210 research outputs found

    Assessing the Perspectives of Ground Penetrating Radar for Precision Farming

    Get PDF
    The United Nations 2030 Agenda for Sustainable Development highlighted the importance of adopting sustainable agricultural practices to mitigate the threat posed by climate change to food systems around the world, to provide wise water management and to restore degraded lands. At the same time, it suggested the benefits and advantages brought by the use of near-surface geophysical measurements to assist precision farming, in particular providing information on soil variability at both vertical and horizontal scales. Among such survey methodologies, Ground Penetrating Radar has demonstrated its effectiveness in soil characterisation as a consequence of its sensitivity to variations in soil electrical properties and of its additional capability of investigating subsurface stratification. The aim of this contribution is to provide a comprehensive review of the current use of the GPR technique within the domain of precision irrigation, and specifically of its capacity to provide detailed information on the within-field spatial variability of the textural, structural and hydrological soil properties, which are needed to optimize irrigation management, adopting a variable-rate approach to preserve water resources while maintaining or improving crop yields and their quality. For each soil property, the review analyses the commonly adopted operational and data processing approaches, highlighting advantages and limitations

    Soil Moisture Measuring Techniques and Factors Affecting the Moisture Dynamics: A Comprehensive Review

    Get PDF
    The amount of surface soil moisture (SSM) is a crucial ecohydrological natural resource that regulates important land surface processes. It affects critical land–atmospheric phenomena, including the division of energy and water (infiltration, runoff, and evaporation), that impacts the effectiveness of agricultural output (sensible and latent heat fluxes and surface air temperature). Despite its significance, there are several difficulties in making precise measurements, monitoring, and interpreting SSM at high spatial and temporal resolutions. The current study critically reviews the methods and procedures for calculating SSM and the variables influencing measurement accuracy and applicability under different fields, climates, and operational conditions. For laboratory and field measurements, this study divides SSM estimate strategies into (i) direct and (ii) indirect procedures. The accuracy and applicability of a technique depends on the environment and the resources at hand. Comparative research is geographically restricted, although precise and economical—direct measuring techniques like the gravimetric method are time-consuming and destructive. In contrast, indirect methods are more expensive and do not produce measurements at the spatial scale but produce precise data on a temporal scale. While measuring SSM across more significant regions, ground-penetrating radar and remote sensing methods are susceptible to errors caused by overlapping data and atmospheric factors. On the other hand, soft computing techniques like machine/deep learning are quite handy for estimating SSM without any technical or laborious procedures. We determine that factors, e.g., topography, soil type, vegetation, climate change, groundwater level, depth of soil, etc., primarily influence the SSM measurements. Different techniques have been put into practice for various practical situations, although comparisons between them are not available frequently in publications. Each method offers a unique set of potential advantages and disadvantages. The most accurate way of identifying the best soil moisture technique is the value selection method (VSM). The neutron probe is preferable to the FDR or TDR sensor for measuring soil moisture. Remote sensing techniques have filled the need for large-scale, highly spatiotemporal soil moisture monitoring. Through self-learning capabilities in data-scarce areas, machine/deep learning approaches facilitate soil moisture measurement and prediction

    Ground, Proximal, and Satellite Remote Sensing of Soil Moisture

    Get PDF
    Soil moisture (SM) is a key hydrologic state variable that is of significant importance for numerous Earth and environmental science applications that directly impact the global environment and human society. Potential applications include, but are not limited to, forecasting of weather and climate variability; prediction and monitoring of drought conditions; management and allocation of water resources; agricultural plant production and alleviation of famine; prevention of natural disasters such as wild fires, landslides, floods, and dust storms; or monitoring of ecosystem response to climate change. Because of the importance and wide‐ranging applicability of highly variable spatial and temporal SM information that links the water, energy, and carbon cycles, significant efforts and resources have been devoted in recent years to advance SM measurement and monitoring capabilities from the point to the global scales. This review encompasses recent advances and the state‐of‐the‐art of ground, proximal, and novel SM remote sensing techniques at various spatial and temporal scales and identifies critical future research needs and directions to further advance and optimize technology, analysis and retrieval methods, and the application of SM information to improve the understanding of critical zone moisture dynamics. Despite the impressive progress over the last decade, there are still many opportunities and needs to, for example, improve SM retrieval from remotely sensed optical, thermal, and microwave data and opportunities for novel applications of SM information for water resources management, sustainable environmental development, and food security

    Geophysical methods for the investigation of soils

    Get PDF
    The aim of the work at hand is the development and enhancement of geophysical processing techniques for pedological mapping. The work is concentrating on (1) the applicability of known and the development of new GPTFs using laboratory measurements under controlled conditions, (2) the areal mapping of the electrical conductivity of topsoil and subsoil using an inversion, (3) the separation of the influences of water and clay content on the electrical conductivity and (4) the development and first application of approaches for pedological mapping with geophysical methods.Das Ziel der vorliegenden Arbeit ist die Entwicklung und Verbesserung geophysikalischer Auswertemethoden zur flÀchenhaften bodenkundlichen Kartierung. Dabei konzentriert sich die Arbeit auf (1) die Anwendbarkeit von bekannten und die Entwicklung von neuen GPTFs anhand von Labormessungen unter kontrollierten Bedingungen, (2) die flÀchenhafte Kartierung der elektrischen LeitfÀhigkeit von Ober- und Unterboden mit Hilfe einer Inversion, (3) die flÀchenhafte Trennung von Wassergehalts- und Tongehaltseinfluss auf die elektrische LeitfÀhigkeit und (4) die Entwicklung und erste Anwendung von AnsÀtzen zur bodenkundlichen Kartierung mit Hilfe geophysikalischer Methoden

    Advanced Techniques for Ground Penetrating Radar Imaging

    Get PDF
    Ground penetrating radar (GPR) has become one of the key technologies in subsurface sensing and, in general, in non-destructive testing (NDT), since it is able to detect both metallic and nonmetallic targets. GPR for NDT has been successfully introduced in a wide range of sectors, such as mining and geology, glaciology, civil engineering and civil works, archaeology, and security and defense. In recent decades, improvements in georeferencing and positioning systems have enabled the introduction of synthetic aperture radar (SAR) techniques in GPR systems, yielding GPR–SAR systems capable of providing high-resolution microwave images. In parallel, the radiofrequency front-end of GPR systems has been optimized in terms of compactness (e.g., smaller Tx/Rx antennas) and cost. These advances, combined with improvements in autonomous platforms, such as unmanned terrestrial and aerial vehicles, have fostered new fields of application for GPR, where fast and reliable detection capabilities are demanded. In addition, processing techniques have been improved, taking advantage of the research conducted in related fields like inverse scattering and imaging. As a result, novel and robust algorithms have been developed for clutter reduction, automatic target recognition, and efficient processing of large sets of measurements to enable real-time imaging, among others. This Special Issue provides an overview of the state of the art in GPR imaging, focusing on the latest advances from both hardware and software perspectives

    Radar Technology

    Get PDF
    In this book “Radar Technology”, the chapters are divided into four main topic areas: Topic area 1: “Radar Systems” consists of chapters which treat whole radar systems, environment and target functional chain. Topic area 2: “Radar Applications” shows various applications of radar systems, including meteorological radars, ground penetrating radars and glaciology. Topic area 3: “Radar Functional Chain and Signal Processing” describes several aspects of the radar signal processing. From parameter extraction, target detection over tracking and classification technologies. Topic area 4: “Radar Subsystems and Components” consists of design technology of radar subsystem components like antenna design or waveform design

    Detecting graves in GPR data: assessing the viability of machine learning for the interpretation of graves in B-scan data using medieval Irish case studies.

    Get PDF
    As commercial archaeogeophysical survey progressively shifts towards large landscape-scale surveys, small features like graves become more difficult to identify and interpret. In order to increase the rate and confidence of grave identification before excavation using geophysical methods, the accuracy and speed of survey outputs and reporting must be improved. The approach taken in this research was first to consider the survey parameters that govern the effectiveness of the four conventional techniques used in commercial archaeogeophysical evaluations (magnetometry, earth resistance, electromagnetic induction and ground-penetrating radar). Subsequently, in respect of ground-penetrating radar (GPR), this research developed machine learning applications to improve the speed and confidence of detecting inhumation graves. The survey parameters research combined established survey guidelines for the UK, Ireland, and Europe to account for local geology, soils and land cover to provide survey guidance for individual sites via a decision-based application linked to GIS database. To develop two machine learning tools for localising and probability scoring grave-like responses in GPR data, convolutional neural networks and transfer learning were used to analyse radargrams of medieval graves and timeslices of modern proxy clandestine graves. Models were c. 93% accurate at labelling images as containing a grave or no grave and c. 96% accurate in labelling and locating potential graves in radargram images. For timeslices, machine learning models achieved 94% classification accuracy. The >90% accuracy of the machine learning models demonstrates the viability of machine-assisted detection of inhumation graves within GPR data. While the expansion of the training dataset would further improve the accuracy of the proposed methods, the current machine-led interpretation methods provide valuable assistance for human-led interpretation until more data becomes available. The survey guidance tool and the two machine learning applications have been packaged into the Reilig web application toolset, which is freely available

    Non-destructive investigation of surface and sub-surface road pavement profiles

    Get PDF

    Sensors Application in Agriculture

    Get PDF
    Novel technologies are playing an important role in the development of crop and livestock farming and have the potential to be the key drivers of sustainable intensification of agricultural systems. In particular, new sensors are now available with reduced dimensions, reduced costs, and increased performances, which can be implemented and integrated in production systems, providing more data and eventually an increase in information. It is of great importance to support the digital transformation, precision agriculture, and smart farming, and to eventually allow a revolution in the way food is produced. In order to exploit these results, authoritative studies from the research world are still needed to support the development and implementation of new solutions and best practices. This Special Issue is aimed at bringing together recent developments related to novel sensors and their proved or potential applications in agriculture
    • 

    corecore