247 research outputs found

    Dynamics of an inhomogeneously broadened passively mode-locked laser

    Get PDF
    We study theoretically the effect of inhomogeneous broadening of the gain and absorption lines on the dynamics of a passively mode-locked laser. We demonstrate numerically using travelling wave equations the formation of a Lamb-dip instability and suppression of Q-switching in a laser with large inhomogeneous broadening. We derive simplified delay-differential equation model for a mode-locked laser with inhomogeneously broadened gain and absorption lines and perform numerical bifurcation analysis of this model

    Carrier mode selective working point and side band imbalance in LIGO I

    Get PDF
    In gravitational wave interferometers, the input laser beam is phase modulated to generate radio-frequency side bands that are used to lock the cavities. The mechanism is the following: the frequency of the side bands and the carrier is chosen in such a way that their response to small changes of the longitudinal degrees of freedom is different. This difference is therefore monitored and it serves as an error signal for controlling the optical cavity lengths, as they are linearly related to the set of observed phases between carrier and side bands. Among the others, one longitudinal degree of freedom is optimally sensitive to the space-time distortions propagating through the cosmos, as predicted by the general theory of relativity. The observation of the astrophysical signal relies on the measurement of that specific degree of freedom. The entire problem is more complex when the transverse degrees of freedom are taken into account, because the relative phase between the fields also depends on their overlap. In order to establish an unambiguous relation between length changes and phase measurements, there must be one circulating optical mode and the only difference between carrier and side bands must be their amplitude. We will show that the variability of the transverse degrees of freedom and their different actions on carrier and side band fields puts a severe limit on this assumption. Unless the system is made of perfect and perfectly matched optical cavities, it is never governed by one unique coherent state and any adjustment of the optical lengths results from a compromise between the lengths that are optimal for the carrier field and the side band ones. Such a compromise alters the correspondence between error signals and cavity lengths, calculated in the one-dimensional treatment. We assess the strength of this effect and relate it to the sensitivity of the instrument (which relies on the reconstruction of that correspondence) in realistic circumstances

    Coherent master equation for laser modelocking

    Get PDF
    Modelocked lasers constitute the fundamental source of optically-coherent ultrashort-pulsed radiation, with huge impact in science and technology. Their modeling largely rests on the master equation (ME) approach introduced in 1975 by Hermann A. Haus. However, that description fails when the medium dynamics is fast and, ultimately, when light-matter quantum coherence is relevant. Here we set a rigorous and general ME framework, the coherent ME (CME), that overcomes both limitations. The CME predicts strong deviations from Haus ME, which we substantiate through an amplitude-modulated semiconductor laser experiment. Accounting for coherent effects, like the Risken-Nummedal-Graham-Haken multimode instability, we envisage the usefulness of the CME for describing self-modelocking and spontaneous frequency comb formation in quantum-cascade and quantum-dot lasers. Furthermore, the CME paves the way for exploiting the rich phenomenology of coherent effects in laser design, which has been hampered so far by the lack of a coherent ME formalism

    Adaptive Mode Matching in Advanced LIGO and Beyond

    Get PDF
    The era of gravitational wave astronomy was ushered in by the LIGO (Laser Interferometer Gravitational-Wave Observatory) collaboration with the detection of a binary black hole collision [2]. The event that shook the foundation of space-time allowed mankind to view the cosmos in a way that had never been done previously. Since then, another remarkable event was found by the LIGO and Virgo detectors where two neutron stars collided, sending both gravitational and electromagnetic waves to earth [3]. LIGO was built with the purpose of detecting the ripples in space-time caused by astrophysical events with the hopes of understanding the complexities hidden within the cosmos. In 2011, the primary stages of Advanced LIGO were installed and commissioned to start the first observing run (O1). During the writing of this thesis, the detectors had hardware replaced in order to mitigate noise from scattered light and new optics which reduced the losses from absorption. The upgrades were in preparation for the third observing run (O3) and the work presented here is primarily focused on experimental techniques for operating at higher power and mode matching Gaussian beams in the dual-recycled Michelson interferometer for the Advanced LIGO era and beyond. The first two chapters discuss the fundamentals of gravitational waves and the LIGO detector configurations. The third chapter introduces the reader to fundamentals in mode matching Gaussian laser beams. The fourth and fifth chapter summarizes the author\u27s work at Syracuse University. The sixth chapter deals with work at the LIGO Hanford observatory with an emphasis on mode sensing and high-power operation

    Ultralow-noise modelocked lasers

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2002.Includes bibliographical references (p. 343-357).This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.The measurement, design, and theory of ultralow-noise actively modelocked lasers are presented. We demonstrate quantum-limited noise performance of a hybridly modelocked semiconductor laser with an rms timing jitter of only 47 fs (10 Hz to 10 MHz) and 86 fs (10 Hz to 4.5 GHz). The daunting task of measuring ultralow-noise levels is solved by a combined use of microwave and optical measurement techniques that yield complete characterization of the laser noise from DC to half the laser repetition rate. Optical cross-correlation techniques are shown to be a useful tool for quantifying fast noise processes, isolating the timing jitter noise component, measuring timing jitter asymmetries, and measuring correlations of pulses in harmonically modelocked lasers. A noise model for harmonically modelocked lasers is presented that illustrates how to correctly interpret the amplitude noise and timing jitter from microwave measurements. Using information about the supermodes, the amplitude and timing noise can be quantified independently, thereby making it possible to measure the noise of harmonically modelocked lasers with multi-gigahertz repetition rates. Methods to further reduce the noise of a modelocked laser are explored. We demonstrate that photon seeding is effective at reducing the noise of a modelocked semiconductor laser without increasing the pulse width. Experimental demonstrations of a timing jitter eater, consisting of a phase modulator and dispersive fiber, show that.(cont.) An analytical theory for semiconductor lasers that includes carrier dynamics is presented. Ultralow noise performance is achieved by reducing the dispersion of the cavity, reducing the linear losses in the cavity, by operating at high optical powers, and with a tight optical filter. The gain dynamics of the semiconductor laser do not severely degrade the noise performance.by Leaf Alden Jiang.Ph.D

    Techniques for attosecond acience at multi-10-MHz repetition rates

    No full text

    Optical Spring Stabilization

    Get PDF
    The Advanced LIGO detectors will soon be online with enough sensitivity to begin detecting gravitational waves, based on conservative estimates of the rate of neutron star inspirals. These first detections are sure to be significant, however, we will always strive to do better. More questions will be asked about the nature of neutron star material, rates of black hole inspirals, electromagnetic counterparts, etc. To begin to answer all of the questions aLIGO will bring us we will need even better sensitivity in future gravitational wave detectors. This thesis addresses one aspect that will limit us in the future: angular stability of the test masses. Angular stability in advanced LIGO uses an active feedback system. We are proposing to replace the active feedback system with a passive one, eliminating sensing noise contributions. This technique uses the radiation pressure of light inside a cavity as a stable optical spring, fundamentally the same as technique developed by Corbitt, et al. [1] with an additional degree of freedom. I will review the theory of the one dimensional technique and discuss the multidimensional control theory and angular trap setup. I will then present results from the one-dimensional trap which we have built and tested. And propose improvements for the angular trap experiment. Along the way we have discovered an interesting coupling with thermal expansion due to round trip absorption in the high reflective coatings. The front surface HR coating limits our spring stability in this experiment due to the high circulating power and small beam spot size

    Efficient, low noise, mode-selective quantum memory

    Get PDF
    Photonic quantum information processing is a key element for scalable quantum technologies, and has applications in secure long-distance quantum communication and connecting nodes of a quantum computation network. However, logical photon-photon gates and state-of-the-art single photon sources rely on probabilistic processes. Quantum memories are devices that enable storage and on-demand recall of quantum states of light, and have been highlighted as a vital component in photonic networks to overcome the scaling problem by synchronising probabilistic processes. The Raman memory has a large storage bandwidth and high synchronising capacity, and is an ideal candidate for local synchronisation. However, previous demonstrations of the Raman memory suffer from four-wave mixing noise, which prohibits quantum level operation. In this thesis I investigate methods to increase the signal to noise ratio in the Raman memory. I investigate increasing the light-matter coupling strength to boost the memory efficiency, and then explore two different methods to suppress four-wave mixing noise. I demonstrate that operating the Raman memory in a cavity is successful in reducing four-wave mixing, but it is technically challenging to maintain a high memory efficiency. I investigate a new method of noise suppression by introducing an absorption feature at the frequency of the unwanted noise field. This technically simple method is successful in reducing the noise by an order of magnitude, and will be applicable to many quantum memory protocols. In the final section of this thesis I explore the temporal mode properties of the Raman memory. I demonstrate that the Raman memory is single mode and can be used to separate and manipulate temporal modes of light. This positions the Raman memory as a key device for enabling high-dimensional photonic quantum information processing, and enhancing light-matter interactions. These results pave the way towards an efficient, low-noise, mode-selective quantum memory.Open Acces
    • …
    corecore