1,710 research outputs found

    A method for re-modularising legacy code

    Get PDF
    This thesis proposes a method for the re-modularisation of legacy COBOL. Legacy code often performs a number of functions that if split, would improve software maintainability. For instance, program comprehension would benefit from a reduction in the size of the code modules. The method aims to identify potential reuse candidates from the functions re-modularised, and to ensure clear interfaces are present between the new modules. Furthermore, functionality is often replicated across applications and so the re-modularisation process can also seek to reduce commonality and hence the overall amount of a company's code requiring maintenance. A 10 step method is devised which assembles a number of new and existing techniques into an approach suitable for use by staff not having significant reengineering experience. Three main approaches are used throughout the method; that is the analysis of the PERFORM structure, the analysis of the data, and the use of graphical representations. Both top-down and bottom-up strategies to program comprehension are incorporated within the method as are automatable, and user controlled processes to reuse candidate selection. Three industrial case studies are used to demonstrate and evaluate the method. The case studies range in size to gain an indication of the scalability of the method. The case studies are used to evaluate the method on a step by step basis; both strong points and deficiencies are identified, as well as potential solutions to the deficiencies. A review is also presented to assesses the three main approaches of the methods; the analysis of the PERFORM and data structures, and the use of graphical representations. The review uses the process of software evolution for its evaluation using successive versions of COBOL software. The method is retrospectively applied to the earliest version and the known changes identified from the following versions are used to evaluate the re-modularisations. Within the evaluation chapters a new link within the dominance tree is proposed as is an approach for dealing with multiple dominance trees. The results show that «ach approach provides an important contribution to the method as well as giving a useful insight (in the form of graphical representations) of the process of software evolution

    Development and evaluation of Formula Editor (a tool-based approach to enhance reusability in software product line model checking) on SAFER case study

    Get PDF
    Although model checking is extensively used for verification of single software systems, currently there is insufficient support for model checking in product lines. The presence of commonalities within the different products in the product line requires that the properties and the corresponding specifications for these properties be verified for every product in the product line. Specification and management of properties for every product in a product line can incur high overhead and make the task of model checking very difficult. It is hence essential to exploit the presence of commonalities to our advantage by providing reusability in model checking of product lines. Since different products in the product line need to be checked for same or similar properties, reuse of properties specified for one product for other products within a product line will significantly reduce the overall property specification and verification time. FormulaEditor is a property specification and management tool for enhancing the reusability of model checking of software product lines. The core of the technique is a product line-oriented user interface to guide users in generating, selecting, managing, and reusing useful product line properties, and patterns of properties for model checking. The previous version of the FormulaEditor tool supports Cadence SMV models, but not the typical CMU-SMV models. This work extends the FormulaEditor tool to allow verification of models written in CMU-SMV. The advantage of providing support to another model checker is twofold: first, it enhances the tool\u27s capability to check design specifications written in different models; and second, it allows users to specify the same design in different modeling languages to detect problems

    Attribute based component design: Supporting model driven development in CbSE

    Get PDF
    In analysing the evolution of Software Engineering, the scale of the components has increased, the requirements for different domains become complex and a variety of different component frameworks and their associated models have emerged. Many modern component frameworks provide enterprise level facilities and services, such as instance management, and component container support, that allow developers to apply if needed to manage scale and complexity. Although the services provided by these frameworks are common, they have different models and implementation. Accordingly, the main problem is, when developing a component based application using a component framework, the design of the components becomes tightly integrated with the framework implementation and the framework model is embedded in the component functionality, and hence reduces reusability. Another problem arose is, the designers must have in-depth knowledge of the implementation of a component framework to be able to model, design and implement the components and take advantages of the services provided. To address these problems, this research proposes the Attribute based Component Design (AbCD) approach which allows developers to model software using logical and abstract components at the specification level. The components encapsulate the provided functionality, as well as the required services, runtime requirements and interaction models using a set of attributes. These attributes are systemically derived by grouping common features and services from light weight component frameworks and heavy weight component frameworks that are available in the literature. The AbCD approach consists of the AbCD Meta-model, which is an extension of the บML meta-model, and the Component Design Guidelines (CDG) that includes core Component based Software Engineering principles to assist the modelling process for designers. To support the AbCD approach, an implementation has been developed as a set of plug-ins, called the AbCD tool suite, for Eclipse IDE. An evaluation of the AbCD approach is conducted by using the tool suite with two case studies. The first case study focuses on abstraction achieved by the AbCD approach and the second focuses on reusability of the components. The evaluation shows that the artefacts produced using the approach provide an alternative architectural view to the design and help to re-factor the design based on aspects. At the same time the evaluation process identified possible improvements in the AbCD meta-model and the tool suite constructed. This research provides a non-invasive approach for designing component based software using model driven development

    Identifying reusable functions in code using specification driven techniques

    Get PDF
    The work described in this thesis addresses the field of software reuse. Software reuse is widely considered as a way to increase the productivity and improve the quality and reliability of new software systems. Identifying, extracting and reengineering software. components which implement abstractions within existing systems is a promising cost-effective way to create reusable assets. Such a process is referred to as reuse reengineering. A reference paradigm has been defined within the RE(^2) project which decomposes a reuse reengineering process in five sequential phases. In particular, the first phase of the reference paradigm, called Candidature phase, is concerned with the analysis of source code for the identification of software components implementing abstractions and which are therefore candidate to be reused. Different candidature criteria exist for the identification of reuse-candidate software components. They can be classified in structural methods (based on structural properties of the software) and specification driven methods (that search for software components implementing a given specification).In this thesis a new specification driven candidature criterion for the identification and the extraction of code fragments implementing functional abstractions is presented. The method is driven by a formal specification of the function to be isolated (given in terms of a precondition and a post condition) and is based on the theoretical frameworks of program slicing and symbolic execution. Symbolic execution and theorem proving techniques are used to map the specification of the functional abstractions onto a slicing criterion. Once the slicing criterion has been identified the slice is isolated using algorithms based on dependence graphs. The method has been specialised for programs written in the C language. Both symbolic execution and program slicing are performed by exploiting the Combined C Graph (CCG), a fine-grained dependence based program representation that can be used for several software maintenance tasks

    Model Transformation Languages with Modular Information Hiding

    Get PDF
    Model transformations, together with models, form the principal artifacts in model-driven software development. Industrial practitioners report that transformations on larger models quickly get sufficiently large and complex themselves. To alleviate entailed maintenance efforts, this thesis presents a modularity concept with explicit interfaces, complemented by software visualization and clustering techniques. All three approaches are tailored to the specific needs of the transformation domain

    Dynamic Model-based Management of Service-Oriented Infrastructure.

    Get PDF
    Models are an effective tool for systems and software design. They allow software architects to abstract from the non-relevant details. Those qualities are also useful for the technical management of networks, systems and software, such as those that compose service oriented architectures. Models can provide a set of well-defined abstractions over the distributed heterogeneous service infrastructure that enable its automated management. We propose to use the managed system as a source of dynamically generated runtime models, and decompose management processes into a composition of model transformations. We have created an autonomic service deployment and configuration architecture that obtains, analyzes, and transforms system models to apply the required actions, while being oblivious to the low-level details. An instrumentation layer automatically builds these models and interprets the planned management actions to the system. We illustrate these concepts with a distributed service update operation

    Sciunits: Reusable Research Objects

    Full text link
    Science is conducted collaboratively, often requiring knowledge sharing about computational experiments. When experiments include only datasets, they can be shared using Uniform Resource Identifiers (URIs) or Digital Object Identifiers (DOIs). An experiment, however, seldom includes only datasets, but more often includes software, its past execution, provenance, and associated documentation. The Research Object has recently emerged as a comprehensive and systematic method for aggregation and identification of diverse elements of computational experiments. While a necessary method, mere aggregation is not sufficient for the sharing of computational experiments. Other users must be able to easily recompute on these shared research objects. In this paper, we present the sciunit, a reusable research object in which aggregated content is recomputable. We describe a Git-like client that efficiently creates, stores, and repeats sciunits. We show through analysis that sciunits repeat computational experiments with minimal storage and processing overhead. Finally, we provide an overview of sharing and reproducible cyberinfrastructure based on sciunits gaining adoption in the domain of geosciences
    corecore