
Durham E-Theses

Attribute based component design: Supporting model

driven development in CbSE

Kyaw, Phyo

How to cite:

Kyaw, Phyo (2007) Attribute based component design: Supporting model driven development in CbSE,
Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/2338/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/2338/
 http://etheses.dur.ac.uk/2338/
htt://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Attribute based Component Design:
Supporting Model Driven Development in

CbSE

PhD Thesis
The copyright of this thesis rests with the
author or the university to which it was
submitted. No quotation from it, or
information derived from it may be
published without the prior written
consent of the author or university, and
any information derived from it should be
acknowledged.

PhyoKyaw

Department of Computer Science
Durham University

Durham DH1 3LE, UK

0 7 JUN 2001

Abstract

In analysing the evolution of Software Engineering, the scale of the components has

increased, the requirements for different domains become complex and a variety of different

component frameworks and their associated models have emerged. Many modern component

frameworks provide enterprise level facilities and services, such as instance management,

and component container support, that allow developers to apply if needed to manage scale

and complexity. Although the services provided by these frameworks are common, they have

different models and implementation. Accordingly, the main problem is, when developing a

component based application using a component framework, the design of the components

becomes tightly integrated with the framework implementation and the framework model is

embedded in the component functionality, and hence reduces reusability. Another problem

arose is, the designers must have in-depth knowledge of the implementation of a component

framework to be able to model, design and implement the components and take advantages of

the services provided. To address these problems, this research proposes the Attribute based

Component Design (AbCD) approach which allows developers to model software using

logical and abstract components at the specification level. The components encapsulate the

provided functionality, as well as the required services, runtime requirements and interaction

models using a set of attributes. These attributes are systemically derived by grouping

common features and services from light weight component frameworks and heavy weight

component frameworks that are available in the literature. The AbCD approach consists of

the AbCD Meta-model, which is an extension of the UML meta-model, and the Component

Design Guidelines (CDC) that includes core Component based Software Engineering

principles to assist the modelling process for designers. To support the AbCD approach, an

implementation has been developed as a set of plug-ins, called the AbCD tool suite, for

Eclipse IDE. An evaluation of the AbCD approach is conducted by using the tool suite with

two case studies. The first case study focuses on abstraction achieved by the AbCD approach

and the second focuses on reusability of the components. The evaluation shows that the

artefacts produced using the approach provide an alternative architectural view to the design

and help to re-factor the design based on aspects. At the same time the evaluation process

identified possible improvements in the AbCD meta-model and the tool suite constructed. This

research provides a non-invasive approach for designing component based software using

model driven development.

- I -

Acknowledgements

Special thanks to my supervisor Dr Liz Burd for all her help and guidance. I also would like

to thank my previous supervisor Dr. Cornelia Boldyreff for her encouragement, support and

suggestions. My thanks go to Andrew Hatch, Janet Lavery, Sarah Drummond, and Brendan

Hodgson and everyone else at the CETL ALiC group at the Computer Science in Durham.

I would like to thank my father Dr. Thein Han, my mother Mrs. Khin Win Yee and my wife,

Mi Mon Thet, for all their help and assistance during this research.

- 11 -

Copyright

This copyright of this thesis rests with the author. No quotation from this thesis should be

published without prior written consent. Information derived from this thesis should also be

acknowledged.

Declaration

No part of the material provided has previously been submitted by the author for a higher

degree in the Durham University or in any other University. All the work presented here is the

sole work of the author and no-one else.

List of publications previously made on this research
The following publications have been made based on this research.

Kyaw, P., C. Boldyreff, et al. (2000). Separating Co-ordination from functionality in
Component-Based Distributed Systems. Dependable System Middleware and Group
Communication (DSMGC2000), Nurnberg, Germany, IEEE.

Kyaw, P., C. Boldyreff, et al. (2002). Co-ordinaton Adaptors: The Evolution of Component­
Based Distributed Systems. Systems Engineering for Business Process Change. P. Henderson.
London, Springer: 298-308.

- iii -

Table of Contents

Abstract. .. i
Acknowledge1nents ... ii
Declaration .. iii
Chapter I Introduction ... I

1.1 Background .. 2
1.2 Component based Software Engineering (CbSE) ... 3
1.3 Model Driven Development (MDD) ... 3
1.4 Aspect Oriented Programming (AOP) .. 4
1.5 Research objectives and the approach ... 4
1.6 Criteria for success .. 5
I. 7 Thesis Overview .. 6

Chapter 2 Current Research ... 7
2.1 Introduction ... 8
2.2 Component-based Development. ... 8

2.2.1 Background of Software Components ... 9
2.2.2 The term 'Software Components' ... 9
2.2.3 Properties of Software Components .. 12
2.2.4 Component frameworks, standards and technologies 15
2.2.5 Other Models ... 32

2.3 Component Development Issues ... 33
2.3.1 Scenarios .. 34
2.3.2 Component modeling for composition .. 35

2.4 Defining a common framework for components ... 36
2.4.1 Component construction for Heavy Weight Frameworks 39
2.4.2 Component construction for Light Weight frameworks 40
2.4.3 Summary of the literature survey42

Chapter 3 Model Driven Development .. 44
3.1 Introduction ... 45
3.2 Model Driven Development (MDD) ... 45

3.2.1 OMG's MDA ... 47
3.2.2 Meta-modelling and Meta Object Facility (MOF) 50

3.3 Attribute and Aspect concepts in Software Engineering 53
3.3.1 Ways of handle cross-cutting concerns and non-functional concerns. 55

3.4 Summary of the current literature survey and Model Driven Development56
Chapter 4 Attribute based Component Design (AbCD) ... 60

4.1 Introduction ... 61
4.1. I Background and Aims ... 61

4.2 Attribute-based Component Design (AbCD) approach 63
4.2.1 A simple example: designing a simple Bank application using UML 66
4.2.2 Applying Component Design Guidelines (CDG) 71

Chapter 5 AbCD Meta-model .. 79
5.1 Introduction ... 80
5.2 The modelling artefacts of MDA. .. 80
5.3 AbCD Meta-model and a AbCD UML profile .. 84

5.3.1 AbCDComponent meta-class .. 88
5.3.2 AbCDServiceComponent and AbCDServiceUse meta-classes 91
5.3.3 AbCDDataComponent. .. 93

-IV-

5.3.4 AbCDComponentAssembly meta-class .. 95
5.3.5 Summary of the meta-classes introduced in the meta-model 97
5.3.6 Component Dependency View with Colour regions 98
5.3.7 Technology dependency injection approach 101

5.4 Constructing the AbCD meta-model ... 101
5.4.1 Expressing the model and tools support.. .. 102

5.5 An analysis of the Attribute based approach and the AbCD meta-model. 104
Chapter 6 Implementation .. 106

6.1 Introduction ... 107
6.2 Eclipse Plug-in tool for AbCD UML Profile (Profiling tool) 110

6.2.1 The design and implementation of the Profiling tool 110
6.2.2 Using the Profiling tool ... 111
6.2.3 Identifying aspects and component service 113
6.2.4 Component dependency View (Graph View tool) 118
6.2.5 Code generation Process (Generator tool) ... 119

6.3 Summary .. 119
Chapter 7 Case Studies ... 120

7.1 Introduction ... 121
7.2 Case Study 1: myanmarshop.com ecommerce website 121

7 .2.1 Background .. 121
7.2.2 Evaluation Criteria Error! Bookmark not defined.
7.2.3 Designing the myanmarshop.com eCommerce system 123

7.3 Case Study 2: Rapid Prototyping machine controller 133
7.3.1 Case study background .. 133
7.3.2 Designing the Rapid Prototyping (RP) tool.. 134

Chapter 8 Evaluation .. 138
8.1 Introduction ... 139
8.2 The evaluation approach .. 139
8.3 Deriving the AbCD approach: re-addressing the overall 'Aims' 141
8.4 Evaluating the artefacts produced from the AbCD approach 143

8.4.1 Transforming analysis model to specification model.. 143
Chapter 9 Conclusion ... 150

9.1 Introduction ... 151
9.2 Summary of the Research .. 151
9.3 Future work .. 153

9.3.1 Graphical modelling and tool integration support.. 153
9.3.2 Automating the analysis of the code .. 154
9.3.3 Source Generation ... 154

References ... 155

- v -

List of Figures

Figure 1 Similar concept of Software Component and Integrated Circuit (I C) 9
Figure 2 Component interface and vtable of COM Model.. .. 16
Figure 3 COM model overview ... 18
Figure 4 the structure of COREA's Object Request Broker Interfaces 25
Figure 5 Enterprise J avaBean Model.. ... 29
Figure 6 An example EJB Server in three-tier application .. 30
Figure 7 Types of components .. 37
Figure 8 OMG's Proposal for PIM and PSM (left), Component modelling for two
different types of component frameworks (Right) .. 38
Figure 9 A sample common component framework ... 43
Figure 10 Middleware technologies and 3GLs .. 45
Figure 11 Model Driven Architecture and the level of abstraction 49
Figure 12 Meta-modelling levels (left) and OMG's MDA approach for meta-
modelling (right) .. 50
Figure 13 A fragment of UML meta-model (From OMG's UML Infrastructure Meta-
model) .. 52
Figure 14 Simple Case study ... 54
Figure 15 Functional and Non-functional Aspects .. 55
Figure 16 A sample UMLand MOF mapping .. 57
Figure 17 A common development processes using a component based framework. 58
Figure 18 Generic model driven development processes .. 63
Figure 19 AbCD approach showing the modules and development artefacts 64
Figure 20 An example Business Concept Model for a Bank 67
Figure 21 A J2EE specific model for the Account Manager (From Bank example) .. 69
Figure 22 Applying AbCD with non-invasive approach ... 71
Figure 23 An expected design process iteration (left- RUP process, right- XP
process) .. 71
Figure 24 Partitioning the system based on 3-tier architecture 72
Figure 25 Component structure for Bank application ... 74
Figure 26 an AbCD model overview ... 76
Figure 27 Logical component modelling using CDG ... 77
Figure 28 An overview of the modelling workflow .. 84
Figure 29 Extending the UML meta-model .. 85
Figure 30 AbCD Abstract Model .. 87
Figure 31 Model of AbCDComponent Stereotype ... 88
Figure 32 AbCDComponent stereotype for Bank Example .. 89
Figure 33 Applying AbCDServiceComponents to the BankManager component.. 93
Figure 34 Applying AbCD meta-model to the Bank example 94
Figure 35 The AbCDComponentAssembly for packaging component specification. 96
Figure 36 A simple component dependency view using coloured regions to represent
aspects/services .. 99
Figure 37 Applying attributes when implementing/acquiring technology specific
components .. 101
Figure 38 A tree view of the AbCD profile constructed using Eclipse UML plug-in

··· 102
Figure 39 A fragment of the XMI file for the AbCD Profile 103
Figure 40 UML model for the Bank example ... 103

-vi-

Figure 41 The tool suite targeting component modelling (left), other MDA tools
targeting to bridge analysis to implementation .. 108
Figure 42 Applying AbCD approach using the Eclipse plug-in for AbCD profile ... 110
Figure 43 XMI import feature ... 111
Figure 44 Architecturally significant modules from the bank example 112
Figure 45 A screenshot of the fragment of UML 2 model from the bank example
imported from UML 2 plug-in to Profile tool ... 112
Figure 46 Attributes of AbCDComponent meta-class .. 113
Figure 47 Applying the AbCD UML profile using UML 2 Plug-in (left Tree view,
Graphical view right) ... 113
Figure 48 AbCDServiceComponent stereotype .. 114
Figure 49 AbCDServiceComponent stereotype data stored in the XMI file 115
Figure 50 Dependency between BankManager and Performance monitor components
using AbCDServiceUse stereotype ... 115
Figure 51 Two AbCDinterfaceComponents defined in the bank example 116
Figure 52 Three important attributes of AbCDinterfaceComponent 117
Figure 53 BankManager AbCDCOmponent ... 117
Figure 54 myanmarshop.com business sites .. 122
Figure 55 Component specification and implementation mapping 123
Figure 56 the workflows of the development process ... 124
Figure 57 myanmarshop.com's products model... ... 125
Figure 58 introducing a multi-language support as a cross-cutting concern 126
Figure 59 introducing Serialiser class for persistence service 127
Figure 60 A snapshot of the AbCD Specification model .. 127
Figure 61 AbCDServiceComponent specification .. 128
Figure 62 Compostion pattern for persistence model using J2EE 129
Figure 63 Composition pattern using Spring framework .. 129
Figure 64 Four functional components of the tool .. 133
Figure 65 the modelling process for the RP tool ... 135
Figure 66 an overview of the AbCD model for RP tool.. .. 136
Figure 67 three layers of encapsulation for the ecommerce system case study 146

- VII -

List of Tables
Table 1 Common concepts in J2EE, .NET/COM+ and CORBA/CCM40
Table 2 Different focus areas of Light Weight and Heavy Weight Frameworks 42
Table 3 Summary of Middleware technologies ... 46
Table 4 The use of Models in Software Development (Based on the diagram
presented in [Brown 1996]) ... 4 7
Table 5 Non-functional requirements .. 53
Table 6 Contextualised Attributes for the AbCDComponent meta-class 91
Table 7 Contextual attributes for the AbCDServiceComponent meta-class 92
Table 8 Contextual attributes for AbCDServiceUse meta-class 92
Table 9 Contextual attributes for the AbCDServiceComponent Meta-class 94
Table 10 Target areas of various MDA tools .. 107
Table 11 evaluation method and in pact areas.. .. 140

- viii -

Introduction

Chapter 1 Introduction

Introduction

1. 1 Background

A successful technology can change the way systems are being developed, fielded and

maintained. As an instance, Object Oriented technology has changed the way systems are

viewed and composed. However for such a technology or paradigm to be successfully

utilised, it must be general and easy enough for users to apply as well as providing facilities

for integrating the technology with many existing domains. Commercial organisations are

trying to implement or update their systems in a way that such systems or subsystems can be

updated incrementally to keep abreast of new technologies and to take advantage of them.

These organisations demand not only sound architectures but also efficient ways to integrate

different components as well as applying design patterns to solve complex problems that are

domain specific.

As Software Engineering matures over time, demands are increasing for software to be

developed rapidly with reusable artifacts or assets. Traditionally, in Software Engineering,

these artifacts are pieces of code or libraries. However, the term has broadened into

representing reusable design, process, patterns, guidelines, frameworks, standards and most

importantly components. In other words, contexts of reusability are formed based on different

aspects of the artefacts. The concept of aspects in component development will be described

in the literature survey. This has led to the total conversion of the perception of the way

Software Engineers develop software. Hence new Software Engineering practices have

emerged and they have evolved into new Software Engineering disciplines.

This research is about the approaches and techniques to software design based on three

emerging disciplines in Software Engineering: Component based Software Engineering

(CbSE), Model Driven Development (MDD), and Aspect Oriented Programming (AoP).

2

Introduction

1.2 Component based Software Engineering (CbSE)

Component based Software Engineering is a subset of Software Engineering. Like other

disciplines in Software Engineering, CbSE aims to provide a mechanism for developing

software parts. Unlike other disciplines, however, CbSE is inspired from the building of

components in hardware development. Object Orientation (00) illustrates to software

engineers how to model software based on the metaphor of real world objects. CbSE has

extended this metaphor to represent software as a set of connected components using a

common model and infrastructure. Whilst 00 and CbSE share many common concepts such

as separating interface from implementation, and encapsulation of internal details, from the

CbSE point of view, components can be designed and written in 00 or any other procedural

languages. In other words, components in CbSE are more loosely coupled and provide

functionality as services using interfaces. More detailed description on CbSE is made in

Section 2.2.2 as part of the literature survey.

CbSE has matured enough to form various frameworks and their supporting technologies

from various researchers, commercial organisations and the open-source community.

Therefore it can be regarded as becoming an established discipline. The success of CbSE

depends on sound practices, methods, models and guidelines applied by software developers.

Currently, however, there is no clear and repeatable practice with a well defined framework

when designing components.

Many researchers believe that components and interfaces are the leading way to solve many

problems with monolithic applications as discussed in [Vigder and Dean, 1996; Szyperski,

1998]. This research reviews various methods, standards, and technologies in the literature

survey and proposes a new method that allows developers to construct components at

specification level using model driven approach.

1.3 Model Driven Development (MOD)

Model driven development is another discipline that this research is based on. It can be

regarded as a new trend in software engineering. MDD approach is based on concept of

constructing models for design. The models can be informal, i.e. on paper or hand drawn, or

formal i.e. machine-readable and can be processed. In general, models are used to share

knowledge amongst software engineers as well as capturing system design. It is used for

specifying, visualising and documenting design artefacts.

With the introduction of Unified Modelling Language (UML) and Model Driven Architecture

(MDA) from Object Management Group (OMG) organisation, it is possible to construct new

3

Introduction

domain specific models using UML. UML is used and extended in this research, because it is

currently a widely accepted modelling language.

To outline the role of MDD, this research does not focus on proposing a new method or

practice to improve MDD. However MDD is used for supporting designers to resolve

problems with CbSE. In this research, the UML meta-model is extended to construct a new

meta-model for component development. Although UML provides class modelling, behaviour

modelling, and interaction modelling, the extension in this research is limited to class

modelling that captures the static structure of the design.

1.4 Aspect Oriented Programming (AOP)

The aim of this research is to apply concepts derived from Aspect Oriented Programming to

CbSE. Partitioning a system into components using CbSE is based on dividing up functional

aspects of the system. One area that is not highlighted in CbSE and MDD literature is that of

addressing cross-cutting aspects. AOP is concerned with cross-cutting aspects within the

design and systemically addresses them -providing another way of organising the design. As

the AOP concepts mature over time, there are different frameworks in the literature that allow

designers to implement cross-cutting concerns. AOP concepts are applied in this research

when deriving a new approach, which allows developers to construct components with

abstraction.

1.5 Research objectives and the approach

This section introduces the main objectives of this research. CbSE promised a great deal of

benefits for applying the practice. However it needs to be applied using a disciplined practice

and there are many problems to be overcome. This research intends to address and improve

two problems in CbSE.

Firstly, one critical aspect of a component based development is the requirement for a

framework for components be deployed and interacted with. As described by Garlan [Garlan,

Allen et a!., 1994], without a common framework there may be problems when integrating

and reusing components. The component frameworks act as a vehicle for components and

takes the responsibility of component management. More importantly, it dictates how the

component interacts, using an interaction model. Therefore the designers must have

comprehensive knowledge of the particular framework that the design is based on.

Accordingly, the architecture of the system design is also dictated by the model supported by

the framework. Moreover the component implementation often differs from initial design.

This has led to the position that the component is hard to re-use. For this problem, this

4

Introduction

research aims to find a way of specifying logical components that encapsulate not only the

functional behaviour of the component, but also the properties required by the component

when deploying to the component framework environment. In other words, the logical

components provide a higher level of abstraction to accommodate evolving component

technologies. This is achieved by allowing designers to construct logical and abstract

components using a model driven approach. A new meta-model that extends the UML meta­

model is formed that tailors the construction of logical components.

Secondly, component frameworks and their associated technologies provide a variety of

services such as transaction management, instance management and logging. Most of these

services can be regarded as cross-cutting aspects in the design, because they are needed by

different parts of the system. However there is no modelling approach that allows designers to

identify these aspects and apply them in an abstract way. This research aims to address this

issue by allowing designers to define components by explicitly declaring their cross-cutting

concerns and forming a composition pattern to apply them.

1.6 Criteria for success

The overall criteria for the research can be measured by evaluating the impact on the artefacts

produced during the construction of the components as well as analysing the improvement in

the design process of software development.

This can be broken down into a number of different areas that this research aims to contribute

in CbSE community. Therefore the criteria are:-

1. Identification of the key factors that improve the quality of design using the core

CbSE principles.

2. Development of a new meta-model that resolves the problem of component

abstraction and allows designers to construct abstract and logical components at

specification level.

3. Development of the component dependency view that highlights the cross-cutting and

non-functional aspects of the design.

4. Development of a tool suite that supports the meta-model. This should allow

designers to apply the meta-model and enables the component dependency view.

5

Introduction

5. Analysis of the productivity of the designers during the development process.

6. Quantitative and qualitative evaluation of the success of the approach based on the

case studies.

7. Assessment of the rich set of semantics identified by the meta-model to support the

design of component based software systems.

This thesis presents how these 7 criteria are achieved in various chapters.

1. 7 Thesis Overview

This thesis contains nine chapters and this is the first. Chapter 2 presents the literature survey

where important concepts of the CbSE are discussed. Furthermore, approaches of different

component frameworks and their associated technologies are also addressed.

Chapter 3 provides an overview of the model driven development and the use of UML in

modelling software components. It also discusses ways to extend UML to apply to other

domain specific models.

Chapter 4 introduces the Attribute based Component Design (AbCD) approach and the

Component Design Guidelines (CDG) to support the AbCD approach.

Chapter 5 presents the detailed specification of the AbCD meta-model. This includes the

detailed description of the attributes defined to encapsulate the component requirements.

Chapter 6 describes the implementation of the AbCD tool suite using the Eclipse IDE. It

shows how the tool suite realises the AbCD approach and presents how the component

dependency view can be generated.

Chapter 7 describes the two case studies for assessment of the AbCD approach and to allow

the evaluation process. The two case studies have two different focus areas of CbSE.

Chapter 8 presents the detailed evaluation process that assesses the impact on the design of

the component based software against the aims of the research and further work.

Chapter 9 concludes the research and presents a reflective outline of the contribution of the

research.

6

Current Research

Chapter 2 Current Research

7

Current Research

2. 1 Introduction

This chapter presents the background research area and the context surrounding the method

described in this thesis. In order to develop a suitable method for designing software

components, it is necessary to have a clear understanding of several research areas. This

chapter addresses component models and methods of the Component-based Software

Engineering (CbSE), and highlights problem areas when developing component-based

systems. It also discusses Aspect-oriented Programming (AOP) and Model Driven

Architecture (MDA) in relation with the context surrounding this thesis. While the current

literature of CbSE is heading towards integration and composition of components when

implementing, this research focuses on modelling of components when designing the

component-based systems.

2.2 Component-based Development

Component based development using CbSE has significant impact on the software being

designed and developed. It has a different process of software development in comparison to

traditional software development. While traditional software development aims to develop

software by using analysis, design, implementation and testing processes, the component

based development approach applies processes of analysis, components acquisition,

integration, assembling and test processes.

It is also different from Object Oriented software development in terms of the way

components are organised. In contrast to the features of a component, an 'object' from Object

Oriented programming may not be independent, although it also encapsulates its state and

behaviour [Jacobson, 1993]. An object can be instantiated and deployed using class templates.

It has its own state and identity. Depending on the design of the object, it can be temporary or

can persistent. Objects may be instantiated as many lightweight units, which are in contrast to

components which may be a heavyweight unit with a single instance within the system.

Once an object is instantiated using a class or prototype object, it requires initial state, which

can be set when initialising the object. In either case, an object can be initialised by a static

method known as a constructor or through an object .factory design pattern [Gamma, Helmet

al., 1995] which is an object itself. A component may or may not be implemented using the

00 language.

8

Current Research

2.2.1 Background of Software Components

The idea of software components is also derived from computer hardware chips or Lego

blocks that allow the software developer to plug in components to the system or allow these

components to be composed to form a system. Therefore the chips on the circuit board

correspond to the components, and the board itself corresponds to the infrastructure of the

component software that includes the architecture, technology and component model that

glues the components together, as shown in Figure I .

lnterfaceA 1

lnterfaceA2

lnterfaceA 3

InterfaceS 1

InterfaceS 2

InterfaceS 3

Component A

Component B

Software Architecture, Technology,
Component Model Circuit board

Figure 1 Similar concept of Software Component and Integrated Circuit (I C)

However, the nature of software is different from other forms of hardware products. To create

a software component, one has to apply different models and supporting technologies.

Although the hardware technology analogy can be used as the basis for component software,

the design and development of components require the use of the principles of component

architectures as described in Section 2.2.2. 1.

2.2.2 The term 'Software Components'

Many researchers have defined the term 'components ' in different ways, which can be found

in [Jacobson, 1993; Nierstrasz and Tsichritzis, 1995 ; Orfali, Harkey et al. , 1996; Szyperski,

1998] . When reviewing the terms, it was found to be described differently depending on

different contexts as discussed in [Caldiera and Bas ili , 1991]. A component may perform one

or more functions depending on the design of the component. The developers can design

software components in many different ways . A component can be designed to be used in a

custom-based system against a specific interface and architecture. Custom-based systems are

systems that are built in-house to fit with the required specification. In this case, the

component has to be designed and implemented to fit with the particular system. A

component can expect what resources are available on other components and the system.

These types of components are mostly a single instance within a system rather than multiple

instances of the same component. For example, an Internet server can be a component in a

9

Current Research

large information system, which is the single instance within the system. Another type of

component is independently deployable component for third-party users, known as

Commercial Off-The Shelf COTS [Vigder and Dean, 1996]. In such case, the component can

be deployed in a single instance or multiple instances depending on the functionality of the

component. Since the component has to be independently deployable, it has to encapsulate all

the necessary objects and libraries, so that it can be composed and decomposed easily from its

environment and other components.

From the component users' point of view, to compose different components from different

vendors, it is very important that each component can be efficiently integrated. From the

component developers' point of view, component interfaces have to be completely co­

ordinated and clearly defined. Therefore components can be sold without any computability

problems [Clements, 1996]. Furthermore, component interfaces should be able to modify

easily without having to change the internal structure of the component when integrating with

the system [Sametinger, 1997]. A component may be designed and implemented based on an

object-oriented approach or other approaches using procedural languages. However, unlike

objects, a component may contain classes, objects or other functional modules and

procedures. A component can also apply functions and procedures from other components

and use their resources. The functionality and the properties (i.e. classes, objects, and

modules) should be clearly defined within the component.

Many researchers have defined the term software components in different ways.

Traditionally, any unit within a software system, such as subsystems, procedures, modules,

objects, can be regarded as different components of the system [Clements, 1996]. However,

as the software engineering evolves over time, the terminology has also changed. The term

software component that is used in CbSE is different from the general components within the

system. The term software component is a unit which its internal implementation is hidden as

a black box and can communicate only through its well defined interfaces [Szyperski, 1998].

A component is not an object from the Object Oriented programming [Rumbaugh, Blaha et

al., 1991]. A component can be implemented as an object or a collection of objects, functional

procedures or even a set of libraries. However once the component is implemented, the clients

that use the component do not need to be concerned with the internal structure of the

component and only have to deal with its one or more interfaces exposed by the component.

As the foundation of software engineering has matured over several decades, most developers

have reused many existing designs and code, and it is rarely the case that they start from

scratch [Meyer, 1994]. However, software components that are able to be plugged into the

system and used as necessary by an end-user are far from being viable because at the moment

there is neither a successful component market nor a large number of development

10

Current Research

communities. Amongst many different aspects of the component-based software to be

researched into, this thesis focuses on component modelling, component technologies, non­

functional aspects of enterprise components and abstractions in component development.

However from this research point of view the term software component can be defined as • a

software unit or a building block, which can be independently deployable and composable

with other software components, permitting that component contracts are satisfied, and

component framework are compatible, to form a component-based system'.

It is defined here to narrow the scope of the research and to define principles of software

components that are focused in the thesis. More specifically, this thesis focuses development

on small to medium size enterprise level software components that are deployable

components as models rather than technology specific implemented components.

2.2.2.1 Principles of Software Components

The definition presented in the previous section is based on the principles of Software

Components. Each part of the definition can then be divided to elaborate the meaning and to

provide the clear understanding of the principles.

• software unit or a building block: Each software component can be regarded as a

'self contained' software unit. In other words, it not only encapsulates its

implementation details but it is also composable with other components using 'well

defined inteifaces'.

• independently deployable: As a component ts sufficiently self contained, the

changes made internally (i.e. to its design or implementation) do not affect other

components as long as the interface contract remains intact.

• contracts: For a component to be independently deployable and to be self contained,

it must have well defined intetface that can form a contact on what it can provide and

require to function with other components.

• component architectures: To be able to form a component based system, all

components must be based on a common component architecture, which includes the

specification (and/or implementation) that describes the component model, the wiring

standard and the framework.

Defining these principles and the definition of the term software component has raised the

question of whether the term can be broadened to a design perspective. Currently, the

component as a software unit or a building block is referred to as implemented code, or a

module which is at the implementation level rather than a specification block at the design

11

Current Research

level. In the literature, there is no clear definition for the specification component at a higher

abstraction. This research focuses on components at the design level to gain more abstraction

over implementation.

2.2.3 Properties of Software Components

The following sections focus on the properties of Software Components. After describing the

concept of Software Components and the context surrounding the term, the properties of the

Software Component are described here for the understanding of the rationale for using

component based approach to construct enterprise-level software.

2.2.3.1 Component Interfaces

The component interface is the most important aspect during component composition. An

interface can be regarded as the entry gate to the component. It consists of all the services and

functions provided by the component to be used by other components and the system itself

[Cicalese and Rotenstreich, 1999]. The contracts can be used as common specifications for

interfaces during component composition [Hondt, Lucas eta!., 1997; Beugnard, Jezequel et

a!., 1999]. The component providers can implement interfaces according to the contracts and

users can use the interface specifications that are stated in the contracts. Accordingly, the

usefulness of a component not only depends on the functionality but also on the interfaces

that the component provides, including its portability, extendibility and adaptability.

The Interface Definition Language (IDL) has emerged to describe the services provided by a

component [OMGIDL]. An IDL file contains one or more interface definitions. Each

interface describes operations, parameters to these operations, and data types. However the

components require facilities for describing required interfaces as well as provided interfaces

which is not supported by the initial development of IDL [Olafsson and Bryan, 1996; Canal,

Fuentes et a!., 2003]. The CORBA Component Model (CCM), which is part of the CORBA

3.0 specification, introduced new additional features to IDL by including facilities to specify

'required services' as well as 'provided services' as well as events [(OMG), 1999]. The

notion of such features is defined using the term facets, receptacles, event sources, and event

sinks which are described in [(OMG), 1999]. There is also another version of IDL introduced

in the COM and COM+ framework by Microsoft [Rogerson, 1997]. The detail of each

approach is discussed in Section 2.2.4 when presenting component frameworks.

12

Current Research

2.2.3.2 Contracts

A component can communicate with its clients using the interface. Contracts are used as

interface specifications between the client and the service provider. In other words, contracts

can be used as rules that the clients and providers could agree on for efficiency. One of the

most important contracts between interacting clients and providers is setting 'pre-conditions',

'post-conditions' and 'invariants'. The pre-conditions can be set before any operation is

carried out and post-conditions can also be set to ensure that the operation meets the required

conditions and results [Meyer, 1994]. With this specification, the component providers can

change or update their component implementation without changing the interface, which can

make the component independently deployable. Therefore both existing clients and new

clients can use the new version of components. However the pre-conditions and post­

conditions are not the only way of specifying contracts. Other ways include the use of 'non­

functional' specifications on reliability, response time, performance, independence and

security, and can be set to minimise risk. As the logic and techniques become more complex

over time, the contracts become more and more complex between clients and component

providers. A client may involve a call to a component service, which needs constant feedback

from the component to the client to indicate the state of the progress throughout the operation.

In such cases the client and provider need to synchronously communicate during the

operation and therefore pre-condition and post-condition specifications are not effective. A

callback can be a procedure or an object that passes to the service provider (i.e. a library or a

remote service) which can call back the client for information [Beugnard, Jezequel et al.,

1999]. When the callback mechanism is introduced when calling from the client to the

provider, the contract may become invalid. This is because the pre and post conditions of the

provider set at the beginning of the call may be changed during the process. Therefore, when

the call back is made during the intermediate process, the observable state of the provider

may be different from the initial contract defined at the beginning of the call. Accordingly the

client must aware of the call back state of the provider and should be not dependent on the

intermediate state of the provider.

In the object oriented community, the Object Constraint Language (OCL) was introduced as

part of the Unified Modelling Language (UML) to describe constraints on object artefacts

modelled using UML [Warmer and Kleppe, 2003]. OCL is a formal and expression-based

language, and can be used to express more precise and unambiguous specification. Users of

the UML and other modelling languages can use OCL to define contracts by specifying

constraints and other expressions. OCL is intended to add constraints to operations and

properties of the objects.

13

Current Research

For example, to specify the maximum number of passengers on a Bus class:-

Context Bus
lnv : bus.NoOfPassengers <= 30

From the software components point of view, as the OCL is intended to add constraints to

objects, it can only be used as a basic tool to specify functional requirements of a component

interface. More concrete specifications and standards are required to facilitate software

components when adding non-functional constraints to form more efficient contracts. While

OCL is intended to complement UML models by allowing the addition of constraints at the

design level, at the implementation level, Object Oriented programming languages such as

Eiffel which includes build-in features to add constraints to classes using the concept of

'design by contract' [Meyer, 2000].

The use of contracts is vital to the success of component integration in any software

development. The above discussion shows that the use of OCL and other languages focuses

on conditions and specification statements of functional aspects. However as one of the

fundamental concepts behind the use of software components is to be independently

deployable, contractually-specified interfaces play a major role during component

composition. The contract should cover not only the functional aspects but also non­

functional (or extra-functional) aspects such as component's performance, availability,

persistence state and security. In the literature, achieving such features is yet to be explored

and researched. This research explores different ways of specifying context based constraints

to allow the developer for adding add non-functional contracts when constructing software

component artefacts.

2.2.3.3 Patterns

Solutions to common software design problems are recognised as software engineering

evolves over time and become 'design patterns'. Some researchers have formally defined the

term 'design patterns' as:-

"Design patterns are recurring solutions to design
problems you see over" [Alpert, Brown et al., 1998]

"Patterns identify and specify abstractions that are
above the level of single class and instances, or of
components" [Gamma, Helmet al., 1993]

Accordingly, each design pattern consists of the problem domain or the context, the problem

itself, and one or more solutions to the problem. A collection of design patterns was

14

Current Research

documented by Helm and Erich Gamma in their Gang-of-Four book [Gamma, Helm et al.,

1995]. Design patterns were originally incorporated from the domain of GUI application

framework ET ++. As the design patterns become more common, the patterns community has

proposed many different types of patterns such as architectural patterns and design patterns as

described in [Schmidt, Stal et al., 2001]. However the nature of the patterns in different

domains can be varied. Therefore some of the patterns are domain specified and have limited

application. To solve more complex and recurring problems, a single pattern solution is

inadequate. Accordingly, the community and researchers have proposed 'compound patterns'

to combine different smaller patterns [Riehle, 1997]. These combined patterns are then

derived to form 'pattern languages' as presented in [Alexander, Ishikawa et al., 1977; Martin,

Riehle et al., 1998]. From the CbSE point of view, components are glued together using the

architecture the components are based on. A design pattern can be regard as a micro­

architecture as described by Szyperski as "Design patterns are microarchitectures. They

describe the abstract interaction between objects collaborating to solve a particular problem."

[Szyperski, 1998]. Modern component technologies such as J2EE, COM+ and CCM use

various patterns which provide guidelines to ensure that components are integrated efficiently

within the boundaries of the component architecture. As an example, J2EE utilises several

patterns including [Crawford and Kaplan, 2003]:-

• Fa~ade/proxy pattern: for handling synchronous communication and remote

operations.

• Publish/subscribe pattern: for decupling component service providers from service

consumers.

• Factory pattern: for separating the management of objects and objects activation.

There are also 'antipatterns', which are similar to design patterns but are formed when

developers make mistakes when trying to solve common and recurring problems and the

solutions to correct the mistakes. In other words, antipatterns are recurring mistakes, and

design patterns are recurring solutions [Brown, Malveau et al., 1998].

The study of design patterns is important to this research, because in the context of CbSE, full

comprehension of design patterns give more understanding of the component architectures

that can be formed.

2.2.4 Component frameworks, standards and technologies

This section presents a survey and evaluation of different component frameworks, their

standards, models and technologies that support them. In particular, from the three most

dominant players of the emerging component market, i.e. COM/COM+/.NET from Microsoft,

15

Current Research

which is derived from component framework for building desktop and GUI components,

CORBA/CCM from OMG, which is originated from enterprise level distributed computing

and remote architectures, and J2EE from Sun Microsystems, which the technology is centered

around the features of Java programming language and Web Server-based components. The

study of different component frameworks is important for this research. Most of the studies in

the literature provide detailed features provided by each framework. This study tries to find

common facilities and services provided by all frameworks to gain an abstract view and to

find a way of form a logical component framework.

2.2.4.1 Component Object Model (COM), COM+ and .NET

The Component Object Model (COM) is one of the component oriented frameworks from

Microsoft. COM consists of a specification for constructing components and partly an

implementation in the form of a standard API. Although COM has similarities to CORBA,

COM is based on a different approach as described in [Rogerson, 1997]. COM is targeted for

Microsoft Windows environments although Microsoft is developing for other platforms by

third parties, such as SUN OS, Macintosh, HP, etc.

COM is the basic foundation of all Microsoft OLE, ActiveX, ActiveX Data Objects, and

Automation controls technologies. The COM component framework is studied in this

literature to gain better understanding of how this technology implements the core CbSE

concepts. Hence the mapping between components at design level and COM components can

be constructed to provide an abstraction from at the Design level.

2.2.4.1.1 Component Model

I JL Interface r------ vtable Method I

Pointer to M l

I Clients
~Method2 J
~ Method3 I
!------[Method 4 J

I MethodS I
COM component

Figure 2 Component interface and vtable of COM Model

COM components are 'black box' binary form of units which use lnteifaces to communicate

with the outside world. A COM component consists of one or more interface nodes. The

available services are exported using interfaces that the clients can reference to. Therefore an

16

Current Research

interface can group a set of related properties and functions. As shown in Figure 2, this

grouping is arranged as a table of pointers to those functions, which are called virtual

functions (vtables).

Hence each interface has a separate function table. The client can point to the interface

pointer that points to the first field of the interface node and then the interface pointer points

to the function pointers that point to the various functions available. For instance, the

interface node Icalculate may contain four member functions called add, sub, mul, and div.

The function table contains the addresses of GUIDs (Globally Unique Identifier) for those

four functions.

Therefore if the client wants to make a call to the sum function, the interface pointer can

dereference to the sum function pointer and then to the sum function itself. As a summary, an

interface is a pointer to a function table which is a list of pointers that point to associated

functions. COM also supports programming languages that do not provide pointers such as

Java and Visual Basic. COM uses the special interface called !dispatch which are names

referring to the related functions. This is called dynamic invocation. These names use a

standard data type (variant) to allow clients with different programming languages. Since the

type variant (16 bit packet) has a fixed size, it can be passed as parameters for dynamically

invoked functions.

These interfaces can map to one or more classes within the component. Hence, the

implementation can be made freely depending on the functionality and design of the

component. A COM component may consist of one or more objects which provide different

services. There can be also modules that are not within objects. COM uses the concept of a

Globally Unique Identifier (GUID) to identify a component and its interfaces. A GUID is a

128-bit number which guarantees to be unique for all components and its interfaces. Hence,

components use Class Identifiers (CLSIDs) and Inte1face Identifiers (liDs) as unique

identifiers. By giving the CLSID to the COM API function CoCreatelnstanceEx, a instance can

be created and loaded for the clients to use.

All COM components must have !Unknown interface and all interfaces are derived from

!Unknown interface. The IUnknwon interface has the three main function methods. They are

Ouerylnterface, AddRef, and Release methods. The Querylnterface is in every interface since all

the interfaces are derived from !Unknown. It allows the clients to query available interfaces

(i.e. services) provided by the owner component. Once the client retrieves a particular

interface, the reference counter is increased by using the AddRef method. It decreases the

reference counter by using Release. When the reference counter turns to 0 the component

17

Current Research

unloads itself since there is no client using the service. Therefore every component performs

reference counting for the whole component or an individual interface.

All the information and services provided by a particular component is presented in its type

libraries. Type libraries provide all information about the component's interfaces where the

developers can learn about the components. Type libraries can be created by writing scripts in

the Microsoft Interface Definition Language (IDL) or the Object Description Language

(ODL) and compiled using a compiler. However Microsoft's IDL does not conform to the

standard OMG IDL and therefore it is not standardised with other language independent

protocols.

~--~

I

I

QE
Ckxl.Jrrents

,1_1'
I Structured I

-----I_

II
II Uni
II :~~ ·tormData:

II
I ';:]

I
I

A:::tiveX
<Xllllrols

• r
Unking

Visual Editing
.Autorration

In-Race .Activation

J + •
Errbedding

Type
lnforrration

r r-
COM

~--J

Figure 3 COM model overview

Components can reside within DLL libraries, EXE executable files or OCX (ActiveX

extensions) component servers. All components can be registered to Windows system registry

with its CLSIDs and actual location of the servers. Hence once the client requests a particular

component, the above function looks up the registry to locate the location of the component

server. Once the server is located, the server uses class factories to retrieve the requested

components. A class factory is the special type of interface object attached to each component

within the server. There is also class factory 2 which needs additional licensing to create its

component.

A COM component can provide its service to all in-process clients and out-process clients

depending on the design of the component. In-process clients are the clients within the same

process. Out-process clients may call from different process on the same machine or from the

remote machine. In both cases, client and server do not know if they are making calls to the

18

Current Research

remote or local machine, as it is all performed by a client side proxy object and server side

stub object. These two objects perform marshalling between the two components

For a local machine, the proxy sends the Interface pointer identifier (IPID) and Object

identifier (OlD) to the server stub to locate the particular interface object and to locate the

local proxy object for returning the request. For clients from a remote machine, additional

information is added within the o~;ect exporter. This information is represented in network

data representation (NOR). This whole communication process is performed by Distributed

Component Object Model (DCOM).

As the COM specification evolves over time, Microsoft has released many extensions. Figure

3 COM model overview

shows the complete COM model and its extensions.

Object Linking and Embedding (OLE): OLE technology includes a collection of COM

services such as drag-and-drop controls, monikers, connectable objects and automation

support as discussed in [Chappell, 1996]. OLE also comes with different extensions such as

OLE containers and servers, ActiveX controls and ActiveX documents. OLE controls usually

have visual appearance and are most suitable for document-centric applications. However

developers are allowed to use OLE technology within Microsoft frameworks or build their

own framework to develop the component. Hence the technology lacks openness and is

limited to open binding and linking of components.

Automation: Automation is also a COM based extension that allows the application to

control the objects in one or more applications, like macros. The client is refereed to as the

automation controller and the server is called the automation server. Automation can be

performed in-process, local or remotely. The exported functions for scripting can be found in

type libraries of server objects. Therefore automation is suitable for building scripting

applications or for the automation of services. However COM automation does not comply

with the OpenDoc scripting technology.

ActiveX controls: ActiveX controls are another extension of COM components. They are

mainly in visual form and can be embedded only to in-process servers and ActiveX container

applications. ActiveX controls have exported visual related services such as input events, data

sources and licensing.

19

Current Research

2.2.4.1.2 Reuse

COM supports code reuse by providing COM servers in the form of dynamic link libraries

(DLLs), COM based executable (EXE) and OCX servers. Furthermore, Microsoft has

provided a set of reusable APis such as Win32 API and Win32 SDK which contains a

collection of documentation and header files that allows the developers to reuse Windows

System DLLs.

2.2.4.1.3 Language Independence

Since COM provides dual interfaces, development can be made on programming languages

that support pointers such as object pascal, C++ as well as languages that do not directly

support pointers such as Visual Basic and Java. However these languages must be COM

compliant and must use COM supported data types. Furthermore, extra dual interfaces have to

be implemented for programming languages that do not support pointers such as Visual

Basic. Therefore implementing COM components using programming languages that support

pointers such as C, C++ can be easier.

2.2.4.1.4 Portability

Although Microsoft claims that COM support on other platforms is currently developing, at

the moment the COM specification is limited to only Microsoft windows environment.

Furthermore, the use of Windows Registry is also limited to Microsoft Windows based

operating systems.

2.2.4.1.5 Object Memory Management

COM components provide self creation by using class factories and self destruction by using

reference counting to manage memory and to manage object lifetime. However there is a lot

memory overhead and performance problems for distributed components when

communicating each other because the architecture involves overhead objects.

2.2.4.1.6 Object Orientation

COM provides two forms of object orientation. Firstly, COM is the binary standard and it

offers encapsulation of objects. In instance, the client does not need to know how the server

object has been implemented and the server does not know where and how the client is

calling. Secondly, the developer can create COM objects in such a way that they can be

updated or substituted at run-time, which is the concept of polymorphism. Therefore, objects

20

Current Research

can be replaced without interfering with the interfaces, accordingly the clients do not need to

recompile for any changes.

2.2.4.1. 7 Distributed Services

DCOM provides facilities for implementing distributed systems by usmg client proxies,

server stubs and marshalling methods. However, unlike CORBA, the DCOM distributed

technology is only available in Micorsoft's world and there is a lack of support for other third

party platforms.

2.2.4.1.8 The summary of COM model, COM+ and .NET

To summarise the COM technology, it was developed to satisfy some of the core CbSE

principles.

Firstly, COM provides the separation of interface from implementation. This makes the client

of the component independent from component implementation. COM provides Type

Libraries for publishing inte1faces as well as supported types by the component to be

discovered by the clients. The 'Binary compatibility' is the core principle of the CbSE to

enforce the separation of the client from component implementation. This ensures that the

client does not need to recompile or redeploy when updating or changing component

implementation as long as the component provides the same interface. COM provides this by

creating the indirection between the methods that implement component functions and the

client using interface pointers as described in COM component model, in Section 2.2.4.1.1.

However, once the inte1face is published, the pointers are fixed to the memory addresses of

the implementation methods and hence changes to the interface will break the contract

between client and the component. That is the single most shortcoming of the COM model

from CbSE point of view .. NET framework, which is the successor of the COM framework,

provides alternative approach for binary compatibility. It uses attributes as meta-data of the

component to expose its methods and fields. Unlike COM the memory address of these

methods are link by JIT compiler at runtime when the client invoke the methods. This is

similar to JavaBean component model where it relies on Java JIT compiler to provide the

linkage.

Secondly, COM provides packaging and deployment of components with versioning support.

The shared components can be packaged into DOL. However, it needs to be installed to the

system for the client to use the component. Therefore extra care is needed for the developer

when updating the component to a new version, because clients are fixed to a particular

21

Current Research

version of the component. This is because of the static interface linkage between client and

the component.

Thirdly, COM also provides other services and tools for construction and composition of

COM components. Security services, directory services, transaction services, licensing

services, Object pooling, Just-in-Time Activation are some of the services provided by the

COM specification. It uses COM+ component services, which is the COM component

container to provide these services. COM+ provides a runtime environment for components to

be deployed on.

As an overview, although OMG's CORBA and JAVA Bean technology are technically better

(i.e. much more open), the COM technology is in control of the of today's desktop

applications. With the background of Microsoft Windows, many organisations have

developed and used COM models and invested in COM based technology.

2.2.4.1.9 Development Steps using COM

The development steps here are focused only on COM oriented component implementation

stages and not intended to discuss general component-based architectures and frameworks.

One of the most advantageous features for using COM is that there are many easy to use tools

such as MS Visual Studio and Borland Delphi which uses wizards. Accordingly, the

development steps are varied depending on the tool used and types of application or

component to be developed. However in general the development involves the following

steps.

• Design and selection of type of applications or components to be developed. (i.e.

automation servers, automation controllers, type libraries, ActiveX controls, and other

visual components).

• The designer has to decide the COM components as in-process, out-process or remote

servers components. This defines whether the components are shared or private to

clients.

• Design and construct a set of interfaces for components and services for the server.

• Based on the design the developer has to design which threading model to use, and

whether to include type libraries for more information about the component.

• Implements the components and depending on the types components can register

within EXEs or DLLs or OCX servers.

22

Current Research

For registering multiple components over the internet, the developer may use tools such as

Microsoft Transaction server provided by Microsoft.

2.2.4.1.10 Application Domain

Most of the applications produced by Microsoft are based on the COM model. Accordingly,

Microsoft is dominating the market for many industries and organisations with its operating

system, Windows, and many other applications based on COM. One of the most popular

components that are based on COM is ActiveX components which are derived from the

earlier OLE control technology. However, ActiveX technology is most suitable for small and

lightweight visual components. Presently, many of the current technologies such as DCOM,

Automation servers, Microsoft Transaction servers, DirectX, ADO, etc are based on COM

component model.

2.2.4.1.11 Development tools

Most of the current available tools by Microsoft and other third party tools support the

development of COM components, ActiveX controls, Automation servers, and component

libraries. Some of the development tools available are Microsoft Visual Studio, and Borland

Delphi. This is one of the biggest advantages of COM in comparison with other architectures

- these tools are easy to use and powerful. However the limitation is that the applications

produced by these tools are platform dependent. COM components can also be implemented

using tools such as J++ and Active Perl, with some limitations.

23

Current Research

2.2.4.2 CORBA

Since Object Management Group (OMG) was first founded in 1989, they have first

introduced the Common Object Request Broker Architecture (CORBA) to overcome

component integration problems. The CORBA 1.1 specification was first established in 1991

and followed by the 2.0 specification in 1995. [OMG, 1997] The main feature of CORBA

includes the integration of components with language, location, and platform independence. It

allows different vendors construct different components and integrate them. One of the most

important specifications of the CORBA is Internet - inter - ORB protocol (IIOP) that is

specified in CORBA 2.0. Any vendor which wants to make software compatible with ORB

must support IIOP. OMG also defines the Object Management Architecture (OMA) which

combines with CORBA to form a complete middleware architecture for distributed systems.

However OMG defines CORBA as a specification and component implementation

framework there are many independent commercial and open source tools available.

2.2.4.2.1 Component Model

The three main features of a CORBA service are a set of invocation interfaces, the object

request broker (ORB) and a set of object adapters [Emmerich, 1997]. The invocation

interfaces allow late binding. In other words, the method implementing the invoked operation

is selected based on the object implementation to which the receiving object's reference

refers. Since the components and services are implemented in different languages, there must

be a common interface language for communication and integration. The OMG has

introduced a common interface language called the Interface Description Language (IDL).

Hence, invocation interfaces and object adapters can work together using IDL. When the

server wishes to provide a service, the method interface is to be written in IDL. The IDL

compiler compiles the IDL and registered in the ORB's interface repository. These available

interfaces can be retrieved from the ORB interface, as shown in Figure 4. The interfaces can

then be implemented and registered to the ORB's implementation repository. These

implemented components or fragments are called object servers. Therefore the

implementation can be changed or updated without affecting the interface. When a client

wishes to perform a request on a method, the client can use Dynamic Invocation Interface or

an OMG's IDL stub. A stub can perform all the marshalling to the remote method though the

ORB to the remote server and serve the result as a local object. When the server skeleton

receives the requests, the data is unmarshalled and invokes the target method. Once the

request is made, the requests are marshalled and sent back to the stubs.

24

Current Research

As shown in Figure 4, the ORB core ts responsible for locating the appropriate

implementation object and transfers control to the object implementation through an IDL

skeleton or a dynamic skeleton. Therefore, the object servers can obtain services from the

ORB core though the object adapter. Accordingly, based on the type of service required, the

object server decides which object adapter to use.

Client
(Applicationprograms)

Dynamic
invocation
interface

IDLstubs

I IDL
I I

1 compiler '
I I

'- - -,..-.:::; - - -I

/ '

ORB
interface

Server
(Object lrnplerrentation)

IDL
skeletons

Dynamic
skeleton
interface

Object adaptor

Object Request Broker (ORB)

Figure 4 the structure of CORBA 's Object Request Broker Interfaces

Object Request Broker (ORB): Object request broker can be implemented in many ways.

However, many ORBs include IDL compilers, object repositories, interface repositories, and

object adapters. Furthermore, more than one implementation of an ORB can exist with

different object references. Statting from the ORB core, additional layers can also be added

depending on the services.

For different services and communication, the ORB can be implemented using slightly

different styles. These styles include client and implementation resident, server-based,

system-based, and library-based ORB. For more information about ORBs the reader is

referred to CORBA 2.3 specification manual [OMG, 1999].

Dynamic Invocation Interface (DII): Stub routines can be used to perform static binding that

is specific to a particular operation on a particular method. To dynamically invoke an

operation, or construct an object, dynamic invocation interfaces can be used. In this way, the

client can specify which object to use and what types of operation to perform by providing

information about parameters and their types. The client may obtain this information from the

interface repository.

25

Current Research

Dynamic Skeleton Interface (DSI): From the point of view of the server, the objects can be

accessed by static skeleton interfaces which map to the methods that implement each type of

object, or by an interface which allows dynamic invocation of objects. Dynamic Skeleton

Interface provides access to the operation name and parameters in a manner analogous to the

client side's OIL [Emmerich, 1997]

Object Adapters: Object adapters can access the services provided by the ORB. The ORB

also uses object adapters to provide many interfaces to different kinds of object

implementation for providing properties including granularities, lifetimes, policies,

implementation styles and others. ORB also provides different services such as security of

interactions, object and implementation activation and deactivation, mapping object

references to implementations and registration of implementations.

2.2.4.2.2 Development Steps

Development steps can be varied depending on the different attributes of the whole

architecture. General development steps are:

• Selection of which CORBA implementation to be used.

• Design of the required architecture based on CORBA specification.

• Design by a top-down approach from general framework to detailed services of each

component, or bottom-up approach which begins with services and properties of each

component towards the top level framework.

• Creation of components, including required interfaces and implementation.

• Creation of libraries to support different services of the framework.

• Configuration of wiring methods to integrate components.

These steps can be varied depending on the types on application, language used and the

implementation tools. Although CORBA provides support for non-object-oriented languages,

in general, object oriented languages have an advantage in implementing CORBA

applications.

26

Current Research

2.2.4.2.3 Application Domain

CORBA is suitable for developing distributed applications in many different areas such as

banking, telecommunication, electronic commerce, etc. Since CORBA is platform and

language independent and the largest consortium in the software industry, there may be many

possible different domains.

2.2.4.2.4 Development tools

Since OMG has proposed CORBA as a specification, many different vendors have

implemented the CORBA specification. These include VisiBroker by Borland (formerly by

VisiGenic), ORBIX by IONA, PowerBroker by Expersoft, SmallTalkBroker by DNS

Technologies, etc. Some of the implementation tools are open-source and some are

commercial. Accordingly commercial implementations such as Borland Visibroker (and

Borland Application Server) provide more facilities than other free implementations. For

more information about comparing different CORBA implementation tools the reader is

referred to the CORBA comparison Project report by Distributed Systems Research Group

and MLC Systeme GmbH. [GmbH, 1999]. There are also bridge tools which allow CORBA

components to communicate with other component architectures such as COM, such as

CORBAplus and ActiveX bridge by Expertsoft.

2.2.4.2.5 Summary ofthe CORBA and CbSE

This research focuses more on component model provided by CORBA specification, and less

on the distributed services. To summarise the component model, the study shows that

although CORBA specification provide interface based composition of object, it focuses on

providing infrastructure for distributed system construction and does not support core CbSE

principles. For instance, CORBA specification does not include the component framework,

(i.e. the runtime envonrment that manages CORBA components). Presently, OMG has

introduced the CORBA Component Model (CCM) specification that addresses the component

framework. It allows developers to construct CORBA components using the high level

component structure using Interface Definition Lanauge 3. The CCM also defines how the

components should be deployed and assembled using XML configuration and property files.

Due to the lack of commercial support and implementation, CCM is yet to be regarded as a

mainstream component technology.

27

Current Research

2.2.4.3 JA VABEANS

After reviewing COM and CORBA, JavaBeans from Sun Microsystems is discussed here.

JavaBeans are the collection of Java components developed by Sun. Java Beans are

developed mainly for visual programming and can be used by visual programming tool

builders. As the model is based on the Java programming language, most of the component

construction techniques are based on Java approaches.

2.2.4.3.1 Component Model

Like other component models, JavaBeans also support run time discovery of objects and

integration. As mentioned above, JavaBeans are intended to be used within visual application

development tools. Most of the bean's services, methods and event handling features are

visually oriented. In other words, the properties, methods and events of a bean can be changed

using a visual interface by the development tool when developing applications. Like OLE

objects, JavaBeans can be embedded and manipulated within standalone applications or

applets. However, Enterprise JavaBeans (EJB), discussed later in this section, are mostly non­

visual components and reside in the server environment for distributed systems. The

following features are some of the most important features provided with JavaBeans.

Persistency: JavaBeans architecture uses the object serialisation techniques to store beans in a

persistent state. The persistency is achieved by streaming the object to save and restore the

state of the object.

Introspection: The JavaBeans architecture also provides introspection to expose a Bean's

properties, methods and events. This can be done by creating the JavaBean Info class.

Therefore Bean Info object is separated from the actual bean object. Introspection uses a

meta-object to provide information on its behalf. However this Introspection mechanism is

mainly useful only for visual development tools [Englander, 1997].

Customisation: A JavaBean is a fully customisable object. Using the custorniser, which is a

user interface for customising an entire bean, the properties and behaviours of the bean can be

fully customised and configured. Another way to configure the property, state and behaviour

of the bean is by using Property Editors. Property editors can be used by visual development

28

Current Research

tools to visual edit the initial or current state of the beans. This customisation can be made

both at design time and at run time.

Design Patterns: Many researchers and programmers have suggested different design

patterns for various aspects of JavaBean components. This includes patterns for event related

objects, listeners, notification, and other proper access methods. An example design pattern

for accessing properties is:

public void set <PropertyName>(<PropertyType> value);
public <PropertyType> get<PropertyName>();

2.2.4.3.2 Enterprise Java Beans (EJB)

Enterprise Java Beans are extensions of Java Beans which can reside on application servers in

order to provide different services. These components use the Remote Method Invocation

(RMI) interface to communicate with their clients. In the future, Sun claims to integrate with

CORBA' s IIOP and DCOM models, which allows the bean components to integrate with

CORBA based components and Micorsoft' s ActiveX controls.

Clients

'----------'

EJB Container
EJB Home !------ EJB Object

Interface Interface

~
[Deployment Descriptors J

I
EJB A

II
EJB B

II
EJB C

I

Figure 5 Enterprise JavaBean Model

As shown in Figure 5, an Enterprise JavaBean contains the default features from normal

JavaBeans with additional attributes for distributed features and business aspects. Like

JavaBeans, EJB are deployed by their containers with separate information for their services;

therefore these services can be managed and customised by visual development tools.

29

Current Research

In general, EJB architecture focuses on developing three-tier applications, where rniddleware

servers play a vital role. As shown in Figure 6, an EJB architecture can be used with the

rniddleware server to provide services requested by different types of clients. The clients

include web browsers and Java applications.

Tier 1 Tier2

EJB Server

EJB Container

L--C-1-ie_n_t __ ~l ••--.. •~1

Tier3

Existing
Data Store

f4 1 Legacy
Application

Database
Server

Figure 6 An example EJB Server in three-tier application

2.2.4.3.3 Development steps

The development steps of J avaBeans are varied depending on the different types of

JavaBeans. The developer may produce:

• Visual Java Beans for standalone components,

• Enterprise Java Beans for clients,

• Enterprise Java Beans for Multi-tier servers

Therefore there are many different ways to develop Java beans. Since we are only interested

in distributed Enterprise beans for clients and Multi-tier server beans, the survey is made on

the development steps for constructing EJBs. The basic development steps are:

• Write the Remote Interface Code

• Write the Home Interface Code

• Write the Enterprise Bean Code

• Compile the Source Code needed by the Enterprise Bean

30

Current Research

• Create the Deployment Descriptor

• Package the Enterprise Bean

Once the bean is developed, the EJB cannot be directed deployed into an EJB server. Instead

the bean has to be imported into enterprise application. An enterprise application may contain

one or more of these server-side components: enterprise beans, .jsp files, web files, and

servlets. Servets are similar to applets that run server-side to extend the functionality of the

server. For the client Beans, the development steps are different. The basic development steps

are:

• Locate the Home Interface

• Create an Enterprise Bean Instance

• Invoke a Business Method

Once the client bean is developed, it can be compiled and run on different platforms using

appropriate Java compilers to connect with one or more servers.

2.2.4.3.4 Application Domain

There are two different application domains. There are applications which focus on visual

programming using JavaBeans and distributed applications that are based on Enterprise Java

Beans (EJBs). In general, JavaBean technology can be used to develop JavaBean components,

stand-Alone applications, applets, reusable class packages and libraries. An example visual

development tool which provides JavaBean is IBM's VisualAge for Java.

Using EJBs, the programmers can intemperate with other technology such as JDBC, RMI,

COM, sockets and CORBA. Example applications include Client/Server JavaBeans using

JDBC for database oriented applications; two and three-tier applications using RMI and

CORBA applications.

2.2.4.3.5 Development tools

Sun Microsystems, which is the main source of the JavaBeans technology, has provided a

JavaBeans™ Development Kit (BDK) to support the development of JavaBean components.

This tool is more useful for developers who intend to construct application development

environments or visual development tools. This tool consists of BeanBox tool, which is a

sample bean container that allows a developer to test the functionality of the beans. It also

consists of BeanContext container for supporting Bean development. Since this BeanBox is a

31

Current Research

sample Bean container which is provided with the source code, the developers can use an

example for developing other beans. The latest version of BDK, the Bean builder, can be

freely available to download from Sun Microsystems web site.

2.2.5 Other Models

On top of the above four main approaches, CORBA, COM, SOM and JAVABEANS, there

are other approaches proposed by different researchers. However they are not as widely used

as the above models. At the time of writing, two other models are proposed. They are:

Flexible Object Architecture: This architecture ts appropriate for constructing small

applications and components. The architecture is based on flexible components that are

executable objects that can be modified, extended and glued at runtime. This architecture uses

component specific programming language that allows components to modify and extend

dynamically. It also consists of an implementation of a prototype based on the model called

Alego [Leeb, 1996].

Yasmin: Yasmin is also an architecture which consists of a kernel, and software components

called droplets. Although the architecture is said to be a general, it is built to create network

management applications. It also allows the user to compose software components and add/or

replace them at runtime. It consists of two main services: user and kernel. The kernel includes

different services which collaborate with each other to provide services for user level. The

user level services change from application to application. The user services are implemented

using components called droplets. Liaison, which is a sample application based on Yasmin

architecture, has been developed to validate the architecture [Deri, 1997].

32

Current Research

2.3 Component Development Issues

The study of different component models and technologies provide an opportunity to describe

common issues surrounding the component development using different technologies.

Many researchers believe that components and interfaces are the leading way to solve many

problems with monolithic applications as discussed in [Vigder and Dean, 1996; Szyperski,

1998]. Components allow us to achieve reusability by reusing existing components and to

increase modularity. Accordingly the use of distributed components changes the way we build

software systems. The components can be custom made (i.e. self made) or ready made off the

shelf components. The ultimate aim is to be able to plug in and out binary components as

services on the running distributed system with minimum changes. However, there are many

barriers to overcome when building applications by integrating the components. The main

problems include:

Problems in implementation Languages - At the implementation level, problems with

integrating components that are written in different languages is a basic problem that every

developer has to deal with and has to overcome by encapsulating implementation details.

Problems in component inte~faces - Since components may be designed and developed by

independent vendors, there are mismatches between naming conventions, parameters, and

control and data flows.

Problems in component communication protocols - Some components are designed and

implemented to specific protocols such as C Libraries based on Unix Pipes and DLLs based

on remote procedure calls. There is always a need to construct wrappers for interoperability.

Difficulties in component adaptation - Components usually need to be adapted when reusing

existing binary components to a new system or adding and modifying their functionality as

the system evolves. The component adaptation leads to the implementation of bridges,

wrappers and adapters if source code is unavailable.

Problems in Component reuse - Some components require extensive code modification or

adaptation to reuse, especially if they are targeted for a specific architecture and

communication protocol [Garlan, Allen et al., 1994].

In order to overcome these limitations, many researchers have proposed different ways of

component adaptation such as superimposition [Bosch, 1996], adaptors [Kti~tik, Alpdemir et

al., 1998] and subtyping [Holzle, 1993]. On the other hand, there are a variety of component

based distributed models and middleware architectures that have emerged in 90s. Among

them, two of the most successful and influential are Microsoft's DCOM and OMG's CORBA.

33

Current Research

There are also more traditional approaches such as sockets, TCP pipes and HTTP/CGI

approaches for Web based applications. There are also many commercial and research based

implementations based on these standards. These standards and associated tools address how

to construct and integrate new components based on these standards. But they are lack of

providing higher level support for:

• integrating legacy components,

• bridging between different distributed object models,

• adaptation of components in terms of their functionality and interaction,

• mapping between architectural description language (ADL), architecture

development environments and tools, and modern distributed models such as

CORBA, EJB, and DCOM.

Our main objective is to bridge the gap between many lower level features and services

provided by these modern middleware architectures and higher level design support for

integration legacy components.

2.3.1 Scenarios

The study of different models has also led to documenting different scenanos where

component based development can be applied as a preferred approach over other software

engineering methods.

From the applications point of vtew, the following three scenanos highlight suitable

applications that a modern component technology can assist in the development process.

Firstly, component based development may be applied when developing systems that require

extensive flexibility. For instance, this scenario may be achieved when designing architectural

frameworks for building manufacturing suites for production organisations in engineering

sector. The suite may include a set of case tools such as stress analysis tools, etc. and a set of

other related tools for assisting the designers. In this scenario, the system can be composed of

a set of commercial off-the shelf (COTS) components and other legacy components

integrated together to form a component based system. Accordingly, the flexibility of the

system is very important since the existing and new components have to be adapted,

incrementally updated and added regularly. In this case, features for supporting adaptability

and flexibility in the system are more important than facilities that enable dynamic creation of

components at run time.

Secondly, systems that are required to add and remove different components at run time to

provide different quality of services. These include online banking, process control,

34

Current Research

embedded systems and simulation programs, which cannot be restarted or recompiled easily

to add or remove components once the system is on-line. In this scenario, the dynamic

integration of components is important since there are no point to point based static links

between components. Accordingly such systems require flexible plugs, connectors, or

adapters as interfaces, together with a configuration manager, which allow modification and

extensibility of the components within the running system.

Thirdly, systems that require monitoring of their components such as e-commerce systems

and web based distributed systems. These systems are highly distributed and consist of a large

number of users. The monitoring includes different services such as load distribution,

measuring performance, fault tolerance, and security of components. Therefore individual

components need to be wrapped for adaptation and monitoring of components. In this

scenario, different monitoring services should also be able to be dynamically added or

removed without modifying the functionality of the component.

Some systems may require all of the above scenarios. The three scenarios highlight different

factors that influence the component based development. To summarise, some component

based systems require adaptability, and flexibility and others might need extensibility and

services as the main concerns in the development.

2.3.2 Component modeling for composition

The software development using component based approach may be traditional This includes

analysis, design, implementation and assembly, and deployment. During the implementation

stage, it is different from building Object Oriented systems because systems are built by

component assembly rather than new development. Therefore all the problems with designing

and implementing different phases of the development have shifted to composition and

assembly of components to form the system. In other words, during the implementation,

developers are spending more time composing components rather than developing them.

When composing existing components, interfaces of the components needed to match

syntactically as well as semantically. Hence, in the literature, various component composition

methods have been proposed that focus on matching specifications of the component

interfaces for interoperability amongst existing components. This includes superimposition

[Bosch, 1996], wrapping, component interface adaptation, filters, and semantic interfaces

[Aksit, 1996] [Penix and Alexander, 1997].

Furthermore, the matching of the requirement specification and the specification of a

component interface determines the possible reusability of the component. Accordingly, there

are various research proposals that describe matching methods, as presented in [Zaremski and

35

Current Research

Wing, 1997]. As the need for describing component composition within a system is

recognised, various formal and semi-formal component languages have also emerged

[Achermann and Nierstrasz, 2001].

The component composition methods addressed above by various researchers depict

implementation level component composition. This research does not intend to introduce a

new component composition model or language. However the AbCD approach intends to

facilitate the modeling of components for easier component composition, thus the

components are reusable. It is achieved by allowing developers to define context-based

aspects and abstraction levels of the elements of the interface together with component

functionalities, when defining component interfaces. This adds the meta-data for component

interfaces, thus allowing automation of component composition. Adding meta-data to

component interfaces may allow components to be semantically modeled for transformation

into target platform specific components. This also means that tools can be used to automate

the adaptation or transformation process.

2.4 Defining a common framework for components

From the literature it is possible to categorise different types of components as shown m

Figure 7. This is a summary of the detailed description of different types of components:-

• Generic components: They are referred to as monolithic components that do not rely

on application component frameworks or have their own custom frameworks. They

can be application specific components or generic library components such as a Web

server, a Database or a XML parser. They generally provide functionality using APis,

or may have an independent execution or runtime environment. In other words they

can be shared components (i.e. standalone) or private (i.e. library) components.

Although these components are generic, the interoperability of these components is

limited by the operating system that they support and the programming language that

they are developed in.

• Desktop components: The concept of component based development was first

realised with the form of desktop components such as JavaBeans. The Java

programming language has integrated support for the JavaBean model. Based on

OCX and COM technology, there are many desktop components to work with

Microsoft Windows applications, mainly in the form of visual components such as

toolbars or forms. There are also utility components such as File processor or report

generator components. There are also other early component frameworks such as the

BlackBox component framework and IBM's System Object Model (SOM)

36

Current Research

frameworks that suppmt the development of component-document based

components. These components can also be regarded as desktop components as they

focus on rich GUI applications Desktop components are generally designed to be

fine-grained components and they can be implemented as inter-operation within the

same process, that is in a single desktop application, rather than distributed

applications).

• Business components: Components that are built using modem distributed

technologies such as J2EE, COM+, and Web Services. Each technology has

component frameworks to allow developers to create business components. Szyperski

has described the software frameworks: "A component framework is a software entity

that supports components conforming to certain standards and allows instances of

these components to be 'plugged' into the component framework ... "

The three frameworks described in this literature are referred to as heavy weight

frameworks as they applied an all-in-one approach of providing component services.

On the other hand, business components can be built using light weight frameworks

such as the Spring application framework and the PicoContainer framework [Harrop

and Machacek, 2005]. These technologies provide non-invasive frameworks such as

Inversion of Control (IoC) container. In the next two sections, the detailed description

is made on how building components on light weight frameworks is different from

heavy weight components.

Generic components
(monolithic)

Business
Components

Business components
using Heavy Weight

Component framework

Business components
using Light Weight

Component framework

Figure 7 Types of components

Desktop and GUI
components

This research focuses on the modelling of business components as specification components

at an abstract level. Accordingly the meta-model described in the next section is to support

the modelling of components that are based on different type of frameworks. However, before

describing the meta-model, it is necessary to address the relationship between the target

37

Current Research

component models that will be designed on the meta-model and different component

frameworks. From the modelling point of view, OMG's proposal for the transformation of

PIM to PSM can be further refined into PSM for Heavy Weight or Light Weight component

frameworks, as shown in Figure 8.

Platform
Independent

Model

)l
Platform Specific

Model

Platform Specific
Model for Heavy

Weight
component
frameworks

Platform
Independent

Model

Platform Specific
Model for Light

Weight
component
frameworks

Figure 8 OMG's Proposal for PIM and PSM (left), Component modelling for two different types
of component frameworks (Right)

From this figure, it is important to note that the different type of component frameworks can

dictate the way PIM to PSM is transformed. Further analysis on the use of Heavy weight and

Light weight frameworks is discussed in the following sections.

38

I

Current Research

2.4.1 Component construction for Heavy Weight Frameworks

Three main organisations, who are major players of component technologies, OMG, Sun and

Microsoft, have adopted different standards (also known as 'wiring' standards). Each standard

has its own framework to suppott the standard. These frameworks provide a variety of

component features such as remoting, lifecycle management and component services such as

transaction management, and security. These component features allow business components

to achieve abstraction such as location transparency, and language transparency. However

these frameworks can be regarded as invasive and heavy weight. This is because when using

the framework, the design and architecture of the component is dictated by the wiring

standard and the implementation of the component relies on the runtime environment

provided the framework. As a consequence, the business functionality of the component is

embedded within the code that provides framework dependent functionality. In [Szyperski,

1998], Szyperski has referred to these three heavy weight frameworks as "The OMG way",

"The Sun way", and the "The Microsoft way". Although these standards have their own

implementation frameworks, it is possible to describe a set of common concepts that all

frameworks support for component development. Although there main heavy weight

technologies, i.e. .NET/COM+, CORBA/CCM and J2EE, have been presented in the

literature survey, Table l summarises the common concepts that are shared amongst them.

Concepts .NET/COM+ J2EE CORBA/CCM

Design and Classification N y Y (with CCM)
architecture of components

The use of Y (with COM+) y Y (With CIF)
Containers
Composition Y (with .NET y y
with Contexts enterprise

services)
Indirection Y (with context Y (with Y (with stub)

proxies) remote/local
proxies)

Interface y N y
Definition
Language
Non-invasive N N N
approach
Attribute Y (with .NET Y (With new N
(declarative framework) Java 1.5)
Qrogramming)
Component N N N

39

Current Research

composition
using IoC

Component Container Y (with COM+) y Y (depending
Management features onCCM

implementation
provider)

Component Y (with y Y (depending
Services onCCM

implementation
provider)

Deployment Packing and Y (including N Y (with CCM)
and Runtime assembly version control

and strong
naming)

Distributed Y (with .net Y (with RMI) Y (with HOP)
environment remoting)

Table 1 Common concepts in J2EE, .NET/COM+ and CORBA/CCM

This table highlights the fact that heavy weight frameworks focus on providing component

management features such as container, context management and component services.

However, they lack the necessary support for component design such as component

composition and dependency.

2.4.2 Component construction for light Weight frameworks

Using light weight frameworks, implementation of a component is regarded as a plug-in and

is completely separate from the interface. Like other component based frameworks, a light

weight framework includes a container that manages instantiation of objects and dependency

between them. It is known as an Inversion of Control (IoC) container. The IoC container uses

the configuration settings to identify which plug-in, i.e. its implementation, to reference and

use at runtime. In other words, implementation dependency is formed dynamically at runtime.

This is because light weight frameworks are based on non-invasive approaches. This is

different from constructing components using Heavy Weight frameworks. In this way, a

component designer can construct components, for example using POJO rather than EJB

components, and still take advantage of component services such as persistence and

transaction processing. When applying light weight frameworks, container features such as

context, and interception using proxies are not part of the container and can be applied as

modules. Furthermore, components services such as persistence and transaction management

are also modular, and not part of the framework. Therefore it is the developer's responsibility

to apply different component services from other 3'd party services and apply dependency

injection on the implementation. Light weight framework based technologies like the Spring

40

Current Research

Application Framework [Harrop and Machacek, 2005], and the Castle Project [Avalon, 2005],

provide different component services as pluggable modules.

Accordingly, from a component design point of view, transforming PIM to PSM is different if

one is planning to use a Light weight framework for implementation of the component. This

is because there are fewer dependency relationships between application components and

framework components that provide component services. Using a light weight framework, the

service dependency relationship between components is indirect. This is achieved by

registering different framework components and application components with the container

and explicitly defining the dependency using a set of configuration settings.

To summarise, light weight frameworks add two essential values to component based

development:-

• It encourages the developers to use interface dependency rather than implementation

dependency by providing an IoC container that uses the dependency injection pattern.

• The reusability of the components is improved because it focuses on providing non­

invasive design.

41

Model Driven Development

2.4.3 Summary of the software components and frameworks

To summarise, component development concentrates on the writing of many existing and new

components using different frameworks and standards, whereas traditional software

engineering focuses on the production of monolithic systems. In other words, the construction

of a component based system includes wiring of components using a component framework.

The frameworks are based on different wiring standards. These standards are derived from

different background areas of software development and are designed for different types of

applications. Therefore, when designing a component, the designer is faced with not only

domain and application aspects but also with the constraints surrounding the components

standards for interoperability. The component design can then be targeted to use light weight

or heavy weight frameworks. Table 2 summaries the main differences.

Modular component services All-in-one component service

Based on the principle of non-mvastve Based on the principle of providing

approach using IoC and component services component framework features such as

as plug-in modules lifecycle management, pooling, persistence,

etc.

Supports component composition through Supports service locators provided by

dependency injection usmg IoC container component framework for integration of

and composition configuration settings. components.

Application developer has to import different Framework support for component contexts.

3'ct party modules to provide component

contexts.

The application component does not have to The application component must follow the

comply with container API. container API guidelines.

Table 2 Different focus areas of Light Weight and Heavy Weight Frameworks

From the description above, it is possible to form a common pattern from different component

frameworks that support the construction of business components. Figure 9 shows a simple

pattern with a high abstraction level. All component frameworks provide a form of contextual

component composition. A context can be at application level or at a session level. Context

based composition helps the container to provide necessary runtime environment for its

42

Model Driven Development

components. In other words, components that reqmre a patticular constraint such as

interception or transaction management can be grouped into a particular context for

processing. Some technologies provide context support as part of the programming language,

such as Common Language Runtime (CLR) from Microsoft. However other technologies,

such as 12EE, use deployment descriptors to configure the container to set a particular

context.

A container also provides a factory for components using a form of factory proxy, although

implementation can be varied depending on the framework implementation. A framework

also provides a form of component proxies as an indirection of access to the services of the

component instances, i.e. instance proxy. For example, frameworks based on 12EE standards

provide remote as well as local proxies for allowing remote and local clients to access the

service. However light weight frameworks, such as Spring, only provide a proxy as an

additional plug-in for interception and AOP services via configuration.

Both heavy weight and light weight component frameworks provide various component

services, such as transaction management, security, logging, caching, and persistence.

Depending on the framework, it can be as integrated with framework implementation or a

third party plug-in via configuration. Heavy weight frameworks, such as CORBA/CCM and

12EE, provide services integrated with the framework. However, light weight frameworks

apply them as plug-in implementations.

A generic component container

(Optional}

BuslnessComponent

Figure 9 A sample common component framework

Similarly, current technologies that implement component frameworks provide various

container features, such as event propagation facility, remoting facility, interception facility,

and component factory facility. Using a heavy weight framework, these features provide

integrated within the infrastructure of the framework, whereas light weight frameworks use a

modular approach.

43

Model Driven Development

Chapter 3 Model Driven Development

44

Model Driven Development

3. 1 Introduction

This chapter describes a different view of the software development, which is the Model

Driven Development (MDD). MDD is studied in this research because it provides a way to

specify components in abstract and logical way, and possibly encapsulate component

technology details. This chapter presents MDD approach proposed by the Object

Management Group (OMG) [OMG, 1998]. Further more it discusses how UML meta-model

can be extending to support different platform specific domains. This chapter also also

describes the Aspect-Oriented Programming (AOP) concepts and how it can be applied in

component development. It provides an example as a simple case study to illustrate the

concepts.

3.2 Model Driven Development (MDD)

In 2001, Model Driven Architecture (MDA) was introduced by OMG [OMG, 1998]. This

section describes MDA and also introduces other model driven development approaches in

the literature. Before continuing to address detailed principles, it is necessary to define terms

and definitions of the model driven development that will be used throughout the thesis.

Middleware Platlorms (CORBA, COM+, EJB) r
(J)
<

'
(J)

0
""" 3GL Languages (C++, JAVA))>
0'

'
!/)
r+ .,
Dl
0

Operating System Platforms (MS Windows, Unix) e.
0
:J

Figure 10 Middleware technologies and 3GLs

As shown in Figure 10, with the emergence of Middleware technologies, level of abstraction

has increased from writing system platform1 specific implementations with 3rd Generation

Languages (3GLs) to system platform and programming language independent

implementations [Pritchard, 1999]. Table 3 summaries the most well known and accepted

middleware technologies currently in the literature:-

45

Model Driven Development

Company Technology

SUN Java 2 Enterprise Edition (f2EE)
based on Enterprise Java Beans (EJB)

OMG Common Object Request Broker
Architecture (CORBA), CORBA
Component Model (CCM)

Microsoft Component Object Model (COM),
COM+, .NET

Table 3 Summary of Middleware technologies

Often current middleware technologies also support the concepts and principles of

Component development as described in the previous section. Although Middleware

technologies have increased the level of abstraction, each technology proposes its own

platform2 specific standards, runtime environment and infrastructure. Accordingly, developers

have to follow the newest technology's specific standards to take advantage of its provided

services and facilities. However, as the technologies evolve overtime, developers are forced to

adapt their systems to new standards for portability. Furthermore, bridging or porting is

required amongst different technologies for interoperability and to resolve architecture

mismatch [Garlan, Allen et al., 1994]. The CORBA middleware technology is a prime

example of such case. As CORBA was introduced as a specification, different vendors

constructed implementation frameworks based on the specification. However components

implemented with one implementation framework were not able to communicate with others

due to object referencing incompatibility. Furthermore, the reusability is reduced because

technology specific code is embedded within the code that performs business processes. To

overcome this changing and evolution of technologies and to separate the business process

code from technology specific code, a higher level of abstraction is required that is

technology independent. One possible solution is to construct platform independent models as

software artefacts and convert them into platform specific codes as needed, using automated

code generators. MDD is based on concept of producing such models as software artefacts.

Before describing the components of MDA in detail, it is necessary to discuss the role of

models in software engineering lifecycle. Based on the work presented by Daniels and Brown

[Kleppe, Warmer et al., 2003; Brown, 2004], Table 4 presents an evaluation of how

modelling approaches are applied in various software development projects.

1 System platform is referred to as operating system platform and its associated environment.
2 Platform is referred to technology specific infrastructure such as middleware technologies (i.e. COM,
CORBA, etc.)

46

Model Driven Development

Usage Description

Code only Modelling is formally not used in the development. In most small to
medium projects, developers believe that modelling is an unnecessary
extra step in the development. Modelling languages, such as the UML,
may only be used to clarify the understanding of a particular problem
on paper, or in documentation. It may also be used to present an
overview of the system architecture.

Model» Code Modelling is used to design the system. In other words, models are
treated as first class artefacts and a model driven approach is formally
used. In this case, generic modelling languages, such as the UML,
provide facilities to model system requirements, static structure and
dynamic aspects of the system. This is the area where software
development projects may take the benefits of the MDA, where
various code generation tools are used to automate the process of
transforming platform independent models to platform specific code.
[www.codegeneration.net]

Model » Code » Model In some projects, models are used to present the business requirements
and overview of the system design. The models are then converted
automatically using tools, or manually by the developer to platform
specific implementation. It is then converted to detailed design models
that include platform specific representation of the models. This is
also known as round trip engineering. Commercial companies such as
IBM and Sun provide a set of tools to support round trip engineering.
[Rational Rose, Java studio]

Code» Model Code visualisation plays an important part in program comprehension.
Code can be reverse engineered to models to provide more
understanding of the static structure and dependency of software
modules. Most commercial and open source tools provide reverse
engineering facilities as well as simultaneous views for model and
code. [JBuilder, Visual Studio]

Model only Models may be used only to present business processes, business
requirements, design patterns, system architecture, and business
entel}lfise models.

Model » Model for CbSE In addition the usage of models described above, this research focuses
on transforming platform independent models that represent business
concepts to models that represent components based on the principles
of CbSE. In other words, components are modelling artefacts rather
than implementation code within the software development.

Table 4 The use of Models in Software Development (Based on the diagram presented in [Brown,
1996])

The following section describes the principles and properties of MDA and discusses how it

can be extended to fit CbSE.

3.2.1 OMG's MDA

Model Driven Architecture (MDA) is based on the principles of constructing models for the

development software using well defined notations. As described in the previous section, it is

very important to derive platform and technology independent models because models are

used as an abstraction to technologies and platforms. OMG's MDA achieved this by defining

47

Model Driven Development

meta-models, models, modelling notations and model transformation rules [OMG, 1998].

Before continuing the detailed discussion on the principles of MDA it is important to clarify

the definitions of these terms in the context of this thesis. In MDA, it is defined as :-

"a model of a system is a description or specification of that system
and its environment for some certain purpose. A model is often
presented as a combination of drawings and text. The text may be
in a modelling language or in a natural language."

Others state that "A model is a description of a system written in a well-defined language" [Kleppe,

Warmer et al., 2003]. A more generic definition was found as "a simple and familiar structure or

mechanism that can be used to interpret some part of reality" [Boman, 2004] and "Models are used to

reason about a problem and design a problem domain and design a solution in the solution domain."

[Brown, 2000].

From the above definitions, it is noted as the definitions are relative and at different

abstraction levels, as addressed by [Ivan, 2001]. In the context this literature, the principles of

modelling in software engineering are presented as follows rather than defining the term

'model'.

• A model can be regarded as a representation of the system under study. This context

of the system in this case is relative. It can be a problem case, a component within the

system, or a particular view of the system.

• The model is constructed using a well defined modelling language. The modelling

language may use formal and/or informal language.

• The model may have different abstraction level. The model may have different views

on the system.

• The model may focus on different aspects of the system. This has broader meaning to

the model in compare with what was defined in OMG's MDA, as will be described in

later sections.

A model can have different roles in relation to the system that is being represented, as

described previously. When a common problem case or a design pattern is modelled as

general use and reuse, it can be regarded as "systems as models". However, modelling a

particular system for understanding may be regarded as "modelling the systems". This

research follows the former role as models are made to represent software components for

greater reusability.

48

Model Driven Development

Figure 11 shows an overview of the MDA approach proposed by the OMG. MDA defines

meta-model which is a model used to construct modelling languages. MDA also offers the

Meta Object Facility (MOF), which is used to define meta-models. One of the most

successful meta-models is the Un ified Modelling Language (UML), which can be used to

construct models of the system [Poo ley and Stevens, 1999].

c::::f0.~:::::J

c:
0

~
U5
..a
<(

0

~

High level Languages
(Source code)

Software (Applications)

Meta Model Construction

Model Construction

Model Transfomation

Source Code generation
(Template based)

Compiler /Interpreter

Area representing
this research a rea

Figure 11 Model Driven Architecture and the level of abstraction

MDA also defines four-layer architecture. Starting with Meta-level 3 (M3) where MOF is

used to construct meta-models such as the UML. Meta-level 2 (M2) contains meta-models

defined using MOF. In other words, Meta-models are lnstanceOJ MOF constructs. These

meta-models can be generic such as the UML or can be domain specific meta-model such as

Common Warehouse Meta-model (CWM) for data modelling, or Software Process

Engineering Model (SPEM) for process mode lling [(OMG) , I 999]. Meta-level l (Ml) models

are in stance of meta-models such as UML c lass diagrams for particular application. Meta­

level 0 (MO) is generated or implemented in stance of M I level. The detailed of each meta­

level and the focus of this research in each level is described in the fo llowing sections.

49

Model Driven Development

3.2.2 Meta-modelling and Meta Object Facility (MOF)

MDA defines a meta-model as "model of models" . In the world of MDA, a model is referred

to as "lnstanceOf' of a meta-model. For example, a UML model for Doctors ' surgery system

is an InstanceOf a UML meta-model. A UML model itself is referred to as the "ModelOf '

Doctors' surgery. MDA provides MOF, which is a meta-modelling language to construct

meta-models . While MDA only provides the meta-modelling language and others provide a

wider v1ew of meta-modell ing to include processes, as described by [Gigch

l99l)[Brinkkemper, 2000].

Meta-meta-model

meta-model

model

MOF Constructs

UML Meta-Model

UML Model

UML
Dia

Class
gram

Figure 12 Meta-modelling levels (left) and OMG's MDA approach for meta-modelling (right)

Figure 12 (left) shows an example meta-modelling approach. A meta-meta-model can be

constructed using meta-meta-meta modelling constructs, a meta-model can be constructed

using meta-meta modelling constructs, and so on. However to avoid having to introduce new

meta languages and thei r syntaxes as the hierarchy goes to more higher levels, MDA uses a

subset of UML class modelling constructs and state chart modelling constructs from the UML

meta-model, as shown in Figure 12 (right) . This is used as the MOF abstract syntax for meta­

modelling. This means that UML modelling tools can be used to construct meta-models such

as UML meta-model and other meta-models for different domains. In other words, MOF is

self-reflective and al l the level s above MOF may be treaded as MOF, i.e. in a uniform way

with reflective APis. Using the MOF as a standard , OMG proposes meta-models for other

50

Model Driven Development

domains such as Common Warehouse Meta-model (CWM) for data warehousing domains,

and CORBA Component model (CCM) for CCM technology specific models.

MDA also defines the notion of abstract syntax and concrete syntax. Abstract syntax

represents the concept of the model and its elements. The abstract syntax can be viewed or

presented using concrete syntax such as UML graphical notations or XML Model Interchange

(XMI) language [OMG, 1999]. In other words, a designer can create abstract syntax for a new

meta-model using a UML tool that supports UML notations and XMI functionalities. This

separation promotes model transformation, interoperability of MOP compliant meta-models

across domains and integration of tools, which will be discussed later in the chapter.

51

Model Driven Development

3.2.2.1 UML Meta-model and MOF

Figure 13 shows the UML Class model element and its relation to other model elements as an

abstract syntax. As described in previous section, it uses UML class modelling constructs.

MOF offers the following five modelling constructs to define a meta-model.

• Model Types (i.e. class, data types, and enumeration)

• Attribute (i.e. Class properties)

• Association (i.e. aggregation, composition)

• Generalisation

• Operations

0 .. 1 \~tdere-:1. V
~"""-<e\sn~)

Q_! {~e:ed. *
(~j;o,e~ JSIOC.JW•. $Cill<tl n'r!r'OOE!lii.
~Jbsetl n.'.>r<:s&;;Ke. sul:Seis featva

b-Efsttn:.g('Jssftr} wbstts C~t'Ked~

0 .l (1\1,-ws Mm!<l~>ace.
9JIJ?.1s fe.Jttrr,.>e·mt.cr.

SIJbtel$ {JS5fltf}
C::H.S

1 0 .. 1 (lt.l!lnH<defr.:lCilt?.<J:e<:

I
sw..r.s~~Pil':<.

s~ls 'eatuof-lasder}

l.;.tC:«f•JIS .,

[0.11

~e

0 .. 1

Figure 13 A fragment of UML meta-model (From OMG's UML Infrastructure Meta-model)

The use of UML class modelling constructs in MOF specification makes the MOF meta­

models more transparent. With the use of UML modelling tools, better tool support for

creation, transformation and automation of meta-models can be achieved. Currently OMG

provides three types of MOF mapping.

52

Model Driven Development

They are:-

• MOP Mappings using XMI

• MOP Mappings using CORBA IDL

• MOP Mappings using JAVA JMI

3.3 Attribute and Aspect concepts in Software
Engineering

Adding notes or labels to an object to indicate what has been done or what has to be done

with that object is not new in the real word. Adding notes or attributes to a software

component, however, is new in software development paradigm. Generally attributes are

added to program elements at implementation stage to indicate that meta-data is added to that

element. Program elements can be any artefact that is part of the program code, such as a

class, a method or a property. This is also referred to as 'Attribute-based programming' or

'Attribute-oriented programming'. The metadata or information added to the program element

can be domain/application specific, technology specific, or system specific. Some of the

common attributes that can be added to a program element are listed in Table 5.

Example Ji>omain/ Technology/ J.i>evelopment
Attributes application platform Specif:ic

Specit:ic Specific ----Remoting *
Relation *
Persistence * *
Security_ * *
Activation * *
Transaction * *
Clusterin_g * *
Excepting *
handling

Table 5 Non-functional requirements

As listed in Table 5, software developers need to put together different aspects of the

software to form a working system. These aspects are also referred to as 'non-functional'

aspects of the system. The main problem is, as these aspects re-occur in many different

applications, developers need to re-write the same or similar pieces of code again and again

53

Model Driven Development

with different technologies or programmmg languages depending on the application

requirements. Therefore they are orthogonal to the specific application.

-Has
-Manages

-Register with•
o .. • -Uses

1 .. * -Opens

Figure 14 Simple Case study

As show in Figure 14, a simple banking example can be used to illustrate this problem.

Different Use Cases are used to identify common aspects of the development. For instance:-

• Use Case 1 : Bank manages accounts : Transaction and Database processing is

needed to process accounts.

• Use Case 2: Bank manages customer details Security is needed to authenticate

customers.

• Use Case 3 :A Customer must deposit minimum of £1 to open an account.

• Use Case 4 : Customer uses Teller machines : Secure channel is required to process

transactions.

• Use Case 5 : Any changes to account and customer must be recorded for historical

purposes.

In the above use cases, UC 1, UC 2 and UC 4 can be regarded as non-functional aspects of the

system. The same aspects of concerns apply to many different application domains. There are

also some aspects that cannot be encapsulated with a single class. These aspects are concerns

that may exist across different places throughout the hierarchy of classes. In the above

example, UC 5 aspect has logging and tracing concerns that cannot be easily modularised.

Accordingly they are referred to as 'cross-cutting concerns' [Laddad, 2003]. This mixture of

concerns leads to redundant and scattered code, which leaves the code for different

concerns scattered across multiple classes. As the result, the code becomes:-

• difficult to maintain,

• difficult to reuse,

54

Model Driven Development

• and unclear to see the structure.

When one has to deal with many different aspects of the system, one often finds that the

'separation of concerns' is difficult to deal with. In 1968, Dijkstra discusses about the

separation of concerns as follows:-

" .. one is willing and able to study in depth as aspect of one's subject matter in isolation, for

the sake of its own consistency, all the time knowing that one is occupying oneself with one

of the aspects." [Dijkstra, 1968]

Traditional Object Oriented Concepts cannot deal with cross-cutting concerns because

modularisation is achieved by encapsulating concerns with a class, a package or a component.

Sometimes a class may have code fragments that have nothing to do with its functional

aspects, but rather to do with non-functional aspects such as logging, tracing, distribution,

etc., thus lost its encapsulation and modularity.

3.3.1 Ways of handle cross-cutting concerns and non­
functional concerns

Although there is no silver bullet to resolve cross-cutting concerns of different aspects, in the

literature, there are many different ways to resolve as general solutions. Gamma has described

the used of design patterns such as 'the Visitor' and 'the Observer' patterns to separate

concerns [Gamma, Helm et al., 1995]. As the use of design patterns to resolve the cross­

cutting concerns is achievable it is not generic and efficient to handle the concerns.

3.3.1.1 Aspect-Oriented Software Development (AOSD)

Aspect oriented software development is focused on adding aspects on top of traditional

object-oriented software development. It is not intended to replace object-oriented software

development, but to complement by adding a new dimension for cross-cutting concerns.

Logging
aspects

.......... -_

7

Bank

/ _j +addNewAccounts() '
. ··<.. --At: t- ...___ ,-t+removel'\ccoiTn!S(} / ·

, __ l - cmm - , ..

t I +transferAccount() r" I ·····... :
I I +credit() ~~ .. :;.;

\ I +debit() ~}I / .
"--r- I ..-

' - - * J / _ l_!!terestC~c J ____ ~···/
1'-- +calcuate() 1 ____ 1

Figure 15 Functional and Non-functional Aspects

55

Transaction
Processing

aspects

Model Driven Development

As you can see in Figure 15, a system is composed of classes that contain groups of methods

that address concerns for functional aspects, such as managing accounts, adding accounts and

calculating internets. These functional aspects can be referred to as vertical aspects or vertical

dimensions. The class hierarchy that is based on object orientation only encapsulates

functional aspects within classes and other dimensions for horizontal aspects or non­

functional aspects such as logging, and transaction process might be spread over different

classes in the system. The researcher and developers have addressed these issues by forming a

new way of modularising the objects into aspects, i.e. Aspect Oriented Programming

(AOP) [Kiczales, 1997]. The concepts derived from AOP can be used to explicitly describe

components that require or provide non-functional services. In this way, a component can be

described in a more abstract and self-contained manner.

When identifying non-functional aspects, it is possible to classify them into two different

contexts. Firstly, there are non-functional aspects, such as logging, persistence, and security,

that can be applied by using services provided by component frameworks. Identifying these

aspects as logical components in the early state of the design may help the design more

independent. Furthermore, it is also possible to describe how the implementation frameworks

provided by different technologies can support to these non-functional services. Chapter 4

describes an approach to explicitly define such non-functional aspects.

Secondly, there are also non-functional aspects, such as performance, availability and

reliability, can be identify as explicitly as logical components in the design. However as they

are not explicitly supported by component frameworks, it is developer's task to define how

such non-functional aspects are addressed in the design as they are not supported by current

component frameworks.

3.4 Summary of the current literature survey and
Model Driven Development

To summarise the background of the research, one area that received more attention is the

relation between the development of applications that are domain specific and standard

component-based frameworks and their supporting technologies, such as .Net, J2EE and

CORBA/CCM. This area is important for several reasons. When we design a modern

component-based system, the architecture of the system is formed as a result of the

composition of components. These components can then be implemented by applying a target

modern component framework. The technologies, that are the implementation of these

frameworks, provides a bundle of facilities and features that are domain independent but

56

Model Driven Development

enterprise system tailored, such as security services, transaction servrces, interception and

monitoring services.

However, one of the tradeoffs of applying such technology is the compilation of their

business models and their implementation model in to the framework. In other words, the

developers have to follow a specific component framework (such as component interaction

model for J2EE technology, component lifecycle for J2EE for technology, etc.) and its

implementation technology during the early stage of the development to design business

models and to take advantages of their services. The detailed descriptions of different

component-based frameworks are already presented earlier in the Chapter.

OMG's Model Driven Architecture (MDA) has emerged, as a non-proprietary technology, to

provide a middle way and bridge purely business models to technology specific models. As a

part of MDA, Meta Object Facility (MOF), which is a meta-meta-model, was introduced that

allows developers to construct platform independent meta-models such as UML meta-model

and other platform specific meta-models.

These meta-models can be used to develop models of the software. A simple example is

illustrated in Figure 16. In this example, an instance of platform independent UML business

model for a particular application is constructed using the UML meta-model. This model can

then be transformed into technology and platform specific component models.

Platform Specffic Model (PSM)
Technology ·sPecific models based on mapping

provided by Meta Object Facility (MOF)

UML BuSiness Model

J2EEModel

Blti±l
ll\Ell;ti±l

Platform Independent Model (PIM)
A sampk! UML model b8se~ o~ UML'meta~odel

Figure 16 A sample UMLand MOF mapping

The emergence of MOF allows MOF compliant tools to automate the process of generating

platform specific code based on model mappings.

Model driven development approaches, such as Model Driven Architecture (MDA), only

focuses on modelling functional aspects of the system, and lacks modelling of cross-cutting

aspects. On the other hand, most of the research focus areas of AOP have been on applying

various methods to the code at the implementation level [Laddad, 2003]. In Section 3.3, the

literature survey highlighted the need for incorporating AOP concepts to modelling to allow

57

Model Driven Development

the development of more reusable component models, at the requirement analysis and design

level. Figure 17 shows a common component development model where horizontal services

or cross-cutting services are addressed at the implementation level with technology specific

frameworks.

~ '--
II
II
I'
I
I

-4 '--
I
I
I
\
\
\

I
I

'

' '

-4
I L...._

I

' -
' --

Analysis

Design

lmplemenlalion and
assembly

Deployment

Artefacts
· Component selection
· Component specifications

./ · Component types

~'--

______. · System architecture
· Component interaction
model

\ (' 0
I \ ·------------------------------------·
I

'tit. · Component model
· Framework services

Component model implications
· Interaction model
· Component lifecycle model
- Deployment model

- • Technology implications
-Vertical services (Domain specific)
- Horizontal services (Domain
independent)
- Distributed system services

Figure 17 A common development processes using a component based framework

As the figure depicts, a common development process using a component-based approach

involves the construction of different artefacts at various stages of the development. The

figure also shows that, during the development, component artefacts that are produced or

reused have to be based on a component model and its related framework. The component

models provide the architectural details such as interaction model, lifecycle model and

deployment model, as well as distributed system services. There are also component model

implications as well as technology implications with choosing an implementation platform.

Accordingly, when developing component-based systems, the construction of specifications

and the design of components at the design stage require detailed knowledge of the

component framework and its supporting technology to be applied at the implemented stage.

This is one of the open problems of modern component-based system development. Using the

model driven approach, this research fills this gap by introducing a new approach, called

Attribute-based Component Design (AbCD) approach. This allows the component developers

to construct specification-based component artefacts as logical model components that are

component platform neutral, yet providing attribute-based model constructs to be able to

implement using a targeted component platform dependent technology. The AbCD approach

also uses the concepts from AOP to provide facilities for specifying common behaviours of

the logical components or "cross-cutting" concerns.

58

Model Driven Development

59

Attribute based Component Design

Chapter 4 Attribute based Component
Design {AbCD)

60

Attribute based Component Design

4. 1 Introduction

The main objective and research contribution here is to support the modelling of software

components in the context of CbSE. In this chapter, the research areas presented in the

literature survey are summarised and the requirements for a new framework to support

modelling of components are elaborated. To meet the requirements of the thesis identified

earlier, this chapter then presents a description of how a new model driven approach, referred

to as Attribute based Component Design (AbCD) approach, is derived from existing

approaches in the current literature. It also includes a simple example that illustrates how the

approach is applied.

The principal end products of this research are also discussed in the light of meeting these

requirements presented. It also presents a generic view of the different modem component

technologies to summarise the details described in the previous chapter.

4.1.1 Background and Aims

Many organisations are trying to implement or update their systems in such a way that such

these systems or subsystems can be updated incrementally to keep abreast with new

technologies and to take advantage of them. These organisations demand not only sound

architectures but also efficient ways to reuse existing in-house as well as third party

components.

In the field of component-based development environment and enterprise computing, many

researchers are focusing on developing new component-based co-ordination models with their

own component types and integration methods [Alder, 1995]. However they lack functional

reusability since the component functionality or the business logic is embedded in component

implementation.

Therefore there is a need for a new model driven approach which allows software developers

to develop components as logical and abstract model artefacts that are independent from

technology, yet also includes the facility to easily transform into model and framework

specific components, and are therefore able to be implemented using a target technology

based on the framework.

This may be achieved if the developer can design the system using a component based design

model and each component:-

• represents a functional concern of a particular business, for example order

management,

61

Attribute based Component Design

• explicitly declares the required and provided cross-cutting concerns, for example

transaction management,

• explicitly declares the required framework environment, for example instance

management support, distributed object support,

• explicitly declares the required and provided data objects, for example order object,

order item object,

• and most importantly contains information about the above data as meta-data of the

component, so that tools can be used to automate the processes such as analysis of the

design, and code generation from the component model.

To summarise, each component should be a self-contained, specific level component. This is

the main aim of the Attribute based Component Design (AbCD) approach.

62

Attribute based Component Design

4.2 Attribute-based Component Design (AbCD)
approach

This section introduces the main focus of this research, which is the Attribute-based

Component Design approach. Using the combination of component development principles,

model driven development approaches, AOP principles and attribute-based programming, it

allows developers to construct components as model artefacts that are reusable, technology

independent, and yet enriched with context~based attributes. This allows the components to be

easily transformed into enterprise level business components with a target technology.

As shown in Figure 18, the aim of many model driven approaches proposed in the literature is

to provide an abstraction over different platform specific standards and technologies. This is

done by allowing the developers to construct platform independent models and by providing

code generation templates or wizards to perform model transformation to get

platform/technology specific models.

Code generate templates

MDAModels

Business Concept model

Platform Specific model

a a
a-:·a

Technology specific
Components

Figure 18 Generic model driven development processes

The AbCD approach differs from other model driven approaches. Most model driven

development processes describe how platform independent models, such as business concept

models can be transformed into platform specific models. These models can be then

transformed into platform or technology specific code using transformation or code

generation tools, such as the processes described in [Hubert, 2001; Kleppe, Warmer et al.,

2003; Mellor, Kendall et al., 2004]. As described in the literature survey, there are many

current research groups that focus on constructing code generation frameworks based on

63

Attribute based Component Design

MDA with code templates. Thi s include tools such as AndroMDA, iQgen, ArcStyler, and

Mia-Generat ion as listed in [Code-Generation-Network, 2006].

Component Design Guidelines

Attributes Injection using The
AbCD meta-model

AbCD Analysis and Modelling Process

Business domain objects
model

Spedfication based
Component Model

D i r-CJI -cCJI

' D ' D

' AbCD Component Model

D ;
!

Code Generation Process

' Technology spedfic
Components

Figure 19 AbCD approach showing the modules and development artefacts

Figure 19 depicts the overal l AbCD development process. The AbCD approach introduces the

"All Components" development method. The method encourages the software developer to

view all aspects of the des ign as logical and abstract components. The identification of such

logical components provides an abstraction layer over how different functional and non­

functional aspects of the design can be mapping the implementation components. The detailed

description the 'all components' method is presented in Section 4.2.2. 1.1 as part of

Component Design Guidelines (CDG).

The focus of thi s research, i.e. the AbCD approach , is not to create a code generation

framework for MDA. To achieve the aims described in the previous section, the following

principles are introduced when modelling using the AbCD approach.

64

Attribute based Component Design

I. Identify the relationships between different business requirements based on

component interaction using well defined interfaces;

2. Create a framework that allows developers to define abstract level business

components. Using the technology dependency injection approach, these components

can then be configured and implemented to a specific framework, without altering the

component source files.

3. Identify reusable components. They can then decide on the possibility of applying 3rd

party COTs as well as building in-house components;

4. Identify non-functional requirements that are overall system concerns to be resolved

for all components, such as security, logging, and activation, etc;

5. Construct components that are focused on aspects, contexts, abstraction and

composition, and;

6. Build a reusable component model repository.

To achieve the principles described above, the AbCO approach includes three main modules.

They are:-

• Component Design Guidelines (CDG): This is to support the model driven

development by providing design guidelines for developing component-based

systems. However the guidelines do not enforce a new development process, but

enforce constraints when specifying component design. It can be regarded as a "non­

invasive" process and it is based on the design principles of all components method.

• The AbCD meta-model: This meta-model allows designers to construct UML classes

as AbCO component models. Each component includes a set of meta-data as the

Context based Attributes of the component. The meta-data improves the component

composition and reusability.

• The AbCD Tool Suite: This is the realisation of AbCO approach to allow developers

to practice COG and apply the AbCO meta-model.

These three modules form a package to support and realise the six aims identified above.

Figure 19 depicts the development artefacts that can be produced by applying the modules.

These three modules define the scope of this thesis.

The description of the AbCO approach spans three chapters. The COG are described in the

following sections of this Chapter. AbCO meta-model is addressed in Chapter 5 and the tool

suite is described in Chapter 6 as the implementation of this research.

65

Attribute based Component Design

4.2.1 A simple example: designing a simple Bank application
using UML

Before discussing the Component Design Guidelines (COG), a simple bank system example

is addressed here hypothetically to illustrate how the approach can be applied.

Hypothetically, based on the requirement analysis, the following table summarises the main

requirements.

' Functiomil t:equh·ements (Vertical
, concerns)

• • • • • • • •
balance/withdraw cash.
- Customers should be able to use the
Web client to view balance, transfer
funds, apply loan applications and modify

onal details.
- The system should be able to process
loan applications.

- A bank staff should be able to
open/modify/close accounts, and
add/withdraw/transfer funds for
customers a GUI on.
- Additional Business constraints such as
Maximum loan amount calculation rules,
Customer eligibility rules, etc. should be
able to be · ed.

Non-functional requiteme11ts across
the whole system (Horizontal
concerns), contractual and,
programmatic requirements
- Role based security for assessing the
s stem.
- Transaction management for accounts
and loan processing.

- Fast response time for processing of
accounts. The system should be able to
process at least 100 transactions per
second.
- Persistence storage with recovery
facilities.

- System integration with an external
credit checking system.

-Requires a client server based system
with web client for customers, GUI

lication client for bank staff.

In this case study, the functional requirements are not important. Using a UML class diagram,

Figure 20 shows an example static structure of the proposed bank example that includes

architecturally significant parts of the system. The modelling of the system using static

structure and dynamic behavior diagrams provide a way of grouping functional concerns to

form the design of the system. A UML static structure model, which can be represented with

a UML class diagram, includes model elements such as classes, interfaces and packages. It

also includes relationships amongst model elements which include association, generalisation

66

Attribute based Component Design

and dependency. By using a UML modeling tool, it is possible to construct models that use

inheritance and association views, and/or class dependency views, as shown in Figure 20.

This research explores new types of dependency views that the UML modeling approach does

not focus on. For example, Figure 20 also shows that the ICustomerManager interface references

(i.e. imports) the Account class by showing a dependency relation. UML dependency relations

are more concrete and direct, however, there is a need to define more abstract dependency

relations in order to constmct components. For instance, it should be possible to define that

the Customer and Account classes will depend on a logical component (i.e. a persistence service

component, in this case) that provides persistence, without having to define detailed

implementation technology or framework. In this research, such a dependency relation is

referred to as a Service Dependency relationship. The evaluation described in Chapter 8

shows that defining an abstract dependency when modeling is important to construct feature

rich components that are portable and self-reliant.

cinterface:. «interface:.

0 ICustomerManager 0 IAccountManager

0 addCustomer()
oP accounts

t) addAccount() -, 0 getAccount()

Q removeCustomer() I 0 openAccount()

Q get Customers() I 0 removeAccount()

G CustomerMana

;1 I ~ / I \ I I ger I I . +accounts

GAccountf\'lanagerJ

. +customers L-7 G Account
G Customer

oe id: Long

oP id: Long ·>;, accountName: string

o,. userld: string -customer +accounts <>p type: string

<>e password: string " . <>p balance: Double

oP email: string 0 .. 1
"e createDate: Date

"e firstName: string <>p updateDate: Date
o, lastName: string o, customer: Customer
oc accounts: Account

«interface»
0 lloanProcessor G LoanAccount

+ loanAccounts
0 createLoanAccount() '"<- monthlyRepaymentDate: Date

0 processRepayment() . o,. apr: Double

Q getLoanAccounts() or suspended: boolean

Figure 20 An example Business Concept Model for a Bank

The UML class diagram presents only partial information about the system. As presented in

the literature survey, OMG also provides the Object Constraint Language (OCL) that can be

67

Attribute based Component Design

used to express formal and concise information about functional and business constraints such

as pre and post conditions and invariants of classes and methods.

For instance, to add an invariant constraint that a customer's password must be at least 3

characters long, the following OCL constraint can be added:-

context Customer
init : seif.password.length => 3

The constraints written using OCL can be added to UML model elements for documenting

models that are more precise as well as being able to input more complete models into

automation tools for source code generation. These additional constraints make the model

more semantically rich and enforce the concept of Design by Contract (DbC) [Meyer, 1994].

Using the MDA concept and the code generation tools listed in Section 3.2, the business

concept model of the bank example shown in Figure 20, which is also a platform independent

model (PIM), can be transformed into a platform specific model (PSM), such as a J2EE

model illustrated in Figure 21. In this model fragment, the diagram shows that the

IAccountManager interface and the Account Class are adapted to fit within the J2EE platform. It

also shows how extra J2EE specific dependency classes are added. Each class and

dependency relationships are marked with J2EE specific stereotypes to reflect the model.

With the support of MDA concepts, there are many model transformation tools currently

available that can transform PIMs to PSMs. In the case of the example above, these tools can

be used to automatically generate a J2EE specific model from a bank concept model, using

configuration settings and templates. Furthermore, these tools also provide code generation

facilities, in this case, to be able to automatically generate Java code to be deployed in an EJB

container.

68

AccountHome

;

\,
«EJBRealizeHom'e,>

dJBPnmaryKe)'>> «EJBRealizeRembte»

AccountEJB

:JeE!a_CAJnie~E~tiijC}nte~

«EJBPrimaryKe)'>>

AccountPK
1 ccountEJBO

<EJBCmateMethod» ejbCII!ate()
<EJBCII!ateMethod» ejbPo:ICII!ateO

)

0

--1
I

Attribute based Component Design

IAccountManager

AccountManagerHome

<<EJBRealizeRe~te>>

Figure 21 A J2EE specific model for the Account Manager (From Bank example)

4.2.1.1 Analysis on the Case study

The separation of PIM from PSM provides a new abstraction layer to facilitate the reuse of

business models and the creation of model repositories. Component technologies such as

J2EE and .NET provide facilities to implement non-functional aspects such as persistence and

transaction management. Accordingly, the modelings of such aspects are only illustrated in

PSM and not in PIM. Hence, the PIM can be largely different from PSM. This is one of the

fundamental aspects that make the use of MDA limited. In other words, models are used only

for understanding and sharing of business concepts, rather than as a development artifact.

The end product of the MDA approach is the generated code, in this case for the

AccountManager and CustomerManager J2EE components, which are based on the PSM. In

these components, business logic code is injected and merged with J2EE technology

dependent code to provide non-functional aspects and system aspects, which make the

components hard to reuse.

69

Attribute based Component Design

Component Design Guidelines (COG) presented in the followed section shows how platform

independent models can be synchronized with platform dependent models and code to

minimize the need for transformation, hence increases the possibility of reusing with other

platforms or technologies.

70

Attribute based Component Design

4.2.2 Applying Component Design Guidelines (COG)

The AbCD approach introduces CDG for constructing components. CDG include a simple

AbCD meta-model to construct components as modeling artefacts. The CDG is based on

different approaches proposed by various researchers in the field of AOP and MDA and

Dependency Injection Pattern [Harrop and Machacek, 2005].

Design Iterations

Refine, Improve and evolve

Refine , improve, evolve
and Component View

AbCD
Component .,..

Model

Design Iterations

I

Figure 22 Applying AbCD with non-invasive approach

The CDG can be app lied with a non-invasive approach. It does not impose a tight process. It

is intended be app lied in every design iterati on as depicted in Figure 22. The CDG proposes

two model ling processes for every iteration, i.e. Component Identification and Component

Construction. These two processes provide a new AbCD Component model with an

addi tional component dependency view to the design. For in stance, as shown in Figure 23, it

can be applied using the Rational Unified Process (RUP) [Rational , 1998] (left) or an

eXtreme Programming (XP) process (righ t).

Previous iteration ... -- - - " I

• A deSIQn process iteration

Analysis -.- ""I

'
+

EJ
I

+

EJ
' I

Design rc------ - I

I -----• Nexl ileration

Previous iteration
, -- ---... 1

f A desian orocess ite,.bon

Plan and exploration ----------,

Component Identification

t

DeSign and Develop r-· - Component amstruction

I
I
I

Test

I
'--- - - - -•

Next iteration

Figure 23 An expected design process iteration (left- RUP process, right- XP process)

71

Attribute based Component Design

4.2.2.1 Component Identification and Component Dependency Identification

The CDG introduces component identification and component dependency identification

guide lines. Referring back to the bank example presented in Section 4.2.1, the business

concept model shows that there are three functional aspects: account management, Joan

management and customer management. Component identification is used to promote the

division of functional aspects into self-contained logical components. The system should be

formed by component composition using interfaces rather than object inheritance.

n
«subsystem»

GUI Layer

/j'\
I
I
I ,
I

n I
I

«subsystem»
Business Layer

~
I
I
I
I
I

~:

«subsystem>>
Data Layer

Figure 24 Partitioning the system based on 3-tier architecture

Figure 24 shows a typical high level package stmcture using 3-tier (o r layer) architecture. The

separation of the system into such packages promotes the isolation of the user interface

modu les from the business and data mod ul es, thus increasing the possibility of reusing the

system. However from the CBSE point of view, it is necessary to identify, and most

importantly, to produce a new view of high level co mponents that partition the system.

The CDG' s first stage of the proposed design process is to identify logical components to

partition the system from a stat ic design model such as UML package or class diagrams. This

process is simi lar to the UML modeling technique and process proposed by [Cheesman and

Daniels, 2000]. However the main difference is the identification and recognition of

components to support non-functional requirements . In other words, in CDG, all non­

functional and cross-cutting concerns are treated as .first class requirements.

72

Attribute based Component Design

Based on this research, the following guidelines are added to COG when identifying potential

logical components:-

Identify logical components to accommodate non-functional requirements: Although

additional components for non-functional requirements may not be required to be

implemented explicitly, the declaration makes the developers aware of the non-functional

requirements that may impact on the architecture of the system. Most of the non-functional

requirements such as transaction support, persistence, logging and traceability are most likely

to have ready-made frameworks and components to be reused. This is an important aspect of

the CBSE because most of the modern implementation models such as COM+/.Net and J2EE

have rich features that are attribute-based for supporting enterprise level non-functional

requirements when constructing the components. However there may be other non-functional

requirements such as performance, reliability, and availability will not be supported by

frameworks. Therefore it is possible to identify these aspects as logical component but the

designer has to explicitly specify how these can be achieved by a technology when

implementing the design of the system.

Identify component partitioning points for each component: The division of the system into

logical and coarse-grained components promotes a Service Oriented Architecture (SOA),

which is addressed in the literature survey. The developers can also manage complexity by

defining clear-cut interfaces and by building the system with component composition and

configuration.

Identify reusable system parts or subsystems as logical components: The declaration of

logical components allows the developers to consider and identify reusable components early

in the development. Developers can decide on reusing 3rd party COTS as well as in-house

components.

For the bank example, the three logical components identified are 'AccoutManager',

'LoanProcessor' and 'Customer Manager'.

It is also noted that there are non-functional aspects such as, to the provision of persistence for

Customer and Account information. Transaction management is also to be provided for the

processing of accounts, such as transferring funds, and security for accessing Customer and

Account information. During development, the model needs to be transformed to add

dependency on components providing non-functional aspects. There are also system aspects

such as, monitoring pe1formance and logging.

Figure 25 shows the high level logical components identified. The idea is to form logical

course-grained components based on requirements. More fine-grained UML class models and

behavior models can then be added to these components.

73

Attribute based Component Design

These components identified are different from the concept of 'component' identified in the

UML specification, which represent the deployment components during the implementation

phase of the development. It is the designer's choice to make explicit or implicit logical

components for each non-functional requirement. This phase does not introduce new methods

or techniques for capturing business requirements into class models. The division of the

system into logical components at the early stage of the development is a significant change

to traditional OOAD.

User Interface
Aspects

Functional
Aspects

Non-functional
Aspects

System
Aspects

WebCiient GUICiient

Transaction

Performance

Figure 25 Component structure for Bank application

Persistence

The grouping of the system in this way is similar to partitioning of a system using subsystems

and packages in UML. However, this organization promotes the identification of component

dependencies based on aspects rather than structure. It is important for a component

developer to focus on component dependencies at an abstract level.

4.2.2.1.1 The "All Components" method

All components method is proposed by COG. Firstly, all objects in the design must map to a

logical component. In Object Oriented design, dependency between objects is achieved by

inheritance (sub-classing) or association. In component based development, the designers are

74

Attribute based Component Design

encouraged to avoid inheritance and dependency is formed using interface composition. This

is to avoid fragile base class problem identified and explained in [Szyperski, 1998].

However avoiding implementation inheritance is sometimes impossible. Using CDG, logical

components are formed based on different aspects, either functional or cross-cutting. The

method states that the designers should avoid implementation inheritance across logical

components identified when mapping the classes in the design. This ensures that only

interface compositions exists across components, and thus across aspects. This means that an

inheritance relationships should only occur with a particular logical component. This

promotes Design by Contract at specification level.

4.2.2.2 Component Construction

With the introduction of logical dependency injection, which is described in next section, it is

possible to specify how functional components are dependent on non-functional components.

For example, the !Account component depends on the !Persistence component at a logical

level. However, when implementing persistence for the !Account component using a

particular framework, the. Account object within the component might have to either statically

bind with the component that provides the functionality or dynamically bind at runtime. For

instance, to enable persistence for the Account and Customer objects using J2EE container

managed persistence, these objects must implement the EJB entity bean interface

javax.ejb.EntityBean. Therefore the Account EJB entity bean can be serialised by the J2EE

container using the configuration settings from deployment descriptor. The transformation of

PIM objects to J2EE objects introduces additional dependency. In this research, frameworks

such as J2EE and CORBA/CCM, are regarded as Heavy Weight frameworks. This is because

they enforce dependencies to the components over the framework. It is also possible to model

components to use Light Weight frameworks [Harrop and Machacek, 2005]. Light weight

frameworks are generally based on the concept of Inversion of control IoC and the

dependency injection pattern [Harrop and Machacek, 2005]. The following sections describe

the construction of components for these two different approaches.

Based on these different framework approaches, a new meta-model, called the AbCD meta­

model, is constructed as part of the CDG to facilitate the construction of components. The

detailed specification of the meta-model is described in next chapter.

As shown in Figure 26, AbCD component models can be constructed based on specifications

defined under the Meta-model, in other words, the component model for the application is an

instance of the Meta-model.

75

AbCD Component
Meta-model

' «instance»

Attribute based Component Design

' ' ' ' ' ' I
«derived» :

I
I -----------

Figure 26 an AbCD model overview

The COG focuses on modelling the components at two levels, namely the specification level

model and implementation level model. In other words, a designer can construct a

specification and/or an implementation model as an AbCO component model. The

specification model is designed to represent a system that is independent of technology or any

implementation specific model elements. The implementation model is derived from the

specification model to include platform and implementation specific attributes to model

elements. This separation is necessary to make the specification model as an abstract model to

improve reusability of the component model.

However due to the lack of support for adding non-functional constraints to UML models,

such as response time in this example, many researchers, from the area of AOP, are proposing

different solutions to facilitate non-functional aspects to UML models, as presented in

[Suzuki and Yamamoto, 1999; Grundy, 2000; Clarke and Walker, 2001; Stein, Hanenberg et

al., 2002; Rashid, Moreira et al., 2003]. It is observed that the methods used in these articles

can be grouped into two as follows:-

1. The use of UML stereotypes to identify and differentiate UML model elements as

special cross-cutting elements, as presented in [Stein, Hanenberg et al., 2002].

2. The extension of UML meta-model to include special woven and aspect classes to

current model elements, as presented in [Suzuki and Yamamoto, 1999].

COG focuses on capturing functional and non-functional requirements to component design

by extending and adapting these existing AOP extensions to UML modeling.

76

Attribute based Component Design

The COG process does not introduce a new process model, but aim to complement existing

model driven Object Oriented analysis and design processes such as RUP or Catalysis

approach presented in [Rational, 1998; D'Souza and Wills, 1999]. However it focuses on

how to model components using Object Oriented Methods.

Business
Concept

Model

«derived»

System
structure

model

I
'

«becomes»
I
I
I
I
I
I
I

AbCD
Component

model

Figure 27 Logical component modelling using CDG

Accordingly, the COG process does not focus on an Analysis model or Business model, but

on the static structure model of the system, in other words class diagrams. In RUP, these

analysis models capture the current process and structure of the business, and they are used

by developers to understand and share the concepts. The result of applying COG is to derive

AbCD component models from system static structure models such as UML class diagrams

that describe system design and functional requirements. In other words, system static

structure models become AbCD component models as shown in Figure 27.

77

Attribute based Component Design

4.2.2.3 Summary of the CDG

To summarise, the COG is based on the following modeling principles:-

• All non-functional and cross-cutting concerns are treated as first class requirements.

This means that such concerns are addressed explicitly when a transfer is made from

requirement analysis to design of the system.

• Modeling to build "components". Components and component interfaces are also

treated as first class entities rather than classes and objects. Business operations are

grouped into logical components rather than class models.

• Modeling for "reuse". It is well documented that reusing implemented components is

difficult [Garlan, Allen et al., 1994]. This is because the code is written to work with

a specific platform or system and it embeds deployment model specific and

technology specific parts within it. COG focuses on building components as abstract

modeling artefacts for reusability, yet include attributes for easy transformation of

these artefacts to deployment specific components.

• Modeling with "abstraction". The guidelines ensure the constructed component

artefacts are a level above today's modern platform dependent components such as

.NET assembly, or EJB deployment components. However the components should be

easily transformed with standardised MOA mapping tools.

• Modeling for "implementation". In most cases of model driven development, models

do not reflect implementation. The guidelines enforce the construction of logical

component models that reflect physical components.

78

AbCD Meta-Model

Chapter 5 AbCD Meta-mode~

79

AbCD Meta-Model

5. 1 Introduction

This chapter details a specification for a meta-model. The meta-model, known as the AbCD

meta-model, is presented here to support the modelling of software components. The meta­

model combines the concepts of interface-based component composition, aspect-oriented

programming, and attribute-based meta-modelling. The details of these concepts are

discussed in Chapter 3 as part of the background literature.

This chapter addresses how component models can be produced based on the AbCD meta­

model. It also describes how the models can be presented in various formats or

representations for different stakeholders of the development. This is an important issue that

bridges two different usage of MDA, i.e. building models for sharing the understanding of the

concepts and building models as development artefacts, to be used in implementation of the

component. The detailed discussion on different types of artefacts is made in the next section.

This chapter starts by discussing the scope and target of the models to be produced. It also

describes the focus areas that the AbCD meta-model is targeting for improvement when

constructing components. This meta-model is to be applied as part of the simple process

identified as Component Design Guidelines (COG) in Section 4.2.2.

The AbCD meta-model specification is projected using a MOF model and an UML profile.

The profile is compliant with the Model Driven Architecture (MDA) introduced by the OMG.

This chapter then outlines the usage of the meta-model using the bank example presented in

Section 4.2.1.

5.2 The modelling artefacts of MDA

Before discussing the meta-model, it is important to address the scope of the models to be

produced using the UML meta-model. From the literature, Dobing has done a survey on the

usage of UML to 182 respondents (171 UML users and 11 partial users) [Do bing and

Parsons, 2006]. The findings showed that only 6 projects used UML from 27 projects (only

23%) involved by respondents. The following findings are also presented.

• "Only Class Diagrams are being used regularly by over half the respondents, with

Sequence and Use Case Diagrams used by about half."

• "When asked whether the UML facilitated communication with clients, 55% said it

was at best moderately successful"

• "Class Diagram (73%) is the most frequently used technical description, followed by

Use Case Diagram and Sequence Diagram."

80

AbCD Meta-Model

• "Use Cases Narratives (87%), Activity Diagrams (77%) and Use Case Diagrams

(74%) are the preferred means with regard to client involvement."

• When asked about "the reasons for not using some UML components, 50% said that

Class Diagrams were not well understood by analysts, 48% said that Activity

Diagrams were not well understood by analysts."

To make some observations from these findings, the usage and involvement with UML in

projects are very low. Also the class diagram is the most used but the lease understood. UML

is best used as a communication medium for sharing concepts but not as a model presentation

of the system for implementation.

As a part of this research, a small questionnaire based survey was carried out to obtain a

different general perspective. The results shown here were collected from a section of a large

software development organisation, involving 8 developers, 2 senior software engineers and 1

configuration manager. This main goal of the survey is to gather a view from practitioners

about:-

• the role of UML and the use MDA in software development lifecycle,

• the use of graphical and other notations of UML models in software design,

• and the use of UML for platform independent or dependent design.

The rationale behind this survey is to verify the current problems of the MDA approach and

to validate the concepts, which are identified and added to the meta-model specification, can

be beneficial to practitioners. Furthermore, it is to study an overall role of MDA when

producing various development artefacts, and hence to derive a focused specification for the

meta-model.

• The following questionnaire was made regarding the role of UML and the use of

MD A.

Models are made for different purposes or roles. To be more specific, models can be

used for representing the conceptual domains, business process, data representation,

and structural design of the system to be built. From the MDA literature, models are

made mainly for three different target artefacts.

Analysis model artefacts: They are built as analysis model artefacts. This is to gain

more understanding of the problem and system to be built.

• Design model artefacts: They are built as design model artefacts. This is the actual

representation of the system to be built. The survey result shows that if the MDA

approach is applied, only the analysis model artefacts are mainly produced (30%),

81

:

AbCD Meta-Model

and not the system design artefacts (only 5%). The following table describes the

usage of UML in design by these developers.

Question Answers from,dcvclope•·s
(out of all pi'Ojccts they
designed)

Do you use UML modelling for understanding of concepts? 30%
Do you use UML models as primary development artefacts? (i.e. 5%
do you use MDA approach in software development?)
Do you use UML modelling for high level design and 15%
architecture of the system only and not for the detailed design of
the system?
If you use UML modelling for system design, other than class 35%
diagrams, do you use other UML modelling diagrams such as
statechart and collaboration diag_rarns?

The results show that as the coupling between application components that provide

system functionality and library components that provide non-functional

requirements increases, UML lacks the ability to encapsulate the library components

to higher level abstractions within the design to reduce complexity. One way to

resolve the encapsulation problem is to introduce meta-information about non­

functional requirements within the application component model elements and to

omit the library component model elements in the system design. This aspect has

been added to the meta-model and more elaboration is made when presenting the

meta-model specification in Section 4.3. Another important aspect identified was

UML lacks the ability of the relation between logical components and detailed

implementation components. In other words, it is difficult for a designer to trace how

logical components identified are transformed into detailed physical components used

in the system.

Pattern model artefacts: Models are used to represent patterns. These model artefacts

can be said to be part of the analysis model. From a software engineering point of

view, patterns are reoccmTing common problems and solutions. Models can be used

to describe analysis patterns.

"Analysis patterns describe solutions to common problems found in the

analysis/business domain of a system." [Hay 1996; Fowler 1997; Ambler

1998a]

Models are also used to represent design patterns [Gamma, Helm et al., 1995]. The

former focuses on solutions to a particular system to be built and the latter is used to

describe generic design problems and solutions in software development.

82

AbCD Meta-Model

• The following questionnaire was made regarding the use of different modelling

notations in MDA.

Qu~stions - Answers from.de,·clopct·s
(out of all projects they
designed)

Do you build UML models to vistualise program 40 %
structure as graphical model only?
When using UML as a modelling language, do you 5 %
use other forms of representation of a UML model,
such as XMI?

The result suggests that UML modelling artefacts are produced mainly as graphical

models. In other words, model artefacts are mainly represented with the form of

graphical notations. As already described in the literature survey, OMG provides

UML modelling constructs for building UML models and MOF modelling constructs

for building other domain specific models. These constructs provide graphical

notations to build models as graphical diagrams, such as UML class diagrams, and

UML collaboration diagrams. However graphical diagrams are useful as

visualisations that support program understanding.

Accordingly, graphical modelling is more appropriate for documentation and analysis

of the domain, and hence as analysis models. However, when designing the system

using modelling, i.e. when building design models, it is important to represent models

in various formats. Thus tools can be used to generate, analyse, and refactor the

implementation code.

• The following questionnaire was made regarding the uses of different modelling

notations in MDA to MDA users.

_ Questions Answers from.devclopers
(out of all projects they
designed) 1

Do you build Platform Specific Modelling as well) 0 %
as Platform Independent Modelling?
Do you use UML profiling approach to extend the 2 %
model for a particular platform or framework?

The result implies that if a model driven approach is used in software development,

only l 0% of models are platform specific models in small projects. Models can be

made platform independent or platform specific. As part of MDA, OMG has also

introduced the notion of PIM and PSM. It is possible to add meta-data about platform

or framework specific information to a PIM. One way to adding the meta-data is to

apply a UML profile of a particular platform to PIM. Constraints about the platform

83

AbCD Meta-Model

and its semantic information are captured by using stereotypes that are applied to

model elements. Tools can then be used to generate platform specific code. The

detailed discussion on OMG' s PIM and PSM was made in Section 3.2.1.

This survey on the use UML and MDA shows that, when a model driven approach is used in

software engineering, mainly analysis model artefacts and pattern designs artefacts are widely

produced in comparison with system design model artefacts.

The main aim of proposing this meta-model is to widen the use of a model driven approach

and to produce design model artefacts that represent software components. Figure 28 shows

an overview of a simple modelling workflow. Design models can be derived from Analysis

models.

However, in a component development environment, it is difficult to build a complete design

model of a component because it generally depends on a particular framework or a wiring

standard that the component is based on. Therefore it is necessary to construct an abstraction

representing many different component frameworks. This is achieved by reviewing common

concepts from different technologies for each of the frameworks.

Analysis
Model

«derived»

Design
Model

I

«becomes»

Design
Model

based on a
Framework

Figure 28 An overview of the modelling workflow

In this way, a model that shows a generic pattern of the common features and an abstract

architecture of the currently available component frameworks can be produced, and hence

will be able to produce a generic component meta-model.

5.3 AbCD Meta-model and a AbCD UML profile

This section introduces the Attribute-based Component Design (AbCD) Meta-model. This

work is carried out to define a meta-model that can provide a standard means of modelling

business components using UML profiling and hence to allow integration with UML tools. It

84

AbCD Meta-Model

focuses on supporting developers to construct design model artefacts, as apposed to analysis

model artefacts. The meta-model can be used to model business components at a higher

abstraction level. The central concept of this meta-model is the addition of attributes to model

elements. Using the meta-model, this section shows how a component model can be

constructed as an abstract model, which focuses on functional aspects and as well as

encapsulating all non-functional aspects that should be provided by the container. The meta­

model consists of various attributes which describe component requirements that should be

provided by the component container. In other words, the attributes added to model elements

are: information about the required and provided services by the component, required

container features needed by the component and, and required context information. These

attributes can be regarded as meta-data that can feed into a generic business component model

to enrich information about the required environment needed by the component.

The AbCD meta-model imports the UML 2.0 Superstructure meta-model to provide a

standard way of presenting the semantics of the component model, as shown in Figure 29.

I
<<metamodel>>

UML

(from Logical View)

.A ..
1
<<1mport>>

'''' --------~-·- -------­

<<metamodel>>
AbCD

(from Logical View)!

Figure 29 Extending the UML meta-model

The UML model elements that are extended from the UML specification are referred to as

UML meta-classes. The AbCD Meta-model extends four main meta-classes from the UML

specification. They are as follows:-

• Interface

• Class

• Association

• Dependency

85

AbCD Meta-Model

Figure 30 depicts the abstract model of the AbCD meta-model concept. The meta-model is

expressed using the graphical notation specified in the MOF syntax specification. This meta­

model introduces new types of meta-classes that extend standard UML meta-classes from the

UML specification. They are :-

• AbCDComponent meta-class

• AbCDServiceComponent meta-class

• AbCDDataComponent meta-class

• AbCDComponentAssembly meta-class

The diagram also shows how these UML meta-classes are extended. It is important to note

that the extended meta-classes add constraints that represent extra semantic information

attached to the extended element.

This section also describes the use of the UML 2.0 profiling method to present the AbCD

meta-model. Using UML 2.0 profiling, it is possible for any modeling tools that support UML

2.0 profiling to be able to apply the AbCD meta-model. As described previously, the AbCD

meta-model introduces new types of meta-classes that extend UML meta-classes. Using the

UML profiling approach, AbCD meta-model is formed as a new UML 2.0 profile, called

AbCD Profile. The profile consists of a set of new stereotypes. A stereotype can be regarded

as a virtual meta-class of the AbCD meta-model. The meta-class (and hence the stereotype)

depends on the UML meta-class that it extends. Hence applying a stereotype to a UML model

element implies that the model element becomes associated with the AbCD meta-class that

the stereotype represents.

86

/
:·-----~~;;;~da~-, ---1
! Class I
l.. (lrcmi<ar&)

cl5isAb!lract: Boolean= faltlll

\"',
\/,

\\,
AbCDDataComponent

~·-------

L ______ J

AbCD Meta-Model

Figure 30 AbCD Abstract Model

Using UML profiling, a stereotype may have a set of attributes, tag values and constraints.

Using this facility, the AbCD profile adds constraints to stereotyped model elements using

attributes that focus on providing a clean separation between component business logic,

component services and other non-functional aspects of the component.

A corresponding stereotype is added to a UML model element as a visual representation of

the new type of model element. The following section discusses the main goal of each type of

meta-class and rationale behind the concept. Figure 31 shows an explicit model of how a

stereotype is extended from UML meta-model.

87

AbCD Meta-Model

«metaclaSS>>,J
Class

(!rom Kema)

lltijisAbsract : Boolean = faloo
-----····----;;;---··---------

(\

I
<<Sereotype>>

~---~-----,
i <<stereotype>> i
i AbCDComponent i

i r----------------------1

Figure 31 Model of AbCDComponent Stereotype

5.3.1 AbCDComponent meta-class

The AbCDComponent type defines a representation of an abstract component. It is an

extension of the UML meta-class 'lntnj'ace'. It must be represented using the

<<AbCDComponent>> stereotype. The main goal of introducing this meta-class is to allow a

designer to define a logical component with a higher level of abstraction.

A component may provide one or more services as well as require other services. To facilitate

this requirement, UML 2.0 introduces the notion of ports to describe required and provided

services. The provided services are presented though the use of Interfaces. An interface is a

cohesive set of functionality for a particular aspect provided by the component. A component

may provide one or more interfaces.

This meta-model further refines this requirement by introducing three new association meta­

classes, AbCDProvide, AbCDUse and AbCDServiceUse. Figure 32 shows a fragment of the

model from the bank example. When the designer attaches the AbCDComponent stereotype

to the BankManager interface, it is regarded as an AbCDComponent and hence the following

constraints apply to it:-

• It is an abstract and logical component.

• It will be deployed on a container when implemented.

• It will use interface composition if possible. Depending on the container, the

component may use a dependency injection method or a service lookup method to

integrate with its collaborators. It also means that the dependencies are explicit.

• The component design includes an explicit declaration of service dependencies

needed by the component, using the AbCDServiceComponent stereotype declaration.

The services may be provided by the container library or may use 3rd party service

components.

88

AbCD Meta-Model

• The component design also includes an explicit declaration of the data objects that it

uses and shares. The data objects should have the AbCDDataComponent stereotype.

• Finally, the component includes a set of contextualised attributes and corresponding

values regarding all non-functional requirements, runtime requirements, and other

service requirements needed by the component.

The diagram also shows how the AbCDComponent stereotype IS applied on the

BankManager component. It provides both IAccountService and ICustomerService interfaces.

<<AbCDUse>>

<<AbCDComponent>> /
lnterestCalculator 1<':'--
----~~-::=_-==:j

l <<AbCDComponent>>

: ·-····--Bank~anage_r __ _

<<AbCDPrOI.ide>> 0
--~--::?"'

IAccountSei"Ace

ICustomerSei"Ace

Figure 32 AbCDComponent stereotype for Bank Example

The composite association between the component and its provided interface is stereotyped

with <<AbCDProvide>>. This is to enforce the contractual relationship between components.

The association between the component and its referenced component is stereotyped with

<<AbCDUse>>. The AbCDUse meta-class is an extension of the UML meta-class

Association. It defines an association between two AbCDComponents, indicating that one

component references the other. The AbCDUse meta-model element is expressed using the

stereotype <<AbCDUse>>.

As described previously, the mam goal is to add meta-data to model elements. Hence,

although the BankManager component is an abstract and logical component, the designer can

fill the component with contextualised attribute values regarding the component

requirements. These attributes are collected as a result of the research carried out to identify

common features in component design when using component frameworks. Accordingly,

these attributes do not focus on any specific technologies.

The AbCDComponent stereotype has the following attributes which add semantic

information to the component. These attributes were collected from the study of the three

heavy weight component frameworks and also light weight frameworks presented in the

literature survey, Section 2.2.4. The attributes cover different non-functional aspects of the

89

AbCD Meta-Model

component. The attributes are common to all frameworks although they may provide different

implementation support.

Attributes Type Description

Lifecycle

Management

Classification

Factory

Category

Event

Management

Remoting

interface

Text A constraint on how the component should be managed

by the component container, including activation, and

instance management.

Enumeration Classification of component type. Currently supported

types are:

• Business model component

• Desktop component

• Utility component

• Web controller component

• Unspecified

Boolean A constraint on whether the component reqmres a

factory object for instantiation.

Enumeration A constraint on the relation between the component and

its clients.

Text

Boolean

• Session

• Unspecified

A constraint on the event management service that

should be provided for the component.

A constraint on which the component requires the

remoting intetface for distributed clients.

ActivationType Enumeration A constraint on whether the component should be :­

• Singleton

• Instance

ThreadModel Text A constraint on which the component is designed to be

90

AbCD Meta-Model

used as eight single treaded model or multi threaded

model.

Table 6 Contextualised Attributes for the AbCDComponent meta-class

The attributes outlined above are initial minimum set of generic attributes that can influence

the architecture of a component-based system and technology selection for implementation of

components.

One of the most important contributions of having such non-functional properties as attributes

in logical design is that it can help the developer when acquiring 3'd party components,

service components and selecting technologies for implementation.

5.3.2 AbCDServiceComponent and AbCDServiceUse meta­
classes

The AbCDServiceComponent type defines a representation of a logical component that

provides one or more non-functional or cross-cutting services. It is an extension of the UML

meta-class Interface. It is presented using the stereotype <<AbCDServiceComponent>>. The

main objectives of introducing a service component type in the component design are:-

• to identify components that should be provided by the container,

• to promote reusability of the service components,

• and if necessary to be able to refactor the design to separate business components

from service components.

The separation of service components introduces an Aspect Oriented Programming concept to

component design. The component designer should ideally define one component for each

non-functional or cross-cutting aspect of the system. Hence the component design depicts not

only the dependency between components, but also different aspects of the component that

depend on the functionality provided by component framework.

The AbCDServiceComponent stereotype has the following attributes to add semantic

information to the component.

Att.-ibutcs 'J!ype Description

Scope Enumeration A constraint on which the Scope of the service should be

applied. Currently supported scopes are:-

91

AbCD Meta-Model

• Method

• Instance

• Field

• Thread

Context Text A constraint about the component context to be used by

container. It defines the context the application needs to

use the service.

Framework Boolean A constraint indicating that the service should be provided

Support by the component container.

Table 7 Contextual attributes for the AbCDServiceComponent meta-class

The use of interfaces to describe the component services is standard practice and it is not the

focus of introducing this meta-model. The main focus is on describing the required services.

An important aspect of component dependency is the relation between the AbCDComponent

and the AbCDServiceComponent.

The dependency relation between AbCDComponent and AbCDServiceComponent is

expressed using the AbCDServiceUse meta-class. It is an extension of the UML meta-class

Dependency. It must be stereotyped with <<AbCDServiceUse>>. The meta-model contains

the following attribute(s).

, Attributes TY(lC Description
' - -

AspectName Text The role name of the aspect the AbCDServiceComponent

is providing to AbCDComponent

Table 8 Contextual attributes for AbCDServiceUse meta-class

Figure 33 shows how the AbCD meta-model can be applied using the Bank example

introduced in Section 4.2.1. The model is presented using a UML class diagram. Each

stereotype is labelled with <<stereotype name>>.

92

AbCD Meta-Model

«AbCDProvide»

«AbCDUre» ~-------------------- --~---70
I «AbCDComponenl» --~--

«AbCDComponent»
lntertestCalculator <E;----··--··-····--····-···-·' BankManager -- AbCDP 'd IAccountServic

~==============i f << IOVI 9>> e

\
«AbCDServiceUre»

\
ICustomerServi

ce

<<;AbCDServiceUre» \

---··-------j~-------·--··,
«AbCDServiceComponenl» !

PerfonnanceMonitor :
_______________________ ___]

\
\

r-- «AbCDServiceCompon;nl» I l TransactionManager [

[______ . ______ ;

Figure 33 Applying AbCDServiceComponents to the BankManager component

The class diagram shows a fragment of the bank model, which includes the provided and

required services by the BankManager component. It is an AbCDComponent model element

and it is expressed with the <<AbCDComponent>> stereotype. This means that the

BankManger component should be provided with a container. The component requires two

services: performance monitor and transaction manager services, which are depicted with

<<AbCDServiceComponent>> stereotype in the model diagram.

5.3.3 AbCDDataComponent

Another important aspect that influences the component design is the data used and shared by

the component. The AbCD meta-model introduces a new meta-class called

AbCDDataComponent. It is an extension of the UML meta-class Class. It is presented using

the stereotype <<AbCDDataComponent>>. There are two main reasons for introducing the

meta-class.

Firstly, using the meta-class, the explicit representation of the component data structure can

be made. This is significant for component design to be able to truly encapsulate the

component implementation details. Figure 34 shows an example component diagram when

applying the AbCD meta-model to the bank example. The diagram does not focus on the

logical relationships between components, i.e. Customer may have many accounts, an account

may have transaction history, etc. However it depicts how the BankManager component

exposes three data components Account, TxHistory, and Customer.

93

AbCD Meta-Model

«AbCDDataComponen t»
T xHistory

«AbCDUse»
<<AbCDComponent»

<<AbCDDataComponent>>
Account

fr:\ 'I
\

\
\

lntertestCalculator <(--··- ___ _

«AbCDDataComponent»
Customer

«AbCDProvide»

« AbCDProvide» IAccoun tServic

' « AbCDServiceUse»

' '
'

<<AbCDServiceComponent>>
PertormanceMonitor

' _
\ -----------------

\ ----------\ ~o
<<ApcoserviceUse>>

e

ICustomerServi

\
\
\

<<AbCDServiceComponent>>
TransactionManager

ce

Figure 34 Applying AbCD meta-model to the Bank example

Secondly, the AbCDDataComponent meta-class is introduced to create a higher abstraction

level for data access level services. With the emergence of different data access services, such

as databases and XML storage services, a component developer can choose a variety of

persistence methods. Each method can alter the design of the component. The

AbCDDataComponent encapsu lates the detailed design of each of the data services, to create

data structure that will meet the non-functiona l constraints imposed on the system design. T he

AbCDDataComponent has the following attributes to add semantic information.

Attributes Type Description

Persistence Boolean A constraint on which the data component reqmres

persistence service.

PersistenceService Text A more detailed description on persistence method.

Mapping Text T he detai ls of ORM mapping configuration.

Serialisable Boolean A constraint on which the data component is

serialisable.

Table 9 Contextual attributes for the AbCDServiceComponent Meta-class

94

AbCD Meta-Model

Referring back to the bank example shown in Section 4.2.1, the component designer for the

BankManager component may add attributes about the persistence service to Account,

Customer, and TxHistory data components. Accordingly, it is the component implementer's

task to apply the appropriate persistence approach and technology when constructing the

component.

5.3.4 AbCDComponentAssembly meta-class

The AbCDComponentAssembly component represents the physical packaging of the AbCD

components. In other words, it signifies the file that contains the logical component model. It

is different from the implementation component package that contains component binary

classes because it denotes a unit of design for deployment rather than a unit of

implementation code for deployment. It is an extension of the UML meta-class Component

and is attached with the <<AbCDComponentAssembly>> stereotype to add the semantic

information.

The AbCDComponentAssembly is included in the meta-model to provide a way of deploying

logical components as a reusable component specification.

5.3.4.1 Unit of deployment

One of the core CbSE principles is that components are units of deployment. The component

should be able to be deployed independently and also be composable to form a component

based system. Generally, when deploying, the components are compiled binary components

at the implementation level. This meta-class captures a component deployment at the design

level. This means that components can be deployed as design models rather than binary

components. This encapsulates and abstracts away components that are technology specific.

Therefore it is important to note that deployment in this case is referred to as deploying to a

design model for composition rather than deploying to a system for running and using the

component.

The ability to deploy components at the specification level changes the perception of

component reusability. In CbSE, reusing a component is generally referred to as reusing

implemented components rather than at the specification level. As already described in the

literature, the reusability of the components is difficult, because the components are

implemented using a specific component framework and technology. The notion of forming a

deployable assembly as specification components promotes the possibility of reuse for

components as a black-box unit of deployment. One potential benefit to this notion is the

possibility to form a shared library of component designs as collection of

95

AbCD Meta-Model

AbCDComponentAssemby packages. This is one of the aims set out to achieve in the AbCD

approach.

5.3.4.2 Constructing an AbCDComponentAssembly

Logical components to be grouped into an assembly for deployment by constructing a new

UML package and by applying the AbCDComponentAssembly stereotype. As shown in

Figure 35, the stereotyped package can be used to represent a collection of logical

components in a specification form. This means that the package is a component design

assembly which can be deployed to other design.

,-------1
'---~~--,

/ Componentlmplj

. .
~--····---------··------··----'

Figure 35 The AbCDComponentAssembly for packaging component specification

The AbCDComponentAssembly meta-class consists of a set of attributes. In other words, the

AbCDComponentAssembly adds the following semantic information in the package as

attributes.

Attributes Type Deser:iption·

Version Text

Shared Boolean

Deploy Info Text

The version of the assembly. The version attribute

enables the component to evolve separately from

clients or side by side.

This attribute defines whether or not the

component is shared amongst clients or privately

used within the client.

This attribute allows developers to describe how

the assembly can be deployed. This includes the

dependency required by the component by the

96

AbCD Meta-Model

deployment environment.

ImplementationMapping. Text The component developer can use this attribute to

describe the implementation related to this

component specification model if any.

UML version Text This attribute can be used to describe the UML

version used to define the component specification

model.

Assembly Info Text This attribute IS essential for the

AbCDComponentAssembly to work. The

Assembly Info attribute is a meta-data of the

assembly that describes all the component types,

interfaces and data objects required and provided

the assembly. Clients can use this information to

use the assembly.

Name Text This attribute describes the name of the assembly.

Description Text This attribute can be used to further describe

assembly details.

5.3.5 Summary of the meta-classes introduced in the meta­
model

All modem component-based middleware technologies provide similar standards, design

principles as well as enterprise level non-functional services as described above. Based on

such similarity, the ABCD design approach can be used to form a generic meta-model that

allows the developer to produce component specification models that are abstract and

independent of any implementation contexts.

97

AbCD Meta-Model

5.3.6 Component Dependency View with Colour regions

With the introduction of AbCD Meta-model, it is possible to create a new component

dependency view to extend the current views supported by UML. The UML class diagram

provides different model elements to construct a static structure representation of the system

design. However the UML class diagram elements are generally recognised as modelling

constructs for object oriented design, and are not suited to represent logical components in

component based design. It is widely acknowledged in CbSE community as described in

[Heineman and Councill, 2001]. To resolve this, OMG has introduced a new notion of

component diagrams in UML 2.0. As part of the literature survey, detailed discussion on

MDA and UML was made in Section 3.1. There are two important aspects of the component

diagrams in UML 2.0 that can be identified. Firstly, they can be used to represent mainly

course-grained high level artefacts. Secondly, they can be used to represent component

composition using interfaces and ports. With the introduction of different component types in

the AbCD meta-model, the component dependency view adds a new perspective for AOP in

component design. It also shows a low level component composition view.

In Section 4.2.1, a bank example is used to discuss how the AbCDComponent and the

AbCDSericeComponent stereotypes are applied. Each service component, i.e.

AbCDServiceComponent, represents an aspect or a service needed by the AbCDComponent,

which is the BankManager in this case. The BankManager component depends on two

AbCDServiceComponents, performance monitor and transaction management components.

This can be visualised using a component dependency view, as shown in Figure 36. This

diagram is an extension of the graph model generated using the Spring component framework

and Eclipse development environment. The diagram shows a physical component dependency

view of Bank example when using the Spring component framework.

98

AbCD Meta-Model

(·• bankTransactlonProlPI
@) tr~

® target
® transactJonAttrb.Jtes
® preinterceptxn --- I --cr. If- ---- -1- '0---....

.I I • I f• theResponseTme.Actvisor
® ~SIOnf'a(t«y ® ~Urn~IIIOetMXlllll ® adviot

I @)pattem

l. ~ l
1• ~te04taAccessj ~~ ~rmeA.c:tvat
J ® se-sSIOnFactory I

l ~
• 5e55101'lf actory
® da~ce
@ ~!$0LtCH

Performance Aspect ® t.bemaleProperbes

Transaction ASpect
l.

• dat.lSOurce
® dnvetCiassName

® urt
® usemame
® pas5'1«1rd

Figure 36 A simple component dependency view using coloured regions to represent
aspects/services

As an overview, the view aims illustrate how functional components, that are applied with

AbCDComponent stereotype, depend on non-functional and cross-cutting aspects in system

design. The class diagram depicts two other important aspects of the component design as

follows.

5.3.6.1 Component design transformation

It shows a mapping between a logical AbCDServiceComponent component and detailed

physical components implemented using the Spring framework. A physical component is

denoted with a circle on the top left comer if it is part of the implementation of an

AbCDServiceComponent.

As shown in the diagram, using the Spring framework, the logical transaction manager

AbCDServiceComponent is mapped to 6 physical components, where the bank component

depends on them. It shows how the logical dependency between the BankComponent and the

TransactionMananger is transformed to physical dependency between components. In other

words, it shows how a logical dependency is transformed into a concrete dependency.

99

AbCD Meta-Model

5.3.6.2 AOP view using colour regions

Figure 36 also shows an AOP view in component design. A coloured region highlights how a

concern for an aspect is supported by a set of different components. A coloured region is

formed by collecting physical components of the one or more AbCDServiceComponents that

provide the same aspect.

The concept of colouring regions to express different aspects of the detailed design using

UML graphical notation is derived from software visualisation [Stasko, Domingue et al.,

1998]. The use of colours in UML modelling was first introduced in [Coad, Luca et al., 1999]

with the notion of Archetype. Coad uses coloured model elements to layer different types of

model elements. Different types of coloured model elements provide a visual constraint

checking for the system design. The use of colours in this view has a different focus from

what Coad has applied colours in UML. In this approach, colour regions are used as a

visualisation support for understanding various aspects in system requirements in the design.

Most importantly it presents non-functional and cross-cutting requirements based on the

AbCD meta-model specification. Each aspect of the design can be assigned with a colour for

graph generation.

In order to provide the component dependency view, a tool support is required as well as the

mapping specification. The tool must support the following features.

• UML 2.0 profiling support for parsing AbCD profile.

• Mapping facility to allow the designer to define how abstract components are

transformed to component framework specific models.

• Graph generator to present the model elements in coloured regions for analysis and

design comprehension.

This research aims to provide an add-in support for an existing UML tool to support the

designer with the construction of component dependency views using the AbCD profile.

100

AbCD Meta-Model

5.3.6.3 An overview of the Component Dependency View

The main rationale for introducing this view is to extend the use of model driven approach

with UML for the domain of component based software design. It is used as an application for

the AbCD meta-model, to find out if the view can be generated from the class diagrams when

applying the AbCD profile. The findings and extended discussion is made when presenting a

case study in Chapter 7.

5.3. 7 Technology dependency injection approach

Depending of the type of logical AbCD component, the developer can apply different

attributes. As shown in Figure 37, these attributes can be used a filter different possible

technologies or programming languages when implementing the component. In other words,

attributes act as a meta-data for the specification which can be used when acquiring or

implementation technology specific components.

AbCDComponent
Technology Specific

Component

Figure 37 Applying attributes when implementing/acquiring technology specific components

For instance, the Bank manager component may be added with transaction specific attributes

and the implementation may be only possible with particular technology or programming

language. On the other hand, the designer can add attributes that may add technology specific

dependency to the component.

5.4 Constructing the AbCD meta-model

The construction of the AbCD Meta-model started by defining the specification and the

abstract model using the graphical notation. As part of the implementation, the AbCD meta­

model is constructed using the Eclipse UML2 plug-in [Eclipse, 2005]. This is an existing

open-source tool that is built as a plug-in for the Eclipse development environment tool to

support the construction of UML profiles. The detailed description of the design and

construction of the Meta-model is presented in Chapter 6 as part of the implementation and

tool support for this research.

101

AbCD Meta-Model

5.4.1 Expressing the model and tools support

One of the main objectives of this research is to allow the designer to express the meta-model

using different syntaxes. This is based on the concept of separating the abstract syntax from

concrete syntax that was introduced in OMG's MDA.

The abstract syntax for the meta-model can be expressed using different concrete syntaxes.

One way to express the meta-model is using graphical notation as a concrete syntax. With the

support of tools that provide UML graphical modelling and UML profiling, it is also possible

to express the AbCD meta-model using graphical notation as a concrete syntax. On the other

hand, Figure 38 shows a screenshot of a fragment of the AbCD profile, which represents the

AbCD meta-model. The tree view shows the stereotypes that represent the meta-classes. Each

stereotype has a variety of contextualised attributes as described in previous sections.

f:l,·tllplatform: /resource/ AbCDProfile/ AbCDProflle, uml \
' ··

f:J ITB <Profile> abcdproftle
0'11 ··"A) <Element Import> Interface
()'II

· / 1) <Element Import> Class
· ~:;> <Element Import> i~ssociation

I:H ~ <Stereotype> abcdservicecomponent
ltl,· I <Extension> Interface_ abcdservicecomponent
83 ~ <Stereotype> abcddatacomponent
!±l·· I <Extension> Class_abcddatacomponent
1±1· .. ~ <Stereotrpe> abcdcomponent
(fl .. ·/ <Extension> Interface _abcdservicecomponent
r±l· ~ <Enumeration> ScopeKind

@J b d . 1±1 0 <Stereotype> a c serv1ceuse
i±l./1 <Extension> Assodation_abcdserviceuse
!±l ~ <Enumeration> ClassificationKind

Figure 38 A tree view of the AbCD profile constructed using Eclipse UML plug-in

It is constructed using UML2 plug-in. The plug-in stores the profile as an XML file using the

XMI specification. A fragment of the XML file is shown in Figure 39. It demonstrates the

different representation of the model.

102

AbCD Meta-Model

<packagedElement xmi:type="uml:Stereotype" xmi:id="_irKyQBlwEdum_ebbvynHnQ"
name="abcdservicecomponent">

<ownedAttribute xmi:id="_DVdiEhvrEdutN_ER8sY2lg" name="base_Interface"
association="_DVdiEBvrEdutN_ER8sY2lg">

<type xmi:type="uml:Class"
href="pathmap://UML_METAMODELS/UML.metamodel.uml#Interface"/>

</ownedAttribute>
<ownedAttribute xmi:id="_sggUsCYeEdutvPbNeN-Pcw" name="Name">

<type xmi:type="uml:PrimitiveType"
href="pathmap://UML_LIBRARIES/UMLPrimitiveTypes.library.uml#String"/>

</ownedAttribute>
<ownedAttribute xmi:id="_vTzGQCYfEdutvPbNeN-Pcw" name="Scope"

type="_GnqqOCYfEdutvPbNeN-Pcw"/>
</packagedElement>
<packagedElement xmi:type="uml:Extension" xmi:id="_DVdiEBvrEdutN_ER8sY2lg"

name="Interface_abcdservicecomponent" memberEnd="_DVdiERvrEdutN_ER8sY2lg
_DVdiEhvrEdutN_ER8sY2lg">

<ownedEnd xmi:type="uml:ExtensionEnd" xmi:id="_DVdiERvrEdutN_ER8sY2lg"
name="extension_abcdservicecomponent" type="_irKyQBlwEdum_ebbvynHnQ"
aggregation="composite" association="_DVdiEBvrEdutN_ER8sY2lg"/>

</packagedElement>
<packagedElement xmi:type="uml:Stereotype" xmi:id="_KeUoMBvrEdutN_ER8sY2lg"

name="abcddatacomponent">
<ownedAttribute xmi:id="_VK1WkhvrEdutN_ER8sY2lg" name="base_Class"

association="_VK1WkBvrEdutN_ER8sY2lg">
<type xmi:type="uml:Class"

href="pathmap://UML_METAMODELS/UML.metamodel.uml#Class"/>

Figure 39 A fragment of the XMI file for the AbCD Profile

The UML2 plug-in tool allows the designer to construct UML models and apply the UML

profile. Figure 40 shows a screenshot of the UML model constructed for the Bank example. It

is applied with AbCD meta-model to construct component based design. The Bank UML

model can be stored as an XML file based on the XMI specification.

~~ u~• ~•' H WN• l'iftn~ "" n<fOTilnff•'u'o'i~ • '•'• '""~"•'"~~ - 'i .-.vn·o

':;-J .. f!J l!?.!~~f?.~~-:./:.~~.9.~.~-~~~~9.~~-~.~-~-~.PI.~/~.~-~.~:.~~!.J
EJ m <fv1odel > bankmodel

[@]
~

'±l r::{/

~
i:fl /

····~

~

<Interface> BankJv1anager

<Interface> Tr ansactionr,·lanagement

<Association> Transaction

<Interface> PerformanceMonitor

<Association> Performance

<Interface> IAccountService

<Interface> !Customer Service

<Profile Application> abcdprofile

!]} Abcdcomponent

f±.l + Abcdservicecomponent

Hl -<¢· Abcdserviceuse

:±J Abcdservicecomponent

1±:1 · -<¢· Abcdserviceuse

Lti ··i:J platform: /resource/ AbCDProfile/AbCDProftle. uml

Figure 40 UML model for the Bank example

103

AbCD Meta-Model

However the UML2 plug-in is a generic tool to support UML modelling tools with UML

profiling support. This research aims to construct a new Eclipse plug-in, called 'AbCDTool',

to support the AbCD meta-model and component based design and development. Based on

the XMI representation of the AbCD profile and UML model generated from the UML2 plug­

In. The tool should provide the following features:

• It should generate a graphical model that depicts the component dependency view.

• It should also provide a parser that can perform analysis on the system design and

report different non-functional aspects needed by various components.

• With the use of existing code generation tools, it support provide code/configuration

generation support for a technology specific framework.

The AbCDTool will be used to evaluate the concept of applying the AbCD meta-model to

model driven approach in component based design. The detailed evaluation is presented in 0.

5.5 An analysis of the Attribute based approach and
the AbCD meta-model

When AbCD concepts were introduced in Chapter 4, six main principles of the approach were

discussed in Section 4.2. This section summarises the work that has been done in the AbCD

approach to accomplish the principles identified.

The first aim listed is to allow the developers to identify the relationships between different

business requirements based on component interaction using well defined interfaces. To

achieve the aim, the AbCD approach introduced AbCD meta-model which provides the

construction of logical and abstract components. These mapping of classes from design to

these components ensure that the component interaction is made using interface composition.

The second aim was to create a framework that allows developers to define abstract Level

business components. The AbCD meta-model proposes the AbCDComponent and

AbCDServiceComponent meta-classes that explicitly extract functional, services and non­

functional aspects of the business components at the design level.

The third aim was to support developers when identifying reusable components. As described

in Section 5.3.7, the attributes defined in various components can be used as meta-data to

filter components when implementing or acquiring technology specific and pre-built reusable

components.

The fourth aim was to identify non-functional requirements that are overall system concerns

to be resolved for all components, such as security, logging, and activation, etc. This aim can

be achieved in two processes when using AbCD approach. Firstly, the designer can explicitly

104

AbCD Meta-Model

define AbCDServiceComponents that represent non-functional and service requirements.

Secondly, the AbCDServiceComponents can be used to construct component dependency

view that depicts how functional components are depending on non-functional components.

The fifth aim was to allow the developers constructing components that are focused on

aspects, contexts, abstraction and composition. The AbCD approach proposes the

construction of components using Component Design Guidelines CDG. The CDG not only

support the designers to identify aspects but also guide the designers to construct abstract

components.

The sixth aim was to form a structure to build a reusable component model repository.

Although the AbCD approach does not directly focuses on forming component model

repositories, it is possible to construct searchable component repositories by using attributes

as meta-data for components. Such repositories will provide better support for component

reusability because the components in the repositories will be logical and components that are

platform or technology independent.

105

Implementation

Chapter 6 lmp~ementation

106

Implementation

6. 1 Introduction

Chapter 4 highlights the need for a new model driven approach for the domain of component­

based development. It also addressed the concept of Attribute-based Component Design

AbCD and described Component Design Guidelines in Section 4.2.2. Chapter 5 supports the

component design guidelines by detailing the AbCD meta-model specification and AbCD

UML Profile. This chapter describes the implementation work carried out in this research.

The work is to construct a set of tools, i.e. a tool suite, to allow the developers to apply

component design guidelines and realise context-based attribute injection introduced in

Section 4.2. In other words, it allows the developer (i.e. the tool user) to define a AbCD UML

Profile on the UML class diagrams and also perform analysis on component design.

Target Bescription

System analysis Tools include features that allow developers to model the static

and design structure and behaviour of the system for analysis and design.

modelling Depending on the UML version, commercial tools, such as

[Together], provide a complete set of graphic modelling support.

Design With the use of constraint language, such as OCL, and cognitive

Verification functions, tools also provide design verification support for model

driven development [ArgoUML].

Platform/Domai Tools also provide features to that allow developers to construct

n specific platform specific models for modern technologies such as .NET and

modelling J2EE. Furthermore, some tools also provide model transformation of

platform independent models to platform specific models [ArcStyler].

Process Tools also integrate with popular development process, such as

modelling Rational Unified Process RUP. Accordingly, using the tool,

development is tailored by the guidelines proposed by the process

[Rational Rose].

Reverse and Tools provide facilities to reverse engineer the source code to graphic

forward models. In addition, tools also provide facilities to generate platform

engineering independent code as well as platform specific code for a target

using a target language.

language

Table 10 Target areas of various MDA tools

107

Implementation

There are a variety of research led, open source and commercial case tools to support model

driven development. Table 10 summarises different target areas of model driven approach

that various tools have been developed.

With the introduction of MDA with UML 2.0, many modelling tools have emerged in the

literature.

Component design refactoring
and reuse analysis

Class Diagrams
(Component Dependency

41
View, Aspect Dependency

View)

Requirement and Analysis

Business concepts modelling

Class Diagrams
(UML static structure models)

Model transformation by
applying COG

v
Class Diagrams

(AbCD Component model)

Class Diagrams
(UML PlatformiT echnology

specific modelling)

Source code I Platform
specific deployment scripts

Requirement and Analysis

Platform spec~ic modelling

Class Diagrams
(UML Platform/Technology

specific modelling)

Source Generation Wzards

Source code I Platform
specific deployment scripts

Business concepts modelling

Class Diagrams
(UML Platform independent

modelling)

Model transformation using
Templates I Wzards

Figure 41 The tool suite targeting component modelling (left), other MDA tools targeting to
bridge analysis to implementation

Tools, that support system design modelling, provide features that allow developers to

construct the platform independent models and facilitate automatic transformation processes

to the platform specific models. As an overview, Figure 41 (right) depicts the support

provided by currently available modelling tools. The boxes represent the modelling artefacts

that can be produced and directed lines show the modelling process. The aim is to reduce

108

Implementation

development effort by providing code generation for different platforms. Additionally, these

tools focus on bridging the analysis design to implementation.

On the other hand, the implementation work carried out here does not intend to compete with

features provided by other commercial tools. The focus of the tool suite lies in system design

modelling for the component-based system domain. In other words this implementation work

focuses on component design abstraction rather than automation.

As an outline, the main aims of the implementation is to build a set of tools, i.e. a tool suite,

are as follows.

Aim 1: To allow developers to construct AbCD component models. In other words, the aim is

to provide facilities for modelling of logical components that are abstract and platform

neutral. This is achieved by an Eclipse Plug-in tool for AbCD UML Profile tool (Profiling

tool).

Aim 2 : To provide component dependency and aspect dependency views using graphical

modelling, allowing developers to perform component refactoring, dependency analysis and

reuse analysis. This can be performed using the Eclipse Plug-in for Component Graph View

and Aspect View tool (Graph View tool).

Aim 3 : To implement a parser for the automation of model transformation processes. The

aim is to allow the evaluation process of the AbCD approach by transforming the AbCD

component model to two technology specific component frameworks. This can be processed

by the Eclipse Plug-in for Spring Bean configurator and .Net C# generator tool (Generator

Tool).

Figure 41 (left) shows the target focus area of the three tools implemented here. The

highlighted boxes represent the target modelling artefacts to be produced and a basic

workflow.

To summarise tool support, the Profiling tool takes the UML class diagram as an input to

transform the system static structure diagram to an AbCD component model. The GraphView

tool parses the AbCD component model to form a component dependency view for model

analysis. The Generator tool can be used to transform the PIM to PSM using the lightweight

Spring application framework or the heavy weight .NET framework. The rationale behind the

implementation work is:-

• to evaluate the Attribute based Component Design approach by applying various case

studies using the tool suite,

• and to assess the contribution of this research towards the component based

development community.

109

Implementation

6.2 Eclipse Plug-in tool for AbCD UML Profile
(Profiling tool)

The eclipse plug-in tool for AbCD UML profile (or Profiling tool for short) is a plug-in for

the Eclipse development environment [Eclipse, 2005]. It is designed to work with the existing

Eclipse UML2 plug-in and Eclipse Modelling Framework (EMF) APis. The Eclipse UML2

plug-in is an implementation of the UML 2.0 abstract syntax and conforms with the UML 2.0

specification, hence allows the developer to construct the static structure of the system as a set

of UML 2.0 models. As shown in Figure 42, the central concept within the profile tool is to

assist the developer to construct abstract and logical component model, i.e. the AbCD

component model, from UML class models.

System Design
(UML model using

Eclipse UML 2 Plug-in)

• ~ ~--------------····

Apply AbCD
UML Profile

•
AbCD Component Model

(Eclipse UML model applied
with AbCD Profile)

Component Design Guidelines

Identify non-functional aspects,
cross-cutting concerns

Identify functional, service,
interface, and data components

Apply AbCD Profile attributes,
constraints and tag values

Analyse component dependency
between functional and service

components

Figure 42 Applying AbCD approach using the Eclipse plug-in for AbCD profile

The UML 2 plug-in stores the model in XML format using OMG' s XMI specification.

However, the UML 2 plug-in does not include graphical modeller to construct and edit

models as class diagrams. Therefore if a developer wants to use graphical modelling, there are

also other Eclipse plug-in tools, such as [Jupe 2005; Omando 2006; Visualmodeller 2005],

that provide graphical modelling support for the UML 2 plug-in.

6.2.1 The design and implementation of the Profiling tool

The first feature includes in the Profiling tool is the XMI import wizard which allows

designers to import UML models constructed using UML 2 plug-in, as depicted in Figure 43.

110

Implementation

The current implementation of the Profiling tool only allows the user to import XML models

and not from other modelling tools. Once imported, the AbCD meta-model can be applied.

The tool also includes event listeners that monitor the changes in the attributes of each applied

components. This allows other extensions to register with the listener and analyse the changes

in the attributes for automation such as code generation, search and filtering of components.

·:, \ID p!a:form:/resourcef.O.bCDProfiiejmodel,£anit. umi
·----,

A

+ E5J l&f¥§ij:!i

v
(>

[inish]I Cance l

Figure 43 XMI import feature

In current implementation, this feature is used to notify events for AbCD Dependency view

construction wizard.

6.2.2 Using the Profiling tool

To illustration the workflow using the profiling tool , the bank example, which was introduced

in Chapter 4, is used. Amongst many artefacts produced as part of the system design, Figure

44 shows the four architecturally significant modules of the hypothetical bank example. They

are: two types of bank clients, i.e. the web client (bank. web) and the GUI client (bank.client) ,

core business model (bank.core) and the util ity module used for providing facilities such as

security , logging, etc. used by other modules (bank.common). The UML 2.0 model of the

bank's core has also been developed using Eclipse UML 2 plug-in . Using the Omando

graphical plug-in tool , the system design of the bank's core module was shown in Figure 20

in Chapter 4.

11 1

Implementation

i} bank.core Jill! bank.web Jill! bank.client

!B bank.common

Figure 44 Architecturally significant modules from the bank example

To use the profiling tool, the system design, i.e. UML model constructed using the UML 2

plug-in, needs to be imported to the Profiling plug-in tool. Figure 45 shows two fragments of

the tree view of the bank UML 2.0 model imported from the UML 2 plug-in.

r=-~ Package bank.core

i± • Class Customer

fE • Class Account
i± • . .Xssociaton
!±~ {"- Interface IBankfvlanager

;
l£ -4· Class Bankfvlanagerlmpl

<' Package bank. common

l±i · + Class ResponseTimeAdvice

I±' · ~,.. Class Response Time

ff: + Class Customer Authenticator

Figure 45 A screenshot of the fragment of UML 2 model from the bank example imported from
UML 2 plug-in to Profile tool

Once imported, the model can be transformed into the AbCD component model by:-

• following the component design guidelines,

• and applying the AbCD UML profile.

As described in Chapter 3, the AbCD approach compnses component design guidelines

which include component identification, dependency identification and component

construction processes. Using these processes and the AbCD UML profile, the developer can

use the profiling tool to:-

• Identify aspects, component service, and apply attributes

• Analyse component dependencies.

112

Implementation

6.2.3 Identifying aspects and component service

This modelling phase is motivated by the concepts of Aspect Oriented Programming (AOP)

and Component-based Software Engineering (CbSE). In the bank example, when UML 2.0

model of the core business concepts were imported, it is not clear how the model can be

partitioned into logical components. When following the component design guidelines, the

partitioning starts by identifying functional aspects, cross-cutting aspects and non-functional

aspects of the system requirements.

The profiling tool suppot1s thi s process by allowing the developer to construct a new model

and add five types of logical components (i.e. stereotyped model elements) that are specified

in the AbCD meta-model. They are as follows.

6.2.3.1 Implementation to support the AbCDComponent meta-class

A UML interface applied with the AbCDComponent stereotype defines an abstract

component that performs functional aspects of the system. As shown in Figure 46, the tool

allows the developer to apply attributes defined in the AbCDComponent meta-class.

[;

Property

'::i Ab CD Component

Activation

Factory Required

Infr astructm e Event Management

Remoting Required

Value

"~ Instance

~~ fa lse

·' Z. false

•z. false

Figure 46 Attributes of AbCDComponent meta-class

..

. t:
.J :~

The attributes add the semantic information to the component such as infotmation on its

runtime environment, component activation type, etc. The detailed description of the

AbCDComponent meta-class is described in Section 5.3 in Chapter 5.

!lotfurm: 1teStXIcej~J:(ffiofle1tr~.t.yj:(onw.tnM.~"\

.- li! <M:<iel> Bank Aii::D COO'IlOI'f.!\1 ~oo~

- ~ «;t(OCan,xfoent» <htfffac; > ~~nager
9 <Prc~r;> accMl:tl\'i e; : !Acax.r.iSer.xe

+ ~ <~aill> triitlsferfltri5 (toAa~l't: Accomt. frCI"A::;wt: Accocrt. arrn'\ft: St. .)

~ <<i<OC.oo-oonent» <L~tcrfoce > lctere>tCa liate~
~ <lr tcrfa:: > lA!cMIS<nte

- / <Assooobon> banl:A.:ax.r.tSer.xe

§ <Pr(jl(l'l\'> ~~: t<ft..<.cn;.:..o

a <<n[))atae~t» <d.m> Accrum

t 9; <Prof!:: f>.'li:abon > Abemofie

<<Ai~E"p'l$":!>)

lnl!oi!3Cliwai>r

\

'\,f)
'-'

Figure 47 Applying the AbCD UML profile using UML 2 Plug-in (left Tree view, Graphical view
right)

113

Implementation

For the bank example, two AbCDComponents, i.e. BankManager and InterestCalculator,

were identified . One of the important concepts of using this profiling tool is, as these two

components are logical and abstract, each component can link to one or more physical classes

and interfaces from the imported system design. Another important concept is that the

profiling tool enforces the developer to use one of the main the CbSE concepts, i.e. Design by

Contracts. This is achieved by limiting the component interaction to interfaces only, and by

explicitly declaring the interactions using associations that are applied with AbCDUse, and

AbCDProvide stereotypes. Detailed descriptions of these stereotypes are presented as part of

AbCD Meta-model specification in Section 5.3 .

Figure 47 (left) shows a screenshot of an initial verston of the AbCD component model

derived from the imported bank UML model. As the current implementation of the profiling

tool does not include the graphical modelling support, the equivalent graphical representation

of the component model constructed using the Rational Rose tool is shown in Figure 47

(right).

6.2.3.2 Implementation to support the AbCDServiceComponent meta-class

Another important feature supported by the profiling tool is al lowing the developer to add

logical components for non-functional and cross-cutting aspects. Based on the

AbCDServiceComponent meta-class defined in the AbCD meta-model , an interface applied

with the AbCDServiceComponent stereotype represents an aspect or a service required by

AbCDComponents . Figure 48 depicts the AbCDServiceComponent stereotype and its

attributes defined in the AbCD UML Profile .

. • t•

=: i.l platform: /resource/AbCDProfllei modei/AbCDProfile.uml

.- ~ <Profile> AbCDProfile

?.:;, <Element Import> Class

?.:;, <Element Import> Inter face

?.:;, <Element Import> InterfaceRealizabon

?-:;, <Element Import > Dependency

?.;;, <Element Import > Component

- ~ <:Stereotype > AbCDServiceComponent

I9J <:Property> base_Inter face : Interface

I9J -<Property> Dedarabve: Boolean

f9l <Proper ty> AspectName : Stnng

§ <Proper ty,. l nfrastructureSupport : Boolean

+ l£dJ <Property> AspectLevel : Aspectl.eveiKind

lid <Property> InfrastructureDescnpton: Slnng

- I' <Extension> Interface_AbCDServiCeComponent

-+j <Extension End> exlens1on_AbCDServiceComponent : AbCDSer\iceComponent

- 1 ~ ..;Enumerabon > Aspectl.eveiKind

~ <Enumeration Literal> Component

~ <Enumerabon Li teral> Operation

~ <Enumerabonl1teral> Property

~ <Enumerabonl1terai> Unspedfled

Figure 48 AbCDServiceComponent stereotype

114

Implementation

Referring back to the bank example, there are five non-functional aspects required by the

BankManager and InterestCalculator components. Accordingly, they can be identified as: -

I . Performance monitor AbCDServiceComponent

2. Transaction manager AbCDServiceComponent

3. Security AbCDServiceComponent

4 . Tracing AbCDServiceComponent

5. Persistence manager AbCDServiceComponent

For instance, when one is setting a boolean attribute 'InfrastructureSupport' of the

performance monitor to true, he or she is specifying that the component framework should

include the feature to facilitate that aspect. Similarly, a declarative attribute can be used to

specify the need for declarat ive approach to facilitate the aspect as opposed to a programmatic

approach. The profi le ' s attribute values are stored together with the model in the XMI file that

represents the model, as shown in Figure 49.

<AbCDProfile : AbCDServiceComponent
xmi:id= "_T7ujwEdOEdurnV6ac2R_ OeA"
base_In terface="_QghoMEdOEdurnV6ac2R_OeA" Dec l arative="true"
AspectNarne = "Perfor mance Moni tor" Infrastructu r e Support=" true "
As p ectLevel= "Oper ation " Infrast ructureDescr i p ton = "The
implementation should use the AOP enab led c ompone n t
framewo r k . "/>

Figure 49 AbCDServiceComponent stereotype data stored in the XMI file

Thi s is an important feature included in the Profiling tool. This is because the information is

used by the Graphview tool (see Section 6.2.4) to provide the analysis of the system design

for technology feasibility. The detailed discussion on analysi of the system design is made in

the next section.

~atfwn: frew.rcei~Ktfrofief,rojt!~opyofm. m
:rn ~>Bark

/

<<AbCOComponenb>
Ban !Manager

4bCOServiceU93»

<<AbCDServiceComponent>>
Perlorma nceMonitor

Figure 50 Dependency between BankManager and Performance monitor components using
AbCDServiceUse stereotype

11 5

Implementation

Another two imperative attributes of the AbCDServiceComponent stereotype are

'AspectRequirement' and 'Implementat ionCiass' . Due to time constraints, the profiling tool

does not implement this feature. However, if the profiling tool were to support the

'AspectRequirement ' attribute, the developer can link the aspects defined in the requirement

specification, such as UML use case7
, to each AbCDServiceComponent stereotyped element.

Simi larly, an 'ImplementationCiass' attribute would all ow the developer to define the

technology spec ific implementation information for the aspect. This is one of the features that

many MDA tools are trying to include, because it links the requirement analysis to design and

implementation.

As described m the AbCDServiceComponent meta-class specification8
, when an

AbCDComponent requires a particular service or aspec t, the developer can add a dependency

relationship with AbCDServiceUse stereotype to the AbCDServiceComponent. For instance,

as shown in Figure 50 (left), using the profiling tool it is possible to define that the

BankManager AbCDComponent logically depends on PerformanceMonitor

AbCDServiceComponent. The same dependency is shown in Figure 50 (right) using the

diagram. As it is a logical dependency, the technology specific classes that implement that

PerformanceMonitor and BankManager components may have different dependency

relationship mapping at the implementation level.

6.2.3.3 Implementation to support the AbCDinterfaceComponent meta-class

Another logical component defined 111 the AbCD meta-model is the

AbCDinterfaceComponent meta-class. It defines a logical component that provides the user

interface or interaction aspect with the system. The AbCDinterfaceComponent stereotype,

which represents the AbCDinterfaceComponent meta-class is another stereotype supported in

the profiling tool. Depending on the nature of the user interface, the developer can define a set

of attributes for the target interface model, such as the Web interface, the Web services

interface or the desktop GUI interface. When using the profiling tool to define values for

attributes included in the AbCDinterfaceComponent, the three significant attributes are

ProcessModel, Remoting, and PresentationSty le. It defines how

AbCDinterfaceComponents may interact with AbCDComponents.

2 E'5J <Model> Bank
~ <<abCD!nterfaceComponent>> <Interface > BankAccountControler

~ <::<abCDintetfaceCom nent:.-> <Interface> BankCustomerControler

Figure 51 Two AbCDinterfaceComponents defined in the bank example

CXVI-------------------------
7 i.e. assuming the deve loper wou ld use the UML use case for modelling req uirements using a UML
tool that support UML use case modelling within the Ec lipse environment
8 See the fu ll description of the AbCDServiceComponent meta-class spec ificatio n in Section 5.3.2

116

the

PrQPff!y

·- Ab CD !nterfocr (()fTlponent
Presentation St-;ie
Process Model
Remoting

Value

~;r We:b Controler
,•;if~

~'ii' False

Implementation

Figure 52 Three important attributes of AbCDinterfaceComponent

For instance, a ProcessMode l attribute defines a runtime requirement for the component, and

the possible values are :- ' In process', 'OutofProcess' and 'Remoting'. It also defines how

loosely coupled the business component and interface components are. Referring back the

bank example, Figure 51 shows the two AbCDlnterfaceComponents defined to process and

handle the Web interface. As they are logical components, implementation may be different

depending to component framework, such as J2EE or .NET frameworks. Figure 52 shows the

attributes selected for the BankCustomerController component.

6.2.3.4 Implementation to support the AbCDDataComponent Meta-class

The profiling tool includes special function s to process the model elements applied with the

AbCDDataComponent stereotype. It represents a data object. An important attribute included

in the AbCDDataComponent is the ComponentDataFormat attribute, and the possible values

are JavaBean, XML, Binary, Custom, and Unspecified. This is framework-specific

information about the data object. Unlike other components, the AbCDDataComponent meta­

class is derived from UML 'Class ' rather than ' Interface' because it signifies a more concrete

representation . As described in the component design guidelines, the developer shou ld

explicitly apply data classes that are shared between components .

; tj ~atform : fresource/ADCO~offie/model/oarhrru

: Lkl ·~~>Bali

§ < <a:hCD!nterfaceCm!POOenl> > <~:terface> Ba ccounteontro!er

~ < <abCD!nter~ceCompcre1t> > <tnrerface > BanKeust001erC~nrrd.er
iiF! 'ros ·ee t · · ' "for 8 <: <:aDL . • en > > <mrer,acemr

E' § «~~OCOO'iJOI1ent» <ln~rface> Ban~\lanager
H u -krM.I.,r
~ IJt.I\.WOLC\o .t> > <C~ss .> CustomerOdta

+. ~·1 <Dfof,c Ann!: lion> AbCDPro~k ~' ~~' .. , ~=~ ~a ~.

<<AbCDDalaCompooonl»
Acooun!Oala

<<AbCOP IOVide»

<<AbCDComponenl» ~

BanWanager .-------- ' V

<<AbCDP~~de» IAcooun!Serlic

0
ICu ~ome iSe iVi

ce

Figure 53 BankManager AbCDCOmponent

117

Implementation

Figure 53 (left) shows the BankManager component publicly sharing two

AbCDDataComponents using the profiling tool, i.e. AccountData and CustomerData. Figure

53 (right) presents the same information using the diagram. The AbCD meta-model does not

address any data objects used within the implementation of the BankManager component.

Current UML 2.0 specification defines the concept of using Ports to explicitly define

operations and interfaces. The AbCD meta-model extends the same concept by explicitly

defining the data objects exposed by the component.

6.2.3.5 Implementation to support the AbCDComponentAssembly Meta-class

In the AbCD Meta-model specification, AbCDComponentAssembly Meta-class can be used

as a deployable component. Using the profiling tool, the developer can group a set of

components that perform a particular aspect. It is similar to use of packages in UML

modelling. However AbCDComponentAssembly contains the following attributes such as

Versionlnfo, Title, DeploymentDescription, which make the component self-contained and

self-descriptive from the CbSE point of view.

6.2.4 Component dependency View (GraphView tool)

The section describes the implementation work that allows the designer to visualise the design

model. It is implemented as a graphview plug-in to Eclipse IDE and it requires Profiling tool

and UML2. Furthermore, the functionality of the tool heavily replies on Graphical Editing

Framework (GEF) package from Eclipse project [Eclipse, 2005]. The GraphView uses GEF

to display AbCDComponents as UML class diagrams and provide two main views as follows.

• Reusability View: The tool uses event register functionary from Profiling tool to

monitor changes in attributes of various attributes. It then parses the attributes for

possible reusability of existing components for a particular AbCD component. The

tool analyses two types of AbCD components. Firstly, it analysis

AbCDServiceComponents for possible matching of a component framework that

supports the attributes specified in the AbCDServiceComponent. Currently the

database has .NET, J2EE and Spring framework information. It is possible to add

additional framework information to the database if needed. Secondly, it analysis

AbCDDataComponents for possible matching of existing persistence models

provided by different frameworks.

• Dependency View : The tool also includes dependency view. It provides coloring

regions that presenting AbCDServiceComponents. It depicts how AbCDcomponents

depend on AbCDServiceComponents.

118

Implementation

6.2.5 Code generation Process (Generator tool)

As part of the implementation for AbCD approach, a basic Generator tool is also constructed.

It is constructed with a basic functionality to illustrate that AbCD approach can be used to

construct ground-trip development. The tool aimed to provide code generation support for

.NET framework based components using C# as will as Spring framework based components

using Java. However the language parsers are not implemented yet. This is because the code

generation is not the main focus of this research and there are many existing code generation

tools available in the literature.

6.3 Summary

This chapter presented the implemented work done to support the AbCD approach and the

meta-model constructed using UML. It showed how different Eclipse plug-ins are constructed

that allow designers to construct AbCD component models at logical level. However the

implementation is heavily replies on the Eclipse IDE and other eclipse plugins. Therefore the

main limitation is the user is forced to construct models using Eclipse IDE. The success of the

AbCD approach and the usefulness of the models constructed relied not only on how the

designer apply the AbCD approach but also the support of the tools provided to implement

the model. Although basic implementation is completed there are many improvements to be

made as a further research.

119

Case studies

Chapter 7 Case Studies

120

Case studies

7. 1 Introduction

This chapter describes case study work carried out to support the evaluation process for this

research. So far in the thesis, only the banking example, which was introduced in Chapter 3,

is used to illustrate the concepts. This work includes the study of two software development

cases covering different scenarios of the component-based software development method.

Each case study is focused on different aspects of component development using the model

driven approach. In other words, each case study comprises a set of characteristics that aim to

measure the contribution of the concepts introduced in the Attribute based Component Design

approach. The following sections describe each the case study in detail and illustrate the

development process using the tool suite presented in Chapter 6. This chapter can be regarded

as a reflective report on the two main case studies carried out part of the PhD research. It is

also an evaluation work to investigate the AbCD approach using two different domains.

7.2 Case Study 1: myanmarshop.com ecommerce
website

Before describing the case study in detail, it is necessary to outline the main reasons for

choosing to use this case study. This case study is used to assess the Attribute based

Component Design (AbCD) approach in the following ways:

• The case study is to examine if the AbCD approach can assist the construction of

streamline traceability between requirements specification and design of the

components.

• The ABCD design concept was intended to be applied to large-scale enterprise

applications that require services in different contexts. The evaluation will be made

on the component specification model constructed using AbCD concepts to assess if

the model can help developers choose appropriate component based technology.

7.2.1 Background

A company called 'myanmarshop.com' wants to develop an e-commerce application as an

online business for retailing and wholesaling imported foods and other products from south­

east Asia. The application will be based on the existing business process, practices and

infrastructure. As a rapidly expending organisation, the main requirement that is proposed to

the development team is that the design of the application should be agile. In other words the

design should be easily extendable with exchangeable components that are not specific to a

technology and implementation neutral. This is because both tight and loose coupling is

121

Case studies

needed with vanous types of business partner's applications to share information and

integrate business processes.

Figure 54 show a high level overview of system requirements for its three business sites.

The organisation has four warehouses where the products are stored. It wants to develop a

global store front with localisation aspects integrated to the system. Using Web Services

technology, it also wants to integrate with over 30 supplier companies to automate the process

of streamlining their upstream procurement activities. The system deployed at each of the

business sites should be integrated to form a global e-business system. With the use of RPC

calls, components deployed on each site will be tightly coupled using the private virtual

network over the internet. It will also reflect the organisation's structure and provide

centralised management.

Storefront and
User Interface

-

Component-
based System

-

Warehouse• Warehouse 1•- ·····-······ Warehouse

us j UK Japan

'

Warehouse

Myanmar

Figure 54 myanmarshop.com business sites

Presently, there are various state of the art enterprise-level component-based implementation

technologies available such as COM+/.NET, J2EE, Web services and CORBA technologies.

However after the initial analysis the following requirements can be outlined:-

• The design of the components within the system cannot be based on a model that is

specific to a technology because of the heterogeneous nature of reusable COTS

components that should be applied to enable cost-effective and rapid development.

• A generic specification, which includes functional aspects such as correctness and

functionality compliance as well as non-functional aspects such as performance,

instance management and security, for each component is needed.

Accordingly a component specification model is needed to allow the developers to perform

development as well as component acquisition processes. The construction of such a

component specification model will provide the developers with an additional abstract layer

of development and the architecture of system as shown in Figure 55.

122

Case studies

Component specifications for the e-commerce system

/\~ r L_l 6-=--':JJ ·_o r(_o -~-o-0 -~____J
Generic standards,
design principles,

non-functional services

L
Component acquisition , development and integration process

Technology specific components that are in the binary level
and are developed based on component specifications

Figure 55 Component specification and implementation mapping

T he availabili ty of such a component specification will also produce the architecture for the

system which shows various abstract views. T he following section describes how ABCD is

applied to both design and development of the system.

7.2.2 Designing the myanmarshop.com eCommerce system

This section describes how the des ign of the e-commerce system is evolved using the

component based approach. However it does not detai l all parts of the design and only

highl ights the architecturally significant modules. In thi s development, the developers agree

to fo llow the Rational Unified Process (RUP) as a main discipline and apply the AbCD design

principles as a supplement to the main workflow. This configuration of workflow also

provides an opportunity to assess whether the AbCD approach can contribute to improve the

design, and hence implementation phase. It can also be regarded as a non-invas ive process

because designers were able the transformation of their class modelling to AbCD component

models in every iteration of their main des ign workflow .

Figure 56 shows an overview of the workflows. The analysis model is a UML model

constructed using the Rational Rose UML modell ing too l. Based on RUP, the designing of

the system is an iterative process that adapts to the changing requirements .

123

AbCDWorkflow Man development
wor11.flow

Requirements

'
• Implementation

Figure 56 The workflows of the development process

Case studies

The analysis model is composed of over 40 classes that represent the functionality of the core

busi ness. The classes are grouped into 16 packages based on their functionality . There are

also over 30 data objects identified in the model, ranging from products, manufacturers, to

localisation objects. These are platform independent UML classes constructed using Rational

Rose UML model.

7.2.2.1 Deriving the AbCD component specification

As a separate mode l process, an AbCD component specification is formed. The aim is to

deri ve the AbCD component specification using the UML analysis model as an input. The

specification consists of a new set of UML class models app lied with the AbCD UML profile.

During the construction of the specification, the fo llowing concepts were applied based on the

Component Des ign Guidelines (CDG) presented in Chapter 4.

7.2.2.1.1 Identification of components

This process starts by refactoring the classes. In the first iteration, the classes were grouped

into three types of logical components, namely: interface, business and data components.

They can also be regarded as components that represent the three tier architecture. The

business components are further refined based on their aspects and responsibility . The

business components were then di vided into core funct ional components, c ross-cutting

functional components and service components.

124

Case studies

One of the main concepts applied in the component identification process is the partitioning

of the system using interface composition. In other words, component interaction is made

using their far;ade interfaces, which ensures that the dependency relationship is formed using

interfaces as contracts rather than inheritance. The difference between interface

composi tion and inheritance dependency is presented in the literature survey. The following

section describes these concepts by an example.

i ProductManager I
;o. p ~j

/ ',, / .. /· I ',

~/ II ',,"'""

\ I '"~

' \

\
\
\\{

\
\

\

\

Figure 57 myanmarshop.com 's products model

Figure 57 shows a snapshot of a UML diagram that is part of the UML analysis model. It

includes the main classes and their relationships that form a core functional aspect, 'product

management'. For simplic ity, all operations and propert ies have been removed from the

classes. F igure 58 shows another snapshot of the design that depicts how the design was

changed when classes providing the localisation and language support aspect are added to the

classes to the design model. The localisat ion and language support is a cross-cutting aspect,

coveri ng a ll other aspects of the e-commerce system, such as customers, product suppliers,

user interface and currency management.

Although it is a val id model from object oriented design point of view, the design needs to be

re-factored based on CDG for the following reasons:-

125

Case studies

• The design of the cross-cutting aspect IS embedded within other core functional

aspects. Accordingly different aspects of the design are tangled and will be difficult

to maintain .

• The current design does not apply interface composition approach across different

aspects. CDG states that all dependencies should take place in the form of interface

composition.

' ProductManager

LanguageManager

-·---=?-r

ProductAttributes

\
\

\

. ProductAttributeOptions I

Figure 58 Introducing a multi-language support as a cross-cutting concern

Figure 59 shows another modification made by the des igners to add a persistence aspect to all

data classes. Without describing the implementat ion details, the designers add the 'Serialiser'

class which all data classes must inherent from to achieve persistence. This produces a more

tangled design, which can lead to reusability problems. The construction of the AbCD

component specification aims to separate the concerns by forming an abstraction model.

During the component identification process, a new set of logical components are

constructed. Based on the AbCD meta-model, four types of components are formed, namely

AbCDComponent, AbCDDataComponent, AbCDServiceComponent and

AbCDinterfaceComponents .

126

Case studies

LocalsationManager

\
''

Figure 59 Introducing Serialiser class for persistence service

Each logical component is mapped to a set of classes for a particular aspect. The mapping is

supported by the profiling tool. Figure 60 shows three new logical components as part of the

AbCD component specification . This model provides the designers with clear separation of

concerns and an abstract view.

<<AbCDComponenl>>
ProductManagerComp +-----7Q

I
I

« Abcbuse>>
I

I
I
I
I
~~

<<AbCDComponent>> -7-Q
LocalisationComp .---­

!Localisation

IP roductManager

<'<AbCDServiceUse>>

""'

<<AbCDServiceComponenl>>
PersistenceComp

Figure 60 A snapshot of the AbCD Specification model

In this diagram, one of the important aspects to be observed is the dependency relationship

between the PersistenceComp component and the ProductManagerComp component. Even

though it is modelled with a simple UML dependency relationship, the AbCDServiceUse

stereotype adds additional semantic information to the relationship. Any relation defined

127

Case studies

using the AbCDServiceUse stereotype forms a contract. In this contract, the

AbCDComponent must meet the terms defined in the AbCDServiceComponent in order to

use the service. Based the AbCDServiceComponent meta-class, any model element applied

with the AbCDServiceComponent stereotype has three parts of behavioural attributes.

«Stereotype»
AbCDS er\liceComponent

1 lnfrastructureSupport
:·········-----------------------·~

~-----=:~::~-~~---
ConfigurationSupport

Figure 61 AbCDServiceComponent specification

As show in Figure 61, the attributes of the AbcDServiceComponent are as followis :-

Infrastructure Support : This is an attribute set by the designer that describes how a service

can be supported by the framework it will be built on. In other words, if the service should be

provided by the component framework, the design has to describe how an existing component

provided by the component framework will provide the service. Whether or not the service is

provided by the framework, the designer also has to define the detailed binding structure

between the AbCDComponent and AbCDServiceComponent using the 'Composition

pattern'.

Composition Pattern: Each AbCDServiceComponent includes a composition pattern. It

describes how any class that requires the service may bind to it using a particular pattern. As

described in the literature, if the service is provided by the framework, the designer is

required to have in death knowledge on the component framework. Due to the diverse nature

of each of the service, the composition pattern can be varied. Therefore, the COG does not

impose any particular model. One way to describe composition pattern is with the use of

UML template bindings as described in [Clarke, 2003].

128

I
<<instantiate>>

i

<X> Home

« EJBCreateMethod>> createO
« EJBFinderMethod» findByPrimaryKey()

<<EJBRealizeRemlote>> «EJBReali~eHom';?' -1

<X>EJB

EJB_Context : EntityContext

X>EJB()
<<EJBCreateMethod» ejbCreate()
<<EJBCreateMethod>> ejbPostCreate()
ejbActivate()
ejbPassivate()
ejbl oadO
ejbStore()
ejbRemme()
setEntityContex t()
unsetEntityContext()

/
/

/

«~JBPrimaryKey»

<<EJBPrimaryKey>>
<X>PK

Figure 62 Compostion pattern for persistence model using J2EE

Case studies

~I
!

For this case study, the designers have decided that the persistence service should be provided

by the component framework. Accordingly, if the components were to be implemented in

Java, the two candidate component frameworks are J2EE and the Spring application

framework. If J2EE were to apply, any class requiring persistence service has to transform

into an Entity bean, as shown in Figure 62 . In the figure, <x> represents a template parameter

which should be replace by the actual class . The main advantage of the using attributes based

approach is that such composition patterns can be added as attributes for a target technology.

Therefore designers will be able to see how is design is altered when transforming platform

independent design to platform spec ific design.

However, the designers have decided use the Spring framework to provide the persistence

service. Since it allows transparent data access layer, it does not invade the core functional

service.

<X>

<<Data>> <att>

Figure 63 Composition pattern using Spring framework

As shown in Figure 63, the composition pattern is simple when using the Spring framework.

<x> represents a template parameter which should be replaced by an actual data object and

129

Case studies

any attributes applied with «Data» stereotype should be included in the XML object

relational mapping file for persistence. However, to provide non-invasive approach, the

Spring framework uses one or more external configuration files, in this case, XML mapping

files are required to achieve persistence for data objects. In a similar way to the Spring

framework, other component frameworks may require external configuration files to support

various services such as tracing and caching data. Accordingly, the AbCDServiceComponent

meta-class also includes another attribute called 'Configuration support'.

Configuration Support : This is another attribute defined in the AbCDServiceComponent

meta-class is the attribute to provide configuration information. It contains information about

configuration settings needed by the component framework in order to provide a particular

service. Therefore, if the service provided by AbCDServiceComponent is implemented by the

component framework, the designer has to fill in the configuration support attribute.

Figure 60 also shows the dependency relationship between LocalisationComp and

ProductManagerComp. In this e-commerce application, the localisation aspect is important

because the application will be deployed in 4 countries. The localisation aspect cross cuts all

functional aspects, such as product management, order management, as well as all parts of the

user interface aspects. Although the initial analysis model implicitly includes this aspect into

classes that perform other functional aspects, the aspect was an afterthought and modelled in

an ad-hoc fashion. The explicit declaration of this cross-cutting aspect as a separate logical

component adds the following semantic information to the design and architecture:

• Designers are more aware of the impact on the design when the model needs to be

refactored to accommodate the localisation aspect in data model, business functional

model as well as interface model.

• Designers have to define a new dependency relationship between LocalisationComp

and other functional and user interface components to achieve low coupling.

Accordingly, adding a new locale to the application can be achieved without altering

other modules.

Designers now have to be aware of the support provided by the component framework and

the programming language that the application will be built on. In this case, the Java language

and J2EE framework consists of standards and readily available resource managers that

support localisation.

7.2.2.2 Summary of constructing the AbCD Specification model

To summarise, every non-functional aspect or service identified in the analysis model in the

case study was applied as AbCDSeriveComponent stereotyped logical components. The

130

Case studies

following AbCDServiceComponents were identified from the analysis model of the e­

commerce system.

• Caching

• Tracing

• Transaction

• Security

For each component, the designer defines component composition attributes, framework

support attributes, and configuration attributes. These service components, filled with

attributes values, form the building block of the component architecture. One of the main

advantages of explicitly identifying service components at early stage of the design is that the

designer can rely on the attributes identified in the service components to form a contract with

other functional components without the knowledge of their internal implementation details.

The component identification process continues with the classification of cross-cutting

aspects from functional aspects. The other cross-cutting aspects that were explicitly identified

are as follows:

• Language localisation

• Currency

• Tax

• Report Manager

The designers were challenged with the following issues in the design construction process.

Applying AOP techniques : The AbCD approach defined in this research does not propose a

new AOP technique or approach that designer should apply for each cross-cutting aspect,

because the components identified are abstract and the implementation may be different on

the nature of the aspect. However, the explicit identification of cross-cutting and service

components encourages the designers to refactor the design into components at early stage of

the development cycle. These components may also take advantage of the services and AOP

features provided by the component frameworks. However by applying attributes such as

composition pattern and describing infrastructure support, the components encapsulate the

implementation details.

Balancing the use of interface composition and contracts : For each component, designers

were able to apply core CbSE features such as versioning, interface based composition, and

interfaces as contracts.

131

Case studies

For instance, consider the ManufacturerManagerComp uses the IReportinterface provided by

the ReportManagerComp. As ReportManagerComp is an AbCDServiceComponent, it

represents a logical component that provides the reporting function. By defining this

component, designers were able to define composition patterns for other components to use.

7.2.2.2.1 Component construction

In this case study, the construction of the AbCD specification model from the UML

specification model was proven to be difficult because of the following reasons:-

Tool integration: The main tool used in this modelling process was the Rational Rose UML

modelling tool. Due to the lack of tools that can import Rose UML models to eclipse UML2

model, the UML analysis model has be duplicated using the eclipse UML2 plugin. It was an

unnecessary step in the development. However once the XMI file generated from the UML2

plugin was imported to the AbCD profiling plug-in, a new UML model, that represents the

Component specification, was able to be constructed using the profiling tool. As described

previously, the components identified during the component identification phase were

constructed by applying the AbCD meta-model and by using the Component Design

Guidelines.

Attribute injection: With the help of the profilng tool, designers were able to add various

attributes to all model elements applied with the AbCD UML Profile. Using the AbCD

analysis tool, the designers were able to input the component specification for analysis of the

components to visualise how functional, non-funcational and other service based components

are related. However, the designers were unable to clearly visualise the component model and

how each logical component can be mapped to the design model constructed in the main

workflow using the Rational Rose tool.

132

7.3 Case Study 2 : Rapid Prototyping machine
controller

Case studies

When comparing with thee-commerce application presented in case study 1, this case study

is vastly different. This is because of the different nature of the application to be designed and

the focus lies in different evaluation criteria on the AbCD method. While the e-commerce

system for case study I focuses on designing business components for functional and non­

functional requirements this case study focuses on the following concerns:

• Extension and adaptation of existing components.

• Various existing ready-made components and services are needed to be reused for

swift development.

• Extensive flexibility and expendability in design, based on framework support.

Therefore the focus on this case study is reusability of the components. The rationale behind

choosing this case study is to assess if the AbCD approach can be used to assist the design

using existing components and re-factor them based on core CbSE principles. In other words,

while case study 1 centered around abstraction, this case study is to evaluate if the AbCD

approach improve reusability of components. In this case, the ABCD is intended to help the

developers to simplify the development process and to integrate components more efficiently.

7.3.1 Case study background

The manufacturing sector from Cardiff University wants to quickly develop software by

integrating existing tools. They would like to develop a rapid prototyping machine controller

that allows the engineer to correctly configure the rapid prototyping machine.

Material 3D Tool

Machine Controler Powder Mixer

Figure 64 Four functional components of the tool

As depicted in Figure 64, they want to integrate a 30 modelling component, a powder mixing

component, a material analyser component and the rapid prototyping machine controller

133

Case studies

components. These are existing pieces of software from different PhD projects. Currently,

there are number existing the applications for each component by various projects. Therefore

the main development task here is component acquisition and integration rather than

implementation.

The functional requirements of each component are not important in this case study. The main

non-functional requirement is that the application has to be a distributed system where the

engineer should be able to monitor from anywhere using a client application.

7.3.2 Designing the Rapid Prototyping (RP) tool

The components identified in the case study background are generic components which can

be regarded as a Commercial Off-the Shelf (COTS) components. Initially, to form an

application, developers were trying to construct adaptor code that bridges all four components

based on their API. Creating such integration modules without a component framework

created numerous problems. Theses can be outlined as follows :-

• Semantic integration problems: Different components use different meanings in their

APis.

• Architecture Mismatch: The components have their own architecture style. This has

led to having their own model of interaction.

• Steep Learning Curves: different programming languages have their own structure

and object management solutions.

This can be the result of not having a common framework. One of the core principles of

CbSE and from this research point of view, all components must have common component

framework. However in the case study it does not fit this requirement.

The first step of designing the RP tool is to define logical component based on existing

components to form a common interaction model. From avoid confusion in this discussion;

these COTS components will now be called 'modules'.

The construction of logical components should provide an indication on how these modules

can be regard as atomic (i.e. how these components hide their functional and non-functional

requirements). The AbCD approach will be used to construct the logical component model at

the specification level to depict a higher component dependency view. This should provide a

common component framework where each module must meet the specifications and

attributes identified in logical AbCD components.

134

Case studies

7.3.2.1 Deriving the AbCD component model

Figure 65 shows the process when applying the AbCD component model. It shows an

iteration cycle for a component acquisition process. It is based on Component Design

Guidelines defined in Section 4.2.2. The process is different from traditional software

development because it focuses on component acquisition and integration of components

rather than implementation.

Development
stages

Artefacts and
documents

Requirement Specification
and analysis using UML class

modelling

~{~
Business requirements
specification

AbCD Specification
Component model· ·

(Component Identification ---ana constrlidf(in) ,_, - -I-

~~
Non-functional

High level components

requirements specification Component Interaction

Component level Communication Protocols
constraints

Logical component
packages

Business objects

Data objects

Control objects

Figure 65 The modelling process for the RP tool

When following CDG, the first question raised by the AbCD approach is:-

CGmwrent
F\.cquisit~on

"Does each module conform to the common component framework of the RP
tool?"

To find out, a new UML class model has to be derived for each module using a reverse

engineering tool. This is necessary for understanding the functional aspects of the modules.

However the reverse engineering tool has produced a large model of UML with complex

interaction and dependency relationships, which does not help the designers. The first stage of

the Component Design Guidelines is the identification of logical components.

135

Case studies

7.3.2.1.1 Component Identification

From the requirement analysis, developers have derived logical AbCDComponents to form

the architecture. Figure 66 shows a simplified version of the AbCD component model. To

avoid complexity, all functional interaction and dependency relationships have been removed.

Furthermore, data objects that are used to share information have also been removed.

«AbCDComponent»:
3D tool ·----/)

\.j

~-------,

1 «AbCDComponent»
MachineControler

3DToollntertace ',,, L-----.-, -----'~
,, «AbCDSeflliceUse>~ ~()

\
\
\

«AbCDComponenl» --------------0
Material ---

--- MoldingAnalyserlntertace \
~--

-------------('\
_/

SolidStateProgramlnterface

(~\···---.
\ __ /

\
'
' \

\

····----

' \ ', \

v
«A~CDSeflliceUse»

', ' MachineControllnterface
' "' \ ' \

--- ' '~~ ----;'*o
Remotinglnterface

\

I «AbCDSeflliceComponent»
__ ; _____ Remotin __ g __ j_,

«AbCDComponent» // CompoundAnalyserlntertace
PowderMixer

DataParserlntertace--

·------- --- / -----------------('(.
\../

/
•;J .. ,

PowderMixerlntertace

<<AbCDComponenl>>
DataParser

Figure 66 An overview of the AbCD model for RP tool

During this phase, the designers have identified six major logical components to meet

functional as well as non-functional requirements. The figure also shows that two extra

components are identified. First, the 'remoting' component which can be regarded as a

service component, and should be provided by the component framework. Second, the

'DataParser' component which is an explicit identification of the cross-cutting aspect which is

required by all other functional components. For each component the designers have added

the following requirement aspects as attributes in the component.

• The composition pattern that is requirement by the component to integrate with

others.

136

Case studies

• The cross-cutting dependency required by the component.

• The service dependency required by the component.

• The packaging and assembly required by the component.

This provides the designers with a logical component with clear functional and non-functional

requirements as well as interaction model.

7.3.2.2 Summary of Component construction in RP tool using AbCD approach

Once components are identified, they are constructed using the tool suite. The construction of

components allows designers to visualise the dependency model using the component

dependency view.

The construction of the logical and abstract AbCD components supports the developers in

performing the component acquisition process. This process is achieved by mapping the UML

class models generated by the reverse engineering tool to local components. This is different

from the construction of UML class for the e-commerce system in case study 1. The AbCD

component model has supported the module selection and the decision making process in the

following ways:-

• The developers have clear functional requirement of the RP tool.

• The developers have identified the data objects required to integrate amongst

different models.

• The developers have a clear cross-cutting dependency view of the components.

One unexpected outcome form this case study is while reverse engineering the source from

the modules of different tools, the developers have identified duplicated UML class patterns

in the design. This is caused by duplicated code in the source to implement the cross-cutting

concerns. Accordingly, the developers were able to re-factor the explicit identification of

cross-cutting concerns.

7.3.3 Summary of the Case studies

The two case studies presented in this chapter are used in the evaluation of the AbCD

approach, which will be presented in the next Chapter. The comparisons with other related

works will also be made on the usability of the modelling approach and reusability of the

artefacts that are produced during the design process.

137

Evaluation

Chapter 8 Evaluat~on

138

Evaluation

8. 1 Introduction

Chapter 7 described the two case studies that used the Attribute based Component Design

approach and discussed the Component Design Guidelines (COG) introduced in Chapter 4.

Having introduced the AbCD meta-model to suppott the component modelling in Chapter 5,

and tool support in Chapter 6, this chapter presents the evaluation work carried out to assess

the overall impact on component design and the model driven approach.

The chapter discusses issues relating to how the AbCD approach has an impact on when

transforming requirements analysis to design, and from the design to implementation. The

evaluation is based on the two case studies described in Chapter 7.

The chapter then presents the evaluation work on the AbCD tool suite which is the

implementation of the AbCD approach. The result of the usability of the tool suite is reported.

The evaluation on the tools was carried out when applying the case studies.

8.2 The evaluation approach

Before discussing the resulting data, this section describes the evaluation method and the

principles applied in the evaluation. The evaluation method carried out in this research is

based on the evaluation guideline proposed in literature, namely, DESMET method by

[Kitchenham, 1996].

To begin with the evaluation method, the nature of the AbCD approach and the tool

developed in the research can be regarded as a non-invasive modelling approach which can

assist developers when designing and constructing component based software using any well­

defined development process. Accordingly, instead of evaluating with quantitative

experiments or surveys, a case study based evaluation method was chosen because the

support provided by the AbCD approach spans three phases of the software development

lifecycle. The details of the three phases were already discussed in Section 4.2, when

presenting the AbCD approach. The two case studies presented in Chapter 7 provide an

opportunity to perform an investigation on the different aspects of the model driven

component based development which is shown in Table 11.

It summarise the different aspects that the AbCD approach will have an impact on the process

as well as the quality of the modelling artefacts produced when modelling. Quantitative

analysis as well as qualitative analysis are made on each aspect. This research also took a

position that rely the tool support to apply the method. This is because features proposed in

this AbCD approach, such as visualising cross-cutting concerns using component dependency

139

Evaluation

view can only be achieved by using the AbCD tool suite. Hence, another core effort took

place is tool evaluation. It consists of two parts:

• Comparison with other tools

• Feature analysis on the AbCD tool suite

For each evaluation aspect, the chapter presents using the following format.

• the aims of proposed work (i.e. the object to be evaluated),

• the scope of the proposed work,

• the expected outcome of the work,

• and the actual output of the work.

The structure is used as a framework on the following discussions on evaluation.

Impact Quantitative effects Qualitative effects

I -

Impact on the design Assessing the artefacts produced Designers' feedback on usability

artefacts using the AbCD approach can of the artefacts.

improve system (i.e. accuracy,

and correctness) and the

organisation of the system

architecture.

Impact on the design Assessing improvements in the Designer's opinion on whether

process developers' workflow for each the approach can accommodate

development phase. design changes and process

improvement.

Impact on the use of Assessing improvements on core Reviewers' comments on

the core CbSE CbSE principles, mainly, published papers.

design principles abstraction, the use of contract

when applying the base interface composition, and

approach reusability.

Table 11 Evaluation method and inpact areas

140

Evaluation

8.3 Deriving the AbCD approach: re-addressing the
overall 'Aims'

This section re-addresses the overall focus of the research. Therefore the expected outcomes

of the aims and the actual outputs can be discussed. The motivation for the initiative of the

Attribute based Component Design approach arose out of the problems encountered when

designing software based on modern component frameworks. As these frameworks provided

a variety of services, as well as standards and interaction models, there is a need to provide an

approach that allows developers to construct components in abstract ways. The evaluation

work begins with reviewing the aims set out to be achieved at the beginning of the research.

Initially, the research work started with an aim to propose a meta-model that developers can

apply to construct models of software design with an abstraction. The result of this work was

the construction of the Attribute based Component Model (AbCD).

Although it is called AbCD, it can be regarded as a modelling approach because it comprises

a new AbCD meta-model supported by the Component Design Guidelines (CDG), which

were presented in Chapter 4 and Chapter 5 respectively.

To describe the initial rationale behind proposing the meta-model, designing software

requires not only the knowledge of the problem domain of the system to be built, but also the

implementation details, the technology and the process. Accordingly, the study shows that

most software designers and architects are experienced programmers in their chosen

programming language and technology. With the emergence of Component based Software

Engineering (CbSE), designers with better partitioning of the design into components using

component based concepts such as interfaces as contracts, interface based composition,

versioning, binary deployment, etc. One of the most exhaustive and detailed study of the

CbSE and component concepts were presented by Szyperski in [Szyperski, 1998]. He and

other researchers defined a component as a unit of deployment and a unit of third-party

composition. Generally there are generic heavyweight components such as web service or a

database, and others based on a particular component framework or technology such as a

J2EE component for a .NET assembly component.

This research proposes a different view of a component, as a specification component (i.e. as

a design artefact). In other words, a specification component that is independently deployable

within the design. Since it is a unit of a design model, the specification component forms an

abstraction over implementation components, because it abstracts away from the

implementation details of component frameworks.

141

Evaluation

The following is a summary of the scope of the AbCD approach. It also declares the

constraints explicitly.

1. For object-oriented and component based development, UML 2.0 should be used as a

core modelling language to apply the AbCD approach. This is because the AbCD

meta-model extends the core UML meta-model. However only the subset of the

UML, which is the UML class model that represents the static structure of the system,

is applied.

2. The approach encourages designers to apply CDG to construct logical and abstract

components that ensure interactions between components are based on interface

composition. CDG is indented to be non-invasive and may be applied using any

development process.

3. The AbCD approach provides facilities that allow developers to identify and

construct four types of components, data, interface, functional, and service. However

the approach is targeted for modelling business components that will be built using a

component framework rather than standalone user-interface oriented desktop

components. The two kinds of main stream component frameworks aimed to support

are heavy weight frameworks such as J2EE, .NET and light weight frameworks such

as the Spring application framework.

4. Even though the AbCD meta-model is based on the standard UML meta-model, it is

implemented as an Eclipse UML plug-in. Therefore the designer must use the Eclipse

IDE tool to be able to apply the AbCD model and the AbCD tool suite to take

advantage of the features provided in the tool.

5. The AbCD approach is intended to provide a component dependency view to the 00

design using UML that highlights the mapping between functional aspects and

component composition.

142

Evaluation

8.4 Evaluating the artefacts produced from the AbCD
approach

The application of the AbCD approach in two different case studies prompted a challenging

task. This section discusses the model artefacts produced during the application. The artefacts

produced showed that there are tangible (regarded as quantitative) as well as intangible

(regarded as qualitative) benefits gains from applying the AbCD approach. In the first case

study, the approach was applied when designers were transforming from the analysis model

to the actual design of the system. Therefore the main evaluation process took place on

assessing how the AbCD approach supported the designers in producing a better quality

design.

In the second case study, the approach was applied when the existing design from various

projects are analysed for possible re-factoring of the design.

Although there are benefits that have been recognised, many defects of the approach have

also been identified when applying in practice. These problems were compounded by the lack

of details in the approach and the features of the tool.

8.4.1 Transforming analysis model to specification model

In Chapter 7, the first case study shows how the UML analysis model is transformed into the

specification model for the e-commerce application design in case study 1. During the course

of applying the AbCD approach to the e-commerce system, a new component specification

model was development based on AbCD meta-model. This phase provides an opportunity to

investigate the process as well as the resulting artefacts.

The following sections describe the aim, expected outcomes and actual outcomes of new

specification model.

8.4.1.1 Non-invasive approach

The aim: The AbCD approach is intended to be a non-invasive approach. Accordingly,

the new component specification model does not replace the UML design model. Instead it

feeds the resulting artefacts back to the system design model. The AbCD approach does not

impose a tight process which would allow the designers to apply this approach on any

modelling based development process.

Expected outcome: The application of AbCD approach will be integrated to the designers'

main modelling process. The artefacts produced in the component specification model will

provide a snapshot of the component view in the main design. However designers will require

143

Evaluation

extra modelling time to follow the Component Development Guidelines proposed in the

approach. These include the component identification process and the component

construction process. This was depicted in Figure 56. It showed how the construction of the

specification component model could be integrated into the two main development processes.

For every iteration of transforming analysis to system design, designers are expected

construct or improve the component specification model to provide a component view of the

design.

Actual outputs : From the evaluation of case study I, applying the AbCD approach during the

analysis to design transformation has significant impact on the design process. The factors

influencing on the design process are as follows.

In the initial iterations of transforming the analysis artefacts to design artefacts, constructing

a component specification model in every iteration was proven to be unproductive and slows

the design process. Feedback from designers depicted that the component specification

models constructed were not contributing to the quality of the design.

From analysis, the reason was that during the initial elaboration phases the design was rapidly

changing and designers were focusing on capturing only the functional requirements in the

design and left out the technical details of the component framework that it is going to be

built on. Hence, in the initial iterations they have left out the AbCD approach for constructing

the component specification model in the development process. However after a few

iterations, and when the functional design became more stable, the AbCD approach was

reintegrated with the main development process. For each iteration, designers were

identifying components and constructing them using the AbCD approach, which changed the

development direction to component framework driven modelling process. They were able to

apply core CbSE principles to improve the design. These include :-

• better abstraction in design,

• better separation of concerns using component mapping,

• forming design contracts between aspects

• easier re-factoring of the UML class diagrams

Each of the above core values will be discussed in detailed in the following sections.

Another important output from case study I was the use UML in the development process. As

presented in the literature survey, UML has taken two main roles in design process. Firstly,

the use of UML as an informal collaboration medium for designers for understanding of a

model or a domain. In this way, models are not documented and normally produced as a

144

Evaluation

hand-drawn sketch rather than constructed formally using a tool. Secondly, UML as a formal

medium where design is driven by UML artefacts produced using a UML tool. Initially, in

case study 1, even though designers were applying model driven development, UML was

used informally and the models were not documented in every iteration of development. As

the AbCD meta-model extends the UML meta-model, the component specification

construction process requires the designers to document the UML models in a UML tool to

take advantage of the AbCD approach. Even though the aim of the AbCD approach is to be

non-invasive in the development process, this constraint has an effect on the modelling

process.

To summarise, during the iteration cycles, the AbCD approach should be applied when re­

factoring the design that focuses on the infrastructure of the design, partitioning functional,

cross-cutting and services provided by component framework that the system will be based

on.

8.4.1.2 Abstraction

Hiding complexity by abstraction IS one of the most powerful ways to improve design

comprehension and modularity.

The aim : The AbCD approach is intended to support the design process by providing

abstraction. In other words, the AbCD approach is proposed to resolve the problem of

component reusability by allowing designers to construct abstract and logical specification

components.

It is achieved by forming a component specification model that captures the functional

domain model as well as other cross-cutting aspects of the domain. It is based on the AbCD

meta-model that allows the designer to map every object in the design to abstract and logical

components. As described in Section 7.3 .2.1.1, the logical components have abstracted the

objects into functional, cross-cutting, service, and system interface aspects of the design.

Expected outcome : The main expected outcome when applying the AbCD approach is, the

designers can exploit the component specification model constructed to partition the design

and encapsulate complexity. The AbCD meta-model contains attributes that allow developers

to add semantic information regarding technical details for each component. This enables

encapsulation over component frameworks' implementation details and standards. However,

145

Evaluation

the designers must use the AbCD tool suite which is set of plug-ins for Eclipse IDE tool to

apply the Meta-model and add the values for various attributes.

Actual outputs: From the result of case study I, the component specification model provides

a power tool for designers.

Components encapsulating component
framework services

Components encapsulating cross-cutting concerns

Components encapsulating functional concerns

Figure 67 Three layers of encapsulation for the ecommerce system case study

The abstraction provided by the component model is different from traditional abstraction that

aims to encapsulate implementation of functionality. As shown in Figure 67, the designers

were able construct components that encapsulate three levels of aspects in the design which

provide a powerful abstraction from the architecture point of view.

During the initial iterations of the design, although designers were able to encapsulate

functional details, they were not able to abstract away all the complexities of object

interactions. However for each non-functional service needed in the ecommerce system,

designers were able to construct AbCD components that include a composition pattern. These

patterns provide an abstraction over how every functional component can interact with

service components. For instance, designers have found existing Admin tools (i.e. sending

emails, performing backups, etc.), shipping manager and payment manager code to be re­

used. Having constructed these components as logical AbCDComponents, they have already

defined composition patterns for each component. A composition pattern describes show the

component interacts with other components within the system. Hence designers were able to

analyse these existing code, to see if these can be adapted to be reused in the system using the

composition pattern.

In case study 1, after a few design iterations, designers were able identified the following

AbCDComponents that present the functional aspects design of the system.

• Products Manager AbCDComponent

• Customers Manager AbCDComponent

• Supplier Manager AbCDComponent

• Shopping Cart AbCDComponent

• Admin Tools AbCDComponent

146

Evaluation

• Shipping Manager AbCDComponent

• Payment Manager AbCDComponent

As with most UML models, designers have already partitioned the design into the above

aspects. However, transforming the design into AbCD Components captures additional

semantic information with abstraction. These include instance management information,

remoting interface information and event management information. Furthermore, designers

were able to add constraints that should be provided by component frameworks with each

service identified. To summarise the output:-

• Designers realised that an abstraction over various services needed by the system

provides an opportunity to identify reusable assets.

• Designers were also able to identify potential services that should be provided by the

component framework without having to know the detailed implementation.

147

Evaluation

8.5 Comparison with related works

After evaluating the artefacts produced using the AbCD approach, this section discusses

related works published by other researchers. Cheesman [Cheesman and Daniels, 2000] has

presented a process for designing components using UML. Cheesman's work focuses on

constructing component specification using a proposed process workflow. It proposes a new

UML profile and shows how the component models can be derived from business models

In comparison with the AbCD approach, both shares the main aim for achieving abstraction in

software component design. However the main differences are as follows:-

• Whilst Cheesman's approach focuses on how to transform business models to

component specification, the AbCD approach highlights how non-functional aspects

of the business models can be explicitly identified logical components using the

AbCD meta-model. This may improves the reusability of the components because

the components models are more self-contained.

• Cheesman's approach does not address now components identified can be applied to

different technologies for implementation. The AbCD approach highlights how

attributes can be used to map platform independent logical component design to

platform specific component design for implementation. This improves the usability

of the approach as it provides a bridge for PIM and PSM in component design.

Skinner [Skinner, 2001] has presented how UML meta-model can be extended to add the

concept of context based attributes to UML modelling. However, Skinner uses meta­

modelling by altering the UML meta-model to include new meta-classes. The main limitation

of this approach is the tool that implements the UML meta-model also needs to be altered.

Skinner showed how the ArgoUML tool is extended to allow designers to add context-based

attributes. On the other hand, as the AbCD meta-model is constructed as a UML profile, any

UML tool that supports UML profiling can be applied. Using Skinner approach, the designer

can add attributes for different generic contexts. However, the attributes provided by the

AbCD approach is tailored towards the development of software components that are logical

and abstract.

8.5.1 Summary of evaluation on AbCD approach

The AbCD approach will now be evaluated using the core CbSE and MDD concepts

identified in the literature survey. Using the table, discussion will be made on how well the

AbCD approach fulfils different concepts and solve CbSE problems. The results presented in

148

Evaluation

Table 12 are based on the two case study work described in Chapter 7. The table also include

a grading system as follows :-

• ***Fully supported

• **Partially supported

• * Minimum support

Concepts Grade :Discussion

UML Modelling ** As the AbCD approach only focuses on
constructing 00 UML model to component
model, UML modelling is limited to
applying the AbCD meta-model.

UML Profiling for *** The profiling tool allows the designer to
component modelling transform existing UML model to logical

component model by applying AbCD meta-
model.

Provided Platform *** The AbCD approach is centered around the
Independent Component concept of presenting components as
Modelling_ platform independent.
Provided Platform Specific ** Although, the approach is targeted for
Component Modelling construction of platform independent

models, the designer can add platform
specific information as attributes.

Specifying non-functional *** The Graph View tool implemented to
aspects support the AbCD approach allows designers

to view non-functional aspects included in
the design.

Support component *** The attributes in each logical component can
selection, filtering and be used as meta-data for acquiring existing
acquisition components for reuse.
Support component * Currently direct no support for component
Implementation implementation is included in the research.
Support for component ** The AbCD approach specifies the
assembly component design assembly instead of

component implementation assembly.

149

-

Conclusion

Chapter 9 Conc~usion

150

Conclusion

9. 1 Introduction

This chapter reviews the research presented in this thesis and summarises the achievements

gathered. It also presents a discussion that highlights the general research contribution to the

Software Engineering community. The discussion presented there based on the 7 criteria for

success defined in Chapter I . It also describes the direction for further work.

9.2 Summary of the Research

The problem original problem identified in Chapter 1 was:-

"The component frameworks act as a vehicle for components and takes the responsibility of component

management and most importantly it dictates how the component interact using an interaction model.

Therefore the designers must have comprehensive knowledge of the particular framework that the design is

based on. Accordingly, the architecture of the system design is also dictated by the model supported by the

framework. Moreover the component implementation often differs from initial design. This has lead to the

position that the component is hard to re-use."

The abstraction in design was identified as the maJor research problem within this. In a

traditional Object Oriented design, abstraction represents encapsulating functional complexity

of objects. From this research point of view, abstraction in components hides functional

complexity as well as cross-cutting functions, and most importantly the component

framework that represents component interaction model and component runtime

requirements.

Chapter 2 and Chapter 3 defined the termed component and explored a number of aspects of

Component based Software Engineering. In this thesis the termed component has special

meaning as defined in Section 2.2.2.

"a software component is a software unit or a building block, which can be independently deployable and

composable with other software components, permitting that component contracts are satisfied, and

component framework are compatible, to form a component-based system".

It also described three main component frameworks and their associated technologies in

detail. This has led to finding the common features and facilities provided by component

technologies to form a common abstract and logical framework. This is used as a basis for

identifying ways to provide guidelines and a formal approach. This achieved the first criteria

for success defined for this research.

"1. Identification of the key factors that improve the quality of design using the

core CbSE principles."

151

Conclusion

In Chapter 4, the Attribute based Component Design (AbCD) approach was introduced. The

approach consists of Component Design Guidelines (COG) which can be regarded as good

practice guidelines. The guidelines are introduced instead of forming a detailed process model

because the AbCD approach promotes a non-invasive workflow. The COG proposed two

simple main phases in the workflow: component identification and component construction.

This process is enabled by the main focus of this research, the AbCD meta-model.

The detailed specification of the AbCD meta-model was presented in Chapter 5. It allowed

designers to model logical components. Each model element represents abstraction over

component requirements and composition patterns as attributes of the component. It extends

the UML meta-model and proposed 5 new types of logical components covering functional,

cross-cutting, data, interface and component assembly aspects of the design. The introduction

of the AbCD meta-model accomplished the second criteria for success.

"2. Development of a new meta-model that resolves the problem of component

abstraction and allows designers to construct abstract and logical components at

specification level."

The construction of the AbCD meta-model also gave an opportunity to provide visualisation

support to view the design in aspects, most importantly to view cross-cutting aspects.

Therefore, the AbCD approach provides the Component Dependency View to support the

modelling of abstract software components, which satisfies the third criteria for success.

"3. Development of the component dependency view that highlights the cross­

cutting and non-functional aspects of the design."

Chapter 6 presented the implementation work that allows developers to construct AbCD

component models using the Eclipse IDE tool. It was constructed as a plug-in to the Eclipse

tool, called the AbCD tool suite. It used the existing Eclipse UML 2.0 to derive the AbCD

meta-model as a UML 2.0 profile. The tool suite consists of three programs: the profiling

tool, analysis tool and the code generation prototype. The implementation work realised the

two main criteria for success identified in Chapter 1.

"4. Development of a tool suite that supports the meta-model and enables the

component dependency view."

As part of the evaluation process, the AbCD approach was applied to component based

software development projects as two case studies. Chapter 7 presented how the AbCD

152

Conclusion

approach was applied to the case studies. The two case studies provided two different

scenarios introduced in Chapter 7.

"5. Analysis on the productivity of the designers during the development process."

Throughout Chapter 8 the evaluation work was described based on two case studies. It

presented the benefits gained from applying the AbCD approach as well as highlighting the

shortcomings of the approach when practising in the case studies. It has been demonstrated

that the work presented in Chapter 4 has met the following criteria identified in Chapter l.

"6. Quantitative and qualitative evaluation of the success of the approach based on

two case studies."

However more work is needed to effectively evaluate the AbCD approach quantitatively,

which is the future work.

In Chapter 5, the AbCD meta-model attributes that cover a set of semantics are presented that

to support the development of software components. The two case studies presented in

Chapter 7 provided an opportunity to assess the richness of the semantics identify and

included in the AbCD meta-model for different domains. As presented in Section 8.4, the

evaluation shows that the artefacts produced achieved abstraction. However the semantics

covered in various attributes of the AbCD meta-model are basic and more improvement is

needed to cover a variety of domains. This fulfils the last criteria for success presented in

Chapter 1.

"7. Assessment of the rich set of semantics identified by the meta-model to support

the design of component based software systems."

9.3 Future work

The research can be extended in the following ways and some ideas are discussed in
this section.

9.3.1 Graphical modelling and tool integration support

Currently, the AbCD tool suite does not support graphical modelling of UML diagrams.

Adding graphical modelling will make the designers more productive and also provide

visualising support to the model. Furthermore there are no import/export features of the

AbCD component model. For instance, adding further functionality to the tool suite in order

to allow the designers to import existing UML designs from popular tools such as Rational

Rose.

153

Conclusion

9.3.2 Automating the analysis of the code

Another application of the AbCD approach could be in the field of program comprehension.

For instance, a developer might want to understand the design of the existing code. The

developer might then try to understand why the different parts of the code are duplicated or

clustered. There are methods such as call graph tools, and reverse engineering tools that allow

developers to analyse the code. However they do not highlight why code is duplicated. For

example, code might be duplicated because of the cross-cutting concerns, forced by the

framework that has been built on, or written by inexperienced programmers. The AbCD

approach might be able to automatically analysis why parts of the code are duplicated if there

is tool that can analyse code. However it might be hard to develop a tool that can analyse

duplicated code that understand changes in variables and context but has the same

functionality.

9.3.3 Source Generation

Currently, the tool suite includes a simple source generator that generates the necessary

configuration file that allows components to correctly configuration to use the Spring

application framework. This feature can be extended to include more comprehensive set of

source generation facilities to integrate with different component frameworks.

!54

References

References

(OMG), 0. M.G. (1999). "The CORBA Component Model."

Achermann, F. and 0. Nierstrasz (2001). Applications= Components+ Scripts- A Tour of
Piccola. Software Architectures and Component Technology. M. Aksit, Kluwer: 261-292.

Aksit, M. (1996). "Separation and composition of concerns in the object-oriented model."
ACM Computing Surveys 28: 148-148.

Alder, R. M. (1995). "Emerging Standards for Component Software." Computer IEEE 28(3):
68-77.

Alexander, C., S. Ishikawa, et al. (1977). A Pattern Language.

Alpert, S. R., K. Brown, et al. (1998). The Design Patterns Smalltalk Companion, Addison­
Wesley Publishing Company.

Avalon, A. (2005). "Castle Project." from http://www.castleproject.org/index.php.

Beugnard, A., J. Jezequel, et al. (1999). "Making Components Contract Aware." IEEE
Computer 32(7): 6.

Bosch, J. (1996). Composition through Superimposition. Special Issues in Object-Oriented
Programming: Workshop Reader of the lOth European Conference on Object-Oriented
Programming ECOOP' 96, Heidelberg.

Brown, A. (2004). An introduction to Model Driven Architecture, IBM.

Brown, A. W. (1996). Component-Based Software Engineering. California, IEEE Computer
Society Press.

Brown, W. J., R. C. Malveau, et al. (1998). AntiPatterns: Refactoring Software. Architectures,
and Projects in Crisis, Wiley.

Caldiera, G. and V. R. Basili (1991). "Identifying and Qualifying Reusable Software
Components." Computer 24(2): 61--71.

Canal, C., L. Fuentes, et al. (2003). "Adding Roles to CORBA Objects." IEEE Transactions
29(3): 242-260.

Chappell, D. (1996). Understanding ActiveX and OLE, Microsoft Press.

Cheesman, J. and J. Daniels (2000). UML Components: A Simple Process for Specifying
Component-Based Software, Addison-Wesley.

Cicalese, C. D. T. and S. Rotenstreich (1999). "Behavioral Specification of Distributed
Software Component Interfaces." IEEE Computer 32(7): 7.

Clarke, S. and R. J. Walker (2001). Composition Patterns: An Approach to Designing
Reusable Aspects. International Conference on Software Engineering.

155

References

Clements, P. C. (1996). "From Subroutines to Subsystems: Component- based Software
Development." Component - Based Software Engineering: 2.

Coad, P., J.d. Luca, et al. (1999). Java Modeling Color with Uml: Enterprise Components
and Process with Cdrom. Upper Saddle River, NJ, USA, Prentice Hall PTR.

Code-Generation-Network. (2006). "Code Generation Network Website." from
http://www .codegeneration. net/ generators-by -standard. php ?standard= 1.

Crawford, W. and J. Kaplan (2003). J2EE Design Patterns Sebastopol, CA 95472, O'Reilly.

D'Souza, D. and A. C. Wills (1999). Objects, Components and Frameworks With UML: The
Catalysis Approach. Boston, MA, USA, Addison-Wesley.

Dijkstra, E. W. (1968). "The Structure of the "THE"- Multiprogramming System."
Communications of the ACM 26(I): 49-52.

Dobing, B. and J. Parsons (2006). "How UML is used." Communications of ACM 49(5): 109-
113.

Eclipse (2005). Eclipse UML2

Gamma, E., R. Helm, et al. (1993). "Design Patterns: Abstraction and Reuse of Object­
Oriented Design." Lecture Notes in Computer Science 707: 406-431.

Gamma, E., R. Helm, et al. (1995). Design Patterns: Elements of Reusable Object-Oriented
Software.

Garlan, D., R. Allen, et al. (1994). "Architecture Mismatch: Why Reuse Is So Hard." IEEE
Software 12(6): 17-26.

Grundy, J. (2000). "Multi-perspective specification, design and implementation of software
components using aspects." International Journal of Software Engineering and Knowledge
Engineering Vol. 10(No. 6): 713-734.

Harrop, R. and J. Machacek (20CS). Pro Spring. Berkely, CA, USA, Apress.

Heineman, G. T. and W. T. Council! (2001). Component-based software engineering: putting
the pieces together. Boston, MA, USA, Addison-Wesley Longman Publishing Co., Inc.

Hondt, K. D., C. Lucas, et al. (1997). Reuse Contracts as Component Inerface Description.
Second International Workshop on Component-Oriented Programming, Turku, Finland,
TUCS General Publication.

Hubett, R. (2001). Convergent Architecture: Building Model-Driven J2EE Systems with
UML (OMG Press). New York, NY, USA, John Wiley & Sons, Inc.

Jacobson, I. (1993). Object- Oriented Software Engineering. Reading, MA., Addison -
Wesley.

Kitchenham, B. A. (1996). "Evaluating software engineering methods and tool part 2:
selecting an appropriate evaluation method technical criteria." SIGSOFT Softw. Eng. Notes
21(2): 11-15.

156

References

Kleppe, A., 1. Warmer, et al. (2003). MDA Explained: The Model Driven Architecture:
Practice and Promise. Boston, MA, USA, Addison-Wesley Longman Publishing Co., Inc.

Laddad, R. (2003). AspectJ in Action: Practical Aspect-Oriented Programming. Greenwich,
CT, USA, Manning Publications Co.},.

Martin, R., D. Riehle, eta!. (1998). Pattern Languages of Program Design, Addison Wesley
Longman, Inc.

Mellor, S. J., S. Kendall, et al. (2004). MDA Distilled. Redwood City, CA, Addison Wesley
Longman Publishing Co., Inc.

Meyer, B. (1994). Reusable Software: The Base Object-Oriented Component Libraries,
Prentice Hall International.

Meyer, B. (2000). Object-Oriented Software Construction, Prentice Hall 2nd edition

Nierstrasz, 0. and D. Tsichritzis (1995). Object-Oriented Software Composition. Englewood
Cliffs, NJ, Prentice-Hall.

Olafsson, A. and D. Bryan (1996). On the Need for Required Interfaces for Components.
Special Issuies in Object-Oriented Programming, ECOOP'96.

OMG. (1998). "Model Driven Architecture." from http://www.omg.org/mda/.

OMG (1999). CORBA /IIOP 2.3 and CORBA Services Specification, OMG.

OMGIDL http://www.omg.org/gettingstmted/omg idl.htm, OMG.

Orfali, R., D. Harkey, eta!. (1996). The Essential Distributed Objects Survival Guide. New
York, John Wiley & Sons.

Penix, 1. and P. Alexander (1997). Component Reuse and Adaptation at the Specification
Level. Workshop on Institutionalizing Software Reuse, Ohio State University, USA.

Pooley, R. and P. Stevens (1999). Using UML Software Engineering With Objects And
Components. Edinburgh, Addison-Wesley.

Pritchard, J. (1999). COM and CORBA Side by Side: Architectures, Strategies, and
Implementations, Addison-Wesley.

Rashid, A., A. Moreira, et al. (2003). Modularisation and Composition of Aspectual
Requirements. Aspect Oriented Software Development Conference.

Rational. (1998). "The Rational Unified Process." Rational Software, The Rational Unified
Process, version 5.0, Cupertino, CA, 1998.

Riehle, D. (1997). "Bureaucracy" Pattern languages of program design 3. Boston, MA, USA,
Addison-Wesley Longman Publishing Co., Inc.

Rogerson, D. (1997). Inside COM. WA, Microsoft Press.

Rumbaugh, 1 ., M. Blaha, et a!. (1991). Object Oriented Modelling and Design. Englewood
Cliffs, NJ, Prentice- Hall.

157

References

Sametinger, J. (1997). Component Interporation. Workshop On Institutionalizing Software
Reuse (WISR), Ohio State University, USA.

Schmidt, D., M. Stal, eta!. (2001). Pattern Oriented Software Architecture: A System of
Patterns, John Wiley and Sons Ltd.

Skinner, M. (2001). Enhancing an Open Source UML Editor by Context-Based Constraints
for Components. Berlin, Technical University of Berlin: I 0.

Stasko, J., J. Domingue, eta!. (1998). Software Visualization: Programming as a Multimedia
Experience, MIT Press.

Stein, D., S. Hanenberg, eta!. (2002). Designing Aspect-Oriented Crosscutting in UML.
AOSD-UML Workshop at AOSD'02, Enschede, The Netherlands.

Suzuki, J. and Y. Yamamoto (1999). Extending UML with Aspects: Aspect Support in the
Design Phase. ECOOP Workshops.

Szyperski, C. (1998). Component Software Beyond Object-Oriented Programming, Addison
Wesley Longman Limited.

Vigder, M. R. and J. Dean (1996). COTS Software Integration: State of the art. Ottawa,
Ontario, Canada, Institute for Information Technology.

Warmer, J. and A. Kleppe (2003). Object Constraint Language 2nd Edition, Addison Wesley
Professional.

Zaremski, A.M. and J. M. Wing (1997). "Specification matching of software components."
ACM Transactions on Software Engineering and Methodology 6(4): 333-369.

0 .

I

-

158

