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Dynamics of an inhomogeneously broadened passively
mode-locked laser

Alexander Pimenov, Andrei G. Vladimirov

Abstract

We study theoretically the effect of inhomogeneous broadening of the gain and absorption
lines on the dynamics of a passively mode-locked laser. We demonstrate numerically using trav-
elling wave equations the formation of a Lamb-dip instability and suppression of Q-switching in
a laser with large inhomogeneous broadening. We derive simplified delay-differential equation
model for a mode-locked laser with inhomogeneously broadened gain and absorption lines and
perform numerical bifurcation analysis of this model.

1 Introduction

Passively mode-locked lasers generate short optical pulses used in numerous scientific, technologi-
cal, and industrial applications. In particular, monolithic semiconductor lasers are compact sources of
picosecond and subpicosecond pulses with high repetition rates suitable for application in telecommu-
nication networks [1]. Recent experimental and theoretical investigations have demonstrated that new
generations of quantum dot and quantum dash semiconductor lasers have important advantages over
conventional quantum-well semiconductor devices: low threshold current, low pulse chirp, reduced
temperature sensitivity, high stability to noise and external feedback, etc [2, 3]. One of the important
features of these lasers that plays a major role in determining various laser characteristics is the inho-
mogeneous broadening of the gain spectrum due to nonuniformity of the ensemble of quantum dots
with respect to their size, shape, and composition [2]. In particular, it was demonstrated that in quan-
tum dot lasers under the bias conditions the inhomogeneous broadening width at half-maximum (from
21 meV to 50 meV) is larger than homogeneous broadening width (19 meV) [4].

The effect of inhomogeneous broadening on single-mode [5–11], multi-longitudinal [12–18] and multi-
transverse [19, 20] mode laser instabilities have been a subject of intense studies during past decades.
In particular, it was shown that inhomogeneous broadening can reduce the so-called second laser
threshold as well as the threshold of the multimode Risken-Nummendal-Graham-Haken instability
leading to a self-pulsing behavior. This is in agreement with common knowledge that inhomogeneous
broadening of the gain line facilitates multimode operation. On the other hand, elementary considera-
tions suggesting that ultrashort-pulse formation should be more easily achievable in inhomogeneously
broadened lasers than in corresponding homogeneous systems, were shown to be in contradiction
with the experimental data [21].

While the dynamics of inhomogeneously broadened CW lasers has been already extensively inves-
tigated, the influence of inhomogeneous broadening on the characteristics of passively mode-locked
lasers still remains largely unexplored theoretically. In order to fill this gap in this work we study nu-
merically the dynamics of a passively mode-locked laser with inhomogeneously broadened gain and
absorber media. We consider traveling wave equations (TWEs) for the electric field envelopes of the
counter-propagating waves coupled to the equations for polarizations and population differences of
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the two-level atoms emitting at different central frequencies through the integral over these frequencies
[20]. We integrate the resulting integro-differential equations numerically with the help of an efficient
spectral method with Hermite-Gaussian functions taken as the basis functions. To this end, similarly to
Graham and Cho [7], we derive an infinite chain of equations for the macroscopic variables, truncate
this chain, and solve the truncated equations numerically. Unlike the analytical approach of Graham
and Cho [7], our numerical techniques allows to perform the truncation at much higher orders and,
therefore, to achieve better precision. Basing on our simulations we demonstrate that for moderate
values of the inhomogeneous broadening linewidth the mode-locking characteristics can be improved
due to suppression of the Q-switching instability. On the other hand, large inhomogeneous broadening
linewidths lead eventually to a degradation of the mode-locking regime.

Finally, by assuming unidirectional propagation of the electrical field in the ring cavity and using the
approach proposed in [22–24], we derive a simplified delay-differential equation (DDE) model of a
mode-locked laser with inhomogeneously broadened gain and absorption lines. This model provides
a good qualitative description of the nonlinear dynamical regimes in a laser by taking into consideration
zero and first moments of medium polarization [7, 10]. We perform numerical bifurcation analysis of
the DDE model and demonstrate qualitative agreement with the TWE model. We show that the Lamb-
dip instability of the mode-locking regime develops when the inhomogeneous broadening width of the
gain line exceeds a certain threshold and the suppression of Q-switching instability of the fundamental
mode-locked regime can be achieved at sufficiently large inhomogeneous broadening linewidth of the
saturable absorber.

2 Model equations

2.1 Travelling wave model

We consider non-dimensional form of the TWE model describing space-time evolution of the ampli-
tudesE±(t, z) of the two counter-propagating waves, corresponding polarizations P± = P±ω, t, z),
and population difference N = N(ω̄, t, z) of the two-level inhomogeneously broadened medium.
These equations are obtained from the two-level semiclassical Maxwell-Bloch equations under stan-
dard mean-field, effective-index, and slowly varying envelope approximations [20].

∂E±

∂t
± ∂E±

∂z
= −β

2
E± +

∫ ∞
−∞

P±f̄(ω̄)dω̄, (1)

∂P±

∂t
= (−Γ + iω̄)P± +

g

2
NE±, (2)

∂N

∂t
= n0 − γNN − Re(P+E+∗ + P−E−∗). (3)

Here β describes internal linear losses in the intracavity medium, g is the differential gain parameter,
Γ and γN are the transverse and longitudinal relaxation rates, respectively, and n0 = n0(z) is the
linear gain/loss parameter. The normalized spectral distribution f̄(ω̄) is represented by the Gaussian
profile

f̄(ω̄) =
1

σ
√

2π
exp

(
−(ω̄ − ω0)2

2σ2

)
, (4)

where σ is the width of inhomogeneous broadening at half-maximum, ω0 is the detuning between the
central frequency of the Gaussian distribution (4) and the frequency of one of the cavity modes, which
serves as the reference frequency.
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2.2 Spectral method

For numerical solution of Eqs. (1)-(4) we use a “spectral” (Galerkin) method. First, we choose Hermite-
Gaussian functions

φm(ω) = (m!2m
√
π)−1/2e−ω

2/2Hm(ω), (5)

where Hm(ω) is the Hermite polynomial of the order m, as a complete orthonormal basis for the
space L2(C) with the inner product defined by

〈u, v〉 =

∫ ∞
−∞

uv∗dω (6)

After the coordinate change

ω =
ω̄ − ω0√

2σ
, (7)

the spectral distribution f̄(ω̄) given by Eq. (4) transforms into f(ω) = φ2
0 with φ0 = π−1/4e−ω

2/2.
Therefore, we can rewrite (1) in the form

∂E±

∂t
± ∂E±

∂z
= P±0 −

β

2
E± (8)

with P±0 = 〈P±(ω, t, z)φ0(ω), φ0(ω)〉. Then multiplying Eqs. (2) and (3) with φ0, projecting them
onto φm, taking into account the coordinate change (7), and using the recurrent relations for Hermite
polynomials we obtain an infinite hierarchy of equations for the momentsP±m(t, z) = 〈P±(ω, t, z)φ0(ω), φm(ω)〉
and Nm(t, z) = 〈N(ω, t, z)φ0(ω), φm(ω)〉:

∂P±m
∂t

= (−Γ + iω0)P±m + iσ(
√
mP±m−1 +

√
m+ 1P±m+1) +

g

2
NmE

±, (9)

∂Nm

∂τ
= n0m − γNNm − Re(E+P+∗

m + E−P−∗m ), (10)

where P±−1 ≡ 0.

In terms of original problem (1)-(3) the first two moments of polarization and population inversion have
the form P±j =

∫∞
−∞ ω

jP±f(ω)dω and Nj =
∫∞
−∞ ω

jNf(ω)dω with j = 0, 1 and f(ω) =

φ0(ω)2. They are equivalent to the zeroth- and the first-order moments of polarisation P± and carrier
density N introduced by Graham and Cho [7]. Since n0m = 0 for all m > 0, only the zeroth-order
moment of the population difference is pumped directly, while other moments are excited via a purely
imaginary constant in Eq (9).

When solving numerically equations (8)-(10) we choose some finite M and truncate them by setting
P±M+1 = 0. Though there is not much mathematical theory beyond partial integro-differential equa-
tions (1)-(3), the finite-dimensional hyperbolic system of PDEs (8)-(10) is well-posed [25]. Using energy
estimates for the system (8)-(10) given in Appendix B one can show that the moments decrease with
the number m > 0, i.e. |P±m |, |Nm| ≤ ckm

−k with any integer k > 0 and some constants ck > 0
that do not depend on m and M . Therefore, solution of Eqs. (8)-(10) truncated at sufficiently large
m = M must be close to that of the same equations truncated at m = M1 > M . Or, in other
words, this solution must be close to the solution of the non-truncated equations. It is evident from the
equation (9) that the speed of decrease of the moments with m depends strongly on the value of σ.
In this sense, the chosen approach provides good quantitative approximation with the truncation order
M = 1 for the case of small σ.
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Truncating Eqs. (8)-(10) at M = 1 and eliminating adiabatically P±1 we obtain the following equation
for P±0 :

∂P±0
∂t

= −
(

Γ +
σ2

Γ

)
P±0 +

Γ

2
N0E

±. (11)

Hence, we conclude that for small enough σ the basic effect of inhomogeneous broadening is to
increase the homogeneous broadening width Γ by approximately σ2/Γ .

3 Delay-differential equation model

In this section, we introduce a DDE system to describe an inhomogeneously broadened mode-locked
semiconductor laser. First, we derive in Appendix a DDE model taking into account the polarization
dynamics in two-level active medium. This model can be easily generalized to take into account inho-
mogeneous broadening. The resulting system of distributed DDEs reads

γ−1dA

dt
+ (1− iω0/γ)A =

√
κ [A(t− τ)+

〈Pq(ωq), fq(ωq)〉+ 〈Pg(ωg), fg(ωg)〉] , (12)
dPq
dt

= (−Γq + iωq)Pq + Γq(e
−Q/2 − 1)A(t− τ), (13)

dPg
dt

= −(Γg − iωg)Pg + Γg(e
G/2 − 1)[A(t− τ) + Pq], (14)

dQ

dt
= q0 − γqQ+ s|A(t− τ) + Pq|2 − s|A(t− τ)|2, (15)

dG

dt
= g0 − γgG+ |A(t− τ) + Pq|2 − |A(t− τ) + Pg + Pq|2, (16)

where A(t) is the complex electric field amplitude, G(t) and Q(t) represent saturable gain and ab-
sorption introduced by the corresponding laser media. Parameters g0 and q0 describe unsaturated
gain and absorption, respectively, κ < 1 is the cavity round trip attenuation factor, s is the ratio of
the saturation intensities in the gain and absorber media, τ = 2l is the cavity round-trip time. Γg,q
and γg,q are, respectively, transverse and longitudinal relaxation rates in the gain and absorber me-
dia, and ωg,q describe the shift of the central frequencies of the gain and absorption lines from the
reference frequency. Here the index g (q) corresponds to the gain (absorber) medium. The main role
of the linear filtering term γ−1dA (t) /(dt) is to regularize the system by converting delay algebraic-
differential equations into DDEs. The parameters γ and ω0 represent width and the central frequency
of the linear filter. In order minimize the effect of the linear filter on the system’s dynamics in numerical
simulations we choose γ � Γg. Note that in the case of homogeneous broadening with ωg,q = 0
Eqs (12)-(16) can be transformed into the standard DDE mode-locking model [22–24] by means of
adiabatic elimination of polarizations Pg,q.

We further assume that the effect of inhomogeneous broadening on the dynamics of population differ-
ence is much weaker than its effect on the polarization dynamics [7, 10]. Then, implying that g0 and
q0 are frequency independent, we assume G(t) and Q(t) to be frequency independent as well and
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apply the spectral method to obtain the following truncated system

dA

dt
+ (γ − iω0)A =

√
κγ
[
A (t− τ) + P0q + P0g

]
, (17)

dP0q

dt
= (−Γq + iω0q)P0q + iσqP1q + Γq(e

−Q/2 − 1)A(t− τ), (18)

dP1q

dt
= −

(
Γq +

√
2p2qσq + iω0q

)
P1q + iσqP0q, (19)

dP0g

dt
= (−Γg + iω0g)P0g + iσgP1g + Γg(e

G/2 − 1) [A(t− τ) + P0q] , (20)

dP1g

dt
=
(
−Γg −

√
2p2gσg + iω0g

)
P1g + iσgP0g. (21)

dQ

dt
= q0 − γqQ+ s|A(t− τ) + P0q|2 − s|A(t− τ)|2, (22)

dG

dt
= g0 − γgG− |A(t− τ) + P0g + P0q|2 + |A(t− τ) + P0q|2, (23)

where P0,1 represent the zeroth- and first-order moments of polarization, while all other moments
satisfying differential equations

dPm
dt

= (−Γ + iω0)Pm + iσ(
√
mPm−1 +

√
m+ 1Pm+1), (24)

are eliminated adiabatically. The coefficients p2 in Eqs. (19) and (21) can be approximated by set-
ting PM+1 = 0 with M large enough. Then from Eq. (24) we get PM = ipMPM−1 with pM =√
Mσ/ (Γ− iω0) and Pm = ipmPm−1 for all 2 < m < M − 1 with recursive relationship

pm =

√
mσ

Γ + iω0 +
√
m+ 1σpm+1

.

Therefore, for ω0 = 0 we can see that p2 > 0 and the main effect of the higher moments of polariza-
tion is that they increase the relaxation rate of the first moment of polarization for higher values of σ
so that it becomes larger than relaxation rate of the zeroth-order moment of polarization.

In the particular case when inhomogeneous broadening is present only in the gain medium we set
σq = 0 in the absorber medium. Furthermore in this case without the loss of generality we can
assume that ω0q = 0. Then eliminating adiabatically the variable P0q from Eq. (18) we obtain the
relations P0q = (e−Q(t)/2 − 1)A(t − τ) and P1q = 0, which lead to the following equations for the
complex field envelope A, saturable gain G, and saturable loss Q:

γ−1dA

dt
+ A =

√
κ
[
e−Q/2A (t− τ) + P0g

]
, (25)

dG

dt
= g0 − γgG−

(
|e−Q/2A(t− τ) + P0g|2 − e−Q|A(t− τ)|2

)
, (26)

dQ

dt
= q0 − γqQ− s

(
1− e−Q

)
|A (t− τ)|2 . (27)

Combining these three equations with Eqs. (20) and (21) evaluated at ω0g = 0 we get DDE model
of a laser with inhomogeneously broadened gain line and adiabatically eliminated polarization in the
absorbing medium. The lasing threshold in this laser can be expressed as

√
κ exp

(
g0

2γg
− q0

2γq

)
= 1 +

σ2
g

Γ̃2

[
1−
√
κ exp

(
− q0

2γq

)]
≥ 1,
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where Γ̃2 = Γg [Γg + σgp2g], i.e. inhomogeneous broadening in the gain medium leads to an in-
crease of the lasing threshold.

Similarly to Eqs. (25)-(27) the equations governing the time evolution of the complex field envelope
A and saturable gain G can be derived for the case when inhomogeneous broadening is present in
the absorber medium only. Setting σg = ω0g = ω0q = 0, P1g = 0, and eliminating adiabatically the
variable P0g we get P0g =

(
eG/2 − 1

)
[A(t− τ) + P0q] and

γ−1 dA
dt

+ A =
√
κ
[
eG/2A (t− τ) + P0q

]
, (28)

dG
dt

= g0 − γgG−
(
eG − 1

)
|A (t− τ) + P0q|2 . (29)

Combining these two equations with Eqs. (18), (19) and (22) evaluated at ω0q = 0 to these two
equations we get the DDE model of a laser with inhomogeneously broadened absorber and homoge-
neously broadened gain lines. The lasing threshold of the central mode in this case can be expressed
as

√
κ exp

(
g0

2γg
− q0

2γq

)
=

1 + σ2
q/Γ̃

2

1 + σ2
qe
q0/(2γq)/Γ̃2

≤ 1,

where Γ̃2 = Γq [Γq + σqp2q], i.e. inhomogeneous broadening in the absorber medium leads to a
decrease of the linear threshold of the central mode located in the middle of the spectral profile of the
absorption line.

4 Numerical results

4.1 TWE model

We solve equations (8)-(10) for the two-section laser with a gain and an absorber section using the
discretization scheme similar to the one reported in [26, 27]. Since the number of moments reaches
up to M = 200, we use parallelization techniques to speed up our simulations.

In numerical simulations the parameter values of Eqs. (8)-(10) were similar to those used earlier for
modelling of monolithic semiconductor lasers with homogeneously broadened gain and absorption
lines [26, 27]. In particular, the reflectivities of the laser facets were assumed to be equal, κ1 = κ2 =
0.3. Furthermore, for simplicity we assume that ωg0 = ωq0 = 0 and that all the linear losses take
place on the laser facets, i.e., βg,q = 0. The remaining parameters of the gain (absorber) sections
are: normalized pump rate n0 = 10 ns−1 (linear absorption rate n0 = 0.16 ps−1), longitudinal
relaxation time γ−1

N = 1 ns (γ−1
N = 10 ps), transverse relaxation time Γ−1 = 250 fs (Γ−1 = 250 fs),

and normalized saturation parameter s = 1 (s = 5). The length of the gain and absorber sections
normalized to the group velocity of light in this sections are 10 ps and 2.5 ps, respectively.

A typical bifurcation tree obtained by plotting local maxima of the laser intensity time trace calculated
for increasing values of the pump parameter n0 in the gain medium in a laser with homogeneously
broadened gain and absorber lines, σg = σq = 0, is shown by cyan circles in Figure 1. It can be
seen that soon after the lasing threshold a regime with periodic laser intensity undergoes an instability
leading to a Q-switched mode-locking regime corresponding to a cloud of points in Fig. 1. Quasiperi-
odic intensity time trace of the latter regime is shown in the top panel of Fig. 2. At even larger pumps
a fundamental mode-locking regime illustrated in the bottom panel of Fig. 2 becomes stable. Black
rectangles (blue triangles) in Fig. 1 are obtained by increasing the pump parameter n0 at fixed and
equal inhomogeneous broadening linewidths, σg = σq = σ, in the gain and absorber media, σ = 2
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Figure 1: Bifurcation tree obtained by numerical integration of Eqs. (8)-(10). Local maxima of the field
intensity are plotted for different values of the pump parameter n0 in the gain medium. Cyan circles
correspond to σ = 0, black rectangles – to σ = 2 ps−1, and blue triangles – to σ = 5 ps−1 in a laser
with inhomogeneously broadened gain and absorber lines. Blue triangles in the lower right corner of
the figure indicate the peak power of the satellite pulse that appears at the trailing edge of the main
pulse. Other parameter values are given in the beginning of Sec. 4.1.

ps−1 (σ = 5 ps−1). It can be seen that the lasing threshold remains almost independent of σ, how-
ever, the Q-switching instability is gone for σ ≥ 2 ps−1. Therefore, we conclude that inhomogeneous
broadening can lead to a suppression of this instability, which is in agreement with the experimental
data on quantum-dot mode-locked lasers [28] and with the general considerations of Ref. [15].

For sufficiently large σ in the gain and absorber media small satellite pulses can appear at the trailing
edge of the main mode-locked pulse. This can be seen in Fig. 3(a) illustrating fundamental mode-
locking regimes with one, two and three additional satellite pulses. The corresponding spectra shown
in Fig. 3(b) become wider with the increase of σ and eventually a Lamb dip, similar to that reported
earlier in actively mode-locked quantum-dot laser [15], is formed in the middle of the pulse spectrum.
Further increase of the inhomogeneous line width leads to a separation of the spectral comb into
two symmetric combs with positive and negative central frequencies and subsequent degradation of
mode-locking.

Evolution of fundamental mode-locked regime with the increase of the inhomogeneous broadening
widths σ in the gain and absorber media is illustrated by Fig 4(a). Black circles in this figure indicate
local maxima of the field intensity calculated for different values of σ with fixed normalized pump
parameter n0 = 10 ns−1. It can be seen that the peak power of the mode-locked pulse increases with
σ within the interval σ ∈ [0, 5] ps−1, while for σ > 5 ps−1 additional satellite pulses shown in Fig. 3(a)
appear on the trailing edge of the pulse. Blue line in Fig. 4(a) indicates the linear increase of the pulse
intensity with the homogeneous broadening width Γ in the absence of inhomogeneous broadening,
σ = 0. Figure 4(b) presents a similar bifurcation diagram calculated for smaller value of the pump
parameter, n0 = 6 ns−1 corresponding to a stable Q-switched mode-locking regime in the absence
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Figure 2: Right: Time traces of Q-switched regime (top) and fundamental mode-locking regime (bot-
tom) calculated for σ = 0. Other parameter values are as in Fig. 1.

of inhomogeneous broadening. It can be seen that increasing the inhomogeneous broadening width
in the gain medium up to σ ≈ 2 ps−1 leads to a suppression of Q-switching instability and a transition
to a stable fundamental mode-locking regime. The latter regime remains stable for 2 ≤ σ < 6 ps−1.

It follows from Fig. 5 that the Lamb-dip instability appears due to the inhomogeneous broadening
of the gain line, while the suppression of Q-switching is due to inhomogeneous broadening of the
absorber line, see Fig. 5(b). The absence of instability for high values of the parameter σ in the
absorber medium (see top panel of Fig. 5(b)) suggests that the inhomogeneous broadening in the
absorber medium does not participate in the development of Lamb-dip instability. On the other hand,
the diagram shown in bottom panel of Fig. 5(b) indicates that inhomogeneous broadening of the gain
medium does not suppress the Q-switching instability of mode-locked regime, but on the contrary
enhances this instability.

In order to study the effect of the inhomogeneous broadening in the gain and absorber media on the
characteristics of mode-locked pulses we plot in Fig. 6 the dependence of their full-width at half-
maxima, spectral width, energy, and the time-bandwidth product as functions of the inhomogeneous
broadening width σ. It can be seen from this figure that the pulse width decreases and the spectral
width increases with increasing σ. This is in agreement with intuitive expectations as well as with
the theoretical results obtained for actively mode-locked quantum-dot lasers [15]. The time-bandwidth
product remains almost constant for σ < 5 ps−1, and increases drastically together with the spectral
width for higher σ. The pulse energy decreases monotonically with increasing σ.

Finally, one can notice from Fig. 1 that an increase of inhomogeneous broadening linewidth σ can
lead to a slight increase the lasing threshold. Fig. 6(a) shows a more dramatic increase of the las-
ing threshold obtained for faster gain relaxation rate γ = 125 ps−1. Furthermore, a comparison of
Fig. 6(b) and Fig. 1 shows that for the faster gain relaxation rate γ = 125 ps−1 the Lamb-dip instability
of mode-locking regime appears at higher values of σ then for slower relaxation rate γ = 10 ps−1.
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Figure 3: Pulses (a) and optical spectra (b) in a laser with inhomogeneously broadened gain and
absorber lines having equal linewidth σ = 5.2 ps, σ = 5.6 ps, and σ = 6 ps. Other parameters are
as in Fig. 1.
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Figure 4: Bifurcation diagrams similar to that shown in Fig. 1, obtained by increasing the parameter
σ in both media. (a): Black dots show local maxima of the field intensity calculated by changing σ
with fixed normalized pump rate n0 = 10 ns−1. Blue line represents intensity maxima of fundamental
mode-locking solutions calculated by changing Γg = Γq in a laser with homogeneously broadened
gain and absorption lines. Dashed lines denote values of σ where new satellite pulses appear. (b):
Same as black dots in the upper panel, but for n0 = 6 ns−1. Other parameters are as in Fig. 1.
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Figure 5: Top: Bifurcation diagram obtained numerically by changing the parameter σ in the gain
medium in a laser with homogeneously broadened absorption line. Normalized pump rate n0 = 20
ns−1. Bottom: Bifurcation diagram obtained numerically by changing the parameter σ in the absorber
medium in a laser with homogeneously broadened gain line (top) and the parameter σ in the gain
medium in a laser with homogeneously broadened absorption line. Normalized pump rate n0 = 9
ns−1. Other parameters are as in Fig. 1.
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Figure 6: Left: Full-width at half-maximum of the mode-locked pulses (top) and their spectral width
(bottom) as functions of equal inhomogeneous broadening widths σ in the gain and absorber media.
n0 = 10 ns−1 in the gain medium. Other parameters are as in Fig. 1. Right: Pulse energy (top) and
time-bandwidth product versus inhomogeneous broadening linewidth in the gain medium. n0 = 10
ns−1 in the gain medium. Other parameters are as in Fig. 1.

4.2 DDE model

First, we simulate the DDE model (12)-(16) of a laser with inhomogeneously broadened gain and
absorption lines with the parameter values close to those of the TWE model: τ = 25 ps, κ = 0.3,
γ−1
g = 1 ns, γ−1

q = 5 ps, Γ−1
g = Γ−1

q = 250 fs, γ−1 = 25 fs, s = 10, g0 = 6 ns−1, and
q0 = 0.1 ps−1. The dependence of the pulse peak intensity on the inhomogeneous broadening width
σg = σq ≡ σ obtained with the help of the DDE-BIFTOOL software package [29] is presented in Fig.
8(a). It can be seen that the bifurcation diagram in this figure is similar to that obtained by numerical
simulation of the TWE model, see Fig. 4(b).

In order to perform numerical analysis of the Lamb-dip instability we simulate the DDE model with in-
homogeneously broadened gain line and adiabatically eliminated polarization in the absorber medium,
Eqs. (25)-(27), (20), and (21). We increase carrier relaxation rate up to γ−1

g = 500 ps and, using the
DDE-BIFTOOL software package, perform a continuation of the mode-locked solution along the pa-
rameter σg, see Fig. 8(b). The presence of additional lines in the bottom right corner of the figure
indicates that similarly to the results of numerical simulation with the TWE model shown in Fig. 4(b)
the increase of σg leads to formation of small satellite pulses behind the main mode-locked pulse.
The branch of mode-locked solutions in Fig. 4(b) ends up at a saddle-node (fold) bifurcation point,
where the negative real eigenvalue with smallest absolute value becomes zero. At this point the stable
fundamental mode-locking solution annihilates with an unstable one.

Figure 9(a) presents a branch of mode-locking solutions of the DDE model (28), (29), (18),(19), and
(22) homogeneously broadened absorber line and adiabatically eliminated polarization in the gain
medium. The part of this branch between bifurcation points A and B shown by dotted line is unstable
with respect to Q-switching instability. In Fig. 9(b) the critical values of the pump parameter g0 corre-
sponding to the Q-switching instability bifurcation points are shown as functions of the inhomogeneous
broadening width σq = σ of the absorption line. It can be seen that with increasing σ the two bifur-
cation points collide and disappear, and the mode-locking solution branch becomes stable within the
whole range of pump parameters shown in Fig. 9(a).
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Figure 7: (a) Bifurcation diagram obtained numerically by changing the parameter σ in both media
for pump rates n0 = 25 ns−1 and 38 ns−1 in the gain medium. (b) Bifurcation diagram obtained
numerically by changing the parameter n0 in the gain medium for σ = 0 (circles), σ = 4 ps−1

(rectangles), and σ = 8 ps−1 (triangles) in both media, γN = 125 ps−1 in the gain medium, n0 =
−320 ns−1 in the absorber medium. Other parameters are as in Fig. 1.
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Figure 8: (a) Bifurcation diagram obtained numerically by changing the parameter σg = σq = σ in
both laser media using the DDE model (12)-(16). (b) Bifurcation diagram obtained with the help of
DDE-BIFTOOL by changing the parameter σg = σ in the DDE model (25)-(27), (20), and (21). Other
parameters can be found in the beginning of Section 4.2.
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Figure 9: (a) Bifurcation diagram obtained using the DDE-BIFTOOL by continuing the branch of the
mode-locking regime along the parameter g0 of the DDE model (28), (29), (18), (19), and (22) with
σq = 0. Solid lines indicate stable solutions, while dashed line indicates unstable ones. γ−1 = 250 ns.
(b) Two-parameter bifurcation diagram obtained using the DDE-BIFTOOL by following the Q-switching
instability bifurcation points A and B along the parameter σq = σ of the DDE model (28), (29), (18),
(19), and (22). Other parameter are as in Fig. 8.
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5 Conclusion

We have studied numerically two-level TWE model of a passively mode-locked laser with inhomo-
geneousy broadened gain and absorption lines. We have proposed an efficient spectral method for
numerical integration of this model, and implemented this method using parallel computation tech-
niques. We have studied the effect of the inhomogeneous broadening on the characteristics of the
fundamental mode-locking regime. It follows from our analysis that, alongside with the carrier dynam-
ics processes in the gain medium, see e.g. [27, 28, 30], inhomogeneous broadening may lead to a
suppression of Q-switching instability in mode-locked quantum-dot lasers. This is in agreement with
qualitative considerations, which suggest the enhancement of the gain saturation and suppression
of Q-switching due to inhomogeneous broadening [31]. We have shown that equal inhomogeneous
broadening widths in both laser media can lead to the increase of the lasing threshold, pulse inten-
sity and spectral width, and to the decrease of the pulse width and the pulse power. Moreover, small
inhomogeneous broadening has the effect on pulse characteristics similar to that of homogeneous
broadening, whereas large inhomogeneous broadening in the absorber (gain) medium leads to a sup-
pression of Q-switching instability (the formation of the Lamb dip in the spectral profile of the pulse and
the degradation) of the mode-locking regime. We have demonstrated that the increase of the longitu-
dinal relaxation rate in the gain medium leads to stabilization of the fundamental mode-locking regime
for strong inhomogeneous broadening and to further increase of the lasing threshold.

We have derived a simplified DDE model of an inhomogeneously broadened laser which demonstrates
dynamical behavior qualitatively similar to that of the TWE model. Using the DDE model we have
shown that the degradation of mode-locked regime at sufficiently large values of the inhomogeneous
broadening linewidth in the gain medium takes place after a fold bifurcation where the stable branch
of fundamental mode-locked solutions collides with unstable one and disappears. Finally, we have
demonstrated that with the increase of inhomogeneous broadening linewidth in the absorber medium
two bifurcation points responsible for the appearance to the Q-switching instability of mode-locked
regime collide and disappear, leading to elimination of this instability by inhomogeneous broadening.

Appendix A. DDE model

To derive a DDE model of a ring passively mode-locked laser taking into account medium polarization
dynamics we use the approach similar to that proposed in [22–24]. We start with the unidirectional
travelling wave equations describing the space-time evolution of the complex electrical field envelope
E, complex two-level polarization P , and real population differenceN in the gain and absorber media
written out in co-moving coordinate frame z + t→ z, t→ t:

∂E

∂z
= P,

∂P

∂t
= (−Γ + iω)P +

Γ

2
EN,

∂N

∂t
= n0 − γNn− s(EP ∗ + PE∗) = n0 − γNn− s

∂|E|2

∂z
,

where the equation for the electric field envelope E can we rewritten in the form:

∂2E

∂t∂z
+ (Γ− iω)

∂E

∂z
=

Γ

2
EN. (30)
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Assuming that the time evolution of the population difference N is much slower than that of the field
envelope E we apply Fourier-transform to (30) considering N(t, z) to be independent of time t. Then
we obtain

2πiξ
dẼ

dz
+ (Γ− iω)

dẼ

dz
=

Γ

2
ẼN. (31)

Integrating (31) along longitudinal coordinate z from the point z1 at the beginning of the gain/absorber
medium to the point z2 at the end of the the medium we get

Ẽ(ξ, z2) = exp

[
ΓG

2(Γ− iω + 2πiξ)

]
Ẽ(ξ, z1) =

∞∑
k=0

1

k!

[
ΓG

2(Γ− iω + 2πiξ)

]k
Ẽ(ξ, z1), (32)

where G̃(t, z) =
∫ z
z1
Ndz, G(t) = G(t, z2). Therefore, by making the inverse Fourier transform of

(32) we obtain

E(t, z2) = E(t, z1) +

ΓG(t)

2

∫ t

−∞
E(s, z1)e(Γ−iω)(s−t)

I1

[√
G(t)(t− s) 2Γ

Γ−iω

]
√
G(t)(t− s) Γ

2(Γ−iω)

ds, (33)

where I1 is the first order Bessel function. Here, we note that since 1
Γ
∂E
∂t
∼ 1 for large Γ � 1, the

error introduced by our approximation by non-constant but relatively slow N(t) with ∂N
∂t
∼ 1 can be

roughly estimated as 1
Γ
∂2E
∂t∂z

+ (1 − iω
Γ

)∂E
∂z
− NE

2
= 1

ΓN

(
∂N
∂t

∂E
∂z

+ ∂G̃
∂t

(∂
2E
∂z
− 1

N
∂N
∂z

∂E
∂z

)
)
� 1,

which is small for Γ� 1.

Finally, assuming that the time evolution of G(t) is slow we eliminate distributed delay we rewrite
Eq. (33) as the following chain of equations

E(t, z2) = E(t, z1) + P1(t),

dP1(t)

dt
= (−Γ + iω)P1(t) +

ΓG(t)

2
(E(t, z1) + P2(t)),

dP2(t)

dt
= (−Γ + iω)P2(t) +

ΓG(t)

2× 2
(E(t, z1) + P3(t)),

dP3(t)

dt
= (−Γ + iω)P3(t) +

ΓG(t)

3× 2
(E(t, z1) + P4(t)),

...

dPk(t)

dt
= (−Γ + iω)Pk(t) +

ΓG(t)

2k
(E(t, z1) + Pk+1(t)),

...

where Pm are auxiliary variables describing the polarization at the point z2. Assuming G(t)/2 � 1,
we can truncate the system at any k ≥ 1. For higher G(t) ∼ 1 we improve the approximation by
keeping a single polarization equation for P1 with all other auxiliary variables Pm (m > 1) eliminated
adiabatically:

dP1(t)

dt
= (−Γ + iω)P1(t) + Γ(eG(t)/2 − 1)E(t, z1).
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This equation is responsible for nonlinear spectral filtering approximating the effect of two-level polar-
ization on the laser dynamics at small G(t).

Using the above approximation, we write the following equation for the time evolution of the complex
electric field envelope in a two-section passively mode-locked laser

dA

dt
+ (γ − iω0)A =

√
κγ [A (t− τ) + Pq(t) + Pg(t)] , (34)

where Pg(t) and Pq(t) describe the polarization of the gain and absorber medium, respectively. Equa-
tion (34) together with Eqs. (13)-(16) gives us a DDE model for a homogeneously broadened mode-
locked laser . By setting ω0g = ω0q = 0 and performing adiabatic elimination of the variables Pg and
Pq we obtain from this model the standard DDE mode-locking model of Refs. [22–24].

Appendix B. Energy estimates

Performing the coordinate change (7), projecting Eqs. (2) and (3) with the help of inner product (6)
onto P±ψ0 andNψ0, respectively, and summing the resulting three equations, we obtain the following
equation for the sum of the L2 norms ‖ · ‖ = 〈·, ·〉

1

2

∂(‖N̂‖2 + ‖P̂+‖2 + ‖P̂−‖2)

∂t
=
〈
n0, N̂

〉
−

γN‖N̂‖2 − Γ(‖P̂+‖2 + ‖P̂−‖2),

(35)

where the nonlinear terms cancelled each other out after summation. Without loss of generality, we
can make physically relevant assumption γN < Γ to obtain the following estimate for the quantity

Ψ =
(
‖N̂‖2 + ‖P̂+‖2 + ‖P̂−‖2

)1/2

Ψ(t, z) ≤ Ψ0(z) exp(−γN t) +
1− exp(−γN t)

γN
‖n0(ω, z)‖ (36)

for all z ∈ [0, l], where Ψ0(z) =
(
‖N̂(ω, 0, z)‖2 + ‖P̂+(ω, 0, z)‖2 + ‖P̂−(ω, 0, z)‖2

)1/2

.

Similarly to Eq. (35) for eachm = 0, 1, . . . ,M we can obtain the following equation for time evolution
of the sum of L2 norms Ψm = (|Nm|2 + |P+

m |2 + |P−m |2)
1/2

of the solutions of Eqs. (8)-(10) :

1

2

∂Ψ2
m

∂t
= n0mNm − Γ

(
|P+
m |2 + |P−m |2

)
− γNN2

m+

Re
[
iσ
(√

m(P+
m−1P

+∗
m + P−m−1P

−∗
m )+

√
m+ 1(P+

m+1P
+∗
m + P−m+1P

−∗
m )
)]
,

(37)

where P±−1 ≡ P±M+1 ≡ Ψ−1 ≡ ΨM+1 ≡ 0.

Next, using the right-hand side of Eq. (37) we obtain an estimate from above for Ψ2
m. First, for every

m for the sake of convenience we introduce an auxiliary function

p(m, k) =

{
1, m ≤ 0,
mk, m > 0
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Then rescaling the variables P̂±m = p(m, k)P±m , Nm = p(m, k)Nm, and Ψ̂m = p(m, k)Ψm and
multiplying Eq. (37) by p(m, 2k) we obtain

1

2

∂Ψ̂2
m

∂t
= p(m, k)n0mN̂m − Γ(|P̂+

m |2 + |P̂−m |2)− γNN̂2
m+

Re

[
iσ

(√
m

p(m, k)

p(m− 1, k)
(P̂+

m−1P̂
+∗
m + P̂−m−1P

−∗
m )+

√
m+ 1

p(m, k)

p(m+ 1, k)
(P̂+

m+1P̂
+∗
m + P̂−m+1P̂

−∗
m )

)]
.

(38)

Next, summing equations (38) over all m in the range M0 ≤ m ≤ M we derive an equation for the
time evolution of the sum Ψ̂2

Σ =
∑M

m=M0
Ψ̂2
m:

1

2

∂Ψ̂2
Σ

∂t
=

1

2

∂
∑M

m=M0
Ψ̂2
m

∂t
=

M∑
m=M0

p(m, k)n0mN̂m+

Re

[
iσ
√
M0

p(M0, k)

p(M0 − 1, k)

(
P̂+
M0−1P̂

+∗
M0

+ P̂−M0−1P̂
−∗
M0

)]
+

M∑
m=M0+1

(R+
m +R−m)−

M∑
m=M0

(
Γ(|P̂+

m |2 + |P̂−m |2) + γNN̂
2
m

)
,

(39)

where, M0 (0 ≤M0 < M ) will be defined below and

R±m = Re iσ

[√
m

p(m, k)

p(m− 1, k)
P̂±m−1P̂

±∗
m +

√
m
p(m− 1, k)

p(m, k)
P̂±m P̂

±∗
m−1

]
=

iσ
√
m

2

[
p(m, k)

p(m− 1, k)
P̂±m−1P̂

±∗
m +

p(m− 1, k)

p(m, k)
P̂±m P̂

±∗
m−1−

p(m, k)

p(m− 1, k)
P̂±∗m−1P̂

±
m −

p(m− 1, k)

p(m, k)
P̂±∗m P̂±m−1

]
=

cm,k Re iσP̂±m−1P̂
±∗
m

with

cm,k =
√
m

[
p(m, k)

p(m− 1, k)
− p(m− 1, k)

p(m, k)

]
. (40)

It follows from (40) that cm,k = 0 when k = 0 or m ≤ 1. For k,m > 0 the quantity cm,k vanishes in
the limit m→∞:

lim
m→∞

cm,k = lim
m→∞

√
m

[
mk

(m− 1)k
− (m− 1)k

mk

]
=

lim
m→∞

√
m+ 1

[
(m+ 1)k

mk
− mk

(m+ 1)k

]
=

lim
m→∞

√
m+ 1

[∑k
j=1

k!
j!(k−j)!m

k−j
] [

(m+ 1)k +mk
]

mk(m+ 1)k
=

lim
m→∞

√
m+ 1

m

[
k∑
j=1

k!

j!(k − j)!
m1−j

][
1 +

(
m

m+ 1

)k]
= 0.
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Therefore, we can find M0 > 0 such that |2σcm,k| < Γ/2 for all m > M0. Hence, for the quantities
R±m defined by (5) we get the following estimate:

R±m ≤ |R±m| ≤ |σcm,k|
(
|P±m−1|2 + |P±m |2

)
≤ Γ

2

|P±m−1|2 + |P±m |2

2
,

and, under non-restrictive assumption γN < Γ/2, the sum of two last terms in (39) satisfies the
relations

M∑
m=M0+1

(R+
m +R−m)−

M∑
m=M0

Γ
(
|P̂+
m |2 + |P̂−m |2

)
+ γNN̂

2
m ≤

−
M∑

m=M0

Γ

2

(
|P̂+
m |2 + |P̂−m |2

)
+ γNN̂

2
m ≤ −γNΨ̂2

Σ.

Thus, we obtain from (39) the following inequality

1

2

∂Ψ̂2
Σ

∂t
≤ σ

√
M0

p(M0, k)

p(M0 − 1, k)
(|P̂+

M0−1|+ |P̂
−
M0−1|)Ψ̂Σ +

M∑
m=0

p(m, k)|n0m|Ψ̂Σ − γNΨ̂2
Σ.

(41)

Deviding both sides of (41) by Ψ̂Σ and estimating the first term in the right-hand side using (36)

|P̂±M0−1| = p(M0 − 1, k)|P±M0−1| ≤ p(M0 − 1, k)‖P±‖‖φM0−1‖ ≤

p(M0 − 1, k)

(
‖Ψ0‖+

1− exp(−γNT )

γN
‖n0‖

)
for all t ∈ [0, T ] we obtain the final differential inequality

∂Ψ̂Σ

∂t
≤ c0 − γNΨ̂Σ,

where c0 satisfies (43). Therefore, according to a variant of a Gronwall’s Lemma

Ψ̂Σ ≤

(
M∑

m=M0

p(m, k)|Ψ0m|2
) 1

2

+ c0
1− e−γNT

γN

for all t ∈ [0, T ]. Finally, by using the relation p(m, k)Ψm = Ψ̂m ≤ Ψ̂Σ we obtain

Ψm(t, z) ≤ m−k

( M∑
m=M0

mk|Ψ0m(z)|2
) 1

2

+ c0(z)
1− e−γNT

γN

 , (42)

c0 = σM
k+1/2
0

(
‖Ψ0‖+

1− exp(−γNT )

γN
‖n0‖

)
+ |n00|+

M∑
m=1

mk|n0m| (43)

for all t ∈ [0, T ], z ∈ [0, l], M0 ≤ m ≤ M with some T > 0, M0 > 0, and integer k > 0 that can
be chosen independently on M . For n0m = j0δ0m the sum in (43) is 0, and the initial values can be
chosen so that the sum in (42) is bounded and converges with M →∞, hence this estimate implies
that the moments vanish with m→∞.
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