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Abstract

We prove the following Alon-Boppana type theorem for general (not necessarily regular)
weighted graphs: if G is an n-node weighted undirected graph of average combinatorial degree d
(that is, G has dn/2 edges) and girth g > 2d1/8 + 1, and if λ1 ≤ λ2 ≤ · · ·λn are the eigenvalues
of the (non-normalized) Laplacian of G, then

λn
λ2

≥ 1 +
4√
d
−O

(

1

d
5

8

)

(The Alon-Boppana theorem implies that if G is unweighted and d-regular, then λn

λ2

≥ 1+ 4
√

d
−

O
(

1

d

)

if the diameter is at least d1.5.)
Our result implies a lower bound for spectral sparsifiers. A graph H is a spectral ǫ-sparsifier

of a graph G if
L(G) � L(H) � (1 + ǫ)L(G)

where L(G) is the Laplacian matrix of G and L(H) is the Laplacian matrix of H . Batson,
Spielman and Srivastava proved that for every G there is an ǫ-sparsifier H of average degree d

where ǫ ≈ 4
√

2
√

d
and the edges of H are a (weighted) subset of the edges of G. Batson, Spielman

and Srivastava also show that the bound on ǫ cannot be reduced below ≈ 2
√

d
when G is a clique;

our Alon-Boppana-type result implies that ǫ cannot be reduced below ≈ 4
√

d
when G comes from

a family of expanders of super-constant degree and super-constant girth.
The method of Batson, Spielman and Srivastava proves a more general result, about spar-

sifying sums of rank-one matrices, and their method applies to an “online” setting. We show
that for the online matrix setting the 4

√
2/
√
d bound is tight, up to lower order terms.
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†luca@berkeley.edu. U.C. Berkeley. This material is based upon work supported by the National Science Foundation
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1 Introduction

If G is an (unweighted, undirected) d-regular graph on n vertices, and if A is its adjacency matrix,
then the largest eigenvalue of A is d, and the spectral expansion of A is measured by the range
of the other eigenvalues: the smaller the range, the better the expansion. If one denotes by
d = λ1(A) ≥ λ2(A) ≥ · · · λn(A) the eigenvalues of A, then Alon and Boppana [Nil91] showed that
there is a limit to how concentrated these eigenvalues can be as a function of d, namely:

λ2(A) ≥ 2
√
d− 1−O

( √
d

diam(G)

)

where diam(G) is the diameter of G, and:

λn(A) ≤ −2
√
d− 1 +O

( √
d

diam(G)

)

.

Thus, for every fixed d, an infinite family of d-regular graphs will satisfy λ2(A) ≥ 2
√
d− 1− on(1)

and λn(A) ≤ 2
√
d− 1 + on(1).

Lubotzky, Phillips and Sarnak [LPS88] call a d-regular graph Ramanujan if it meets the Alon-
Boppana bound:

2
√
d− 1 ≥ λ2(A) ≥ λn(A) ≥ −2

√
d− 1 ,

and they show that infinite families of Ramanujan graphs exist for every degree such that d − 1
is prime. Friedman [Fri08] shows that for every fixed d there is an “almost Ramanujan” family of
d-regular graphs (one for each possible number of vertices) such that λ2(A) ≤ 2

√
d− 1+ on(1) and

λn(A) ≥ −2
√
d− 1 − on(1). Furthermore, infinite families of bipartite Ramanujan graphs (that

is, bipartite graphs such that λ2 ≤ 2
√
d− 1) are known to exist for every degree and every even

number of vertices [MSS13, MSS15] and to be efficiently constructible [Coh16].
Given our precise understanding of the extremal properties of the spectral expansion of regular

graphs, there has been considerable interest in exploring generalizations of the above theory to
non-regular and/or weighted graphs. There are at least three possible generalizations which have
been considered.

Universal Covers

Ramanujan graphs have the property that the range of their non-trivial adjacency matrix eigen-
values is bounded by the support of the spectrum of their universal cover (the infinite d-regular
tree). Thus, Hoory, Linial and Wigderson [HLW06] define irregular Ramanujan graphs as graphs
whose range of non-trivial eigenvalues is contained in the spectrum of their universal cover, or, in
the “one sided version” as graphs whose second largest eigenvalue is at most the spectral radius
of the universal cover. An “Alon-Boppana” bound showing that in any infinite family of graphs
λ2(A) becomes arbitrarily close to the spectral radius of the universal cover is proved in [Gre95].
Existence proofs of infinite families of irregular Ramanujan graphs according to this definition are
presented in [MSS13].
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Normalized Laplacians

Another interesting notion of expansion for irregular graphs is to require all the non-trivial eigen-
values of the transition matrix of the random walk on G to be in small range or, equivalently, to
require all the eigenvalues of the normalized Laplacian matrix L̄ = I − D−1/2AD−1/2 to be in a
small range around 1. This is a natural definition because control of the normalized Laplacian
eigenvalues guarantees some of the same properties of regular expanders, such as bounds on the
diameter and a version of the expander mixing lemma.

For a d-regular graph, if λi is the i-th largest eigenvalue of the adjacency matrix, then 1− λi/d
is the i-th smallest eigenvalue of the normalized Laplacian matrix. If we denote by 0 = λ1(L̄) ≤
λ2(L̄) ≤ · · ·λn(L̄) the normalized Laplacian eigenvalues of a d-regular graph, the Alon-Boppana
bounds become:

λ2(L̄) ≤ 1− 2

√
d− 1

d
+ on(1), λn(L̄) ≥ 1 + 2

√
d− 1

d
− on(1) . (1)

It might be natural to conjecture that the above bounds hold also for irregular graphs, if we
let d be the average degree, thus putting a limit to the expansion of sparse graphs, regardless of
degree sequence. Young [You11], however, shows that this is not the case, and he exhibits families

of graphs of average degree d such that λ2(L̄) ≤ 1−2
√
d−1
d −ǫ, where ǫ > 0 depends on d but not on

the size of the graph. It would interesting to see if (1) holds for irregular graphs with an error term
o(1/

√
d) dependent on d. Young [You11] and Chung [Chu16] prove Alon-Boppana type bounds for

irregular (unweighted) graphs based on a parameter that depends on the first two moments of the
degree distribution but is in general incomparable to (1).

Spectral Sparsifiers

The notion of spectral sparsification of graphs can also be seen as a generalization of the notion of
expansion to graphs that are weighted and not necessarily regular. Recall that a (weighted, not
necessarily regular) graph G is called a (1 + ǫ) spectral sparsifier of G′ if G has the same set of
vertices and a weighted subset1 of the edges of G and

L(G′) � L(G) � (1 + ǫ) · L(G′)

where L(G) is the (non-normalized) Laplacian matrix D − A of G. This notion, introduced by
Spielman and Teng [ST04], strengthens the notion of cut sparsifier defined by Benczúr and Karger
[BK96]. It can be seen as a generalization of the notion of expander, because if K is clique and G
is a (1 + ǫ)-sparsifier of K, then G has several of the useful properties of expander graphs, and it
satisfies a version of the expander mixing lemma. Since the Laplacian of any clique is a multiple of
the identity orthogonal to the all ones vector, it is easy to see that G is a (1+ ǫ)−spectral sparsifier
of a clique if and only if

λn(L(G))

λ2(L(G))
≤ 1 + ǫ. (2)

Thus, another notion of expansion for irregular weighted graph is to consider the relative range of
the non-trivial eigenvalues of the unnormalized Laplacian matrix.

1Note that one can consider sparsifiers which use edges outside G. However, in all known constructions and in
many applications G

′ is required to be a subset of G, so we take this as part of the definition, since it is necessary
for our lower bound.
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Batson, Spielman and Srivastava [BSS12] showed that for everyG′ there is a (1+ǫ) sparsifierG of

average degree d (i.e., dn/2 edges) such that ǫ ≤ 4
√
2√
d
+O

(

1
d

)

. However, their work left a gap in our

understanding of the precise dependence of ǫ on d: they proved that it is not possible to do better
than ǫ ≈ 2√

d
and conjectured that this could be improved to 4√

d
. The number 1 + 4√

d
corresponds

to the “Ramanujan” bound obtained by approximating the complete graph by a Ramanujan graph
Rd, since for such a graph we have:

λn(L(Rd))

λ2(L(Rd))
≤ d+ 2

√
d− 1

d− 2
√
d− 1

≤ 1 +
4√
d
+O

(

1

d

)

,

which is also best possible for unweighted regular graphs up to on(1) terms by the Alon-Boppana
bound.

Thus, [BSS12] called their construction a “twice Ramanujan sparsifier” because, when applied
to a clique, it has twice the number of edges (dn instead of dn/2) of a Ramanujan graph for the
same (1 + 4√

d
)-approximation. Equivalently, if one applies their construction to create a (1 + ǫ)-

sparsifier of the clique of average combinatorial2 degree d, then one obtains ǫ that is a factor of
√
2

off from what would have been possible using a true d−regular Ramanujan graph.

1.1 Our Results

1.1.1 An Alon-Boppana-type Bound on λn/λ2

Our work clarifies the dependence on d in the Spectral Sparsification context described above.
We prove the following Alon-Boppana type lower bound on λn/λ2 on the Laplacian matrices of
weighted graphs with moderately large girth.

Theorem 1.1. Let G be a weighted unidrected graph with n vertices and dn/2 edges. Let λ1 ≤
· · · ≤ λn be the eigenvalues of the non-normalized Laplacian matrix of G. If the girth of G is at
least 2d1/8 + 1, then

λn
λ2

≥ 1 +
4√
d
−O

(

1

d5/8

)

−O

(

1

n

)

This result shows that the dependence of ǫ on d in spectral sparsification cannot be better than
1 + 4√

d
up to lower order terms in d, as follows. Let G′

n be a family of Dn-regular graphs such

that all the non-trivial Laplacian eigenvalues are in the range Dn · (1± on(1)) and with girth going
to infinity (the LPS expanders [LPS88] have this property). Then any (1 + ǫ)-spectral sparsifier
Gn of G′

n of average degree d must have girth greater than d1/8 for sufficiently large n, so our
theorem implies that ǫ ≥ 4/

√
d − O(1/d5/8), whence Gn cannot be a better than (1 + 4/

√
d −

on(1) − o(1/
√
d))-sparsifier of G′

n. This improved bound implies that the “Ramanujan” quality
approximation remains optimal in the broader category of weighted graphs — previously [BSS12],
it was conceivable that it is somehow possible to achieve 1 + 2/

√
d using variable weights.

Our proof of Theorem 1.1 involves the construction of two test functions f : V→R and g : V→R

and we use the Rayleigh quotient of f to bound λ2 and the Rayleigh quotient of g to bound λn. In

2For weighted graphs, the term “degree” can be ambiguous, so from this point forward we will call the number of
edges incident on a vertex the combinatorial of the vertex, and we will call the total weight of the edges incident on
a vertex the weighted degree of the vertex.
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our construction, we have |f(v)| = |g(v)| for all v and f(v) ≥ 0, and so ||f ||2 = ||g||2 and the ratio
of their Rayleigh quotients is simply

gTLg

fTLf
= 1 +

fTAf − gTAg

fTDf − fTAf
≥ 1 +

fTAf − gTAg

fTDf
= 1 +

fTAf

fTDf
− gTAg

gTDg
,

where we use the fact that, for our definition of f and g, we have fTDf = gTDg. In the standard
proof of Alon-Boppana, one picks a start vertex r and a cutoff parameter k, and then one defines the
test function f such that f(v) = (d−1)−ℓ/2, where ℓ is the distance from r to v, for all vertices v at
distance ≤ k from r; we set f(v) = 0 for vertices at distance more than k from r. In the analysis, one
notes that vertices v at distance between 1 and k from r contribute 2

√
d− 1f2(v) to the quadratic

form fTAf and contribute f2(v) to ||f ||2, which is how one argues that the fTAf/||f ||2 is at least
about 2

√
d− 1.

In our construction, we pick a parameter k smaller than the girth, we pick an initial vertex r at
random, and we also define f (and g) so that only vertices at distance ≤ k from r are nonzero in
f(·). If v is at distance ℓ ≤ k from r, the standard Alon-Boppana proof defines f(v) as being the
square root of the probability of reaching v in ℓ steps in a non-backtracking random walk started
at r provided that, as in our case, one assumes that the girth of the graph is more than k. Our
definition in the weighted case is similar but simpler to work with: we normalize weights so that the
maximum weighted degree is 1, and we define f(v) as the square root of the product of the weights
in the unique shortest path from r to v. Using the facts that f2(v) is close to the probability of
going from r to v in a standard random walk (in which edges are picked proportionally to their
weight), that such a random walk is likely to be non-backtracking, and that the random walk in G
has a stationary distribution that is close to uniform, we relate the contribution of an edge (u, v)
to fTAf , averaged over random r, to the average of w(u, v)3/2 over all edges in the graph. Finally,
a convexity argument shows that, up to lower order terms, this average is at least about 2||f ||2/

√
d

given that there are only dn/2 edges. A similar argument applies to the construction of g, showing
that one can have gTAg be at most −2||g||2/

√
d up to lower order terms. Finally one notes that

fTDf = gTDg and ||f ||2 = ||g||2 are approximately the same.

1.1.2 A Lowerbound for the Online Vector Sparsification Problem

Our Alon-Boppana result shows that the best possible approximation achievable by spectral spar-
sifiers with dn/2 edges cannot be better than 1 + 4√

d
up to lower order terms in d. On the other

hand, the result of [BSS12] shows the existence of sparsifiers the same number of edges and error

1 + 4
√
2√
d
+ od(1). It is natural to ask what the right dependence is, and whether the constant 4

√
2

can be improved to 4 in general, or vice versa. In this section, we note that the BSS algorithm
actually solves a more general problem, which we call Online Vector Sparsification, and we show
that the best possible constant for that problem is 4

√
2. Thus any improvement on the density of

spectral sparsifiers, if at all possible, will have to come from an approach that does not also solve
the Online Vector Sparsification problem.

The Online Vector Sparsification problem is defined as follows. The player is given parameters
m,n and a number of rounds T = dn/2 in advance, and in each round t = 1, . . . , T presented with

a collection of vectors v
(t)
1 , . . . , v

(t)
m ∈ R

n which are isotropic, meaning:

m
∑

i=1

v
(t)
i (v

(t)
i )T = In,

5



but can otherwise be chosen adversarially, depending on past actions. At each time t the player
must choose an index i(t) and a scaling st. The goal is to minimize the condition number of the
sum:

AT :=
∑

t≤T

stv
(t)
i(t)(v

(t)
i(t))

T .

Although the theorem of [BSS12] is stated for a fixed (static) set of vectors, it is easy to see
that the analysis of the BSS algorithm allows one to change the set of vectors adversarially in every
iteration, and an immediate consequence of the proof is the following.

Theorem 1.2. [BSS12] There is a polynomial time online strategy which solves the Online Vector

Sparsification problem with dn/2 rounds with condition number at most

κd :=
(
√

d/2 + 1)2

(
√

d/2 − 1)2
= 1 +

4
√
2√
d

+O(1/d).

The corresponding result for spectrally sparsifying graphs G follows by applying this strategy
to the fixed set of vectors {L+

G(ei − ej)}ij∈E .
Our second contribution is to show that the BSS algorithm is optimal for this more general

problem.

Theorem 1.3. There is no strategy for Online Vector Sparsification with dn/2 rounds which achieves
condition number better than κd − on(1).

The conceptual point of this theorem is that achieving the true “Ramanujan” type bound of
1+ 4√

d
will require an algorithm/analysis which exploits one or both of the following facts: (1) the

vectors are static (2) the vectors have special structure, namely, they are (scaled) incidence vectors
of edges in a graph. It is conceivable that the online vector problem, the offline vector problem,
and the spectral graph sparsification problem are all equally hard, or that each is strictly harder
than the next.

2 Preliminaries

Let G = (V,E) be a weighted undirected graph, and w(u, v) be the weight of edge {u, v}. We
refer to the distance between two vertices as the minimum number of edges in a path between
them (that is, their unweighted shortest path distance). The weighted degree of u is defined as
w(u) :=

∑

v w(u, v). The combinatorial degree of u is the number of edges incident on u of nonzero
weight. If W is the weighted adjacency matrix of G (that is, Wu,v = w(u, v)) and D is the diagonal
matrix such that Dv,v = w(v) is the weighted degree of v, then L := D−A is the Laplacian matrix
of G.

We identify vectors in R
V with functions V→R. The quadratic form of L is

fTLf =
∑

{u,v}
w(u, v) · (f(u)− f(v))2

If we let λ1 ≤ λ2 ≤ · · ·λn be the eigenvalues of L, counted with multiplicities and ordered
non-decreasingly, then

6



λ2 = min
f⊥1

fTLf

||f ||2

λn = max
f

fTLf

||f ||2
Without loss of generality, we may assume that the maximum weighted degree of G is 1, because

multiplying all edge weights by the same constant does not change the ratio λn/λ2.
Next we observe that, without loss of generality, every node of G has combinatorial degree ≥ d

4 ,

that the minimum weighted degree is at least 1− 4/
√
d times the maximum weighted degree, and

that every edge has weight at most 4/
√
d.

Claim 2.1. Suppose that G has a node of combinatorial degree < d/4. Then

λn
λ2

≥ 1 +
4√
d
−O

(√
d

n

)

Proof. This is proved in [BSS12].

Claim 2.2. Suppose that G has a node of weighted degree ≤ 1− 4/
√
d. Then

λn
λ2

≥ 1 +
4√
d
−O

(

1

n

)

Proof. Let u be a node of weighted degree ≤ 1− ǫ and let v a node of weighted degree 1.
Define the function f : V→R such that f(u) = 1 and f(z) = −1/(n− 1) for z 6= u. Then f ⊥ 1

and

λ2 ≤
fTLf

||f ||2 ≤ 1

||f ||2 ·
(

1− 4√
d

)(

1 +
1

n− 1

)

≤ 1− 4√
d
+O

(

1

n

)

Then define h : V→R such that h(v) = 1 and h(z) = 0 for z 6= v and observe that

λn ≥ hTLh

||h||2 = 1

So
λn
λ2

≥ 1

1− 4√
d
+O

(

1
n

) ≥ 1 +
4√
d
+O

(

1

n

)

Note also that the above proof establishes

λ2 ≤ 1 +O

(

1

n

)

which can also be verified by noting that the trace is at most n and so λ2 is at most n/(n− 1).

Claim 2.3. Suppose that G has an edge {u, v} of weight > 4/
√
d. Then

λn
λ2

≥ 1 +
4√
d
−O

(

1

n

)
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Proof. Let h be such that h(u) = 1, h(v) = −1 and h(z) = 0 for z 6∈ {u, v}. Then

λn ≥ hTLh

||h||2 ≥ 1

||h||2 ·
(

2

(

1− 4√
d

)

+ 4 · 4√
d

)

≥ 1 +
4√
d

The girth of G is the length (number of edges) of the shortest simple cycle in G.
We now notice that a girth assumption, combined with a lower bound on mimum combinatorial

degree, implies an upper bound to the number of vertices in small balls.

Claim 2.4. Suppose G has minimum combinatorial degree ≥ d
4 , that d ≥ 12, and that the girth of

G is at least g. Then, for every vertex r, and for every ℓ ≤ (g−1)/2, the number of vertices having
distance ≤ ℓ from r is at most

2n
(

d
4 − 1

)

g−1

2
−ℓ

Proof. It will be enough to show that the number of vertices at distance exactly ℓ is at most

n ·
(

d
4 − 1

)ℓ− g−1

2 . Let s(r, i) be the number of vertices at distance exactly i from r. Then, for every

i < (g− 1)/2, we have s(r, i) ≥
(

d
4 − 1

)

· s(r, i− 1), because the set of nodes at distance < (g− 1)/2
from r induces a tree in which all the non-leaf vertices have combinatorial degree ≥ d/4. But
s(r, (g − 1)/2) ≤ n, and so

s(r, ℓ) ·
(

d

4
− 1

)
g−1

2
−ℓ

≤ n · s(r, (g − 1)/2)

3 Proof of Theorem 1.1

Let k be a parameter smaller than (g − 1)/2, where g is the girth, to be set later (looking ahead,
we will set k to be d1/8).

For every vertex r, let fr : V → R be the function supported on the ball of radius k centered
at r defined as follows:

fr(v) =































0 if dist(r, v) > k

1 if r = v

√

w(r, v1)w(v1, v2) . . . w(vℓ−1, v)

otherwise, where r, v1, . . . , vℓ−1, v is the unique path of length ℓ ≤ k from r to v

We begin by proving the following facts about fr, which hold for every r ∈ V and which we will
use repeatedly.

(

1− 8√
d

)k

· (k + 1) ≤ ‖fr‖22 ≤ k + 1 (3)

8



‖f⊥v ‖22 ≥ ‖fr‖22 ·
(

1−O

(

1

d2

))

(4)

where f⊥ denotes the projection of f on the space orthogonal to the all ones vector.
To prove (3), call S(r, ℓ) the set of nodes at distance exactly ℓ from r, and Cℓ :=

∑

v∈S(r,ℓ) fr(v)
2

the contribution to ||fr||2 of the nodes in S(r, ℓ). Then we have

||f ||22 =
k
∑

ℓ=0

Cℓ

and C0 = 1, so it suffices to prove that, for 0 ≤ ℓ ≤ k − 1, we have

Cℓ ·
(

1− 8√
d

)

≤ Cℓ+1 ≤ Cℓ

which follows from

Cℓ+1 =
∑

v∈S(r,ℓ+1)

f2parent(v)w(u, v) =
∑

u∈S(r,ℓ)
f2u · (w(u)− w(parent(u), u))

(there is an abuse of notation in the last expression: when u = r, then take w(parent(r), r) to be
zero) and from the fact that 1 − 4/

√
d ≤ w(u) ≤ 1 for every u, and the fact that all edges have

weight at most 4/
√
d.

To prove (4), we see that

||f⊥r ||22 = ||fr||2 − ||f1r ||22
where f1r is the projection of f on the direction parallel to the all-one vector 1 = (1, . . . , 1), and

||f1r ||22 =
〈

fr,
1√
n
1

〉2

=
1

n

(

∑

v

fr

)2

=
1

n
||fr||21 ≤

1

n
||fr||22 · ||fr||20 ≤ O

(

1

d2

)

· ||fr||22

where we used Claim 2.4 to bound the ball of radius k around r, which is the number of non-zero
coordinates in f .

We now come to the core of the analysis

Lemma 3.1. There exists a vertex r such that fTr Wfr ≥ 2k/
√
d−O

(

k2/d3/4
)

.

Proof. For any r, let Tr denote the tree rooted at r of depth k in G. We will think of the edges of
Tr as being directed edges (u, v) where u is the parent of v. With some abuse of notation, we will
also use Tr to denote the set of vertices of Tr and to denote the set of edges of Tr.

Recall by the definition of fr that if u is the parent of v, then fr(v) =
√

w(u, v)fr(u). We have:

fTr Wfr = 2
∑

(u,v)∈Tr

w(u, v)fr(u)fr(v)

= 2
∑

(u,v)∈Tr

√

w(u, v)f2r (v)

= 2
∑

v∈Tr−{r}

√

w(parent(v), v)f2r (v)

9



Consider now the simple random walk on G, where edges are selected with probability propor-
tional to their weight. Then the transition probability from a vertex u to a vertex v is

p(u, v) =
w(u, v)

w(u)
.

Recalling our assumption on the minimum weighted degree we have,

w(u, v) ≥
(

1− 4√
d

)

p(u, v)

Let Pr denote the law of the k−step random walk r = X0,X1,X2, . . . ,Xk started at r. Suppose
v is a vertex in Tr at distance ℓ = dist(r, v) from r and let (r, v1, . . . , vℓ−1, v) be the unique path
from r to v in Tr (and also in G, by the girth assumption). Then we have

fr(v)
2 ≥

(

1− 4√
d

)ℓ

p(r, v1) · p(v1, v2) · · · p(vℓ−1, v) =

(

1− 4√
d

)ℓ

Pr{Xdist(r,v) = v},

since traversing this path is the only way to reach v in dist(r, v) steps. Thus, we have for every
choice of root r ∈ V :

fTr Wfr ≥ 2

(

1− 4√
d

)k

Er

∑

v∈Tr\{r}
{Xdist(r,v) = v}

√

w(parent(v), v)

= 2

(

1− 4√
d

)k

Er

k
∑

i=1

{dist(r,Xi) = i}
√

w(parent(Xi),Xi)

since the walk can be at only one vertex at every step

= 2

(

1− 4√
d

)k

Er

k
∑

i=1

{the walk is nonbacktracking up to step i}
√

w(Xi−1,Xi)

≥ 2

(

1− 4√
d

)k

Er

[

{the walk is nonbacktracking up to step k} ·
k
∑

i=1

√

w(Xi−1,Xi)

]

= 2

(

1− 4√
d

)k
(

Er

k
∑

i=1

√

w(Xi−1,Xi)− Er

[

{the walk backtracks} ·
k
∑

i=1

√

w(Xi−1,Xi)

])

We will show that a good r exists by averaging this bound over all r according to the stationary
distribution of the simple random walk:

π(r) =
w(r)

∑

v∈V w(v)
.

This will require a lowerbound on the first term and an upperbound on the second term above,
averaged over r. We achieve this in the following two propositions, where P denotes the law of a
stationary k−step walk π ∼ X0,X1, . . . ,Xk, and we have the relation

E(·) =
∑

r∈V
π(r)Er(·).

10



Proposition 3.2.

E

k
∑

i=1

√

w(Xi−1,Xi) ≥
k√
d
− 2k

d
.

Proof. Recall that the marginal distribution of every edge in a stationary random walk is the same,
and the edge uv appears with probability proportional to w(u, v). Thus we have:

E

k
∑

i=1

√

w(Xi−1,Xi) = kE
√

w(X0,X1) = k ·
∑

uv∈E w(u, v)
3/2

∑

uv∈E w(u, v)
.

Since the function x3/2 is convex the latter expression is minimized when all the w(u, v) are equal;
noting that |E| = dn/2, and

S :=
∑

uv∈E
w(u, v) =

1

2

∑

v∈V
w(v) ≥

(

1− 4√
d

)

· n/2

we have a lower bound of k times

(dn/2) · (S/(dn/2))3/2
S

≥
√

S

dn/2
≥
(

1− 4√
d

)1/2

· 1√
d
=

1√
d
− 2

d
.

Proposition 3.3.

E

[

{the walk backtracks} ·
k
∑

i=1

√

w(Xi−1,Xi)

]

≤ 40k2

d3/4
,

whenever d ≥ 25.

Proof. Since every edge can be assumed to have weight at most 4/
√
d, we have the deterministic

bound
k
∑

i=1

√

(w(Xi−1,Xi) ≤ 2k/d1/4.

Let Bi denote the event that the walk backtracks at step i. Then we have

P(B2 ∨ . . . ∨Bk) ≤
k
∑

i=2

P(Bi)

≤ (k − 1) · 4/
√
d

1− 4/
√
d

since p(u, v) ≤ w(u, v)/w(u) for every edge (u, v).

≤ 20k√
d

when d ≥ 25. Combining this with the previous bound gives the desired result.
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Combining the above bounds gives:

∑

r∈V
π(r)fTr Wfr ≥ 2

(

1− 4√
d

)k ( k√
d
− 2k

d
− 40k2

d3/4

)

≥ 2k√
d
−O

(

k2

d3/4

)

.

Thus, there must exist a vertex r satisfying the desired bound.

Given the Lemma, the main result is obtained easily as follows.

Proof. Let f := fr from the previous Lemma and let f ′ be f with signs alternating at each level of
the tree Tr. Observe that fTWf = −f ′TWf ′ since all edges are between levels of the tree. Thus,
we have

fT (D −A)f = fTDf − fTWf ≤ fTDf − 2k(1 − δ)/
√
d

and
f ′T (D −A)f ′ ≥ fTDf + 2k(1 − δ)/

√
d

for some δ = O(k/d1/4), since f ′TDf ′ = fTDf . Thus, the ratio of these quantities is at least:

f ′T (D −A)f

fT (D −A)f
=
fTDf + 2k(1− δ)/

√
d

fTDf − 2k(1− δ)/
√
d
≥ 1 +

4k(1 − δ)

fTDf ·
√
d
≥ 1 +

4k(1− δ)

(k + 1)
√
d
, (5)

since fTDf ≤ ‖f‖22 ≤ (k + 1) by (3).
We now take f+ and f− to be the projections of f and f ′ orthogonal to the all ones vector;

since the quadratic form of L = D − A is translation invariant this does not change the above
quantities. The ratio for the normalized vectors is now:

(f−)TLf−/‖f−‖22
(f+)TLf+/‖f+‖22

=
f ′T (D −A)f ′

fT (D −A)f

‖f⊥‖22
‖f ′⊥‖22

≥
(

1 +
4√
d
(1− δ)(1 − 1/k)

)

(

1−O(1/d2)
)

,

by (5) and (4). Setting k = d1/8 gives the desired bound.

4 Proof of Theorem 1.3

To ease notation and to be consistent with the proof in [BSS12], we will let β = d/2 and talk about
choosing T = βn vectors instead of dn/2 vectors. Let n be a power of 4 and let m = n. Suppose
Hn is the Hadamard matrix of size n, normalized so ‖Hn‖ = 1, and let h1, . . . , hn be its columns.
During any execution of the game, let

Aτ :=
∑

t≤τ

stv
(t)
i(t)(v

(t)
i(t))

T

denote the matrix obtained after τ rounds, with A0 = 0. Consider the following adversary:

In round τ +1 present the player with vectors v
(τ+1)
1 := Uh1, . . . , v

(τ+1)
n := Uhn, where

U is an orthogonal matrix whose columns form an eigenbasis of Aτ .
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Note that the vectors v
(τ+1)
1 , . . . , v

(τ+1)
n are always isotropic since

n
∑

i=1

(Uhi)(Uhi)
T = UHHTUT = I.

We will show that playing any strategy against this adversary must incur a condition number of at
least

κd − on(1) =
(
√
β + 1)2

(
√
β − 1)2

= 1 +
4√
β
+O(1/β).

Let pτ (x) := det(xI − Aτ ) =
∏n

j=1(x − λj) denote the characteristic polynomial of Aτ . Observe
that for any choice s = sτ+1 and v = Uhi made by the player in round τ + 1, we have:

pτ+1(x) = det(xI −Aτ − svvT )

= det(xI −Aτ ) det(I − (xI −A)−1(svvT ))

= pτ (x)



1− s

n
∑

j=1

〈v, uj〉2
x− λj





= pτ (x)



1− s

n

n
∑

i=j

1

x− λj



 ,

since 〈Uhi, uj〉 = 〈hi, UTuj〉 = 〈hi, ej〉 = ±1 for every j

= pτ (x)− (s/n)p′τ (x)

= (1− (s/n)D)pτ (x),

where D denotes differentiation with respect to x. Thus, the characteristic polynomial of Aτ+1

does not depend on the choice of vector in round τ +1, but only on the scaling sτ+1. Applying this
fact inductively for all T rounds, we have:

pT (x) =
∏

t≤T

(1− (st/n)D)xn,

since p0(x) = xn. Note that since every pτ (x) is the characteristic polynomial of a symmetric
matrix, it must be real-rooted.

Remark 1. Since the above calculation holds for all choices of weights s and matrices A, we have
recovered the well-known fact that for any real-rooted p(x), the polynomial (1 − αD)p(x) is also
real-rooted for real α.

Let S :=
∑

t≤T st/n. We will show that among all assignments of the weights {st} with sum S,

the roots of pT (x) are extremized when all of the st are equal, namely3:

(A) λmin(pT ) ≤ λmin(1− (S/T )D)Txn.

(B) λmax(pT ) ≥ λmax(1− (S/T )D)Txn.

3To avoid confusion, we remark that in what follows T is always a number and never the transpose (we will be
dealing only with polynomials, not matrices).
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To do this, we will use some facts about majorization of roots of polynomials. Recall that a
nondecreasing sequence b1 ≤ b2 ≤ . . . bn majorizes another sequence a1 ≤ . . . ≤ an if

∑n
j=1 aj =

∑n
j=1 bj and the partial sums satisfy:

k
∑

j=1

aj ≥
k
∑

j=1

bj

for k = 1, . . . , n−1. We will denote this by (a1, . . . , an) ≺ (b1, . . . , bn), and notice that this condition
implies that a1 ≥ b1 and an ≤ bn, i.e., the extremal values of a are more concentrated than those
of b. We will make use of the fact that for a given sum S, the uniform sequence (S/n, . . . , S/n) is
majorized by every other sequence with sum S.

We now appeal to the following theorem of Borcea and Bränden [BB10].

Theorem 4.1. Suppose L : Rn[x] → R[x] is a linear transformation on polynomials of degree n. If
L maps real-rooted polynomials to real-rooted polynomials, then L preserves majorization, i.e.

λ(p) ≺ λ(q) ⇒ λ(L(p)) ≺ λ(L(q)),

where λ(p) is the vector of nondecreasing zeros of p.

Let
φ(x) := (x− (S/T ))T

and let ψT (x) :=
∏T

t=1(x − st/n). Observe that (S/T, . . . , S/T ) = λ(φ) ≺ λ(ψT ), since the sum of
the roots of ψT is S. Consider the linear transformation L : RT [x] → R[x] defined by:

L(p) = Dnp(1/D)xn,

and observe that for any monic polynomial with roots αt:

L

(

T
∏

t=1

(x− αt)

)

=

T
∏

t=1

(1− αtD)xn.

By remark 1, L(p) is real-rooted whenever p is real-rooted, so Theorem 4.1 applies. We conclude
that the roots of L(ψT ) = pT (x) majorize the roots of L(φ) = (1− (S/T )D)Txn, so items (A) and
(B) follow.

To finish the proof, we observe (as in [MSS14], Section 3.2) that

(1− (S/T )D)Txn = L(T−n)
n (n2x/S) =: L(x)

where the right hand side is a scaling of an associated Laguerre polynomial. The asymptotic
distribution of the roots of such polynomials is known, and converges to the Marchenko-Pastur law
from Random Matrix Theory as n→ ∞. In particular, Theorem 4.4 of [DS95] tells us that

λminL(x) →
S

n

(

1−
√

n

T

)2

and

λmaxL(x) →
S

n

(

1 +

√

n

T

)2

,

as n→ ∞ with T = βn. Thus, the condition number of of AT is at least

λmaxL(x)
λminL(x)

= κd − on(1),

as desired.
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