sparsifier of
Gk with O(ε−2k〈w, r̃〉 logn) edges in time proportion to the cost of one call to EREstimator
on a graph of twice the size, plus an overhead of O(m+ ε−2k2〈w, r̃〉 log2 n).

Proof. By Lemma 2, it suffices to show that this algorithm simulates the ideal sampling
algorithm given in Algorithm 1. Once again we split into the cases of k being odd or even.

G. Jindal, P. Kolev, R. Peng, and S. Sawlani 14:9

Algorithm 2 SparsifyGk (G, k, ε,EREstimator)
Input: Graph G = (V,E,w), integer k, error ε, routine EREstimator that estimates upper
bounds for effective resistances of a graph G.
Output: An ε-sparsifier of Gk

1. If k is odd
a. set r̃ ← EREstimator(G),

2. else k is even
a. Set r̃(2) ← EREstimator(G× P2),
b. Set r̃e ← r̃(2)(u(A), v(B)), for every edge e = uv ∈ E[G] (cf. Lemma 9).

3. Set sampling overhead h← O(ε−2 logn) and number of samples N ← h · k · 〈w, r̃〉.
4. Repeat N times

a. Pick an edge e in G with probability proportional to wer̃e.
b. Pick an integer 0 ≤ i < k uniformly at random, set ui and ui+1 to be endpoints of e.
c. Perform a random walk by taking i steps from ui and k − 1− i steps from ui+1.
d. Add the edge (u0, u1, . . . , uk) to H with weight 1/(h ·

∑
0≤i<k r̃uiui+1).

When k is odd, Lemma 7 implies that a walk (u0, u1, . . . , uk) is sampled with probability
proportional to w(u0,u1,...,uk)

∑
0≤i<k r̃ui,ui+1 , where r̃ui,ui+1 ≥ RGeff(ui, ui+1). Summing

over all walks with fixed endpoints (u0, uk), by combining (2), (4) and Fact 6, this summation
dominates the product wGk

u0,uk
RGk

eff (u0, uk). Thus, by Lemma 2 the resulting probability
distribution satisfies the statement. The running time and the number of edges in the output
sparsifier follow from Lemma 8.

In the case of k being even, by combining Lemma 5 and Lemma 9, we have

RG
k

eff (u, v) ≤ RG×P2
eff

(
u(A), v(A)

)
= RG×P2

eff

(
u(B), v(B)

)
.

Also, note that because k is even, each k step walk in G also corresponds to a walk in
G × P2 that starts/ends on the same side, but alternates sides at each step. Using (10)
and the symmetry between u(A)v(B) and u(B)v(A), it suffices to sample length k walks with
estimated effective resistances satisfying r̃uv ≥ rG×P2

(
u(A), v(B)), for every edge (u, v) ∈ G.

The rest of the algorithm follows similarly as in the case of odd k.
To enable picking a neighbor randomly, we need O(deg(v)) preprocessing time for every

vertex v, which implies a total preprocessing time of O(m). The extra O(k logn) in the
runtime overhead accounts for performing a random walk of length k, i.e. after preprocessing,
a neighboring edge can be sampled using binary search in O(logn) time. J

This reduces the task of sampling edges in Gk to compute good upper bounds for the
effective resistances of either the original graph G or of its double cover G× P2. In the next
section we discuss this routine, with focus on density-independent routines.

4 Faster Density Independent Sparsification of Graphs

The monomial sparsification routine from the previous section only requires a distribution
that dominates effective resistances for a given graph G. Additionally, we only need a
good approximator of G to efficiently compute these approximate effective resistances. The
major challenge in keeping the routine density independent is that most numerically oriented

APPROX/RANDOM’17

14:10 Density Independent Algorithms for Sparsifying k-Step Random Walks

approaches for estimating effective resistances require O(m logn) time. Instead, a more
relevant approach is to utilize “low stretch spanning trees”.

Given a graph G = (V,E,w), and a tree T , we define the stretch of an edge e = (u, v) ∈ E
w.r.t. T as the ratio of the total resistance on the unique path PT (e) between u and v in T
to the resistance of e:

strT,G(e) def= we

∑
e′∈PT (e)

1
we′

.

Extending this definition, the stretch of a subgraph G′(V ′, E′) of G w.r.t. T is given by

strT,G(G′) def=
∑
e∈E′

strT,G(e).

We will drop the usage of the second term in the subscript when the underlying graph is
obvious from the context.

The advantage of using trees with respect to whom G has low stretch is that the resistance
of the path between vertices u and v in the tree can be used as an estimate for the effective
resistance of (u, v), and more importantly, the stretch of all edges can be computed using
lowest common ancestor queries in only O(m) time [19]. In this context, Lemma 2 can be
rewritten as:

I Lemma 11. If we have a tree T � G, then we can construct an ε-sparsifier of G with
O(ε−2strT (G) logn) edges in O(m) time.

However, we are still left with the issue of constructing such a tree. Abraham and Neiman
[2] showed that a tree with stretch Ô(m logn) can be constructed in time Ô(m logn). This
running time does not help our goal of being density-independent. Also, the average stretch
is not low enough for the stretches to serve as effective resistance estimates. To tackle both
of these issues, we follow the approach used in [26]. We present now a brief overview of this
approach and we include the details in Appendix B.
1. Construct a tree T and a graph Ĝ obtained by removing O(m/ logn) edges from G such

that strT (Ĝ) ≤ Ô(m logn). This can be computed in Ô(m) time, using [10, Lemma 5.9]
applied with k = O(logn).

2. Sparsify the removed edges in O(m) time using any standard sparsification method [27, 28]
to get H ′.

3. To sparsify Ĝ, construct a series of graphs Ĝ(0), Ĝ(1), . . . , Ĝ(τ), where Ĝ(0) = Ĝ and Ĝ(τ)

is a graph with low enough stretch such that an O(1)-sparsifier Ĥ(τ) of Ĝ(τ) can be
constructed in O(m) time.

4. Use the sparsifier Ĥ(τ) to construct an O(1)-sparsifier Ĥ(τ−1) of Ĝ(τ−1) and so on, until
we get an O(1)-sparsifier Ĥ(1) of Ĝ(1). Every sparsifier Ĥ(i) has at most O(n logn) edges.

5. Repeating Step 4 a final time using effective resistance upper bounds computed from
Ĥ(0), we compute an ε-sparsifier Ĥ of Ĝ. Bringing in the small ε only at the last step,
allows us to keep the accuracy-related overhead in the intermediate steps at O(1).

This gives us the following results:

I Lemma 12. There is a routine that takes a weighted undirected graph G with n vertices,
m edges, an error ε > 0, and produces in Ô(m + ε−2n log4 n) time an ε-sparsifier of G
with O(ε−2n logn) edges, as well as effective resistance upper bounds r̃ such that 〈w, r̃〉 =
Ô(n log2 n).

G. Jindal, P. Kolev, R. Peng, and S. Sawlani 14:11

I Corollary 13. There is a combinatorial algorithm that for any graph G on n vertices
and m edges, and any error ε > 0, produces in Ô(m + n log6 n) time an ε-sparsifier of G
with Ô(ε−2n log2 n) edges, as well as effective resistance upper bounds r̃ such that 〈w, r̃〉 =
Ô(n log3 n).

The current fastest sparsification routines compute effective resistances via the Johnson-
Lindenstrauss transform [35], which in turn requires the use of fast linear system solvers [27].

I Lemma 14. Given a graph G, we can compute 2-approximations to its effective resistances
in Ô(m logn+ n log2 n) time.

This runtime bound can be obtained by letting the depth approach n in the proof of Theorem
1.2 on page 49 of [27]. The effective resistances can in turn be extracted from the call to
Sparsify made at i = 0 in the pseudocode in Figure 11 on page 46. We omit details on these
steps in the hope that significantly simpler sparsification routines with similar performances
will be developed.

Now, we can prove our main result.

Proof of Theorem 1. The upper bound on effective resistances obtained by Lemma 12,
when combined with Theorem 10 produces an ε-sparsifier of Gk with Ô(ε−2kn log3 n) edges
in Ô(m+ ε−2k2n log4 n) time. Sparsifying this graph once again using Lemma 14 then leads
to the main result as stated in Theorem 1. J

The combinatorial guarantees follow similarly from Corollary 13.

Acknowledgements. We thank David Durfee for the various discussions related to ap-
plications of these ideas in [14], and the anonymous reviewers of previous versions of this
manuscript for their very helpful comments and suggestions.

References
1 Ittai Abraham, David Durfee, Ioannis Koutis, Sebastian Krinninger, and Richard Peng. On

fully dynamic graph sparsifiers. In Foundations of Computer Science (FOCS), 2016 IEEE
57th Annual Symposium on, pages 335–344. IEEE, 2016. Available at: http://arxiv.org/
abs/1604.02094.

2 Ittai Abraham and Ofer Neiman. Using petal-decompositions to build a low stretch span-
ning tree. In Proceedings of the forty-fourth annual ACM symposium on Theory of com-
puting, pages 395–406. ACM, 2012. Available at: https://www.microsoft.com/en-us/
research/wp-content/uploads/2012/01/spanning-full1.pdf.

3 Sayan Bhattacharya, Monika Henzinger, and Giuseppe F Italiano. Deterministic fully
dynamic data structures for vertex cover and matching. In Proceedings of the Twenty-
Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 785–804. SIAM, 2014.
Available at: https://arxiv.org/abs/1412.1318.

4 Andreas Björklund, Rasmus Pagh, Virginia Vassilevska Williams, and Uri Zwick. Listing
triangles. In International Colloquium on Automata, Languages, and Programming, pages
223–234. Springer, 2014.

5 A. Borodin and I. Munro. The computational complexity of algebraic and numeric problems.
American Elsevier Pub. Co New York, 1975.

6 Karl Bringmann and Konstantinos Panagiotou. Efficient sampling methods for discrete
distributions. In Artur Czumaj, Kurt Mehlhorn, Andrew Pitts, and Roger Wattenhofer,
editors, Automata, Languages, and Programming: 39th International Colloquium, ICALP

APPROX/RANDOM’17

http://arxiv.org/abs/1604.02094
http://arxiv.org/abs/1604.02094
https://www.microsoft.com/en-us/research/wp-content/uploads/2012/01/spanning-full1.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2012/01/spanning-full1.pdf
https://arxiv.org/abs/1412.1318

14:12 Density Independent Algorithms for Sparsifying k-Step Random Walks

2012, Warwick, UK, July 9-13, 2012, Proceedings, Part I, pages 133–144. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2012. doi:10.1007/978-3-642-31594-7_12.

7 Dehua Cheng, Yu Cheng, Yan Liu, Richard Peng, and Shang-Hua Teng. Efficient
sampling for Gaussian graphical models via spectral sparsification. Proceedings of The
28th Conference on Learning Theory, pages 364–390, 2015. Available at http://jmlr.
org/proceedings/papers/v40/Cheng15.pdf.

8 Yu Cheng and Dehua Cheng. Personal Communication, 2016.
9 Michael B. Cohen, Yin Tat Lee, Cameron Musco, Christopher Musco, Richard Peng, and

Aaron Sidford. Uniform sampling for matrix approximation. In Proceedings of the 2015
Conference on Innovations in Theoretical Computer Science, ITCS’15, pages 181–190, New
York, NY, USA, 2015. ACM. doi:10.1145/2688073.2688113.

10 Michael B. Cohen, Gary L. Miller, Jakub W. Pachocki, Richard Peng, and Shen Chen Xu.
Stretching stretch. arXiv preprint arXiv:1401.2454, 2014. Available at: https://arxiv.
org/abs/1401.2454.

11 Michael B. Cohen, Cameron Musco, and Christopher Musco. Input sparsity time low-
rank approximation via ridge leverage score sampling. In Proceedings of the Twenty-Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain,
Hotel Porta Fira, January 16-19, pages 1758–1777, 2017. doi:10.1137/1.9781611974782.
115.

12 Peter G. Doyle and J. Laurie Snell. Random Walks and Electric Networks, volume 22 of
Carus Mathematical Monographs. Mathematical Association of America, 1984. Available
at: https://arxiv.org/abs/math/0001057.

13 David Durfee, Rasmus Kyng, John Peebles, Anup B. Rao, and Sushant Sachdeva. Sampling
random spanning trees faster than matrix multiplication. CoRR, abs/1611.07451, 2016.
Available at: http://arxiv.org/abs/1611.07451.

14 David Durfee, John Peebles, Richard Peng, and Anup B. Rao. Determinant-preserving
sparsification of SDDM matrices with applications to counting and sampling spanning
trees. CoRR, abs/1705.00985, 2017. URL: http://arxiv.org/abs/1705.00985.

15 Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. J. ACM, 34:596–615, July 1987.

16 Andrew V. Goldberg and Robert E. Tarjan. Efficient maximum flow algorithms. Commu-
nications of the ACM, 57(8):82–89, 2014. Available at: http://cacm.acm.org/magazines/
2014/8/177011-efficient-maximum-flow-algorithms/fulltext.

17 Gramoz Goranci, Monika Henzinger, and Mikkel Thorup. Incremental exact min-cut in
poly-logarithmic amortized update time. In Piotr Sankowski and Christos D. Zaroliagis,
editors, 24th Annual European Symposium on Algorithms, ESA 2016, August 22-24, 2016,
Aarhus, Denmark, volume 57 of LIPIcs, pages 46:1–46:17. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2016. Full version available at: https://arxiv.org/abs/1611.
06500. doi:10.4230/LIPIcs.ESA.2016.46.

18 Manoj Gupta and Richard Peng. Fully dynamic (1+ e)-approximate matchings. In 54th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October,
2013, Berkeley, CA, USA, pages 548–557, 2013. doi:10.1109/FOCS.2013.65.

19 Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest common ancestors.
siam Journal on Computing, 13(2):338–355, 1984.

20 Nick Harvey. Matrix concentration and sparsification. Workshop on “Randomized Nu-
merical Linear Algebra (RandNLA): Theory and Practice", 2012. Available at: http:
//www.drineas.org/RandNLA/slides/Harvey_RandNLA@FOCS_2012.pdf.

21 Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. Sublinear-time decre-
mental algorithms for single-source reachability and shortest paths on directed graphs. In

http://dx.doi.org/10.1007/978-3-642-31594-7_12
http://jmlr.org/proceedings/papers/v40/Cheng15.pdf
http://jmlr.org/proceedings/papers/v40/Cheng15.pdf
http://dx.doi.org/10.1145/2688073.2688113
https://arxiv.org/abs/1401.2454
https://arxiv.org/abs/1401.2454
http://dx.doi.org/10.1137/1.9781611974782.115
http://dx.doi.org/10.1137/1.9781611974782.115
https://arxiv.org/abs/math/0001057
http://arxiv.org/abs/1611.07451
http://arxiv.org/abs/1705.00985
http://cacm.acm.org/magazines/2014/8/177011-efficient-maximum-flow-algorithms/fulltext
http://cacm.acm.org/magazines/2014/8/177011-efficient-maximum-flow-algorithms/fulltext
https://arxiv.org/abs/1611.06500
https://arxiv.org/abs/1611.06500
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.46
http://dx.doi.org/10.1109/FOCS.2013.65
http://www.drineas.org/RandNLA/slides/Harvey_RandNLA@FOCS_2012.pdf
http://www.drineas.org/RandNLA/slides/Harvey_RandNLA@FOCS_2012.pdf

G. Jindal, P. Kolev, R. Peng, and S. Sawlani 14:13

Proceedings of the Forty-sixth Annual ACM Symposium on Theory of Computing, STOC’14,
pages 674–683, 2014. Available at: https://arxiv.org/abs/1504.07959.

22 Gorav Jindal and Pavel Kolev. Faster spectral sparsification of laplacian and SDDM matrix
polynomials. CoRR, abs/1507.07497, 2015. Available at: http://arxiv.org/abs/1507.
07497.

23 Michael Kapralov and Rina Panigrahy. Spectral sparsification via random spanners. In Pro-
ceedings of the 3rd Innovations in Theoretical Computer Science Conference, pages 393–398.
ACM, 2012. Available at: https://www.microsoft.com/en-us/research/wp-content/
uploads/2012/01/sig-alternate.pdf.

24 Donald E. Knuth. The Art of Computer Programming, Volume 2 (3rd Ed.): Seminumerical
Algorithms. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1997.

25 Ioannis Koutis. Simple parallel and distributed algorithms for spectral graph sparsification.
In Proceedings of the 26th ACM Symposium on Parallelism in Algorithms and Architectures,
SPAA’14, pages 61–66, New York, NY, USA, 2014. ACM. Available at: http://arxiv.org/
abs/1402.3851. doi:10.1145/2612669.2612676.

26 Ioannis Koutis, Alex Levin, and Richard Peng. Faster spectral sparsification and numerical
algorithms for SDD matrices. ACM Trans. Algorithms, 12(2):17:1–17:16, December 2015.

27 Rasmus Kyng, Yin Tat Lee, Richard Peng, Sushant Sachdeva, and Daniel A. Spielman.
Sparsified cholesky and multigrid solvers for connection laplacians. In Proceedings of the
48th Annual ACM SIGACT Symposium on Theory of Computing, pages 842–850. ACM,
2016. Available at http://arxiv.org/abs/1512.01892.

28 Rasmus Kyng, Jakub Pachocki, Richard Peng, and Sushant Sachdeva. A framework for
analyzing resparsification algorithms. In Proceedings of the Twenty-Eighth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA’17, pages 2032–2043, Philadelphia, PA,
USA, 2017. Society for Industrial and Applied Mathematics. Available at: https://arxiv.
org/abs/1611.06940.

29 Rasmus Kyng and Sushant Sachdeva. Approximate gaussian elimination for laplacians-fast,
sparse, and simple. In Foundations of Computer Science (FOCS), 2016 IEEE 57th Annual
Symposium on, pages 573–582. IEEE, 2016. Available at: https://arxiv.org/abs/1605.
02353.

30 László Lovász. Random walks on graphs: A survey, 1993. Available at: http://www.cs.
elte.hu/~lovasz/erdos.pdf.

31 Rasmus Pagh and Charalampos E. Tsourakakis. Colorful triangle counting and a mapreduce
implementation. Information Processing Letters, 112(7):277–281, 2012.

32 Richard Peng and Daniel A. Spielman. An efficient parallel solver for SDD linear systems.
In Proceedings of the 46th Annual ACM Symposium on Theory of Computing, STOC’14,
pages 333–342, New York, NY, USA, 2014. ACM. Available at http://arxiv.org/abs/
1311.3286.

33 Franco P. Preparata and Michael I. Shamos. Computational Geometry: An Introduction.
Springer-Verlag New York, Inc., New York, NY, USA, 1985.

34 Christian Sommer. Shortest-path queries in static networks. ACM Computing Surveys
(CSUR), 46(4):45, 2014. Available at: http://www.shortestpaths.com/spq-survey.pdf.

35 D. Spielman and N. Srivastava. Graph sparsification by effective resistances. SIAM Journal
on Computing, 40(6):1913–1926, 2011. doi:10.1137/080734029.

36 Daniel A. Spielman. Lecture notes on graphs and networks, October 2007. Available at:
http://www.cs.yale.edu/homes/spielman/462/2007/lect9-07.pdf.

37 Joel A. Tropp. User-friendly tail bounds for sums of random matrices. Found. Comput.
Math., 12(4):389–434, August 2012. doi:10.1007/s10208-011-9099-z.

APPROX/RANDOM’17

https://arxiv.org/abs/1504.07959
http://arxiv.org/abs/1507.07497
http://arxiv.org/abs/1507.07497
https://www.microsoft.com/en-us/research/wp-content/uploads/2012/01/sig-alternate.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2012/01/sig-alternate.pdf
http://arxiv.org/abs/1402.3851
http://arxiv.org/abs/1402.3851
http://dx.doi.org/10.1145/2612669.2612676
http://arxiv.org/abs/1512.01892
https://arxiv.org/abs/1611.06940
https://arxiv.org/abs/1611.06940
https://arxiv.org/abs/1605.02353
https://arxiv.org/abs/1605.02353
http://www.cs.elte.hu/~lovasz/erdos.pdf
http://www.cs.elte.hu/~lovasz/erdos.pdf
http://arxiv.org/abs/1311.3286
http://arxiv.org/abs/1311.3286
http://www.shortestpaths.com/spq-survey.pdf
http://dx.doi.org/10.1137/080734029
http://www.cs.yale.edu/homes/spielman/462/2007/lect9-07.pdf
http://dx.doi.org/10.1007/s10208-011-9099-z

14:14 Density Independent Algorithms for Sparsifying k-Step Random Walks

38 Charalampos E. Tsourakakis. Fast counting of triangles in large real networks without
counting: Algorithms and laws. In Data Mining, 2008. ICDM’08. Eighth IEEE Inter-
national Conference on, pages 608–617. IEEE, 2008. Available at http://people.seas.
harvard.edu/~babis/tsourICDM08.pdf.

39 A. J. Walker. New fast method for generating discrete random numbers with arbitrary
frequency distributions. Electronics Letters, 10(8):127–128, April 1974. doi:10.1049/el:
19740097.

40 David P. Woodruff et al. Sketching as a tool for numerical linear algebra. Foundations
and Trends® in Theoretical Computer Science, 10(1–2):1–157, 2014. Available at: http:
//researcher.watson.ibm.com/researcher/files/us-dpwoodru/journal.pdf.

A Omitted Proofs For Section 3

We give here some additional details on lemmas from Section 3 that are direct consequences
of steps in previous works. The total summation of the sampling weights follows from a
summation identical to the special case of uniform sampling, as presented in [7, Lemma 29].
More precisely, it is done by evaluating the total weights of all walks with a fixed edge e ∈ G.

Proof of Lemma 8. We first show by induction that the total weights of all length k walks
whose ith edge is e is exactly we.

The base case of k = 1 is trivial as only e is a length 1 walk between u0 and u1.
The inductive case of k > 1 has two cases: i > 0 or i < k − 1. We consider only the case

i > 0, as the other one follows by symmetry. Expanding the weight of a length k walk gives:

w(u0,u1,...,uk) = w(u0,u1,...,uk−1)
Auk−1uk

duk−1

.

The fact that i < k − 1 means that uk can be any neighbor of uk−1, leading to a sum that
cancels the duk−1 term in the denominator. The result then follows from the inductive
hypothesis applied to walks of length k − 1 that have edge e indexed as the ith walk step:∑

(u0,u1,...,uk)
e=(ui,ui+1)

w(u0,u1,...,uk) =
∑

(u0,u1,...,uk)
e=(ui,ui+1)

w(u0,u1,...,uk−1)
∑
uk

Auk−1uk

duk−1

=
∑

(u0,u1,...,uk−1)
e=(ui,ui+1)

w(u0,u1,...,uk−1)
By I.H.= we.

The proof then uses a double counting argument that breaks the summation over edges
e = (ui, ui+1) ∈ G, so as the original summation in (8) becomes equivalent to∑

e∈G
r̃e

∑
0≤i<k

∑
(u0,u1,...,uk)
e=(ui,ui+1)

w(u0,u1,...,uk) =
∑
e∈G

r̃e · kwe = k 〈w, r̃〉 . J

Before we establish an equivalence relation between the effective resistances of the graphs
G2 and G× P2, we need some notation.

I Definition 15 (Schur Complement). Let M =
(

M [F,F] M [F,C]
M [C,F] M [C,C]

)
be a symmetric matrix.

The Schur Complement of M induced by removing the block F is defined by

Sc (M , F) def= M [C,C] −M [C,F]M−1
[F,F]M [F,C].

http://people.seas.harvard.edu/~babis/tsourICDM08.pdf
http://people.seas.harvard.edu/~babis/tsourICDM08.pdf
http://dx.doi.org/10.1049/el:19740097
http://dx.doi.org/10.1049/el:19740097
http://researcher.watson.ibm.com/researcher/files/us-dpwoodru/journal.pdf
http://researcher.watson.ibm.com/researcher/files/us-dpwoodru/journal.pdf

G. Jindal, P. Kolev, R. Peng, and S. Sawlani 14:15

It is known that for any Laplacian M of a graph G, Sc(M,F) is the Laplacian of a graph
GC which is formed by the following iterative process:

For every vertex u ∈ F
For every pair of edges uv1 and uv2 in the current graph (with edges from prior steps)
∗ Delete edges uv1 and uv2, and add a new edge v1v2 with weight wuv1wuv2/du,

where du is the weighted degree of u w.r.t. the current graph.
Delete vertex u.

I Lemma 16. For every vector z =
(

z1
0

)
it holds that

zT1
(
D −AD−1A

)†
z1 =

(
zT1 0T

)(D −A
−A D

)†(z1
0

)
.

By symmetry for any vector z =
(

0
z2

)
it holds that

zT2
(
D −AD−1A

)† z2 =
(

0T zT2
)(D −A
−A D

)†(0
z2

)
.

In particular, the effective resistances are maintained under Schur complement.

Proof. Consider the linear system(
D −A
−A D

)(
x
y

)
=
(

z1
z2

)
⇐⇒ Dx −Ay = z1

−Ax + Dy = z2‘ ⇐⇒ x = D−1 (z1 + Ay)
y = D−1 (z2 + Ax) .

Since z2 = 0, we have

Dx = z1 + AD−1Ax
y = D−1Ax =⇒ x =

(
D −AD−1A

)† z1.

and thus

(
zT1 zT2

)(x
y

)
= zT1 x = zT1

(
D −AD−1A

)† z1. J

We can now prove that the effective resistance between u and v in G2 is the same as the
effective resistance between u(A) and v(A) in G× P2

Proof of Lemma 9. Notice that

LG2 = D −AD−1A

is the Schur Complement of

LG×P2 =
(

D −A
−A D

)
with respect to one half of the vertices, e.g. V (B). The statement follows by Lemma 16. J

APPROX/RANDOM’17

14:16 Density Independent Algorithms for Sparsifying k-Step Random Walks

B Omitted Proofs For Section 4

The following is a detailed exposition of the techniques used to achieve density independent
sparsification of a given graph G. The ideas are mainly from [26], but the arguments are
tailored to our setting. For the reader’s convenience, we present again the scheme overview:
1. Construct a tree T and a graph Ĝ obtained by removing O(m/ logn) edges from G such

that strT (Ĝ) ≤ Ô(m logn). This can be computed in Ô(m) time, using [10, Lemma 5.9]
applied with k = O(logn).

2. Sparsify the removed edges in O(m) time using any standard sparsification method [27, 28]
to get H ′.

3. To sparsify Ĝ, construct a series of graphs Ĝ(0), Ĝ(1), . . . , Ĝ(τ), where Ĝ(0) = Ĝ and Ĝ(τ)

is a graph with low enough stretch such that an O(1)-sparsifier Ĥ(τ) of Ĝ(τ) can be
constructed in O(m) time.

4. Use the sparsifier Ĥ(τ) to construct an O(1)-sparsifier Ĥ(τ−1) of Ĝ(τ−1) and so on, until
we get an O(1)-sparsifier Ĥ(1) of Ĝ(1). Every sparsifier Ĥ(i) has at most O(n logn) edges.

5. Repeating Step 4 a final time using effective resistance upper bounds computed from
Ĥ(0), we compute an ε-sparsifier Ĥ of Ĝ. Bringing in the small ε only at the last step,
allows us to keep the accuracy-related overhead in the intermediate steps at O(1).

B.1 Proof Of Lemma 12
We give now a detailed description of Step 3. The ith graph Ĝ(i) in the series is defined by

Ĝ(i) = Ĝ+ 2i · T.

We establish next an upper bound on the graph stretch strT (Ĝ(i)), for every i. Our proof
uses the following notation that highlights the relation between edge stretch and edge weight
function.

By definition, the stretch of any tree edge equals 1 and the “on-tree” stretch str
T,Ĝ(i)(T)

has value n− 1. On the other hand, the stretch of every non-tree edge e ∈ Ĝ(i)\T satisfies

str
T,Ĝ(i)(e) = wĜ(i)

e

∑
e′∈PT (e)

(
wĜ(i)

e′

)−1
= wĜ

e

∑
e′∈PT (e)

(
(2i + 1)wĜ

e′

)−1
≤ 2−i · str

T,Ĝ
(e).

Moreover, since

str
T,Ĝ(i)(Ĝ\T) ≤ 2−i · str

T,Ĝ
(Ĝ\T) ≤ 2−i · str

T,Ĝ
(Ĝ) = O(2−i ·m logn),

it follows that the total stretch of graph Ĝ(i) w.r.t. T is bounded by

strT (Ĝ(i)) = str
T,Ĝ(i)(Ĝ\T) + str

T,Ĝ(i)(T) ≤ O(2−i ·m logn).

Therefore, the initial graph Ĝ(τ) for τ = Ω(log logn) has total stretch

strT (Ĝ(τ)) = Ô(m/ log2 n).

Using Lemma 11, we can compute in O(m) time an O(1)-sparsifier G′(τ) of Ĝ(τ) with
Ô(m/ logn) edges. Invoking any standard nearly-linear time sparsification algorithm on G′(τ)

then gives us in O(m) time a O(1)-sparsifier Ĥ(τ) of G(τ) with O(n logn) edges.
We present now the TreeSparsify routine which is used in Step 4 and Step 5.

G. Jindal, P. Kolev, R. Peng, and S. Sawlani 14:17

Algorithm 3 TreeSparsify(G,G′, κ, ε)
Input: Graph G = (V,E,w) with κ-sparsifier G′, and error ε > 0.
Output: G̃ that is an ε-sparsifier of G.

1. Compute a low stretch spanning tree T of G′.
2. Compute an upper bound on all leverage scores τ̃ of G using [19].
3. Sample O(ε−2strT (G) logn) edges of G using IdealSample(G, ε, τ̃) (cf. Algorithm 1).

I Lemma 17. Given a κ-sparsifier G′ of G and ε > 0, TreeSparsify(G,G′, κ, ε) produces an
ε-sparsifier of G with Ô(ε−2κ |E(G′)| log2 n) edges in Ô(m+ ε−2κ |E(G′)| log3 n) time.

Proof. To apply Lemma 2, we have to compute a vector r̃ ≥ RGeff and give an upper bound
on 〈w, r̃〉. Since LG � LG′ , by [26, Lemma 6.4] we have strT (G) ≤ strT (G′). Additionally,
since LT � LG′ � κLG, it follows that

r̃ def= κ · RTeff ≥ RGeff . (11)

Using the above statements, and the low stretch spanning tree construction of Abraham
and Neiman [2], we obtain

〈w, r̃〉 = κ · strT (G) ≤ κ · strT (G′) = Ô(κ |E(G′)| logn).

The statement follows by Lemma 2. J

We present now the core iterative procedure underlying Step 4 and Step 5:
(i) Let δ > 0 be an error parameter. In Step 4, we set δ = O(1), whereas δ = ε in Step 5.
(ii) Straightforward checking shows that by construction Ĥ(i+1) is a O(1)-sparsifier of Ĥ(i).
(iii) Compute a δ/2-sparsifier G′(i) of Ĝ(i) with Ô(δ−2n log3 n) edges in Ô(m+ δ−2n log4 n)

time, calling TreeSparsify(Ĝ(i), Ĥ(i+1), O(1), δ). The guarantees follow by Lemma 17.
(iv) Compute a δ/2-sparsifier Ĥ(i) of G′(i) with O(δ−2n logn) edges in Ô(δ−2n log4 n) time,

using Lemma 14 and Lemma 2. Thus, Ĥ(i) is a δ-sparsifier of Ĝ(i).
We analyze now the runtime of Steps 4 and 5. In Step 4, there are O(log logn) calls to

TreeSparsify each with δ = O(1). Thus, by Lemma 17, Step 4 runs in Ô(m+ n log4 n) time.
In Step 5, we set δ = ε. Then, by Lemma 14 and Lemma 2, the runtime of Step 5 is bounded
by Ô(m+ ε−2n log4 n).

B.2 Proof Of Corollary 13
We use purely combinatorial constructions of graph sparsifiers that are based on spanners [23,
25, 28]. We summarize these results in the following lemma.

I Lemma 18 ([28, Theorem 4.1]). Given G and error ε > 0, we can compute an ε-spectral
sparsifier of G with Ô(n log2 n) edges in Ô(m log2 n) time.

We show now that the algorithm in Lemma 18 applied to our sparsification scheme yields
Corollary 13. We argue in a similar manner as in the routine calling numerical sparsifiers,
outlined in Corollary 12. Here, in contrast, every sparsifier Ĥ(i+1) has Ô(n log2 n) edges, and
thus every sparsifier G′(i) has Ô(n log4 n) edges. Hence, every consecutive re-sparsification
call yield a sparsifier Ĥ(i) with Ô(n log2 n) edges in Ô(n log6 n) time.

APPROX/RANDOM’17

	Introduction
	Background
	Random Walks and Matrices
	Spectral Approximations of Graphs
	Graph Sparsification by Effective Resistances

	Random Walk Sparsification via Walk Sampling
	Faster Density Independent Sparsification of Graphs
	Omitted Proofs For Section 3
	Omitted Proofs For Section 4
	Proof Of Lemma 12
	Proof Of Corollary 13

